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Clustering techniques for protein surfaces
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Abstract

Though most approaches to protein comparison are based on their structure, several studies produced evidence of a strict correlation
between the surface characteristics of proteins and the way they interact. Surface-based techniques for protein comparison typically
require applying clustering algorithms to the punctual 3D description of the surface in order to produce a compact surface representation,
capable of effectively condensing its description. In this paper, we propose a formalization of the requirements for surface clustering in
the biochemical context and present two different clustering techniques that meet them, based, respectively, on region-growing and on an
original template matching algorithm. We discuss the validity of these techniques with the support of tests performed on a set of about
one hundred protein models generated by punctual mutations of four structurally characterized proteins. Finally, an analysis is made of
how different factors impact on the effectiveness of clustering in capturing surface similarities.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding which characteristics of proteins have most
impact on their functional role is one of the main challenges
of the post-genomic era. In this direction, the techniques
for structural comparison between proteins devised so far
have given a very relevant contribution [1–3]. On the other
hand, protein function occurs predominantly on or near the
protein surface [4], so comparison of protein surfaces may
reveal functional relationships not found with structural
comparison. In fact, two proteins with different structural
fold may present similar chemical properties over their
surface. For example, trypsin-like and subtilisin-like serine
protease families have different folds but present strong
similarities between their active sites [5].

Remarkable applications for surface-based comparison
are registration, that is the problem of finding whether two
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proteins have similar shapes [4,6,7], biomolecular docking,
that studies under which conditions two proteins can interact
with each other and create a stable energetic contact [8],
similarity search on databases of surface patches with known
functionalities [9,10], and classification, aimed at grouping
similar proteins [6,11,12].

Several surface-based techniques for protein comparison
depend on a compact surface representation capable of effec-
tively condensing the description of its properties [6,7,12].
The choice of the level of detail to be used when represent-
ing the surface is guided by the following considerations:

• The stability and the strength of inter-protein interaction
depend on the extension of the interaction areas. An anal-
ysis made on the SURFACE database [10], that includes
a wide set of active sites, reveals that the smallest patches
for significant interactions include two or three amino
acids.

• Proteins could show a high flexibility that allows the
shape of their surface to be partially modified and adapted
for stronger interactions. Thus, giving too much relevance
to spatial details may be misleading.
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• Surface points belonging to the same patch should have
homogeneous features, from both the chemical and geo-
metrical points of view.

A suitable surface representation is typically obtained by
applying clustering techniques to the punctual 3D descrip-
tion of the surface in order to generate a set of homogeneous
patches. Unfortunately, the previous works on patch-based
protein comparison [4,6,7] mainly focus on the matching
methods and, from our point of view, suffer from three lim-
itations: (1) there is no discussion of which requirements
should drive clustering in order to maximize its effective-
ness; (2) only geometrical properties of the protein surfaces
are considered (e.g., concavity and convexity); and (3) no
details about the clustering algorithms are given.

In this paper, we address the clustering problem from
all these points of view, by proposing the following main
contributions:

• A discussion of the requirements for protein surface clus-
tering is made, and a set of target functions that capture
them is introduced. Though the application domain re-
quires that patches have homogeneous features, have a
regular shape, are “not too small”, and achieve a large
coverage of the protein surface, no precise indication is
available about the relative importance of these factors.
Therefore, it is not possible to define a single target func-
tion to be directly optimized.

• We propose a multi-feature approach that, besides geo-
metrical properties of patches, also considers chemical
ones, namely electrostatic potential and hydrophobicity.
Note that, though features range within continuous do-
mains of values, a patch is significant from the biochem-
ical point of view even if it is categorized according to
a non-linear discretization of the domain made for each
feature (e.g., as far as the electrostatic potential is con-
cerned, a patch may be categorized as positive, neutral,
or negative).

• Two different clustering techniques are proposed and
compared. The first one gives maximum priority to build-
ing homogeneous patches; it is based on a region-growing
algorithm, properly adapted to the peculiarities above.
Conversely, the second one gives maximum priority to
building regularly shaped patches and is based on an orig-
inal template matching algorithm. Both clustering algo-
rithms are parametric w.r.t. the selection of the chemical
surface properties.

• Through an ad hoc dataset the optimality, robustness and
stability of the algorithms are evaluated and an analysis is
made of how different factors impact on the effectiveness
of clustering in capturing surface similarities. Tests have
been carried out within the surface-based classification
framework we are developing [12].

The rest of the paper is structured as follows. Section 2
discusses some relevant literature related to protein surface

comparison and clustering of 3D surfaces. Section 3 shows
how clustering is framed within the approach to protein clas-
sification we are pursuing, while Section 4 describes in de-
tail the two approaches to clustering we propose. Section 5
reports and discusses the results of the tests we carried out,
and Section 6 contains the final evaluation of the approaches
and the conclusions.

2. Related literature

2.1. Protein surface comparison

Protein surface comparison has been gaining more and
more significance in the last decade. This task, that con-
sists in highlighting similar surface portions on different
molecules, may sometimes point out different structures or
sequences coming together in a unique active site having a
common function [5,13].

The choice of the surface description is doubtlessly criti-
cal, since a satisfactory trade-off should be reached between
the representation grain and the performance of the com-
parison algorithm. Mainly three approaches have been de-
vised to describe the molecular surface, namely mesh-based,
atom-based, and patch-based, discussed in the following.

As for mesh-based methods, several of them use the so-
called Connolly algorithm [14]. Here, the surface is traced
by a water-sized probe sphere rolled over the atoms of the
molecule; the solvent accessible surface is obtained by the
set of points touched by the center of the probe. Two effective
comparison methods based on the Connolly surface are pro-
posed in Refs. [7,9]; in both cases, similarity is determined
by comparing the spatial arrangement of the normal vectors
and the values of the local properties at the surface nodes.

Atom-based methods define the molecular surface as a
significant subset of the solvent exposed atoms. For example,
in Ref. [11] the author defines the �-surface as the set of
atoms touched by a probe of given radius. This description
is the starting point to discover surface patterns within a
database of proteins aimed at classifying them.

In patch-based methods, the grain of the surface is in-
creased by considering the set of exposed amino acids
or a compact representation obtained by segmenting the
surface into homogeneous regions. In Ref. [10], the authors
describe a method for the function-related annotation of
protein structure by means of the detection of local struc-
tural similarity through a library of annotated functional
sites. A graph-based method for protein comparison and
classification using a patch representation of the surface
has been described in Ref. [6]. Here, comparison relies on
matching surface graphs, whose nodes are concave, convex,
and toroidal patches extracted from the Connolly surface.
The comparison method proposed in Ref. [15] finds max-
imal common subgraphs on surface graphs whose nodes
correspond to the centers of slightly overlapping circular
patches.
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In most works on docking, emphasis is given to effec-
tively represent the protein surface and to study efficient
methods for searching patterns compatible with the probe.
Only a few of them deal with the problem of segmenting
protein surface into homogenous patches. In Ref. [16], a re-
gion growing method is used to progressively group similar
adjacent surface elements. In Ref. [17] surface points are
quantized based on their geometrical properties and their
hydrophobicity, then a complex region growing technique
is applied to obtain compact regions with maximal exten-
sion. In Ref. [18] a Morse–Smale decomposition based on
Formans discrete Morse theory is used to partition the pro-
tein surface into regions of homogeneous curvature. Though
these approaches could, in principle, be used also in the con-
text of protein classification, this context actually presents
more specific requirements; besides, none of these papers
includes a general analysis of the clustering issues related
to docking applications.

2.2. Surface clustering

In Section 2.1 a number of comparison methods based
on a compact representation of the surface have been intro-
duced. All these works focus on comparison techniques but
do not study the problem of surface clustering in depth. On
the other hand, there has been considerable research work on
clustering algorithms for general 3D surfaces; most meth-
ods are known as mesh partitioning approaches and concern
computer graphics applications. One example is surface sim-
plification [19], aimed at radically reducing the amount of
data used for surface representation without a considerable
loss of details. Several other applications of mesh partition-
ing are related to decomposition of 3D CAD models aimed
at speeding up searches on model databases [20].

Most approaches proposed in the different domains are
boundary-based, i.e., they tend to partition the surface along
boundaries with high (positive or negative) curvature. For
instance, in Ref. [21] the morphological watershed approach
proposed for image segmentation is generalized to 3D sur-
faces: a surface is segmented where sharp differences in the
surface normal create a boundary, without requiring bound-
aries to be located a priori, e.g. by means of second-order
derivatives of curvature. The watershed strategy relies on
a top–down approach which starting from a point moves
along the deepest descent, joining points together until it
reaches a minimum. Then, a post-processing step resolves
over-segmentation. Wu and Levine [22] propose another
boundary-based method, starting from the simulated distri-
bution of electrostatic charge across the surface of a mesh.
Their approach is based on a human vision theory stating
that human perception defines part boundaries along lines
of maximum negative curvature. Overall, the main draw-
back of boundary-based approaches is the poor segmentation
of areas with low contrast boundaries, due to the fact that
the boundaries are naturally placed in regions that present

maximum curvature. This makes such approaches unsuit-
able for protein surface segmentation, where the boundaries
between regions are not necessarily required to be points of
maximum curvature.

Another relevant class of segmentation methods is based
on region growing [23]. In Ref. [24] nodes are first classified
using their discrete curvature values, then connected triangle
regions are extracted via a region growing process, and fi-
nally similar regions are merged by a region adjacency graph
to obtain final patches. In Ref. [25], segmentation is carried
out in three phases: segment initialization based on region
growing, computation of segment centers, assignment of
nodes to segments, and optional segment merging. Another
simple algorithm for mesh decomposition based on curva-
ture analysis joins detection of boundary, meant as points
with highly negative curvature, and region growing [26].
Region growing algorithms are very efficient and have also
been applied in bioinformatics to solve the docking problem
[25]; nevertheless, they cannot immediately be used in our
context since they operate on a single surface feature.

3. A framework for clustering

The present work is framed within a larger research
project aimed at defining a classification of proteins based
on surface properties. In this section, we summarize our
approach to classification, that will be used in Section 5 to
evaluate the results of clustering. In fact, the correctness
of the classification obtained on a set of proteins indirectly
measures how effectively clustering represents the protein
surface.

As sketched in Fig. 1, our approach consists of four steps:
(1) determine, on each protein of a given dataset, a collection
of homogeneous and connected surface regions (patches) by
means of a clustering algorithm; (2) synthetically represent
each protein by a spatial graph of patches; (3) find frequent
patterns of patches through mining techniques; and (4) clas-
sify proteins based on the frequent patterns their surface
presents. Using patterns of patches instead of single patches
enables a more adherent modeling of the protein surface. Be-
sides, determination of patches does not depend on already
known functional meanings, thus clearing the way towards
new classifications not constrained by previous knowledge.

The approach takes in input a set of proteins described
in the PDB format [28], then the solvent-accessible protein
surfaces and their electrostatic potentials are calculated us-
ing the MOLMOL program [27]. Finally, curvature and hy-
drophobicity are calculated for each mesh (see Section 4.1).
The first step starts from this punctual representation of the
surface and, by means of the clustering algorithms described
in this work, delivers a more compact representation con-
sisting of a set of homogeneous and connected patches.

The protein properties do not only depend on the set of
patches characterizing their surface, but also on the rela-
tive positioning and orientation of these patches. Thus, each
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Fig. 1. Overview of surface-based protein classification (parts of this
figure were prepared with the program MOLMOL [27]).

protein is compactly represented by a surface graph whose
nodes are the patches obtained by clustering, each described
by the average value of the features and by its area, and
where the arc connecting two patches expresses their rela-
tive position in the 3D space as described in Ref. [12].

The final step before classification is the extraction of fre-
quent surface patterns from the set of proteins. A pattern
on a protein is a subgraph of its surface graph, thus it mod-
els a set of patches and their relative spatial placement. Ex-
tracting frequent patterns is challenging since two proteins
never exhibit an identical pattern, so a similarity function
involving both the local features of patches and their rela-
tive placement has to be defined. In Ref. [12] we proposed a

level-wise mining algorithm that iteratively determines fre-
quent patterns made up of an increasing number of patches.

Finally, classification groups together proteins that share
common patterns into a dendrogram, which allows the do-
main experts to evaluate the ability of the approach to charac-
terize protein similarities at both coarse and fine granularity
levels. We adopt a hierarchical technique that, starting from
clusters composed by a single protein, progressively merges
the two most similar ones according to the complete-link
approach [29]. Similarity is based on the number of shared
patterns; the larger the pattern, the higher the contribution
to the score function.

4. Protein surface clustering

As already mentioned in Section 1, the clustering of a
protein surface must satisfy some contrasting requirements
in order to be effective from a biochemical point of view:

1. A patch should be connected and cover at least 10 surface
atoms. This value is an estimate of the minimum number
of exposed atoms included in the smallest patches for
significant interactions (see Section 1).

2. A patch should present homogeneous values for surface
features with reference to their discretization. In other
words, all the points belonging to a patch should ideally
fall in the same category for each feature (e.g., posi-
tive electrostatic potential), though they are not required
to yield the same value (e.g., the electrostatic potential
within a positive patch may range from 0.4 to 0.9). De-
tails on the representation of surface features and their
discretization are given in Section 4.1.

3. A patch should have a regular shape. Though patches
with irregular shape may lead to a better coverage of
the protein surface, those with regular shape better char-
acterize specific regions of the protein and promise to
guarantee higher robustness.

4. The union of the patches should achieve a high percent-
age coverage of the protein surface.

While requirement (1) is considered to be necessary,
there is no a priori clue about the relative importance
of requirements (2)–(4), whose quantification is given in
Section 4.2. Thus we experiment two different clustering
techniques, both constrained to meet requirement (1). The
first technique, described in Section 4.3, is based on region
growing and builds homogeneous patches with good cov-
erage but possibly irregular shapes; the second, described
in Section 4.4, uses a template matching algorithm to build
circular patches whose feature homogeneity is higher than
a threshold.

4.1. Surface representation

A fine-grained 3D representation of a protein surface is
usually given in terms of triangular meshes. With reference
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to our approach to clustering, the mesh granularity is too fine
since small-scale local variations of feature values may be
misleading. Thus, also considering that—according to do-
main experts—the meshes related to the same atom should
never be split into separate patches, and that requirement
(1) asks for building patches that include at least 10 atoms,
we decided to use a coarser representation based on sur-
face atoms. Given protein p, we represent its surface as a
connected, non-directed atom graph Gp = (V p, Ep) where
each node v ∈ V p represents a surface atom of p, and Ep

includes all and only the edges (vi, vj ) such that atoms vi

and vj are adjacent on the surface of p.
Each node v ∈ V p is associated with the vector x(v) of

the 3D coordinates of the center of the corresponding atom
and with a local value for each of three features: curvature,
cur(v), electrostatic potential, elp(v), and hydrophobicity,
hyd(v). Details on how these values are computed and dis-
cretized are reported in the following subsections.

4.1.1. Curvature
The local curvature at node v is estimated on the discrete

surface formed by its adjacent nodes, thus considering the
region within the 1-ring neighborhood of v. According to
the method proposed in Ref. [30], we first define a mean
curvature normal operator as

K(v) = 1

2A

∑
j∈N

(cot �j + cot �j )(x(v) − x(vj )), (1)

where

• N is the set of 1-ring neighbor nodes of v;
• A is the local surface area around v, calculated as an

extension of the Voronoi area which is still valid even in
obtuse triangulations;

• �j and �j are the two angles opposite to edge (v, vj ) in
the two triangles sharing this edge as in Fig. 2.

The mean curvature in v, Km(v), is then computed as half
the magnitude of K(v) [30].

Finally, we smooth the effects of a local computation of
the mean curvature by defining

cur(v) = 1

�N + 2

⎛
⎝2Km(v) +

∑
j∈N

Km(vj )

⎞
⎠ , (2)

where �N is the cardinality of N .

Fig. 2. 1-ring neighbors of v and angles opposite to edge (v, vj ).

4.1.2. Electrostatic potential
It has been demonstrated that the electrostatic potential on

protein surface rules ligand approaches and molecular dock-
ing [31], in fact biomolecular interactions frequently involve
associations between complementary surface potential.

The potential in v, elp(v), is obtained by averaging the
local values of potential on the meshes that belong to the
solvent-accessible surface of atom v; the electrostatic poten-
tial of meshes is computed by the MOLMOL program [27]
according to the Poisson–Boltzmann equation [32].

4.1.3. Hydrophobicity
Hydrophobicity is a characteristic of materials that have

little or no tendency to absorb water. Conversely, hy-
drophilicity is a characteristic of materials exhibiting an
affinity for water. So, while water is readily absorbed by
hydrophilic materials, it tends to form discrete droplets on
the surfaces of hydrophobic materials.

There is no agreement on an analytical function that
describes how this property is distributed on the surface.
We compute the hydrophobicity in atom v, hyd(v), as
follows:

hyd(v) = haa

SAv

TAaa

, (3)

where aa is the amino acid to which atom v belongs, haa is its
hydrophobicity according to the widely used Kyte–Doolittle
scale [33], SAv is the area of the solvent-accessible surface
of v, and TAaa is the total area of the surface of aa.

Electrostatic potential and hydrophobicity are not inde-
pendent. In fact, while protein regions with neutral potential
may either be hydrophobic or hydrophilic, positive and nega-
tive regions are always hydrophilic. On the other hand, since
the interactions ruled by electrostatic potential are much
stronger, hydrophobicity turns out to be chemically relevant
only for neutral regions.

4.1.4. Feature discretization
Requirement (2) states that patch homogeneity should not

be evaluated against the exact values of surface features, but
rather against a proper discretization of their range. Three
categories are relevant for the curvature: convex, planar, and
concave. Three categories are relevant for the potential: neg-
ative, neutral, and positive. Finally, only two categories are
relevant for hydrophobicity: hydrophobic and hydrophilic.
Since the application domain yields no evidence of a sharp
separation between the categories, we define parametric gray
areas as depicted in Fig. 3. So, discretization is ruled by five
parameters: �cur and �cur are, respectively, the center and
the width of the gray area between plain and not plain curva-
ture; �elp and �elp are, respectively, the center and the width
of the gray area between neutral and not neutral potential;
�hyd is the width of the gray area between hydrophilicity
and hydrophobicity. The role of gray areas will be made
clear in the following sections.
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Fig. 3. Discretization for surface features.

Based on this discretization, we define the category(ies)
of node v as follows:

cûr(v)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

concave if cur(v)<−�cur+�cur

2
,

plain if −�cur−�cur

2
<cur(v) < �cur+�cur

2
,

convex if cur(v) > �cur − �cur

2
,

(4)

el̂p(v)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

negative if elp(v) < −�elp+�elp

2
,

neutral if −�elp−�elp

2
<elp(v) < �elp+�elp

2
,

positive if elp(v) > �elp − �elp

2
,

(5)

hŷd(v) =

⎧⎪⎨
⎪⎩

hydrophilic if hyd(v) <
�hyd

2
,

hydrophobic if hyd(v) > − �hyd

2
.

(6)

The nodes for which a single category is returned are said to
be white. Those for which a pair of categories are returned,
meaning that there is no sharp assignment for them, are said
to be gray.

4.2. The target functions

As said in Section 1, the domain experts were unable
to formulate a priori a single, specific target function to
be used for optimizing clustering. On the other hand, they
agreed that both homogeneity of features, shape regularity,
and large percentage coverage are desirable characteristics
for patches. In the following we introduce a quantification

for these characteristics, that will be used both to drive the
clustering algorithms and to evaluate them:

• Homogeneity. We recall that, according to the domain ex-
perts, it must be measured with reference to categories
rather than exact values. Given a patch c including m

nodes, its category according to feature f , f̂ (c), is de-
fined as the category of the average value of f for the
nodes in c. Note that, as will be explained in Sections 4.3
and 4.4, our clustering algorithms only generate white
patches, i.e., patches for which the average value of all
features is white. Node v is said to be compatible with
patch c on feature f iff f̂ (c) ⊆ f̂ (v), i.e., if either (a)
they are both white and their category is the same, or (b)
c is white, v is gray, and v falls into a gray area adjacent
to the category of c. The homogeneity of c, ranging in
[0, 1], is then defined as

hom(c)

=

⎧⎪⎨
⎪⎩

�cur + �elp + �hyd

3m
if el̂p(c) = neutral,

�cur + �elp

2m
otherwise,

(7)

where �f is the number of nodes in c that are compatible
with c on feature f. The reason why hydrophobicity is
considered only for neutral patches has been explained
in Section 4.1.3. Given clustering C, its homogeneity
hom(C) is the average homogeneity of its patches.

• Regularity. The regularity of patch c is computed as the
square root of the ratio of the minimum and maximum
autovalues in the covariance matrix of the projection of
the nodes in c on the plain orthogonal to the normal to c
(the inverse of eccentricity, [34]). Regularity ranges be-
tween 0 (irregular shape) and 1 (circular shape). The reg-
ularity of clustering C, reg(C), is the average regularity
of its patches.

• Coverage. The coverage of clustering C, cov(C), is the
percentage of nodes in the protein surface that is assigned
to a patch in C.

4.3. Region growing

As seen in Section 2, the region growing approach is
widely used in the literature to deal with the problem of
surface clustering, due to its undeniable properties of be-
ing easy to implement and fast [23]. So, the first technique
we propose is based on region growing, properly adapted
for managing multiple discrete features, and it builds homo-
geneous patches with possibly irregular shapes. Let p be a
protein and Gp be its atom graph as seen in Section 4.1; the
technique consists of three steps:

(1) Patch initialization: The initial set of patches, C =
{c1, . . . , cn}, is defined by including all the patches
made of adjacent white nodes in Gp = (V p, Ep) that
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Fig. 4. Pseudo-code for the algorithm that assigns gray nodes to patches.

share the same category for curvature, potential, and hy-
drophobicity. Gray nodes, i.e. nodes whose value falls
into a gray area for at least one feature, are not assigned
at this time.

(2) Patch growing: The gray nodes are assigned to one
of the existing patches according to the algorithm
sketched in Fig. 4. Remarkably, assigning gray nodes
to patches according to their distance helps to obtain
regularly shaped patches. Besides, since assignment is
done through separate iterations, the dependence of the
result on the ordering of nodes is reduced.

(3) Suppression of small patches: All patches including less
than 10 nodes are removed from C, and their nodes are
labeled as unassigned.

The time for clustering a single protein including about 500
surface atoms with this region growing technique is abso-
lutely negligible. A qualitative evaluation of the results can
be done for instance on Fig. 5a, that shows the clustering
obtained for protein 2PVB (PDB code for Parvalbumin).

4.4. Template matching

The main drawback of the region growing technique is
the irregular shape of the resulting patches. On the other
hand, jointly optimizing the regularity of patches and their
homogeneity would very often lead to very small patches,
which would be incompatible with requirement (1) concern-
ing patch size. In the light of this, the second clustering tech-
nique we experimented is based on template matching, i.e.
it looks for the optimal way of assigning nodes to patches
whose shape resembles that of a given template. To this end
we used a circular template since it is the one that maxi-
mizes regularity as defined in Section 4.2.

The technique consists of two steps:

(1) Definition of candidate patches: A circular patch c

with center on node v and integer radius r is a patch

consisting of all the nodes whose path distance from v

on the atom graph is less than r edges. The set Ccand

of candidate patches consists of all the white circu-
lar patches, centered on all nodes in the atom graph,
for which the percentage of compatible nodes on each
feature is higher than a threshold �. Note that several
patches centered on the same node may be included
in C.

(2) Optimization: An optimal set of non-overlapping
patches is selected from Ccand by exactly solving a
pure binary integer programming problem; optimality
is defined by encouraging large patches (which may
lead to reduce surface coverage). Let t be the number
of candidate patches and mi be the number of nodes in
candidate patch ci ; the integer formulation is as follows:

Maximize
t∑

i=1

m2
i xi (8)

Subject to xi ∈ {0, 1} for i = 1, . . . , t , (9)

xi + xj �1 ∀ci, cj ; ci ∩ cj �= ∅. (10)

Each binary variable xi has value 1 if patch ci is in the
solution, 0 otherwise. Constraint (10) is aimed at avoid-
ing overlapping patches. Note that the homogeneity cri-
terion is not considered in the objective function, since
it has already been considered when selecting candidate
patches.

The overall size of the optimization problem mainly de-
pends on the extension of the protein and on the value
chosen for �; in the average it includes about 80 variables
and 1500 constraints, and it can be solved in less than 0.03 s
on a Pentium IV 2.6 GHz equipped with 1 GB of RAM by
a software package for linear programming problems (such
as ILOG CPLEX) with Mixed Integer Programming op-
tion. For a qualitative comparison with region growing, see
Fig. 5b that shows the clustering obtained by template
matching for protein 2PVB.

5. Tests

The tests we carried out are aimed at evaluating the two
proposed algorithms in terms of optimality, robustness, and
stability. In principle, two approaches could be followed to
this end: a direct one, where the clustering algorithms are
evaluated by directly measuring the target function, and an
indirect one, aimed at evaluating the capability of the algo-
rithms to generate clusterings that effectively capture pro-
tein similarities. Direct evaluation is hardly feasible in our
context, since a single, unquestionable target function is not
available (target functions for the single requirements have
been defined in Section 4.2, but their relative importance is
a subject for discussion). Thus, we resorted to indirect eval-
uation in the context of the framework for protein classifi-
cation described in Section 3, where clustering is functional
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Fig. 5. Clustering of protein 2PVB using region growing (a) and template
matching (b) (in black the unassigned areas).

Fig. 6. Electrostatic potential for the fours seeds: 1CLL (calmodulin, top
left), 1IRJ (migration inhibitory factor-related protein 14, top right), 2PVB
(parvalbumin, bottom left), 1QR0 (4′-phosphopantetheinyl transferase Sfp,
bottom right). Blue, red, and white respectively mean positive, negative,
and neutral potential.

Fig. 7. Electrostatic potential for six mutations of seed 1CLL.

to surface comparison and to the mining of frequent surface
patterns.

In particular, we used as input for the tests a set of muta-
tion chains generated by homology modeling [35]. Starting
from a seed protein in the Protein Data Bank, each mutant
model is obtained from the previous one by introducing five
punctual mutations at a time in a small surface area. Adopt-
ing this ad hoc dataset guarantees a fine control over the
surface properties, hence over surface similarity, which is
particularly good for evaluating optimality and robustness.
Besides, this dataset enables us to verify whether cluster-
ing properly captures surface similarities by analyzing how
the classification obtained reflects the mutation chains. Note
that none of the existing protein classifications in the litera-
ture could have been used to our purposes. In fact, structural
classifications—such as SCOP [36] and CATH [37]—are
based on concepts that are different from, and often in con-
trast with, those we consider. On the other hand, the other
approaches to surface-based classification either consider
geometrical features only [6], or are focused on a single sur-
face patch (already recognized to play a key role for a cer-
tain function) that covers a limited percentage of the surface,
thus ignoring the overall surface properties [10].

5.1. The dataset

The dataset we adopted was obtained starting from four
different proteins (seeds, see Fig. 6), that were subjected to

Table 1
Seed descriptions

Protein Superfamily Family # Mutations

1CLL EF-hand Calmodulin-like 12
1IRJ EF-hand S100 13
2PVB EF-hand Parvalbumin 11
1QR0 Phosphopantetheinyl

transferase
Phosphopantetheinyl
transferase SFP

13
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progressive in silico mutations to obtain 98 protein models
that are more and more different from the generating seeds.
The characteristics of the seeds are reported in Table 1: all
of them have similar size and three out of four belong to the
same SCOP superfamily. Mutations consist in replacing five
amino acids that are neighboring on the surface at a time,
until all the surface amino acids have been replaced. They
are obtained by the homology modeling technique [35], that
provides models with stable configurations as validated by
PROSA II [38]. Note that, though the proteins we used for
testing are not representative—in terms of structure—of the
whole set of known proteins (34201 in the Protein Data Bank
on 13 December 2005), they are nonetheless significant since
mutations cover the whole range of values of each surface
feature we consider.

More precisely, each seed generates one group of mu-
tant protein models distributed along two chains: one is
generated through conservative mutations, that impact
on the shape but preserve the chemical surface proper-
ties (e.g. replacing aspartic acid with glutamic acid, both
negatively charged); the other chain is generated through
non-conservative mutations, that also alter the chemical
properties (e.g. replacing aspartic acid, that is negatively
charged, with threonine, that is neutral). The number of
mutants in each chain ranges between 11 and 13, depending
on the seed backbone. We define the distance between two
proteins of the same group as the number of mutations that
separate them. Fig. 7 shows the electrostatic potential dis-
tribution on the surface for 6 out of 24 mutations for seed
1CLL. Note that, from the structural point of view, mutants
are always related since surface mutations limitedly affect
the overall structure. Conversely, the impact on surface
properties (in particular for non-conservative mutations) is
much more relevant, thus only the close mutants are strictly
related from the biochemical point of view.

As to intra-chain similarity, we note that surface similar-
ity progressively decreases within each chain when the dis-
tance increases. Fig. 8a shows, for the two chains generated
from seed 1IRJ, how the percentage of matching atoms de-
pends on the distance from the seed.1 Fig. 8b shows which
percentage of the matching atoms also maintain a simi-
lar electrostatic potential (a difference lower than 0.1V).
As expected, the curve for non-conservative mutations is
steeper.

Finally, in order to tune parameters for mining and classifi-
cation, we organized proteins in two datasets, DS1 and DS2,
the first one including the proteins generated from seeds
1CLL and 1IRJ, the second one those from seeds 2PVB and
1QR0. Tests were then carried out by using in turn each
dataset as the training set and the other as the test set.

1 Two atoms in two proteins are considered to match if they have the
same name and the positions of their amino acids within the polypeptidic
sequence are the same.

5.2. Optimality

Optimality is related to the capability of the algorithms
to produce clusters that meet the requirements expressed in
terms of homogeneity, regularity, and coverage and that lead
to sound classifications in the context of the overall approach
described in Section 3.

The soundness of classification is affected by inter-group
and intra-group errors [12]. Inter-group errors occur when
proteins generated from different seeds are included in the
same class. Intra-group errors occur when a class includes
non-consecutive mutants of the same group. Of course, inter-
group errors are much more serious since proteins in differ-
ent groups are less similar than those in the same group.

All tests returned no inter-group errors, so we do not
define any measure for them in this paper. Conversely, in
order to measure intra-group errors for a classification
S = {s1, . . . , sg} into g classes, where each class is a set
of proteins of the same group, we define its scattering as

1

g

∑
i

disti + 1 − �si

�si
, (11)

where disti is the maximum distance between two proteins
of class si . Fig. 9 shows the scattering for datasets DS1 and
DS2 and for the two algorithms at the different depths of
the classification dendrogram; at the far left, the finest clas-
sification (all singleton classes), at the far right, the coarsest
one (two classes).2 Some comments on these results:

• The absence of inter-group errors is an encouraging out-
come, even if the dataset includes four classes, since three
seeds belong to the same SCOP super-family thus shar-
ing a similar folding, which makes it more difficult to
distinguish them. However, we argue that a more rele-
vant result is the low number of intra-group errors. Even
in presence of very similar mutants, the classification ob-
tained closely follows the mutation chains, thus proving
that the clustering algorithms correctly capture surface
similarities.

• The scattering is higher in presence of large classes, while
it is lower when the classes are very small or when they
are a few.

• The scattering is zero when only two classes are created
since, as said above, both clustering algorithms lead to
classifications that do not present any inter-group error.
Thus, the two classes created by the coarsest classification
exactly match the two groups of each dataset.

• The region growing algorithm outperforms the template
matching one for both datasets.

• Both algorithms give better results when the similarity
between proteins is higher, in fact 58% of intra-group

2 All tests reported in this section are based on the following setting
for parameters: �elp = 0.275, �elp = 0.05, �cur = 0.09, �cur = 0.02,
�hyd = 0.0001, � = 0.75.
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Fig. 8. For mutants generated from seed 1IRJ: (a) percentage of matching atoms; (b) percentage of matching atoms that maintain electrostatic potential.

errors are made on non-conservative chains. The reason
why DS1 yields more errors is that proteins are more
similar to each other since the two seeds belong to the
same superfamily.

Table 2 reports the average values of the target functions
for the two datasets. As expected, homogeneity is maximum
for region growing while regularity is higher for template
matching. The results also confirm the obvious conflict be-
tween regularity and coverage.

5.3. Robustness

Robustness is related to the capability of the algorithms to
cluster similar proteins in the same way. This property pre-
serves the approach from failing when the protein surfaces
are affected by noise or present small differences that should
not impact on clustering. In particular, a protein may tem-
porarily modify its shape and properties while interacting

with another one. As for optimality, an indirect confirmation
of robustness is given by the results of classification: in fact,
the ability to correctly classify similar proteins in the same
class depends on the ability to generate similar clusterings
for similar surfaces.

In order to further measure the robustness we extend the
Jaccard coefficient [39]. Let two proteins be given, and let
a surface clustering be defined on each of them. As already
said, some of the surface atoms of the two proteins may
match; based on this matching we define SS as the number
of couples of atoms that in both clusterings are clustered
together, and SD as the number of couples of atoms that are
clustered together in one clustering but not in the other. Then
we compute a Jaccard coefficient3 for the two clusterings as

JAC = SS

SS + SD
. (12)

3 The Jaccard coefficient should not be confused with the percentage
of atoms belonging to homologous patch in the two clusterings.
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Fig. 9. Scattering for different dendrogram depths on DS1 (a) and DS2 (b).

Table 2
Average value of target functions

avg hom(C) avg reg(C) avg cov(C)

DS1 Region growing 1 0.49 0.55
Template matching 0.85 0.74 0.44

DS2 Region growing 1 0.45 0.58
Template matching 0.85 0.71 0.46

Note that, when computing JAC, a dummy patch contain-
ing all the unassigned atoms in each clustering is added.
This enables a better characterization of similarity since it
is desirable that also the unassigned atoms are the same in
similar clusterings.

Table 3 reports the average Jaccard coefficient for all the
couples of proteins in the whole dataset separated by 1, 2,
and 3 mutations. Both algorithms exhibit a sufficient degree
of robustness. Region growing is slightly less robust than

Table 3
Average Jaccard coefficient for all couples of proteins with increasing
distance (number of mutations)

Distance = 1 Distance = 2 Distance = 3

Region growing 0.29 0.28 0.27
Template matching 0.32 0.32 0.31

template matching since the strong relevance given to ho-
mogeneity makes it more sensitive to small alterations in the
surface.

5.4. Stability

Stability is related to the capability of the algorithms
to produce similar clusterings when run with similar pa-
rameters, and is desirable since it reduces the impact of
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Table 4
Average Jaccard coefficient in function of the parameter values

�elp �cur �elp �cur �

5% Region growing 0.72 0.55 0.91 0.84 —
Template matching 0.78 0.40 0.95 0.67 0.59

10% Region growing 0.56 0.35 0.84 0.71 —
Template matching 0.66 0.27 0.90 0.54 0.44

parameter tuning on the clustering results. A measure of sta-
bility can be obtained by computing the Jaccard coefficient
on the same protein clustered with two different parame-
ter sets. For each parameter, except �hyd whose value does
not significantly impact on clustering, we varied its value
starting from the optimal one used in Section 5.2 so as to
change the feature category for 5% and 10% of the atoms in
the dataset. For example, changing �elp from 0.275 to 0.315
makes 5% more of the atoms neutral.

Table 4 shows that the algorithms are more sensitive to
some parameters than to others. In particular, the decay
induced by changes in the curvature parameters is faster
than that related to potential. This problem is intrinsic to
the application domain since, while curvature continuously
changes across the surface, potential is stable in large areas.
In other words, the atoms whose curvature category changes
are widely scattered on the protein surface, which generates
noise that negatively impacts on clustering. Conversely, the
atoms whose potential categories change, are concentrated
in a few areas that will remain homogeneous, though in a
different category.

6. Comparison and conclusions

In this paper we discussed the issues related to clustering
of protein surfaces, framed within an approach to surface-
based protein classification. After illustrating the require-
ments for clustering, we proposed two techniques mainly
aimed at creating homogeneous and regular surface patches,
respectively.

We close the paper by making an overall comparison of
the two techniques. Both display good capability of iden-
tifying significant patches, as confirmed by the classifica-
tion results obtained from the optimality test. The region
growing technique appears to outperform template match-
ing since it always produces less intra-group errors; it is not
clear whether the errors in template matching are mainly
due to insufficient homogeneity of patches or to insufficient
coverage of the surface. Note that the different relevance
given to homogeneity also affects the number of patches
created: on average, region growing and template match-
ing produce, respectively, 13 and 8 patches for each protein.
A qualitative evaluation of the difference between the clus-
terings obtained with the two techniques can be done by

comparing Figs. 5a and b. On the other hand, a quantitative
evaluation can be expressed by the Jaccard coefficient com-
puted on two clusterings made on the same protein with the
two techniques: the average coefficient for the whole dataset
is 0.24, which confirms that there is a marked difference be-
tween region growing and template matching. In particular,
from the above we may infer that protein surfaces are better
characterized by strongly homogenous patches, even if their
shape is irregular; shape regularity should be given low rel-
evance since it induces a reduction in the portion of surface
covered by patches.

In conclusion, the results obtained suggest that multi-
feature clustering of protein surfaces is expressive enough to
enable significant comparison of proteins. We are currently
working to give an interpretation of the patches obtained
and to exploit the surface patterns in different bioinformat-
ics applications, in particular classification. As specifically
concerns the clustering algorithms, our future work will be
aimed at improving the effectiveness of template matching
by relaxing the shape regularity constraint; three possible
solutions we are considering consist in adopting elliptical
templates, in letting the patches partially overlap, and in
adopting the patches obtained by template matching as seeds
for a region growing method.
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