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Abstract

Irregular pyramids are made of a stack of successively reduced graphs embedded

in the plane. Such pyramids are used within the segmentation framework to encode

a hierarchy of partitions. The different graph models used within the irregular pyra-

mid framework encode different types of relationships between regions. This paper

compares different graph models used within the irregular pyramid framework ac-

cording to a set of relationships between regions. We also define a new algorithm

based on a pyramid of combinatorial maps which allows to determine if one region

contains the other using only local calculus.
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1 Introduction

Graphs play an important role in computer vision and pattern recognition

since the birth of these fields. Graphs are used along the overall process from

the stimuli to the interpretation task: hierarchical and non-hierarchical data

structures for image segmentation, graph matching for pattern recognition,

graph clustering for structural classification, and computation of a median

graph [1] for learning the structural properties of models.

Graphs are thus used both for low level image processing and high level tasks.

Different type of graphs being used for different types of applications. How-

ever, in many computer vision tasks, the low image segmentation stage cannot

be readily separated from higher level processing. On the contrary, the seg-

mentation algorithms should often extract fine information about the partition

in order to guide the segmentation process according to the high level goal.

This information may be used to compare isolated regions or some local con-

figuration of regions to a model. There is thus a need to design graph models

for image segmentation which can be both efficiently updated and allow to

extract fine information about the partition.

1.1 Relating Regions

Different formalisms such as the RCC-8 defined by Randel [2] or the relation-

ships defined by K. Shearer et al. [3] in the context of graph matching may

be used to relate the regions of a partition. Within the particular context of

1 WK was supported by the Austrian Science Foundation under grants P14662-INF

and FSP-S9103-N04
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image segmentation, the following relationships may be defined from these two

models:meets, contains, inside:

(1) The meets relationship means that two regions share at least one com-

mon boundary. The different models used to encode partitions either

encode the existence of this common boundary or create one relationship

for each boundary between two regions. We denote these two types of

encodings meets exists and meets each. The ability of the models to re-

trieve efficiently a given common boundary between two regions is also

an important feature of these models.

(2) The relationship A contains B expresses the fact that region B is inside

region A. For example, the background of the road sign in Fig. 1(a)

contains the upside arrow.

(3) The inside relationship is the inverse of the contains relation: A region

B inside A is contained in A.

One additional relationship not directly handled by the models of Shearer and

Randel may be defined within the hierarchical segmentation scheme. Indeed

within such a framework a region defined at a given level of a hierarchy is

composed of regions defined at levels below.

The following relationships may thus be deduced from the relationships defined

by Shearer and Randel: The meets exists, meets each, contains, inside and

composed of. Note that unlike meets relationships, the contains and inside

relations are asymmetric. A contains or inside relation between two regions

allows thus to characterize each of the regions sharing this relation.
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1.2 Region Adjacency Graph

One of the most common graph data structure, within the segmentation frame-

work is the Region Adjacency Graph (RAG). A RAG is defined from a parti-

tion by associating one vertex to each region and by creating an edge between

two vertices if the associated regions share a common boundary. A RAG cor-

responds thus to a simple graph without any double edge between vertices

nor self-loop. Within a non-hierarchical segmentation scheme the RAG model

is usually applied as a merging step to overcome the over-segmentation pro-

duced by the previous splitting algorithm [4]. Indeed, the existence of an edge

between two vertices denotes the existence of at least one common boundary

segment between the two associated regions which may thus be merged by re-

moving this segment. Within this framework, the edge information may thus

be interpreted as a possibility to merge the two regions identified by the ver-

tices incident to the edge. Such a merge operation implies to collapse the two

vertices incident to the edge into one vertex and to remove this edge together

with any double edge between the newly created vertex and the remaining

vertices.

The RAG model encodes thus only the existence of a common edge between

two regions (the meets exists relationship). Moreover, the existence of a com-

mon edge between two vertices does not provide enough information to dif-

ferentiate a meets relationship from a contains or inside one. This drawback

is illustrated on an ideal segmentation of two roadsigns (Fig. 1) which are

encoded by a same RAG. The road sign (a) defines two nested contains rela-

tionships. Indeed, the white border contains the background which contains

itself the symbol. On the other hand the road sign (b) corresponds to two
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meets relationships between the central region and its two white neighbors.

1.3 Combinatorial Maps

A 2D combinatorial map may be understood as a planar graph encoding ex-

plicitly the orientation in the plane. Each connected component of a partition

(a connected set of regions) may be encoded by a 2D combinatorial map up

to an homeomorphism [5]. One of the main insight of such models compared

to a RAG data structure is their ability to be efficiently updated after both

split and merge operations.

The combinatorial map formalism allows to encode each connected boundary

between two regions by one edge. The models based on combinatorial maps

encode thus the meets each relationship. However, within the combinatorial

map framework two connected components of a partition will be encoded by

two combinatorial maps without any information about the respective po-

sitioning of the two components. The models based on combinatorial maps

have thus designed additional data structure like the inclusion tree [6] or the

Parent-Child relationships [5,7] to encode the contains and inside relation-

ships. Using these models any modification of the partition implies to update

both the combinatorial maps and the additional data structures.

1.4 Segmentation Hierarchies

Data structures used within the hierarchical segmentation framework encode

a stack of partitions successively simplified by region merging. Irregular pyra-

mids models introduced by Meer and Montanvert [8] encode each partition
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by a graph where each vertex is associated to one region. At each level of the

pyramid a region is obtained by the merge of a connected set of regions at the

level below. The resulting region is called the parent of the merged regions.

These last regions correspond to the child of the region at the level above. The

models based on the irregular pyramid framework encode thus naturally the

composed of relationship. In order to preserve the efficiency of a hierarchical

data structure, the size of models encoding each partition of the hierarchy

must be strictly decreasing according to the level. This last constraint forbids

the use of an additional data structure similar to the structures used for com-

binatorial maps models in order to store contains and inside relationships.

Indeed, contains and inside relationships between regions may both be re-

moved and created along the different levels of the pyramid. The use of such

an additional data structure may thus violate the strictly decreasing size of

the models according to the levels.

1.5 Overview

The aim of this paper is twofold: We firstly provide an introduction to the

main data structures used within the hierarchical segmentation framework

according to the set of relationships previously defined (Section 1.1). Secondly,

we present an efficient computation of the contains and inside relationships

within the irregular pyramid framework. The remaining of this paper is thus

organized as follows: Section 2 presents two models belonging to the irregular

pyramid framework together with their properties relative to the relationships

previously defined. Section 3 describes the combinatorial map model and its

main properties. Section 4 describes the construction scheme and the main
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properties of a pyramid of combinatorial maps : A combinatorial Pyramid.

Finally, Section 5 presents one algorithm computing the contains and inside

information using only local calculus.

2 Simple and Dual Graph Pyramids

The irregular pyramids are defined as a stack of successively reduced graphs,

each graph being built from the graph below by selecting a set of vertices

named surviving vertices and mapping each non-surviving vertex to a surviv-

ing vertex [9,8]. Using such a framework, the graph Gl+1 = (Vl+1, El+1) defined

at level l+1 is deduced from the graph defined at level l by the following steps:

(1) Select the vertices of Gl+1 among Vl. These vertices are the surviving

vertices of the decimation process, Vl+1 ⊂ Vl.

(2) Each non-surviving vertex connects to a surviving vertex by one edge

of Gl. The set of vertices attached to each surviving vertex defines a

partition of Vl.

(3) Define the adjacency relationships between the vertices of Gl+1 in order

to define El+1.

2.1 Simple graph Pyramids

In order to obtain a decimation ratio greater than 1 between two successive

levels, Meer [9] imposes the following constraints on the set of surviving ver-

tices:
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∀v ∈ Vl − Vl+1 ∃v
′ ∈ Vl+1 : (v, v′) ∈ El (1)

∀(v, v′) ∈ V 2

l+1 : (v, v′) 6∈ El (2)

Constraint (1) insures that each non-surviving vertex is adjacent to at least

a surviving vertex. Constraint (2) insures that two adjacent vertices cannot

both survive. These constraints define a maximal independent set (MIS) [9,8].

Given the set of surviving vertices, different methods [8,10] may be used to link

each non-surviving vertex to one of its surviving neighbor. For example, Mon-

tanvert [8] attaches each non-surviving vertex to its closest surviving neighbor

according to a difference between the outcome of a random variable attached

to each vertex. The set of non-surviving vertices connected to a surviving

vertex defines its reduction window and thus the parent child relationship

between two consecutive levels.

The final set of surviving vertices defined on Vl corresponds to the set of

vertices Vl+1 of the reduced graph Gl+1 = (Vl+1, El+1). The set of edges El+1

of Gl+1 is defined by connecting by an edge in Gl+1 any couple of surviving

vertices having adjacent children.

Two surviving vertices are thus connected in Gl+1 if they are connected in Gl

by a path of length lower or equal than 3. Two reduction windows adjacent

by more than one path of length lower or equal than 3 will thus be connected

by a single edge in the reduced graph. The stack of graphs produced by the

above decimation process is thus a stack of simple graphs each simple graph

encoding only the existence of one common boundary between two regions

(the meeets exists relationship). Moreover, as mentioned in Section 1.2 the

RAG model which corresponds to a simple graph does not allow to encode

contains and inside relationships.
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2.2 Construction of Dual Graph Pyramids

The dual graph pyramids introduced by Willersinn and Kropatsch [11] use

an alternative construction scheme. Within the dual graph pyramid frame-

work the reduction process is performed by a set of edge contractions. The

edge contraction collapses two adjacent vertices into one vertex and removes

the edge. Many edges except self-loops can be contracted independently of

each other and also in parallel. In order to avoid contracting a self-loop these

edges should not form cycles, e.g. form a forest. This set of edges is called a

contraction kernel.

The contraction of a graph reduces the number of vertices while maintaining

the connections to other vertices. As a consequence some redundant edges may

occur. These edges belong to one of the following categories:

• Redundant double edge: These edges encode multiple adjacency relation-

ships between two vertices and define degree two faces. They can thus be

characterized in the dual graph as degree two dual vertices. In terms of parti-

tion’s encoding these edges correspond to an artificial split of one boundary

between two regions.

• Empty self-loop: These edges correspond to a self-loop with an empty inside.

These edges define thus degree one faces and are characterized in the dual

graph as degree one vertices. Such edges encode artificial inner boundaries

of regions.

Both double edges and empty self-loops do not encode relevant topological

relations and can be removed without any harm to the involved topology [11].

The removal of such edges is called a dual decimation step and the set of
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removed edges is called a removal kernel. Such a kernel defines a forest of the

dual graph.

2.3 Dual Graph Pyramids and multiple boundaries

Given one tree of a contraction kernel, the contraction of its edges collapses

all the vertices of the tree into a single vertex and keeps all the connections

between the vertices of the tree and the remaining vertices of the graph. The

multiple boundaries between the newly created vertex and the remaining ver-

tices of the graph are thus preserved. Each graph of a dual graph pyramid

encodes thus the meets each relationships. This property is not modified by

the application of a removal kernel which only removes redundant edges.

2.4 Dual Graph Pyramids and the inside relationship

Due to the forest requirement, the encoding of the adjacency between two re-

gions one inside the other will be encoded by two edges (Fig. 2): One edge en-

coding the common border between the two regions and one self-loop incident

to the vertex encoding the surrounding region. One may think to characterize

the inside relationship by the fact that the vertex associated to the inside

region should be surrounded by the self-loop. However, as shown by Fig. 2(c)

one may exchange the surrounded vertex without modifying the incidence re-

lationships between both vertices and faces. Two dual graphs being defined

by these incidence relationships one can exchange the surrounded vertex with-

out modifying the encoding of the graphs. This last remark shows that the

inside/contains relationships cannot be characterized locally within the dual
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graph framework.

3 Combinatorial maps

Combinatorial maps and generalized combinatorial maps define a general

framework which allows to encode any subdivision of nD topological spaces

orientable or non-orientable with or without boundaries. Recent trends in com-

binatorial maps apply this framework to the segmentation of 3D images [12,13]

and the encoding of 2D [14,15] and nD [16] hierarchies.

The remaining of this paper will be based on 2D combinatorial maps which will

be just called combinatorial maps. A combinatorial map may be deduced from

a planar graph by splitting each edge into two half edges called darts. An edge

connecting two vertices is thus composed of two darts, each dart belonging

to only one vertex. The relation between two darts d1 and d2 associated to

the same edge is encoded by the permutation α which maps d1 to d2 and d2

to d1. The permutation α is thus an involution and its cycles 2 are denoted

by α∗(d) for a given dart d. These cycles encode the edges of the graph. The

sequence of darts encountered when turning around a vertex is encoded by the

permutation σ. Using a counter-clockwise orientation, the cycle σ∗(d) encodes

the set of darts encountered when turning counter-clockwise around the vertex

encoded by the dart d. A combinatorial map can thus be formally defined by

G = (D, σ, α), where D is the set of darts and σ, α are two permutations

2 the cycle of a dart d associated to a permutation π on the set of darts is the

sequence (d, π(d), π2(d), . . . , πn(d)) with πn(d) = d. Since the set of darts is finite n

is defined for any dart and any permutation π. The π orbit of a dart d correponds

to the same set of darts as its cycle but without any ordering between darts.
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defined on D such that α is an involution. 3

Given a combinatorial map G = (D, σ, α), its dual is defined by G = (D, ϕ, α)

with ϕ = σ ◦ α. The cycles of the permutation ϕ encode the set of darts

encountered when turning around a face of G.

We can state one of the major difference between a combinatorial map and

an usual graph encoding of a partition. Indeed, a combinatorial map may be

seen as a planar graph with a set of vertices (the cycles of σ) connected by

edges (the cycles of α). However, compared to an usual graph encoding a

combinatorial map encodes additionally the local orientation of edges around

each vertex thanks to the order defined within each cycle of σ.

Fig. 3 illustrates the encoding of a 3×3 4-connected discrete grid by a combi-

natorial map G. The involution α is implicitly encoded by the sign in Fig. 3(a)

and (b). We have thus α(d) = −d for all darts on these figures.

Since G encodes a planar sampling grid, each vertex of G (Fig. 3(b)) is as-

sociated to a corner of a pixel. For example, the top left pixel of the 3 × 3

grid is encoded by the σ cycle σ∗(1) = (1, 13, 24, 7) (top left vertex and square

in Fig. 3(a) and (b)). The top-left corner of this pixel is encoded by the ϕ

cycle: ϕ∗(24) = (24,−13) (top left dual vertex of Fig. 3(b)). Moreover, each

dart may be understood in this combinatorial map as an oriented crack, i.e.

as a side of a pixel with an orientation. For example, the dart 1 in Fig. 3(b)

encodes the right side of the upper-left pixel oriented from bottom to top. The

ϕ, α and σ cycles of a dart may thus be respectively understood as elements

of dimensions 0, 1 and 2.

3 π is an involution on D if π ◦ π(d) = d for any dart d in D
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Each dart of a combinatorial map G, encoding a planar sampling grid may

thus be interpreted as an oriented crack and associated to a point encoding

the coordinates of a pixel’s corner and one move encoding the orientation on

the crack associated to the dart.

4 Embedding and Orientation

As in the dual graph pyramid scheme [17] (Section 2) a combinatorial pyramid

is defined by an initial combinatorial map successively reduced by a sequence

of contraction or removal operations. The initial combinatorial map encodes

a planar sampling grid (Section 3) or a first segmentation and the remain-

ing combinatorial maps of a combinatorial pyramid encode a stack of image

partitions successively reduced. Such combinatorial maps are thus embedded

(Section 4.3). As mentioned in Section 3 a combinatorial map may be under-

stood as a dual graph with an explicit encoding of the orientation of the edges

incident to each vertex. This explicit encoding of the orientation is preserved

within the combinatorial pyramid using contraction and removal operations

equivalent to the operations used for dual graphs but which preserve the orien-

tations of edges around the vertices of the reduced combinatorial maps [14,15].

Contraction operations are controlled by contraction kernels (CK). The re-

moval of redundant edges is performed as in the dual graph reduction scheme

by a removal kernel. This kernel is however decomposed in two sub-kernels :

A removal kernel of empty self-loops (RKESL) which contains all darts inci-

dent to a degree 1 dual vertex and a removal kernel of empty double edges

(RKEDE) which contains all darts incident to a degree 2 dual vertex. These

two removal kernels are defined as follows : The removal kernel of empty self-
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loops RKESL is initialized by all self-loops surrounding a dual vertex of degree

1. RKESL is further expanded by all self-loops that contain only other self-

loops already in RKESL until no further expansion is possible. For the removal

of empty double edges RKEDE we ignore all empty self-loops in RKESL in

computing the degree of the dual vertex. Note that the successive application

of a RKESL and a RKEDE is equivalent to the application of a removal kernel

defined within the dual graph framework. Both contraction and removal oper-

ations defined within the combinatorial pyramid framework are thus defined

as is the dual graph framework but additionally preserve the orientation of

edges around each vertex. Further details about the construction scheme of a

Combinatorial Pyramid may be found in [14].

4.1 What is inside ?

Combinatorial pyramids are thus built using the same framework as dual

graphs pyramids. The use of a contraction kernel within the construction

scheme of a combinatorial pyramid allows to encode multiple adjacency be-

tween regions thanks to multiple edges between their associated vertices.

Therefore, as in the dual graph framework, combinatorial pyramids preserve

the meets each relationship (Section 2.3). Note that the explicit encoding of

the orientation within the combinatorial pyramid framework does not interfere

with this last property.

Moreover, as in the dual graph framework (Section 2.4), an inside relationship

between two regions is encoded by two edges: one edge encodes the common

border between the two regions while the other encodes a self-loop incident to

the vertex associated to the surrounding region. Let us consider the example
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already used for dual graph pyramids (Section 2.4, Fig. 2). Fig. 4 shows the

encoding of the ideal segmentation of the road sign using combinatorial maps.

As shown by Fig. 4 (b) and (c), one can exchange the surrounded vertex with-

out changing the order of the darts around the vertex σ∗(1). Therefore, the

two drawings shown in Fig. 4(b) and (c) are encoded by the same combina-

torial map. One cannot determine from the formally specified combinatorial

map which part is inside and which is contained. This ambiguity may also

be characterized using the cycle σ∗(1) of the vertex incident to the self-loop.

Indeed, this cycle is equal to σ∗(1) = (1, 2,−1, 3). Since (1,−1) is a self-loop

the neighbors of σ∗(1) have in their σ cycles the α successors of the two darts

2 and 3. The ambiguity about the drawing of the self-loop is characterized

on the cycle σ∗(1) by the fact that we can not deduce from this cycle if the

dart 2 is between 1 and −1 or if on the contrary 3 is between −1 and 1. This

ambiguity arises thus because the two darts 1 and −1 play a symmetric role in

σ∗(1). We can thus state the two following points from the above discussion:

(1) Combinatorial pyramids preserve the meets each relationship.

(2) An inside relationship ’A inside B’ is always associated with a self-loop

incident to B. However, a non-redundant self-loop at B does not always

identify the inside region.

4.2 Implicit encoding of a combinatorial pyramid

Let us consider an initial combinatorial map G0 = (D, σ, α) and a sequence of

kernels K1, . . . , Kn successively applied on G0 to build the pyramid. Each com-

binatorial map Gi = (SDi, σi, αi) is defined from Gi−1 = (SDi−1, σi−1, αi−1)

by the application of the kernel Ki on Gi−1 and the set of darts SDi is equal
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to SDi−1 \Ki. We have thus:

SDn+1 ⊂ SDn ⊂ . . .SD1 ⊂ D (3)

The set of darts of each reduced combinatorial map of a pyramid is thus

included in the base level combinatorial map. This last property allows us to

define the two following functions:

(1) one function state from {1, . . . , n} to the states {CK,RKESL,RKEDE}

which specifies the type of each kernel.

(2) One function level defined for all darts in D such that level(d) is equal

to the maximal level where d survives:

∀d ∈ D level(d) = Max{i ∈ {1, . . . , n+ 1} | d ∈ SDi−1}

a dart d surviving up to the top level has thus a level equal to n+1. Note

that if d ∈ Ki, i ∈ {1, . . . , n} then level(d) = i.

We have shown [10,14] that the sequence of reduced combinatorial maps

G0, . . . , Gn+1 may be encoded without any loss of information using only the

base level combinatorial map G0 and the two functions level and state. Such

an encoding is called an implicit encoding of the pyramid.

The receptive field of a dart d ∈ SDi corresponds to the set of darts reduced

to d at level i [14,10]. Using the implicit encoding of a combinatorial pyramid,

the receptive field RFi(d) of d ∈ SDi is defined as a sequence d1. . . . .dq of

darts in D by d1 = d, d2 = σ0(d) and for each j in {3, . . . , q} :

dj =





ϕ0(dj−1) if state(level(dj−1)) = CK

σ0(dj−1) if state(level(dj−1)) ∈ {RKEDE,RKESL}

(4)
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The dart dq is defined as the last dart of the sequence which have been con-

tracted or removed below the level i. Therefore, the successor of dq according

to equation 4, dq+1 satisfies level(dq+1) > i. Moreover, we have shown [14,10]

that d, dq and dq+1 are additionally connected by the two following relation-

ships:

σi(d) = dq+1 and αi(d) = α0(dq) (5)

Note that these two last relationships allow to retrieve any reduced combina-

torial map of the pyramid from its base.

The implicit encoding of combinatorial pyramids is thus based on the fact that

the set of darts of any reduced combinatorial map is included in the initial

combinatorial map (equation 3). The two functions state and level which

are based on this property allow to encode the whole sequence of reduced

combinatorial map without loss of information [14,10].

4.3 Dart’s embedding and Segments

In the RAG a region corresponds to a vertex and two regions are connected

by an edge if the two regions share a boundary. In the Combinatorial Map,

vertices and edges correspond to σ and α cycles respectively. Therefore, each

dart d ∈ SDi encodes a boundary between the regions associated to σ∗

i (d)

and σ∗

i (αi(d)). Moreover, in the lower levels of the pyramid the two vertices

of an edge may belong to a same region. We call the corresponding bound-

ary segment an internal boundary in contrast to an external boundary which

separates two different regions of a RAG. The receptive field of d at level i

(RFi(d)) contains both darts corresponding to this boundary and additional

darts corresponding to internal boundaries. The sequence of external bound-
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ary darts contained in RFi(d) is denoted by ∂RFi(d) and is called a segment.

The order on ∂RFi(d) is deduced from the receptive field RFi(d). Given a dart

d ∈ SDi, the sequence ∂RFi(d) = d1, . . . , dq is retrieved by [10]:

d1 = d and ∀j ∈ {1, . . . , q − 1} dj+1 = ϕ
nj

0 (α0(dj)) (6)

The dart dq is the last dart of ∂RFi(d) which belongs to a double edge kernel.

This dart is thus characterized using equation 5 by dq = α0(αi(d)). Note that

each dart of the base level corresponds to an oriented crack (Section 3). A seg-

ment corresponds thus to a sequence of oriented cracks encoding a connected

boundary between two regions [10].

The value nj is defined for each j ∈ {1, . . . , q − 1} by :

nj = Min{k ∈ IN∗ | state(level(ϕk
0(α0(dj)))) = RKEDE}. (7)

A segment may thus be interpreted as a maximal sequence, according to equa-

tion 6, of darts removed as double edges. Such a sequence connects two darts

(d and α0(dq) = αi(d)) surviving up to level i. The retrieval of the boundaries

using equations 6 and 7 is one of the major reason which lead us to distinguish

empty self-loop removal kernels and double edges.

Let us additionally note that if G0 encodes the 4-connected planar sampling

grid, each ϕ0 cycle is composed of at most 4 darts (Fig. 3(b)). Therefore, the

computation of dj+1 from dj (equation 6) requires at most 4 iterations and the

determination of the whole sequence of cracks composing a boundary between

two regions is performed in a time proportional to the length of this boundary.
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4.4 Computing Segment’s Orientation

As mentioned in Section 3, each oriented crack associated to an initial dart

may be encoded by the position of its starting point and one move. The move

of an initial dart d is denoted by move(d). If the initial combinatorial map

G0 encodes a square grid, the move associated to each dart belongs to the

set {right, up, left, down}. These initial moves are encoded using Freeman’s

codes: right,up, left and down are numbered from 0 to 3. The angle between

two movesm1 andm2 denoted by (m1, m2)̂ is then defined as: (m1−m2)mod 4

where mod corresponds to the operator modulo. This angle is thus equal to:

+1 if the two oriented cracks define a clockwise 90◦ turns, -1 if the two oriented

crack define a counter-clockwise 90◦ turns, 0 if the two oriented crack corre-

spond to a same move and 2 if the two oriented cracks correspond to opposite

moves. Note that these angles may be associated to the RULI code (Right turn,

U turn, Left turn and Identical) defined by Fermüller and Kropatsch [18]. In-

deed, the angles associated to the R, U,L and I codes are respectively equal

to +1, 2, -1 and 0. Since the sequences of moves considered in this work do

define U turn, we consider an angle of 2 between two moves as undefined.

Given a dart d of Gi, let us denote respectively by Fm(d) and Lm(d) the

moves of the first and last oriented cracks of the segment associated to d.

If ∂RFi(d) = d1 . . . dq we have d1 = d and dq = α0(αi(d)) (equation 5) and

Fm(d) = move(d1), Lm(d) = move(dq). The two darts d1 and dq may thus

be retrieved in constant time from d. Moreover the moves of d1 and dq are

retrieved using a correspondence between the oriented cracks and the initial

darts. This correspondence may be defined using any implicit numbering of

the initial darts (see e.g. Fig. 3(a)). The values of Fm(d) and Lm(d) may thus
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be retrieved without additional memory requirement and in constant time

using an appropriate numbering of the initial darts.

Given a dart d in Gi, and the sequence of darts d1 . . . dq in G0 encoding its

segment, the properties of the segments together with the properties of the

combinatorial pyramids [10] induce the two following properties:

∀j ∈ {1, . . . , p− 1} move(dj)
−1 6= move(dj+1) (8)

Lm(d) 6= Fm(σi(d))
−1 (9)

where move(dj) denotes the move of the oriented crack associated to dj and

move(dj)
−1 is the opposite of the move of dj (e.g. right

−1 = left).

Equation 8 states that two successive moves within a segment cannot be op-

posite. This property is induced by the fact that one segment cannot contain

twice a same crack with two orientations. Equation 9 states that the first move

of the σi successor of a dart d cannot be the opposite of the last move of d.

Otherwise, the dart d would be an empty self-loop of Gi which is refused by

hypothesis.

Given the angle between two successive oriented cracks we define the orienta-

tion of a dart as the sum of the angles between the oriented cracks along its

associated segment. Given a dart d in Gi the orientation of d is defined by:

or(d) =
q−1∑

j=1

(move(dj), move(dj+1))̂ (10)

where d1 . . . dq is the the sequence of initial darts encoding the segment as-

sociated to d. Note that (move(dj), move(dj+1)̂ cannot be undefined for any

j ∈ {1, . . . , q − 1} (equation 8).
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The orientation of a dart may be computed on demand using equation 10

or may be attached to each dart and updated during the construction of the

pyramid. Indeed, let us consider two successive double darts d1 and d2 at one

level of the pyramid. If d1 survives at the above level its orientation may be

updated by [5,7]:

or(d1) = or(d1) + or(d2) + (Lm(d1), Fm(d2))̂ (11)

Note that this last formula may be extended to the removal of a sequence of

successive double edges.

The dart’s orientation may thus be computed by fixing the orientation of all

initial darts to 0 and updating the dart’s orientation using equation 11 during

the removal of each double edge kernel.

Let us consider a sequence d1 . . . dp in Gi such that dj+1 = σi(dj) for all

j in {1, . . . , p − 1} and dp 6= αi(d1). We say that such a sequence defines

a closed boundary if αi(dp) and d1 are incident to a same dual vertex e.g.

d1 ∈ ϕ∗

i (αi(dp)). The orientation of such a sequence is defined by:

or(d1 . . . dp) =
p−1∑

j=1

(or(dj) + (Lm(dj), Fm(dj+1)) )̂ + or(dp) (12)

The quantity (Lm(dp), Fm(d1))̂ has to be added to or(d1 . . . dp) if the se-

quence defines a closed boundary. Note that (Lm(dj), Fm(dj+1))̂ cannot be

undefined for any j ∈ {1, . . . , p − 1} (equation 9). Moreover, one can show

that if the sequence defines a closed boundary and if Lm(dp) = Fm(d1)
−1,

then we should have αi(dp) = d1, which is refused by hypothesis.

Using the same notations and hypothesis as equation 12, one important result

shown by Braquelaire and Domenger [5,7] states that the orientation of a
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sequence d1 . . . , dp defining a closed boundary is equal to 4 if it is traversed

clockwise and −4 otherwise. Moreover, this sequence corresponds to:

• a finite face of Gi and thus a region if its orientation is equal to −4,

• a set of faces of Gi connected by bridges and contained in one face if the

orientation is equal to 4. Such a set of faces is called an infinite face [5,7].

It encodes a connected component of the partition (Section 1).

By construction each combinatorial map Gi of a combinatorial pyramid is

connected and all but one faces of Gi define a finite face. The infinite face of

a combinatorial map encodes the background of the image (Section 3).

5 Computing contains/inside relationships

As demonstrated in Fig. 4, the determination of the contains and inside re-

lationships requires to determine which vertices are surrounded by a self-loop

incident to a given vertex. This ambiguity in the location of the self-loop is

related to the fact that the two darts of a self-loop play a symmetric role

in the σ cycle to which they belong (Section 4.1). The determination of the

contains and inside relationships requires thus to define a criterion in order

to differentiate the two darts of a self-loop. This criterion is provided by the

following proposition (Fig. 5(a)):

Proposition 1 Consider a combinatorial map Gi defined at level i of a combi-

natorial pyramid such that Gi does not contain any redundant edge. Let us ad-

ditionally consider the darts around a vertex σ∗

i (d1) = (d1, . . . , dj, . . . , dk, . . . , dp)

of Gi and a self-loop α∗

i (dj) = (dj, dk) such that dart dj is encountered be-

fore dk when traversing σ∗

i (d1) from d1, e.g. j < k. The two sequences of
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darts C1 = (dj+1, . . . , dk−1) and C2 = (dk+1, . . . , dp, d1, . . . , dj−1) define closed

boundaries and have an opposite orientation (or(C1) = −or(C2)). Moreover,

the two couple of darts (dk−1, dj+1) and (dk+1, dj−1) do not define self-loops

e.g. dj+1 6= αi(dk−1) and dj−1 6= αi(dk+1).

PROOF. First note that since Gi does not contain empty self-loops both C1

and C2 should be non-empty.

Let us show that C1 defines a closed boundary. The definitions of σ∗

i (d1) and

α∗

i (dj) induce the two following equalities: ϕi(αi(dk−1)) = σi(dk−1) = dk and

ϕi(dk) = σi(dj) = dj+1. We have thus dj+1 = ϕ2
i (αi(dk−1)) which induces

dj+1 ∈ ϕ∗

i (αi(dk−1)). The same arguments are used to show that C2 defines a

closed boundary.

Let us now show that dj+1 6= αi(dk−1). Since dj+1 = ϕ2
i (αi(dk−1)), the relation

dj+1 = αi(dk−1) implies that dj+1 = ϕ2
i (dj+1). The dart dj+1 would thus be

incident to a degree two face which is refused by hypothesis since Gi does

not contain empty double edges. The same argument is used to show that

dj−1 6= αi(dk+1).

All the conditions to apply equation 12 are thus satisfied and we derive:

or(σ∗

i (d)) = or(C1) + or(C2)− 4 (13)

where or(σ∗

i (d)) denotes the orientation of the whole sequence of darts (d1, . . . , dp).

Since this sequence defines a counter-clockwise traversal of the face its orien-

tation is equal to −4 (Section 4.4). We have thus or(C1) = −or(C2). ✷
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Proposition 1 may be interpreted as follows: The loop α∗

i (dj) corresponds

to a bridge in Gi the removal of which splits the combinatorial map into

two connected components. The component encoding the surrounding face is

traversed counter-clockwise and has thus an orientation of −4. The remaining

component corresponds to the connected component of inside regions and has

an opposed orientation of 4 (section 4.4). We say that dj is the starting dart

of the loop if the sequence of darts encoding the inside connected component

is enclosed between dj and dk = αi(dj). This property is thus characterized by

or(C1) = 4. The dart dj is called the ending dart of the loop otherwise. Note

that if dj is a starting dart αi(dj) should be an ending dart and conversely.

The above discussion and Proposition 1 provide thus a criterion which differ-

entiates the two darts of a loop in order to characterize the inside relationship.

However, computing the orientation of all sequences of darts between the two

darts of all self-loops incident to a vertex would require extra calculus. Indeed,

nested self-loops may induce several traversals of a same sequence of darts.

The following theorem incrementally computes the orientation of any sequence

of darts surrounded by the two darts of a loop:

Proposition 2 Using the same hypothesis and notations as Proposition 1,

the orientation of the sequence of darts C1 = dj+1 . . . .dk−1 between dj and dk

is defined by :

or(C1) = or′(d1 . . . .dk−1)−or′(d1 . . . .dj)−(Lm(dj), Fm(dj+1)) +̂(Lm(dk−1), Fm(dj+1))̂

where or′(d1 . . . .dk−1) and or′(d1 . . . .dj) are the orientations of the sequences

d1 . . . .dk−1 and d1 . . . .dj (equation 12) considered as non-closed sequences of

darts.
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PROOF. We want to use equation (12) to calculate the orientation of the

sequences C1 = (dj+1, . . . , dk−1), (d1, . . . , dj) and (d1, . . . , dk−1).

(1) C1: The precondition dk−1 6= αi(dj+1) is equivalent to dj+1 6= αi(dk−1)

which is excluded in Proposition 1. Moreover, C1 is a closed sequence.

(2) (d1, . . . , dj): If d1 = αi(dj) then d1 = dk (since αi(dj) = dk) and thus

k = 1 and p = k − 1. This last result contradicts our hypothesis j < k.

(3) (d1, . . . , dk−1) : If we assume that dk−1 = αi(d1) and combine it with the

relationship σi(dk−1) = dk = αi(dj) we can express σ∗

i (d1) as:

σ∗

i (d1) = (d1, . . . , dj, . . . , dk−1, dk , . . . , dp)

= (d1, . . . , dj, . . . , αi(d1), αi(dj) , . . . , dp)

(14)

This last equation contradicts the planarity of Gi since the edges α∗

i (d1)

and α∗

i (dj) must cross in order to satisfy equation 14 (Fig. 5(b)).

We now can expand the orientations of the three sequences involved in Proposi-

tion 2 to show that or(C1)−or′(d1, . . . , dk)+or′(d1, . . . , dj) = (Lm(dk−1), Fm(dj+1)) −̂

(Lm(dj), Fm(dj+1)) .̂ Indeed or(C1)− or′(d1, . . . , dk) + or′(d1, . . . , dj) may be

expanded as follows:

k−2∑
r=j+1

(or(dr) + (Lm(dr), Fm(dr+1)) )̂

+or(dk−1) + (Lm(dk−1), Fm(dj+1))̂ (or(C1))

−

(
k−2∑
r=1

(or(dr) + (Lm(dr), Fm(dr+1)) )̂ + or(dk−1)

)
(or′(d1, . . . , dk−1))

+

(
j∑

r=1

or(dr) + (Lm(dr), Fm(dr+1))̂− (Lm(dj), Fm(dj+1))̂
)

(or′(d1, . . . , dj))

= (Lm(dk−1), Fm(dj+1))̂− (Lm(dj), Fm(dj+1))̂ .✷
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1 list starting dart(combi map Gi, dart d1) {

2 list L=∅

3 stack P

4 for each dart dk in σ∗

i (d) = (d1, . . . , dp){

5 if(dk is a loop) {

6 if(P is empty or αi(dk) is not on the top of the stack P)

7 push dk and or(d1, . . . , dk) in P

8 else {// αi(dk) on top of the stack P

9 let C1 be the sequence of darts between αi(dk) and dk

10 computes or(C1) using Proposition 2

11 if(or(C1) == 4) L = L ∪ {αi(dk)} else L = L ∪ {dk}

12 }

13 }

14 return L

15 }

Algorithm 1. Determination of the starting darts of the loops

Propositions 1 and 2 are the basis of the algorithm staring darts (Algo-

rithm 1) which traverses the σi cycle of a given vertex σ∗

i (d1) = (d1, . . . , dp)

and computes at each step the orientation of the sequence d1 . . . , dk. Using the

same notations as Proposition 1, let us consider a loop α∗

i (dj) = (dj, dk) such

that dj has been previously encountered by the algorithm (j < k). The algo-

rithm starting dart determines the starting dart between dj and dk on lines

10 and 11 from the orientation of C1 = (dj+1 . . . , dk−1) by using Propositions 1

and 2. This starting dart is added to a list returned by the algorithm.

Since the loops are nested dj and or′(d1. . . . .dj) should be on the top of stack

P used by the algorithm. The darts dj, dj+1 and dk−1 are retrieved from the
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current dart dk by: dj = αi(dk) ; dj+1 = σi(dj) and dk−1 = σ−1
i (dk). More-

over, the orientation of C1 (Proposition 2) is evaluated in constant time since

or′(d1, . . . , dk−1) is the last orientation and or′(d1 . . . , dj) is retrieved from the

stack.

Given the list of starting darts determined by the algorithm stating darts,

the set of vertices contained in σ∗

i (d1) is retrieved by traversing, the sequence

σ∗

i (d1) from each starting dart to the corresponding end. By construction all

darts encountered between the starting and ending darts of the loop encode

adjacency relationships to contained vertices. Note that in case of nested loops

some loops may be traversed several times. Given a starting dart d, this last

drawback may be avoided by replacing any encountered starting dart by its

αi successor during the traversal from d to αi(d).

Our algorithm, is thus local to each vertex and the method may be applied

in parallel to all the vertices of the combinatorial map Gi. Given a vertex

σ∗

i (d1), the determination of its starting darts (algorithm starting darts)

requires to traverse once σ∗

i (d1). Moreover, the determination of the inside

relationships from the list of starting darts requires to traverse each dart of

σ∗

i (d1) at most once. The worse complexity of our algorithm is thus bounded

by the maximum degree of a vertex, e.g. O(2|σ∗

i (d1)|).

5.1 Application to road sign’s recognition

Fig. 6 illustrates one application of the contains/inside information to image

analysis. The road sign shown in Fig. 6(a) is composed of only two colors

with one symbol inside a uniform background, the background itself being
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surrounded by one border with a same color as the symbol. In our example,

the two roadsigns have a uniform background which includes one symbol rep-

resenting a white arrow. The background is surrounded by a white border. In

this application we wish to extract the sign using only topological and color

information (and thus independently of the shapes of the symbol and the road

sign). Using only adjacency and color information, the symbol cannot be dis-

tinguished from the border of the road sign since the border and the symbol

have a same color and are both adjacent to the background of the road sign

(Fig. 6(d)). However, using contains/inside information, the symbol and the

border may be distinguished since the border contains the background of the

road sign which contains the symbol. Our algorithm first builds a combina-

torial pyramid using a hierarchical watershed algorithm [15]. Fig. 6(b) shows

the top level of the hierarchies obtained from the two roadsigns. Using the top

level combinatorial map of each pyramid our algorithm selects the k regions

of the partition whose color is closest from the background’s color (k is fixed

to five in our experiment). This last step defines a set of candidate regions for

the background of the road sign. This background is then determined as the

region whose contained regions have the closest mean color from the color’s

symbol (equal to white in this experiment). Note that this step removes from

the k selected candidates any regions which do not contain another region.

We thus make explicit the a priori knowledge that the background of the road

sign should contain at least one region. The symbol is then determined as

the set of regions inside the selected region (Fig. 6(c)). Finally, let us note

that the contains information needs to be computed only on the k selected

candidates for the road sign’s background. Within this experiment a global

algorithm computing the contains information for all vertices would require

useless calculus.
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6 Conclusion

We have introduced in this paper 5 relationships between regions (Section 1.1).

These relationships are devoted to the graph based segmentation framework

and encode either rough or fine relationships between the regions of a parti-

tion: The meets exists relationship corresponds to the ability of a model to

encode the existence of at least one common boundary between two regions.

The meets each relationship corresponds to an encoding of each connected

boundary between two adjacent regions. The inside and contains relation-

ships are asymmetric and encode the fact that one region contains the other.

Finally, the composed of relationships is only provided by hierarchical data

structures and encodes the fact that one region is composed of several regions

defined at levels below.

Table ?? shows the ability of the Region Adjacency Graph, the combinatorial

map, the simple graph pyramid, the dual graph pyramid and the combinatorial

pyramid to encode the meets exist, meets each, contains/inside and composed

of relationships. The Region Adjacency Graph (Section 1.2) only encodes the

meets each relationship. The combinatorial map model (Section 1.3) encodes

all but the composed of relationships. The simple graph pyramids (Section 2)

encodes the meets exist and the composed of relationships. This last rela-

tionship is also encoded by the two other irregular pyramid models described

in this paper (section 1.4). The dual graph pyramids (Section 2.2) encodes

the meets exists, meets each (Section 2.3) and composed of relationships. The

inside/contains relationships can not be deduced from the model using local

calculus (Section 2.4). However, the authors conjecture that these relationships

may be computed using the fact that the vertex encoding the background of
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the image is not surrounded by any self-loop. Such an algorithm would require

a propagation step from the background vertex and would thus require global

calculus. This property is indicated by an interrogation mark in Table ??.

The combinatorial map pyramid model (Section 4) encodes the meets exists,

meets each (Section 4.1) and composed of relationships.

The main contribution of this paper consists in the design of the algorithm

starting dart (Section 5) which uses the orientation explicitly encoded by

combinatorial maps to differentiate the two darts of a self-loop. Given a vertex

incident to a self-loop, this last characterization allows to determine the regions

inside the region encoded by this vertex in a time proportional to twice its

number of incident edges. This method implies only local calculus and its

parallel complexity is bounded by twice the maximal degree of the vertices of

the graph.

The efficient computation of those relations relating regions of a segmentation

is a prerequisite to the description and the recognition of relevant groupings:

an important step on the way to more generic recognition, categorization and

higher visual abstraction within the homogeneous framework of combinatorial

pyramids.
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(a) (b) (c) RAG(a)=RAG(b)

Fig. 1. The ideal segmentation of the two roadsigns (a) and (b) are encoded by the

same RAG (c).

(a)

F1

F2

(b)

A BC

(c)

A BC

F1 F2

Fig. 2. The Graph (b) defines the top of a dual graph pyramid encoding an ideal

segmentation of (a). The self loop incident to vertex A may surround either vertex

B or C without changing the incidence relations between vertices and faces. The

dual vertices associated to faces are represented by filled boxes (�). Dual edges are

represented by dashed lines.
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Fig. 3. A 3× 3 grid encoded by a combinatorial map
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Fig. 4. The encoding of an ideal segmentation of a road sign (a) by the top level

combinatorial map of a pyramid may be drawn using either (b) or (c).
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(a) Gi (b) Gi (c) non planarity

Fig. 5. The local configuration inGi (a) andGi(b) of the darts used by Propositions 1

and 2. Note that we implicitly suppose here that dj is the starting dart since C2

surrounds C1. (c) A contradiction obtained in the proof of Proposition 2.

✉❡ ❡

(a) (b) (c) (d)

Fig. 6. Extraction of symbols within roadsigns using contains/inside information.
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