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Feature based approach to semi-supervised similarity

learning

Philippe H. Gosselin Matthieu Cord

ETIS CNRS UMR 8051, 6 avenue du Ponceau, 95018 Cergy-Pontoise, France

Abstract

For the management of digital document collections, automatic database analysis still has

difficulties to deal with semantic queries and abstract concepts that users are looking for.

Whenever interactive learning strategies may improve the results of the search, system

performances still depend on the representation of the document collection. We introduce

in this paper a weakly supervised optimization of a feature vectors set. According to an

incomplete set of partial labels, the method improves the representation of the collection,

even if the size, the number, and the structure of the concepts are unknown. Experiments

have been carried out on synthetic and real data in order to validate our approach.
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1 Introduction

Since the proliferation of digital equipments, the number of digital collections

has been growing more and more (public archives, Internet, personal files, etc).

In order to manage those large collections, powerful datawarehouse systems are

required. Just as librarians classify books according to styles, authors, or dates,

one can gather digital documents into clusters or concepts, for instance, concepts
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brought by keywords are useful for text database organization. A document can be-

long to several concepts: for instance, as soon as a science-fiction romance is in the

database, science-fiction and romance keywords will share at least one document.

Using concepts, collection management becomes easier, however, those concepts

may be unknown a priori. A common scheme to discover them is to extract low-

level features, for instance, the colors or textures for images, but those features are

never perfect, and a learning process is required to retrieve the concepts.

When training samples are available for a concept, a classifier can be built in order

to reveal the features [1]. That approach gives excellent results, deals with any com-

binations of documents, and is able to learn mixed concepts. However, it assumes

that the system already knows the concepts likely to be searched.

When one desires a management systems for generalist databases, the concepts that

users have in mind are unknown beforehand, and sometimes difficult to identify by

hand. For instance, concepts for Internet images are unpredictable. However, sys-

tems can get advantage of user interaction in order to refine the construction of

concepts. Information like “these two documents are similar” or “this document is

closer to this one than to that one” can be used in an interactive learning process.

Information retrieval techniques like relevance feedback [2–5] and active learning

[6,7], which employ user labelling, increase the system performance, but only for

the current retrieval session, since the labels are discarded once the session is over.

The user annotations are usually called semantic labels, to differentiate them from

the automatically computed document features. This paper deals with concept

learning techniques that exploit the semantic labels, for instance, those accumu-

lated during many past uses of a retrieval system. The labels are sampled from a

hidden concept that users had in mind during retrieval sessions. The training sets

are made of sets of partial labelling corresponding to unknown concepts. Thus, if
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a large number of labels are available through many retrieval sessions, their com-

binations can reveal the hidden concepts. We neither make the assumption that the

concepts lead to a partition, but are mixed, which means that every document may

belong to several concepts. This is a weakly supervised learning problem. The aim

is to enhance the similarities between documents in order to improve the efficiency

of retrieval techniques like clustering, relevance feedback, browsing, etc.

When features match well with concepts, variable selection and feature competition

approaches have been proposed to exploit the semantic knowledge [8]. Other meth-

ods learn a distance function [9,10]. On the contrary, when concepts are coarsely

represented by features, some researchers focus on the similarities between docu-

ments. In [11], an image similarity matrix is updated thanks to the semantic labels.

The method enables to modify similarity scores between any couple of images, but

has large memory needs. Some researchers propose to perform a clustering of the

database in order to reduce the memory needs and to enhance system performances

[12]. However the resulting similarities are difficult to combine with any learning

method (classification, active learning, browsing, ...). They usually need a specific

learning strategy, keeping out the use of the most powerful ones.

Learning with kernels methods has also been proposed to deal with semantic labels.

For two-class problems, a lot of approaches are based on Kernel Alignment [13].

The idea is to adapt a kernel according to user labeling [14]. As a kernel function

can be seen as a particular similarity function, it is possible to improve the similar-

ity between documents. In image retrieval, kernel approaches have been introduced

to improve the similarity [15]. In [16], we recently proposed a kernel matrix up-

dating method, to exploit semantic labels for generalist database management. The

method adapts a kernel matrix according to labels provided by the user at the end of

each retrieval session. The adaptation aims at reinforcing similarity matrix values

3



for images identically labeled by the user. We introduced some algebraic transfor-

mations subject to kernel constraints, in order to always keep the nice properties

of kernels. Contrary to the two-class methods, this technique works on generalist

image databases, and is designed to model many mixed concepts.

Like [9,10,16], we propose a learning strategy in a weakly supervised context.

However, expressing interesting and efficient data updating rules is not easy when

only algebraic transformations subject to constraints are considered. To overcome

those difficulties, we propose in this paper a new approach working in the feature

space, based on a displacement of feature vectors.

That method arranges feature vectors around a set of equidistant concept centers,

without an explicit computation of those centers. According to an incomplete set

of partial labels, the method improves the representation of the document collec-

tion, even if the size, the number and the structure of the concepts are unknown.

Contrary to [13,14], the method may learn a lot of concepts with many mixed in-

formation. Moreover, we address the problem of the complexity in a very efficient

way, in opposition to O(N 2) methods like [10]. The complexity of our technique is

no more dependent on the database size, but only on the label set size.

We have built this method in a general framework, thus powerful learning or semi-

supervised learning methods may be used to retrieve, classify, or browse data. In

particular, we propose to combine the off-line concept learning strategy with SVM

classifier and active learning method for online image retrieval.

In this scope, we first present in Section 2 notations, data modeling and problem

formulation. In Section 3, we describe the feature-based learning approach. Sec-

tion 4 presents a semi-supervised context to exploit the concept learning results.

Experiments carried out on toy examples and on real image data are reported in

Section 5.
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2 Challenge

Suppose that we have a set of documents, each of them represented by a vector xi ∈

RNd of X = {x1, . . . ,xNx}, and a set of labels Y = {y1, . . . ,yNy}. For instance,

X can be the set of feature vectors of an image database, and each yp contains the

labels provided by a user during the retrieval session p. We denote by X̂ the labeled

set, the set of vectors with at least one label in Y : X̂ = {xi|∃p such as yip 6= 0}. The

couple (X̂, Y ) is the training set, and we will talk about weakly supervised concept

learning, which is the main purpose of this paper. When the unlabeled vectors are

also considered, we will talk about weakly semi-supervised concept learning.

We suppose that labels are sampled from a hidden set of concepts. The documents

are gathered in a finite (but unknown) number Nc of concepts, and those concepts

do not necessarily form a partition. Thus, a document represented by a vector xi

can belong to several concepts. For instance, on an image database, one can find

buildings, cars, houses, or landscapes, but also cars in front of a building or a house,

or houses in a landscape.

A vector yp ∈ [−1, 1]Nx is a partial labeling of the set X , according to one of the

concepts. Every positive value yip means that the document represented by xi is

in that concept, as much as yip is close to 1. Every negative value yip means that

the document represented by xi is not in that concept, as much as yip is close to

−1. Every value yip close to zero means that there is no information for xi about

that concept. We also suppose that the number of non-zero values in yp is small

against the size of the concept. Thus, from only one yp, it is impossible to build the

corresponding concept.

The challenge is to use this set of partial labeling in order to learn the concepts.
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Fig. 1. Concept vector learning principle: vectors are moved according to labels, in order

to build clusters.

2.1 Basic concept vector updating method

If we assume that the Nc concepts are represented by a set of centers C =

{c1, . . . , cNc}, cj ∈ RNd , then the membership of a document xi to a concept

cj can be its Euclidean distance to cj . For instance, if a vector x is close to c1 and

c2, then it belongs to the concept 1 and 2, and does not belong to any other. How-

ever, these centers are not available without learning. For a given labeling y, we

propose to move each labeled xi according to a estimated concept center ĉi of the

true concept center ci.

This problem can be seen as a “turned over” K-Means problem. During a K-Means

clustering, vectors are already in clusters, and the algorithm move centers in order

to find them. In our context, vectors are not in clusters, and the algorithm moves

vectors in order to build clusters (cf. Fig. ??).

A basic approach is to use the barycenter of positive labeled vectors as an estimation

of c+
i :

ĉ+
i = g+ =

1∑

j∈I+

yj

∑

j∈I+

yjxj (1)
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ĉ−i

c1

c2

c3

(ĉ+
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Fig. 2. Basic learning strategy: vectors are moved towards the barycenters.

and the barycenter of negative labeled vectors as an estimation of c−i :

ĉ−i = g− =
1∑

j∈I−
yj

∑

j∈I−
yjxj (2)

with I+ = {j|yj > 0} and I− = {j|yj < 0}.

Next, each labeled vector is moved towards its corresponding center (cf. Fig. 2):

xi moves towards





ĉ+
i if yi > 0

xi if yi == 0

ĉ−i if yi < 0

2.2 Global scheme

In order to process the whole set of labels Y , we can perform several updates by

randomly picking a label y(t) = yrand()%Ny :

X(t+ 1) = update(X(t),y(t), ρ(t))
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For each update t, we compute a possible concept center ĉi(t) for each vector xi(t).

Next, we move the labeled vectors towards their corresponding centers:

∀i ∈ 1..Nx, xi(t+ 1) = xi(t) + ρ(t)|yi(t)|(ĉi(t)− xi(t))

Repeating this update several times with a decreasing ρ(t), the set X(t) converges

to a set X? as t tends to the infinity.

Using this global scheme, with a basic update like the one described in the previous

section, is efficient only in very specific cases. When vectors are already somewhat

gathered into clusters, this basic method may improve the representation. In other

cases, for instance the ones in Fig. 1 or Fig. 2, vectors are gathered into close clus-

ters. After several updates, all vectors quickly move to the same area, and concepts

are not well separated. In the following section, we propose a method with the same

global scheme, but with a more efficient estimation of the centers.

3 Concept vector learning method

We propose in this section a method for learning a representation of data from a

training set (X̂, Y ), compound of a set of vector X̂ = {xi ∈ X|∃p such as yip 6= 0}

and a set of labels Y = {y1, ...,yNy}. The method arranges vectors in X̂ around a

set of concept centers cj , without explicit computing of the cj .

3.1 Equidistance constraint

The repartition of the centers in space is important in the case of mixed concepts.

As we wish to represent any possible combination of memberships, centers should
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Fig. 3. Non-equidistant (a) and equidistant (b) concept centers.

be at the same distance from each other.

For instance, let be two close concept centers c2 and c3, a third one c1 far from c2

and c3, and a vector x (cf. Fig. 3). Then moving x towards c2 will necessarily move

it close to c3. Thus it is impossible, for instance, to get x close to c1 and c2, and far

from c3. However, in the case of equidistant centers, this is always feasible.

The building of equidistant centers has implications on the dimension Nd of vec-

tors. The theorem 1 shows that, if all centers are normalized and equidistant, the

dimension Nd must be superior or equal to the number of concepts Nc, and in a

special case to Nc − 1.

Theorem 1 Let C = {c1, . . . , cNc} be a set of vectors cj ∈ RNd . If ∀j =

1..Nc, ||cj|| = 1, and ∃d > 0 ∀j, j ′ = 1..Nc, ||cj − cj′||2 = d, then:

If d = 2(1 + 1
Nc−1

), then Nd ≥ Nc − 1, otherwise Nd ≥ Nc.

In other words, in order to buildNc concepts around equidistant centers, the dimen-

sion of vectors must be at least Nc − 1.

The theorem also shows that, for Nc concepts in a space of Nc− 1 dimensions, that

9



distance between equidistant concept centers is unique, modulo a scaling. It is easy

to see that in higher dimension, this property is no longer true. In the computation

of possible centers, described in the following, we exploit this property in order to

get equidistant centers.

3.2 Positive center computing

Positive labels in y mean that the corresponding vectors are in the same concept.

We could choose to compute the positive barycenter as in Eq. 1. However this

approach does not dispatch vectors into the space, and the problem evoked in the

previous section will appear.

The area where the positive labeled vectors are moved is not the most important

– what matters the most is the fact that they are gathered, and that the negative

labeled vectors are not in the same area. In the case where the positive and negative

labeled vectors are not in the same area, positive labeled vectors only need to be

gathered in the area they already are. In the case where the positive and negative

labeled vectors are in the same area, positive labeled vector should be gathered in

a different area.

In order to get this behavior, we propose to compute the barycenter g of all labeled

vectors:

g =
1

∑
j |yj|

∑

j

yjxj

And next, to compute its normalization to check Theorem 1 conditions:

ĉ+ =
g

||g||

We can see, as g = g+−g−, that in the case where the positive and negative labeled
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vectors are not in the same area, for instance in an extreme case where g− = −g+,

then g = 2g+, and positive labeled vectors gather in the same area. In the case

where the positive and negative labeled vectors are in the same area, for instance

in an extreme case where g− ' g+, then g ' 0, and as g is normalized, then the

positive labeled vectors are gathered in a random area.

Another motivation for this choice of positive center computing is based on the

kernel alignment [13]. Seen as a two-concept problem, the problem can expressed

as follow: 



minX+

∑
i∈I+ ||xi − g||

maxX−
∑
i∈I− ||xi − g||

(3)

with X+ = {xi|yi > 0} and X− = {xi|yi < 0}.

If we assume that all vectors are normalized, then Eq. 3 is equivalent to:





maxX+

∑
i∈I+ < xi,g >

minX−
∑
i∈I− < xi,g >

(4)

As g = 1∑
j
|yj |

∑
j yjxj , then Eq. 4 is equivalent to:

maxX
∑
i yi < xi,g >

⇐⇒ maxX
∑
i yi < xi,

∑
j yjxj >

⇐⇒ maxX
∑
i,j yiyj < xi,xj >

⇐⇒ maxX AX(y)

(5)

where AX(y) is the alignment of the linear kernel X tX and y.
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cept center ĉ+.

This shows that the proposed choice for positive center computing is correlated with

the kernel alignment. However, this kernel alignment-based approach (cf. Eq. 3)

deals with two-concept problems: it gathers negative labeled vectors, whereas they

are not necessarily in the same concept.

We propose in the next subsection a negative center computing, based on equidis-

tance of concept centers, which deals with more than two concepts.

3.3 Negative center computing

Negative labels in y mean that the corresponding vectors are not in the concept. We

proposed to the negative labeled vectors such as the concept centers are equidis-

tants.

Theorem 1 shows that the squared distance between centers should be d = 2(1 +

1
Nc−1

), in order to have equidistant centers in the smallest space. We choose as an

estimated center ĉ−i the vector in the plan spanned by xi and ĉ+ such as its distance
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to ĉ+ is
√
d (cf. Fig. 4). Note that Nc is unknown, but as we will see in experiment,

if we take a too large value for Nd ≥ Nc− 1, the method converges as well as if we

choose the best one.

We first compute a basis {ĉ+, (ĉ+
i )⊥} of this plan:

(ĉ+
i )⊥ =

xi− < xi, ĉ
+ > ĉ+

||xi− < xi, ĉ+ > ĉ+||

=
xi− < xi, ĉ

+ > ĉ+

√
< xi,xi >2 − < xi, ĉ+ >2

Next, as we need to have ||ĉ+ − ĉ−i ||2 = d, then < ĉ+, ĉ−i >= h = − 1
Nd

, and:

ĉ−i = hĉ+ +
√

1− h2(ĉ+
i )⊥

= hĉ+ +

√
1− h2

< xi,xi >2 − < xi, ĉ+ >2
(xi− < xi, ĉ

+ > ĉ+)

=

(
h− < xi, ĉ

+ >

√
1− h2

< xi,xi >2 − < xi, ĉ+ >2

)
ĉ+

+

√
1− h2

< xi,xi >2 − < xi, ĉ+ >2
xi

The complete method is summarized in Fig. 5. Its complexity depends on the di-

mension Nd of vectors, the number Nl of non-zero values in labels yp, and the

number T of updates. The computation is very fast, and complexity does not de-

pends on the size of the database. In the following experiments on real data the

computation takes 1 sec with a Pentium 3Ghz, Nd = 50, Nl = 50, T = Ny/ρ,

Ny = 1000, and ρ = 0.1.
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for t = 1 : T

y = Yrand()%Ny

ĉ+ =

∑
j
yjxj

||
∑

j
yjxj ||

for i ∈ I+

xi = xi + ρ|yi|(ĉ+ − xi)

endfor

for i ∈ I−

r =< xi, ĉ
+ >

s =
√

1−h2

<xi,xi>2−r2

xi = xi + ρ|yi|
(
(h− rs)ĉ+ + (s− 1)xi

)

endfor

endfor

Fig. 5. Concept vector learning algorithm

4 Semi-supervised learning

A set of labels Y does not necessarily give knowledge about every vector in X .

In order to process these unlabeled vectors, we propose to compute their position

according to their similarity in the initial state.

At the end of learning, the set X converges to the set X? according to Y . Let
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Ī = {i|∀p = 1..Ny, yip = 0} be the indexes of unlabeled vectors. At this state,

all unlabeled vectors in X? are the same than in X . We propose to compute a new

position for these vectors using a kernel function k(., .):

∀i′ ∈ Ī x?i′ =

∑
i k(xi,xi′)x

?
i∑

k(xi,xi′)

Using a gaussian kernel, this approach is a smooth version of a k-Nearest Neigh-

bors. The width of the gaussian determines the amount of generalization, depending

on the quality of the initial distances one can make on a set X . For small gaussians,

few vectors are close to a given vector. Thus, the vector is close to one of the

concept centers. In this case, the vector is in one of the concepts, reflecting the

confidence in information. For large gaussians, a lot of vectors are close to a given

vector. Thus, the vector is close to the center of gravity of the whole set. In this case,

the distance of the vector is approximatively the same to all other ones, reflecting

the lack of information.

5 Experiments

Notations:

• The initial set X . This is the set of the Nx vectors of RNd before any learning.

These vectors can be automatically computed using color, texture, keywords,

etc. Note that the method does not require a good match of these vectors with the

concepts, and is able to learn from randomly sampled data, if the training set is

large enough.

• The partial labelling Y . This is the set of the Ny partial labels yp of [−1, 1]Nx .

Note that in the following experiments we use integer labels, i.e. yp ∈

{−1, 0, 1}Nx . These vectors yp are the labels provided by users on a retrieval

15



system. We will refer to the number Nl � Nx of non-zero values in each of

them. This number Nl is insufficient to rebuild a concept using a single yp.

• The labeled set X̂ . This is the set of vectors with at least one label in matrix Y :

X̂ = {xi|∃p such as yip 6= 0}.

• The training set (X̂, Y ). This set is used for the concept learning.

• The optimized set X?. This is the output of the concept learning method.

• The optimized labeled set X̂?. This set is composed of the vectors of X? with at

least one label in Y .

5.1 Toy examples with Nd = Nc − 1

We build two toy examples with Nx = 120 vectors of dimension Nd = 2: one

with Nc = 3 concepts (Fig. 6a) and another one with Nc = 3 mixed concepts

(Fig. 7a). “Mixed concepts” means that some of the vectors are in two concepts.

For instance, magenta vectors in Fig. 7a are in concept 1 (blue+magenta+cyan)

and concept 2 (red+magenta+yellow). In both cases, we build a set of labels Y

compound of Ny = 100 labels yp with Nl = 10 non-zero values. The labels are not

necessarily balanced, a vector yp can have more positive than negative values, and

vice-versa. All vectors with a non-zero value in Y form the labelled set X̂ (Fig. 6b

and 7b). In these toy examples, the labelled set is compound of 60 vectors: half of

X is unlabelled.

Our approach is compared to the distance learning method proposed by Xing [10].

In their technique, the similarity matrix S is S = (Y Y ′ > 0) and the dissimilarity

matrix is D = (Y Y ′ < 0). As one can see on Fig. 6c, 6d, 7c and 7d, their distance

learning method does not change a lot the configuration of the data.
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(ĉ+
i )⊥

1
h√

1− h2

labels

(c) Optimized set with Xing method (d) Optimized labelled set with Xing method

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

PSfrag replacements
xi
ĉ+
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ĉ−ic1c2c3
(ĉ+
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Fig. 7. Toy example with 3 mixed concepts. Legend: blue = concept 1, red = concept 2,

green = concept 3, magenta = concept 1 and 2, cyan = concept 1 and 3, yellow = concept 2

and 3.
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Fig. 8. Toy example with 3 concepts. SVM classification errors according to the size of the

training set.

With our concept vector learning method, the vectors gather into clusters (cf Fig. 6f

and 7f). In the mixed concept case (Fig. 7f), the vectors sharing two concepts are

distributed between both concepts, and stay as far as possible from the concept

they do not have. The unlabelled vectors are well distributed into the space using

the method in section 4 (Fig. 6e and 7e). However, some vectors are not distributed

correctly. For instance, on Fig. 6e, a blue vector appears in the green cluster. This

blue vector correspond to a blue vector surrounded by green vectors in the left of

Fig. 6a. We can see that this blue vector is not in the labelled set (Fig. 6b). In such

a particular case, it is very difficult to find the true concept of a vector, and this is

the reason why some unlabelled vectors are not distributed correctly, whereas most

of them are well distributed.
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Fig. 9. Toy example with 3 mixed concepts. SVM classification errors according to the size

of the training set.

One can see that classical learning methods will be much more efficient with such

a distribution of data. For instance, a K-Means clustering is easier in the case of

Fig. 6f than in the case of Fig. 6b. An hyperplane classification (Perceptron, SVM,

etc.), is able to perfectly discriminate between a concept and one another in the

Fig. 6f and 7f. For instance, a line can separate the concept 1 (blue+magenta+cyan)

from the non-concept 1 (red+green+yellow) in Fig 7f. We test the SVM classifi-

cation capacity of the different set of vectors (Fig. 8 and 9). We can see on these

figures that the error of classification is highly reduced by the concept vector learn-

ing, especially for the labelled set.

In the previous experiments, we assumed that there is no errors in the labels of Y .

However, in real application erroneous labels can appear when data are collected
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(c) Optimized labelled set, with 30% error (d) Optimized labelled set, with 20% error
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(e) Optimized labelled set, with 10% error (f) Optimized labelled set, with no error

Fig. 10. Toy example with 3 mixed concepts. Legend: blue = concept 1, red = concept 2,

green = concept 3, magenta = concept 1 and 2, cyan = concept 1 and 3, yellow = concept 2

and 3.
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Fig. 11. Toy example with 3 mixed concepts. SVM classification errors on the labeled set

according to the percentage of error in labelling. The SVM-training set has 10 examples.

from many user interaction.

In order to simulate these errors, we build new matrices of labels Y 10%, Y 20%, Y 30%

and Y 40% based on the previous matrix Y , but including false labels. We initialize

each new matrix with the matrix Y , and switch one non-zero labels in each yp of

Y 10%, two non-zero labels in each yp of Y 20%, etc. As there is Nl = 10 non-zero

values in each yp, switching 1 label represents an error rate of 10%, switching 2

labels represents an error rate of 20%, etc.

We present the labelled set and the various optimized labelled sets in the Fig. 10.

As the error rate increases, vectors are less gathered into clusters, and tend to be

scattered in the space. This behavior is consistent with the idea of the method. The

more there are erroneous labels, the more knowledge in Y is poor, but the method
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is still able to gather the vectors.

We also performed SVM-classification tests for each training sets with error. The

error of classification for a SVM-training set of 10 examples are presented in

Fig. 11. We included to this figure a dotted line which shows the error with the

initial set. We can see that the more there are errors in a matrix Y , the more there

are classification errors. On these experiments, our method is still efficient for an

error rate lesser than 20%.

5.2 Toy example with Nd > Nc − 1

We build a toy example with 120 vectors of dimension Nd = 3 with Nc = 3 con-

cepts (Fig. 12a). In this example, the dimension of vectors is not optimal according

to the Theorem 1. We also build set of labels Y compound of Ny = 100 labels yp

with Nl = 10 non-zero values. The labels are not necessarily balanced, a vector

yp can have more positive than negative values, and vice-versa. The labelled set is

compound of 60 vectors (Fig. 12b).

We can see on Fig. 12c and 12d, that after a concept vector learning with the pro-

posed method, the vectors are distributed in a plane, and are as if they were in an

optimal dimension. This result is due to the fact that equidistant centers in a higher

space are also equidistant in a lower space, and the uniqueness of the distance re-

mains true.
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(c) Optimized set with our method (d) Optimized labelled set with our method

Fig. 12. Toy example with 3 mixed concepts in a 3D space. Legend: blue = concept 1, red

= concept 2, green = concept 3, magenta = concept 1 and 2, cyan = concept 1 and 3, yellow

= concept 2 and 3.

5.3 Real data

Tests are carried out on the generalist COREL photo database, which contains more

than 50, 000 pictures. To get tractable computation for the statistical evaluation, we
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Fig. 13. Mean SVM classification error for 50 concepts, according to the size of the SVM

training set. Each partial labeling has 25 positive values and 25 negative values.

randomly selected 77 of the COREL folders, to obtain a database of 6, 000 images.

To perform interesting evaluation, we built from this database 50 concepts 1 . Each

concept is built from 2 or 3 of the COREL folders. The concept sizes are from 50

to 300. The set of all the concepts covers the whole database, and many of them

have common images with others.

We randomly build a set of labels Y simulating the use of the system. For instance,

this set could be made from the labels given by users during the use of an image

retrieval system. This set could also be made from text associated with each im-

1 A description of this database and the 50 concepts can be found at: http://www-

etis.ensea.fr/∼cord/data/mcorel50.tar.gz. This archive contains lists of image file names

for all the concepts.
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age. In all cases, we assume that the labels are incomplete, and have few non-zero

values. In this context, we build labels with 25 positive values and 25 negative

values, which is small (0.83%) against the size of the database (6,000). Note that

the method does not need balanced labels. The number of negative labels is usually

large in comparison to the number of positive ones, and these last one must be large

enough, for instance on this database the method need at least 10 positive labels per

yp to be efficient. We next train the concept vector learning algorithm with 250, 500

and 1000 partial labeling in Y . We obtain three new sets of vectors X?
250, X?

500 and

X?
1000.

In order to evaluate the improvement, we experimented the SVM classification ca-

pacity with a linear kernel of the new sets. Results are in Fig. 13. We drastically

limited the size of the SVM training set (up to 100 labels which represent 1.67%

of the database size), to stay in a realistic CBIR context, where very few labels are

usually available. The Fig. 13 shows that the SVM classification error decreases

with the number of updates. With a set of 1, 000 labeling, the SVM classification

error is 4.6% with SVM training set of 60 labels (1% of the database size), with no

kernel optimization nor advanced learning improvements such as active learning.

The gain is about 25% of less error, that means that starting with 1800 misclassified

images, we obtain only 276 misclassified images with the new feature vectors.

Remark: the method needs one second to converge on a training set of Nx = 6.000

vectors and Ny = 1000 partial labels with Nl = 50 non-zero values. It is partic-

ularly fast in comparison to related methods, as for instance the method in [10],

which requires several minutes for the toy examples (with the matlab code they

have published), and is untractable on sets with thousands of vectors.

26



6 Conclusion

In this paper, we introduce a concept vector learning method which improves the

representation of a document collection, with few constraints on training data. The

method is mostly based on the equidistance of concept centers, gathering the vec-

tors of the same concept around each corresponding centers, and distributing the

vectors in several concepts between those centers. Thus, the method is able to deal

with mixed concepts, with the only constraint that the dimension of the vectors be

superior to the number of concepts. We are actually working on an extension of

this method to overcome this constraint, by applying the optimization in an infinite

space, with a framework similar to the quasiconformal kernels approach [17,18].

If we assume that documents need to be gathered into concepts, then the method

deals with a context where the size, the number and the structure of the concepts are

unknown. Experiments carried out on synthetic and real data demonstrate the effi-

ciency of the method. The representation of documents and the SVM classification

are enhanced.

Note that the approach does not deal with a hierarchical organization of the data,

when several concepts can form a “big” concept. However, the data distribution

around equidistant centers is very interesting for post-processing. The simple fact

that the data become equidistributed in an hypersphere allows new possibilities,

for instance, using a K-Means algorithm, one can compute an estimation of the

concepts — their size, the membership of each vectors. Once the concepts are de-

tected, powerful learning techniques (like in [1]) can be used in order to further

improve the performances. As the data distribution allows concept detection, some

adapted classification techniques could give good estimations of the membership of

vectors, and then accurate representation of labeled and unlabeled data. Actually,
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application are many; to mention one, the management of a collection of digital

documents on the Internet. If the system is able to get semantic labels through its

use, for instance when a user chooses a link in a search engine, or labels a pic-

ture, then the method can improve the overall performance of the system, during

background optimization.

A Proof of Theorem 1

Let K = CtC be the Nc×Nc matrix of all dot products between each vector of C.

As ∀j, j ′ ∈ 1..Nc, ||cj|| = 1 and ||cj − cj′||2 = d, it follows that:

< cj, cj′ >=
1

2
(||cj||2 + ||cj′||2 − ||cj − cj′||2) = 1− d

2

If we set h = 1− d
2
, then K can be written as:

K =




1 h h . . . h

h 1 h . . . h

h h
. . . ...

...
... 1 h

h h . . . h 1




K is the matrix of dot products between Nc vectors of dimension Nd, then

rankK ≤ Nd.

Now let us look for a condition to minimize the rank of K. In order to compute this
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rank, we compute the characteristic polynomial of K:

det(K − λI) = det




1− λ h h . . . h

h 1− λ h . . . h

h h
. . . ...

...
... 1− λ h

h h . . . h 1− λ




Let λ = λ′ − h+ 1, then:

det(K−λI) = det




h− λ′ h h . . . h

h h− λ′ h . . . h

h h
. . . ...

...
... h− λ′ h

h h . . . h h− λ′




= det(heet−λ′I)

with et = (1 . . . 1).

The characteristic polynomial of the rank one matrix heet is:

det(heet − λ′I) = (−λ′)Nc−1(hNc − λ′)

Then, using λ′ = h− 1 + λ:

det(K − λI) =
(
(1− h)− λ

)Nc−1(
(1 + (Nc − 1)h)− λ

)

The roots of the polynomial are 1− h and 1 + (Nc − 1)h.
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The rank of K is minimized if we have the maximum number of zero roots. As we

suppose that d > 0, then h 6= 1, and the first root can not be zero.

In the case where d = 2(1 + 1
Nc−1

), h = − 1
Nc−1

, and rankK = Nc − 1. Thus

Nd ≥ Nc − 1.

In the case where d 6= 2(1 + 1
Nc−1

), rankK = Nc and Nd ≥ Nc.
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