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Abstract

We propose a logistic regression method based on the hybridation of a linear model and product-unit neural network models for binary
classification. In a first step we use an evolutionary algorithm to determine the basic structure of the product-unit model and afterwards
we apply logistic regression in the new space of the derived features. This hybrid model has been applied to seven benchmark data sets
and a new microbiological problem. The hybrid model outperforms the linear part and the nonlinear part obtaining a good compromise
between them and they perform well compared to several other learning classification techniques. We obtain a binary classifier with very
promising results in terms of classification accuracy and the complexity of the classifier.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

There are many fields of study such as medicine, micro-
biology and others, where it is very important to predict a
binary response variable, or equivalently the probability of
an event’s occurrence in terms of the values of a set of ex-
plicative variables related to it. Therefore, in binary super-
vised learning problems, the goal is to learn how to distin-
guish between examples from two classes (herein labeled as
y = 0 and y = 1) on the basis of k observed predictor vari-
ables (also known as features or covariates) x1, x2, . . . , xk .
The logistic regression (LR) model has been widely used in
statistics for many years and has recently been the object
of extensive study in the machine learning community. This
traditional statistical tool arises from the desire to model the
posterior probabilities of the class level given its observation
via linear functions in the predictor variables. In this way,
the LR model admirably serves the purpose of predicting
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a binary response variable and it is the most used in these
cases as we can see, for example, in [1].

The LR is a simple and useful procedure, although it poses
problems when is applied to a real-problem of classification,
where frequently we cannot make the stringent assumption
of additive and purely linear effects of the covariates.

A traditional technique to overcome these difficulties is
to augment/replace the vector of inputs with additional vari-
ables, basis functions, which are transformations of the in-
put variables and then to use linear models in this new space
of derived input features. The beauty of this method is that
once the basis functions have been determined, the models
are linear in these new variables and the fitting is a standard
procedure. Methods like sigmoidal feed-forward neural net-
works [2], projection pursuit learning [3], generalized addi-
tive models [4] and multivariate adaptive splines (MARS)
[5] can be seen as different basis function. The major draw-
back of these approaches is to state the number and the ty-
pology of the corresponding basis functions.

The simplest method to build basis functions is to aug-
ment the inputs with polynomial terms to achieve higher-
order Taylor expansions, for example, with quadratic terms
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and multiplicative interactions. Note, however, that the num-
ber of variables grows exponentially in the degree of the
polynomial.

Our approach overcomes the nonlinear effects of the co-
variates proposing a LR model based on the hybridation of
linear and product-units models (LRLPU), introducing into
the model nonlinear basis functions constructed with the
product of the inputs raised to arbitrary powers. These basis
functions express the possible strong interactions between
the covariates, where the exponents are not fixed and may
even take real values. Moreover, we avoid the huge number
of coefficients involved in the polynomial model.

The nonlinear basis functions of the proposed model cor-
responds to a special class of feed-forward neural network,
namely product-unit neural networks (PUNN), introduced
by Durbin and Rumelhart [6]. They are an alternative to stan-
dard sigmoidal neural networks and are based on multiplica-
tive nodes instead of additive ones. The error surface asso-
ciated with PUNN is extremely convoluted with numerous
local optimums and plateaus. This is because small changes
in the exponents can cause large changes in the total error
surface. The estimation of the coefficients is carried out in
several steps. In a first step, an evolutionary algorithm (EA)
is applied to the design of the structure and training of the
weights in a PUNN. The evolutionary process determines
the number of basis functions in the model and the corre-
sponding exponents. The complexity of the error surface of
the proposed model justifies the use of an EA as part of the
process of estimation of the model coefficients. That step can
be seen as a global search in the coefficients’ model space.
On the other hand, it is well known that EA are efficient at
exploring an entire search space; however, they are relatively
poor at finding the precise optimum solution in the region
where the algorithm converges to. In order to improve the
lack of precision of the EA, we use, in a second step, a lo-
cal optimization algorithm. More precisely, once the basis
functions have been determined by the EA, the model is lin-
ear in these new variables together with the initial covariates
and the fitting proceeds with standard maximum likelihood
optimization method for LR.

Finally, we apply a backward method to select the best
covariates to explain the response. By controlling the num-
ber of coefficients in the final model we can decrease the
risk of building overly complex models that overfit the train-
ing data, and therefore obtain simpler models. It should be
pointed that most of the classification techniques are prin-
cipally used to improve the precision of the classifier, while
their comprehensibility and interest are of secondary im-
portance [7]. That comprehensibility is becoming more and
more important for researchers who need to be able to make
a sensitive analysis of each and every covariate of the model,
which is why the last few years have seen some articles
dealing specifically with comprehensibility [8] and others
that are about it as well as precision [9]. Thus, through-
out this paper we will do our best to obtain the maximum
precision in classification while maintaining the simplest

models possible as far as the number of model coefficients
is concerned.

We evaluate the performance of our methodology on seven
data sets of two classes taken from the UCI repository [10]
and a classification microbiology problem. The empirical re-
sults show that the proposed hybrid method is very promis-
ing in terms of classification accuracy, simplicity as well as
very efficient in terms of the total number of coefficients
and basis functions needed for constructing the final binary
classifiers, and yielding a state-of-the-art performance. It is
interesting to point out that the proposed hybrid model out-
performs the linear model constructed by means of LR with
initial covariates and also the nonlinear part of the model
obtained with a logistic regression with all covariate prod-
uct units (LRPU). In this way, the hybrid model (LRLPU)
determines a good balance between the linear and nonlinear
part.

The paper is arranged as follows: Section 2 briefly reviews
and discusses some related papers. Section 3 introduces LR
and our model in depth. Section 4 describes the process of
coefficient estimation. Section 5 introduces the datasets and
explains the experiments carried out and finally Section 6
summarizes the conclusions of our work.

2. Related works

Regression models play an important role in many data
analysis, providing prediction and classification rules, where
the linear models are the most frequency used because they
are very simple and comprehensible, although in general that
traditional linear model often fails in real situations. In this
section, we give a brief overview of the different methods
that use basis functions for moving beyond linearity. More-
over, we point out some recent works that show a close re-
lationship between LR and machine learning methods.

The generalized additive models [4] comprise automatic
and flexible statistical methods that may be used to iden-
tify and characterize nonlinear regression effects. For two
class classification, the additive LR model is an example of
generalized additive model and it replaces each linear term
by a more general functional form approximating multidi-
mensional functions as a sum of univariate curves. The uni-
variate functions are estimated in a flexible manner, using
an algorithm whose basic building block is a scatter plot
smoother, for example, the cubic smoothing spline. The ad-
ditive model manages to retain interpretability by restricting
nonlinear effects in the predictors to enter into the model
independently of one another. Generalized additive models
provide a natural first approach to relaxing strong linear as-
sumptions. A way to capture the interaction terms is to gener-
alize the additive model including spline terms that possibly
depend on more than one variable [11]. In a further paper,
[12], the same authors extend this work to other basis func-
tions, such as thin-plate spline, multiquadric and cubic basis
functions. They are all examples of radial basis functions
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that rely on distances between vectors in predictor space.
Unfortunately, because of the curse of dimensionality, these
basis functions can perform poorly in a high dimensional
input space.

Another approach to overcome the difficulties associated
with the curse of dimensionality is to consider basis func-
tions given by a sum of lower-dimensional functions. In [13],
Gustafson introduced the Bayesian regression model with
interactions and smooth effects (BWISE). The model is par-
ticularly well suited to modelling data when the deviations
from linearity are not great.

Finally, one of the most popular multiple nonlinear re-
gression methods is the MARS [5] model, where the ba-
sis functions are given by a product of some number of
one-dimensional spline functions. Basis functions are added
gradually during learning, using a technique of sequential
forward selection.

From another point of view, LR has gained popularity
recently in the machine learning community due to its close
relations to well-known techniques such as SVM [14],
AdaBoost [15] and artificial neural networks (ANN) [16,17].
Vapnik [14] compared LR and SVM in terms of minimizing
the loss functional, and showed that the loss function of LR
can be very well approximated by SVM loss with multiple
knots (SVMn). In [18], Friedman et al. discussed SVM,
LR and boosting on top of their different loss functions.
Lebanon and Lafferty showed in [19] that the only differ-
ence between AdaBoost and LR is that the latter requires the
model to be normalized to a probability distribution. Finally,
the LR model can be seen as equivalent to a perceptron
with a logistic activation function representing the simplest
neural network. Finally, a comparative investigation of LR
and neural networks can be found in [16,17].

3. Logistic regression

We consider the situation where we observe a binary
outcome variable y and a vector x = (1, x1, x2, . . . , xk) of
covariates for each of N individuals (we assume that the vec-
tor of inputs includes the constant term 1 to accommodate
the intercept). We code the two-class via a 0/1 response yi ,
where yi =1 for the first class and yi =0 for the second one.
Let p be the conditional probability associated with the first
class. LR [20,21] is a widely used statistical modelling tech-
nique in which the probability p of the dichotomous outcome
event is related to a set of explanatory variables x in the form:

logit(p) = ln

(
p

1 − p

)
= f (x, �) = �Tx, (1)

where � = (�0, �1, �2, . . . , �k) is the vector of the coeffi-
cients of the model and �T the transpose vector. We refer
to p/(1 − p) as odds-ratio and to the expression (1) as
the log-odds or logit transformation. A simple calculation
in Eq. (1) shows that the probability of occurrence of an

event as a function of the covariates is nonlinear and is
given by

p(x; �) = e�Tx

1 + e�Tx
. (2)

When the conditional probability function (2) is known,
one can construct the Bayesian (optimal) decision rule

r(x) = sign

{
ln

(
p

1 − p

)}
. (3)

The decision boundary is the set of points for which the
log-odd is zero, that is, in this linear model, the hyperplane
defined by �Tx = 0. Observe that LR not only constructs
a decision rule but also finds a function that for any input
vector defines the probability p that the vector x belongs to
the first class.

Let D={(xl , yl) : l=1, 2, . . . , nT } be the training data set,
where the number of samples is nT . Here, we assume that
the training sample is a realization of a set of independent
and identically distributed random variables. The unknown
regression coefficients �i , which have to be estimated from
the data, are directly interpretable as log-odds ratios or, in
term of exp(�i ), as odds ratios. That log-likelihood for nT

observations is

l(�) =
nT∑
l=1

{yl log p(xl; �) + (1 − yl) log(1 − p(xl; �)}

=
nT∑
l=1

{yl�
Txl − log(1 + e�Txl )}. (4)

The associated Hessian matrix is negative semidefinite [22],
which implies that the log-likelihood is a concave function
of the coefficient �. Concavity, together with the fact that
the coefficient vector � varies freely in a convex set, guar-
antee that there are no local maxima on the log-likelihood
surface of a LR model. The estimation of coefficient � is
usually carried out by means of an iterative procedure like
the Newton–Raphson algorithm or the iteratively reweighted
least squares (IRLS) [23]. Typically the algorithm converges,
since the log-likelihood is concave, but overshooting can oc-
cur. In the rare cases where log-likelihood decreases, step
size halving will guarantee convergence. The conditions un-
der which a global maximum exists and the maximum like-
lihood estimators do not diverge are discussed in [22] and
references therein.

We propose a LR model based on the hybridation of the
standard linear model and product-unit models, introducing
a nonlinear term in the model constructed with basis func-
tions given by products of the inputs raised to real powers,
which express the possible strong interactions between the
covariates. The general expression of the model is given by

f (x, �) = �0 +
k∑

i=1

�ixi +
m∑

j=1

�j

k∏
i=1

x
wji
i , (5)
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with the corresponding matricial expression:

f (x, �) = �Tx + �TB(x, W),

where the basis functions are B(x, W) = {B1(x, w1),

B2(x, w2), . . . , Bm(x, wm)}, with Bj (x, wj) = ∏k
i=1 x

wji
i

and � = (�, �, W), � = (�0, �1, . . . , �k), � = (�1, . . . , �m)

and W=(w1, w2, . . . , wm), with wj =(wj1, wj2, . . . , wjk),
wji ∈ R.

In this way, the new conditional distribution is

p(x; �) = ef (x,�)

1 + ef (x,�)
(6)

and the logit transformation

logit(p) = ln

(
p

1 − p

)
= f (x, �). (7)

In this case the decision boundaries are nonlinear and
defined by the hypersurface f (x, �) = 0 in the Rk space.
Depending on the coefficient � the hypersurface could even
be nonconnected.

The nonlinear part of f (x, �) corresponds to a special
class of feed-forward neural networks, namely PUNN, in-
troduced by Durbin and Rumelhart [6]. They are an alter-
native to the standard sigmoidal neural networks and are
based on multiplicative nodes instead of additive ones. This
class of multiplicative neural networks comprise such types
as sigma–pi networks and product-unit networks. In con-
trast to the sigma–pi unit, the exponents of the product-unit
are not fixed and may even take real values. Advantages of
product-unit based neural networks include increased infor-
mation capacity and the ability to form higher-order com-
binations of inputs. They are universal approximators and
it is possible to obtain upper bounds of the VC dimension
of PUNN similar to those obtained for sigmoidal neural
networks [24]. Despite these obvious advantages, product-
unit based neural networks have a major drawback. Their

x1 x2 xk

bias 1 2 m

 

wmk
w2k

w1kwm2
w12

w22

wm1
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Fig. 1. Model of a product-unit based neural network.

training is more difficult than the training of standard sig-
moidal based networks [6]. The main reason for this diffi-
culty is that small changes in the exponents can cause large
changes in the total error surface. Hence, networks based on
product units have more local minima and a greater prob-
ability of becoming trapped in them [25,26]. It is a well
known issue [27] that back-propagation is not efficient in
training product units. Several efforts have been made to
develop learning methods for product units [28–31].

In our framework, the product units have the following
structure (Fig. 1): an input layer with a node for every input
variable, a hidden layer with several nodes, and an output
layer with just one node. There are no connections between
the nodes in a layer and none between the input and out-
put layers either. The network has k inputs that represent the
independent variables of the model, m nodes in the hidden
layer and one node in the output layer. The activation of j th
node in the hidden layer is given by Bj (x, wj ) = ∏k

i=1 x
wji
i

where wji is the weight of the connection between input
node i and hidden node j. The activation of the output node
is given by �0 + ∑m

j=1 �jB(x, wj) where �j is the weight
of the connection between the hidden node j and the out-
put node. The transfer function of all nodes is the identity
function.

In this case the log-likelihood for nT observations is

l(�) =
nT∑
l=1

{ylf (xl , �) − log(1 + ef (xl ,�))}. (8)

The nature and the properties of the function f (x, �) imply
that the associated Hessian matrix in Eq. (8) is generally
indefinite and has more local maximum and more probability
of becoming trapped in them. To overcome this problem we
use an EA as part of the process of coefficient estimation.
In the following section we describe in detail the process
of obtaining the estimated coefficients �̂= (�̂, �̂, Ŵ) of log-
likelihood.
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4. Estimation of the coefficients

The methodology proposed is based on the combination
of an EA (global explorer) and a local optimization pro-
cedure (local exploiters) carried out by standard maximum
likelihood optimization method. In a first step, an EA is
applied to design the structure and training of the weights
of a PUNN. The evolutionary process determines the num-
ber m of potential basis functions of the model and the
corresponding vector wj of exponents. Once the basis func-
tions B(x, W) = {B1(x, w1), B2(x, w2), . . . , Bm(x, wm)}
have been determined by the EA, we consider a transfor-
mation of the input space adding the nonlinear transfor-
mations of the input variables given by the basis functions
obtained by the EA. The model is linear in these new
variables together with the initial covariates. The remain-
ing coefficients � and � are calculated by the maximum
likelihood optimization method. Finally, we use a back-
ward stepwise procedure, pruning variables sequentially to
the model obtained previously, until further prunes do not
improve the fit.

In the following paragraphs we describe each one of the
different aspects of the algorithm in detail.

Algorithm.
Step 1: We apply an EA to find the basis functions

B(x, Ŵ) = {B1(x, ŵ1), B2(x, ŵ2), . . . , Bm(x, ŵm)} cor-
responding to the nonlinear part of f (x, �). We have to
determine the number of basis functions m and the weights
Ŵ = (ŵ1, ŵ2, . . . , ŵm). Among the different paradigms
of evolutionary computation, we have chosen evolutionary
programming (EP) due to the fact that we are evolving
artificial neural networks. The population-based EA for
architectural design and the estimation of real-coefficients
have points in common with other EAs in [32–34]. The
search begins with an initial population, and each itera-
tion the population is updated using a population-update
algorithm. The population is subject to the operations of
replication and mutation. Crossover is not used due to its
potential disadvantages in evolving artificial networks [32].

We consider the mean squared error (MSE) of an indi-
vidual g of the population

MSE(g) = 1

nT

nT∑
l=1

(yl − g(xl ))
2, (9)

where yl are the predicted values. We define the fitness func-
tion A(g) by means of a strictly decreasing transformation
of the mean squared error (9):

A(g) = 1

1 + MSE(g)
. (10)

The general structure of the EA is the following:

(1) The initial population of size NR is generated.
(2) Repeat until the stopping criterion is fulfilled

(a) calculate the fitness of every individual in the pop-
ulation;

(b) rank the individuals with respect to their fitness;
(c) the best individual is copied into the new popula-

tion;
(d) the best 10% of individuals of the population are

replicated and substitute the worst 10% of individ-
uals;

(e) apply parametric mutation to the best 10% of
individuals;

(f) apply structural mutation to the remaining 90% of
individuals.

Parametric mutation consists of a simulated annealing al-
gorithm [35]. The severity of a mutation to an individual g
is dictated by the temperature T (g), given by

T (g) = 1 − A(g), 0�T (g) < 1. (11)

Parametric mutation is accomplished for each coefficient
wji, �j of the model with Gaussian noise and where the
variance of the normal distribution depends on the temper-
ature (11):

wji(t+1)=wji(t)+�1(t) and �j (t+1)=�j (t) + �2(t),

where �k(t) ∈ N(0, �kT (g)), k = 1, 2 represents a one-
dimensional normally distributed random variable with
mean 0 and variance �kT (g). It should be pointed that
the modification of the exponents wji is different from the
modification of the coefficients �j , therefore �1>�2.

Structural mutation implies a modification of the struc-
ture of the function and allows the explorations of different
regions of the search space and helps to keep the diversity of
the population. There are four different structural mutations
similar to the mutations of the GNARL model [32]: Node
addition (AN), node deletion (DN), connection addition
(AC) and connection deletion (DC). All the above mutations
are made sequentially in the given order, with probabil-
ity T (g), in the same generation on the same network. If
the probability does not select any mutation, one of the
mutations is chosen at random and applied to the network.

The stop criterion is reached whenever one of the follow-
ing two conditions is fulfilled: (i) for a determined number
of generations there is no improvement either in the average
performance of a percentage of the best individuals in the
population or in the fitness of the best individual; (ii) the al-
gorithm achieves a determined number of generations. For
more details about the EA see [36,37].

Step 2: We consider the following transformation of the
input space adding the nonlinear transformations of the input
variables given by the basis functions obtained by the EA
in step 1:

H : Rk → Rk+m

(x1, x2, . . . , xk) → (x1, x2, . . . , xk, z1, . . . , zm),

where z1 = B1(x, ŵ1), . . . , zm = Bm(x, ŵm).
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Step 3: We apply a (standard) maximum likelihood opti-
mization method in the new space of derived input features.
We optimize the log-likelihood function for nT observations

l(�1) =
nT∑
i=1

{yif (x, �1) − log(1 + ef (x,�1))}, (12)

where �1 = (�, �, ŵ). The estimated coefficient �̂= (�̂, �̂, ŵ)

are obtained by means of the Newton–Raphson optimization
algorithm. The estimation process determines the model:

f (x, �̂) = �̂0 +
k∑

i=1

�̂ixi +
m∑

j=1

�̂j

k∏
i=1

x
ŵji
i . (13)

Step 4: In order to select the final model, we use a back-
ward stepwise procedure, starting with the full model with
all the covariates and successively pruning variables sequen-
tially to the model until further prunes do not improve the
fit. At each step, we deleted the least significant covariate to
predict the response variable, that is, the one which shows
the greatest critical value (p-value) in the hypothesis test,
where the associated coefficient equal to zero is the hypoth-
esis to be contrasted. The procedure finishes when all tests
provide p-values smaller than the fixed significance level
and the model selected in the previous step fits well.

5. Experiments

We evaluate the performance of our methodology on
seven, two classes, datasets taken from the UCI repository
[10] and a predictive microbiology problem. Testing our
model on this wide variety of problems can give us a clear
idea of its performance.

The experimental design for the seven classification
benchmarks and the microbian growth problem was con-
ducted using a holdout cross-validation procedure where the
size of the training set was approximately 3n/4 and n/4 for
the generalization set, where n is the size of the full data set.

The parameters used in the EA for learning the PUNN
model are common for all problems: exponents wji are ini-
tialized in the [−5, 5] interval, the coefficients �j are initial-
ized in [−10, 10]. The maximum number of nodes is m=6.
The size of the population is NR = 2000. The number of
nodes that can be added or removed in a structural mutation
is within the [1, 2] interval. The number of connections that
can be added or removed in a structural mutation is within
the [1, 6] interval. The proposed conditions to the stop cri-
terion are: (i) for five generations there is no improvement
either in the average performance of 20% best of the popula-
tion or in the fitness of the best individual. (ii) The algorithm
achieves 100 generations.

5.1. Results of the benchmark data sets

In Table 1 we briefly describe the seven datasets used
in the study. These seven, two classes, classification sets

cover a wide variety of problems. There are problems with
different numbers of available patterns, from 208 to 1000,
different kind of inputs, nominal, binary and continuous
and different areas of application, from medical diagnosis
to sonar signals recognition. The input variables of the
problems have different scales and present a large range
of variability. For this reason it is advisable to carry out a
pre-processing of the data. We have done a simple linear
rescaling to the input variables to the interval [0.1, 0.9].

To validate the model, we used the correct classification
rate (CCR) for the generalization set defined as the per-
centage of subjects in the data set that are correctly clas-
sified. Table 2 shows the matrix results of classification
for the seven benchmark problems. We consider the to-
tal CCR, and the partial correct classification rate PCR for
training and generalization sets for the three models: a lo-
gistic regression with the initial covariates x1, x2, . . . , xk ,
(LR), logistic regression only with all covariate product units
z1, z2, . . . , zm, (LRPU), in brackets; and our approach given
by logistic regression with initial and product units covari-
ates x1, x2, . . . , xk ,z1, z2, . . . , zm using attribute selection
(LRLPU), in square brackets. In order to select the most sig-
nificant variables of the logistic regression model, a back-
ward method was selected by using SPSS software for Win-
dows 11.0, [38].

Table 3 presents estimators of the coefficients from a
LRLPU model, with their sample standard deviation, and
the p-values associated with a Wald asymptotic t-test for
each coefficient. We observed that in general the coefficients
of the proposed models are significant for a coefficient
� = 0.1. In that table we give the percentage of initial at-
tributes (after converting nominal attributes to binary ones)
included in the final model where we used attribute selec-
tion. On average, the biggest reduction in initial covariates
takes place for datasets with a high number of attributes
because a high degree of interaction exists between them.

The experiments show that LRLPU models, in all
the proposed data sets for the same partition (training
set/generalization set), outperform the linear model con-
structed by means of logistic regression with initial covari-
ates (LR) and also the nonlinear part of the model obtained
with a logistic regression with the product-unit covariates
(LRPU).

With the objective of presenting an empirical evaluation
of the performance of LRLPU we compare to other learning
schemes. We will use the most recent results [39] from six
of the seven data sets considered. In [39] the authors com-
pare their logistic model tree (LMT) algorithm to LR (with
attribute selection, SLogistic, and for a full logistic model,
MLogistic). Afterwards, the authors compare it with induc-
tion trees (C4.5 [40] and CART [41]). Also, they consider
two logistic tree algorithms: LTree (using LR for splitting
and at the leaves) [42] and Lotus [43] with two method-
ologies: one using simple logistic regression (LotusS) and
another using multiple logistic regression (LotusM). Fi-
nally, they consider multiple-tree models M5’ [44] for



58 C. Hervás-Martínez, F. Martínez-Estudillo / Pattern Recognition 40 (2007) 52–64

Table 1
Summary of data sets

Data set Cases train-test Variables Description

C B N k

Cancer 525–174 9 0 0 9 This breast cancer data set was obtained from the University of Wisconsin
Hospitals, Madison from Dr. William H. Wolberg [50]. Each pattern has nine
attributes, all of them ordinal in the range 1–10. There are two classes meaning
if the cancer was benign (65.5% of the cases) or malignant (34.5%).

Card 518–172 6 4 5 51 The set contains data from applications to an Australian bank to get a credit card.
There are two classes, meaning whether the application was granted (44.5% of
the patterns) or denied (55.5%). Each record has 15 attributes, for confidentiality
all attributes and values are not explained in the original data set.

German 750–250 6 3 11 61 This data set has been report for Hans Hofmann, where it classified a customer
as good or bad. Several attributes that are ordered categorical have been coded
as integer. This was the form used by StatLog. The number of attributes is 20
(6 numerical, 14 categorical).

Heart-statlog 202–68 13 0 0 13 This data set comes from the Cleveland Clinic Foundation and was supplied
by Robert Detrano of the V.A. Medical Center, Long Beach, CA. The database
contains 13 attributes, which have been extracted from a larger set of 75, that
correspond to the results of various medical tests carried out on a patient. The
goal is the prediction of the presence or absence of heart disease in those patients.
The problem is described in detail in [51].

Ionosphere 264–87 33 1 0 34 This ionosphere classification comes from the Johns Hopkins University and was
supplied by Sigillito et al. [52] The targets were free electrons in the ionosphere.
“Good” radar returns are those showing evidence of some type of structure in
the ionosphere. “Bad” returns are those that do not.

Pima 576–192 8 0 0 8 The data set contains data of 768 individuals, all of them females at least 21
years old of Pima Indian heritage. The patterns are divided into two classes. The
class of each pattern shows whether the patient shows signs of diabetes according
to the World Health Organization criteria. Former results can be found in [53].

Sonar 104–104 60 0 0 60 This is the data set used by Gorman and Sejnowski in their study of the
classification of sonar signals using a neural network [54]. The task is to train a
network to discriminate between sonar signals bounced off a metal cylinder and
those bounced off a roughly cylindrical rock. The data set is interesting as an
example of very redundant input variables.

The attributes of each data set can be C (continuous), B (binary) or N (nominal) where k is the total number of variables.

classification, and boosted C4.5 trees using AdaBoost.M1
with 10 and 100 boosting interactions. The authors affirm
that LTM is comparable to AdaBoost (100) but that the
relative performance of the two schemes really depends on
the datasets.

For these six data sets, (see Table 4), the best results in
three of them are obtained with AdaBoost (100), while in
the other three the best results are found with SLogistic,
MLogistic or LotusM. In four data sets, our results (marked
with ∗ in the LRLPU column) are higher than the mean
result of the best of the 10 compared algorithms.

Let us assume that the distributions of the results ob-
tained with the best of the 10 algorithms proposed are nor-
mal for the six datasets (the values of these averages and
typical deviations are estimated in boldface, in Table 4).
Then for the data set Cancer, the probability that an execu-
tion of the algorithm Aboost (100) chosen at random could
outdo our results is 0.231 (see the last column in Table 4).

That is, for a random run of the ABoost (100) algorithm, the
P(runAB > 98.3) = P(Z > 0.7349) = 0.231, where Z is a
Gaussian variable of mean 0 and variance 1. Similarly, for
Card, the probability that a random execution of the best
algorithm, ABoost (100), in this case, outdo our result is
P(runAB > 90.7) = 0.142. For German, this probability is
0.471, for a random execution of Slogistic. For Heart, this
probability is 0.21 if compared to the result obtained ran-
domly on executing MLogistic or LotusM. For Ionosphere
the probability is 0.632 as compared to Aboost (100). For
Pima this probability is 0.112 as compared to MLogistic
and LotusM, and finally for Sonar the probability is 0.632
as compared to Aboost (100). Thus our results are compet-
itive with those obtained in [39], providing a higher degree
of interpretability because of a smaller structure compared
to the other logistic tree models (observe that a model tree
is a regression tree with regression functions at the leaves,
see Table 5).
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Table 2
Rate of the number of cases that were classified correctly in different two classes benchmark problems using logistic regression, LR, full nonlinear LRPU
(in brackets) and LRLPU model (in squared brackets)

Predicted response Training PCR Generalization PCR

Y = 1 Y = 0 Y = 1 Y = 0

Cancer
Target response

Y = 1
167(163)

[169]
9(13)

[7]
94.9(92.6)

[96.0]
61(57)

[62]
4(8)

[3]
93.8(87.7)

[95.4]
Y = 0

11(13)

[11]
338(336)

[338]
96.8(96.3)

[96.8]
0(0)

[0]
109(109)

[109]
100.0(100.0)

[100]
CCR

96.2(95.0)

[96.6]
97.7(95.4)

[98.3]
Card
Target

Y = 1
260(265)

[245]
34(29)

[49]
88.4(90.1)

[83.3]
77(81)

[76]
12(8)

[13]
86.5(91)

[85.4]
Y = 0

27(67)

[22]
197(157)

[202]
87.9(70.1)

[90.2]
7(25)

[3]
76(58)

[80]
91.6(69.9)

[96.4]
CCR

88.2(81.5)

[86.3]
89.0(80.8)

[90.7]
German
Target

Y = 1
123(0)

[126]
103(226)

[100]
54.4(0.0)

[55.8]
35(0)

[36]
39(74)

[38]
47.3(0.0)

[48.6]
Y = 0

60(2)

[55]
464(522)

[469]
88.5(99.6)

[89.5]
26(0)

[23]
150(176)

[153]
85.2(100)

[86.9]
CCR

78.3(69.6)

[79.3]
74.0(70.4)

[75.6]
Heart
Target

Y = 1
72(74)

[75]
18(16)

[15]
80.0(82.2)

[83.3]
25(25)

[25]
5(5)

[5]
83.3(83.3)

[83.3]
Y = 0

11(10)

[11]
101(102)

[101]
90.2(91.1)

[90.2]
2(4)

[1]
36(34)

[37]
94.7(89.5)

[97.4]
CCR

85.6(87.1)

[87.1]
89.7(86.8)

[91.2]
Ionosphere
Target

Y = 1
164(151)

[164]
7(20)

[7]
95.9(88.3)

[95.9]
51(47)

[53]
3(7)

[1]
94.4(87.0)

[98.1]
Y = 0

22(18)

[9]
71(75)

[84]
76.3(80.6)

[90.3]
9(7)

[6]
24(26)

[27]
72.7(78.8)

[81.8]
CCR

89.0(85.6)

[93.9]
86.2(83.9)

[92.0]
Pima
Target

Y = 1
318(325)

[318]
47(40)

[47]
87.1(89.0)

[87.1]
122(121)

[122]
13(14)

[13]
90.4(89.6)

[90.4]
Y = 0

89(81)

[80]
122(130)

[131]
57.8(61.6)

[62.1]
22(23)

[20]
35(34)

[37]
61.4(59.6)

[64.9]
CCR

76.4(79.0)

[78.0]
81.8(80.7)

[82.8]
Sonar
Target

Y = 1
49(34)

[43]
0(15)

[6]
100.0(75.5)

[87.8]
47(43)

[51]
15(19)

[11]
75.8(69.4)

[82.3]
Y = 0

0(14)

[4]
55(41)

[51]
100.0(90.9)

[92.7]
11(10)

[7]
31(32)

[35]
73.8(76.2)

[83.3]
CCR

100.0(83.7)

[90.4]
75.0(72.1)

[82.7]
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Table 3
Best models from LRLPU model to seven benchmark problems

Variables Bias X∗
1 X∗

3 X∗
6 X∗

7 X∗
8 B1 B2

Cancer
Coeff. 10.236 −7.041 −3.779 −5.755 −5.570 −17.106 −262.844 20.187
Std error 1.399 1.706 1.806 1.324 1.790 8.500 156.785 11.023
p-value 0.000 0.000 0.036 0.000 0.002 0.044 0.094 0.067

B1 = (X∗
2)5.465(X∗

5)5.955(X∗
6)−0.089(X∗

7)0.198

B2 = (X∗
1)0.080(X∗

2)0.062(X∗
6)0.100(X∗

8)1.057(X∗
9)0.022

rate of attributes used = 8/9 = 0.89; # coefficients = 17

Variables X∗
8 X∗

12 X∗
25 X∗

26 X∗
29 X∗

42 X∗
44 X∗

51 B1

Card
Coeff. −6.417 −5.406 1.110 3.173 −2.515 4.108 15.525 1.638 3.4e-008
Std error 0.796 0.705 0.596 1.029 1.049 0.511 4.350 0.781 2.1e-008
p-value 0.000 0.000 0.063 0.002 0.016 0.000 0.000 0.036 0.097

B1 = (X∗
4)1.560(X∗

10)
−4.115(X∗

11)
2.202(X∗

14)
−4.771(X∗

15)
0.317(X∗

23)
−1.573(X∗

27)
0.071(X∗

35)
1.397

(X∗
40)

−2.139(X∗
41)

0.296(X∗
42)

3.906(X∗
43)

0.189(X∗
46)

0.252(X∗
51)

0.462

rate of attributes used = 20/60 = 0.33; # coefficients = 23

Variables Bias X∗
1 X∗

2 X∗
5 X∗

7 X∗
10 X∗

11 X∗
12 X∗

17

German
Coeff. 5.892 −1.408 −1.528 −2.685 −1.085 0.942 −0.870 1.390 −1.030
Std. error 1.045 0.456 0.306 0.874 0.536 0.299 0.290 0.522 0.542
p-value 0.000 0.002 0.000 0.002 0.043 0.002 0.003 0.008 0.057

Variables X∗
22 X∗

23 X∗
24 X∗

31 X∗
33 X∗

36 X∗
42 X∗

46 X∗
47

Coeff. −1.847 −1.326 −0.926 0.836 −1.212 0.509 1.472 −0.619 2.710
Std. error 1.082 0.316 0.458 0.347 0.419 0.258 0.572 0.349 1.231
p-value 0.088 0.000 0.043 0.016 0.004 0.048 0.010 0.076 0.028

Variables X∗
48 X∗

51 X∗
61 B1

Coeff. 0.860 −0.624 −1.707 −1.011 B1 = (X∗
2)−0.181(X∗

4)−0.245(X∗
26)

−0.054(X∗
33)

−0.098

Std. error 0.324 0.313 0.890 0.530 (X∗
47)

0.479(X∗
48)

0.047(X∗
54)

0.041

p-value 0.008 0.046 0.055 0.057
rate of attributes used = 23/61 = 0.38; # coefficients = 29

Variables Bias X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X∗

6 X∗
11 X∗

13

Heart
Coeff. −4.157 2.923 −0.622 −2.070 −3.995 −2.421 0.746 −0.734 1.025
Std error 2.455 1.819 0.845 3.110 1.754 2.505 0.789 0.933 0.766
p-value 0.016 0.108 0.461 0.506 0.023 0.334 0.334 0.431 0.181

Variables B1 B2

Coeff. 11.709 −12.689 B1 = (X∗
3)0.255(X∗

8)0.253(X∗
12)

−0.116(X∗
13)

−0.083

Std error 2.143 5.222 B2 = (X∗
2)0.050(X∗

3)0.803(X∗
5)0.047(X∗

7)0.043

p-value 0.000 0.015 (X∗
8)0.205(X∗

9)0.058(X∗
10)

0.083(X∗
12)

0.008

rate of attributes used = 13/13 = 1; # coefficients = 23

Variables Bias X∗
1 X∗

5 X∗
11 X∗

14 X∗
19 X∗

22 X∗
23 X∗

24

Ionosphere
Coeff. 5.960 8.714 −9.001 5.848 −7.337 2.149 7.671 −9.144 −4.812
Std. error 3.490 2.141 4.023 2.731 2.918 2.356 3.588 3.429 2.679
p-value 0.088 0.000 0.025 0.032 0.012 0.362 0.033 0.008 0.072

Variables X∗
26 X∗

27 X∗
29 X∗

34 B1 B2

Coeff.
Std. error −6.970 6.369 −5.542 8.920 −60.279 86.043

2.115 3.072 2.461 2.358 11.713 16.053
p-value 0.001 0.038 0.024 0.000 0.000 0.000
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Table 3 (continued)

Variables X∗
26 X∗

27 X∗
29 X∗

34 B1 B2

B1 = (X∗
1)1.531(X∗

3)0.509(X∗
5)2.697(X∗

8)0.141(X∗
10)

0.181(X∗
12)

−0.010(X∗
24)

0.167(X∗
25)

0.165

B2 = (X∗
1)3.854(X∗

5)8.685(X∗
6)−0.231(X∗

7)−0.096(X∗
11)

−0.376(X∗
19)

−0.045(X∗
22)

0.428(X∗
23)

0.252

(X∗
26)

−0.0002(X∗
32)

0.117(X∗
33)

0.068

rate of attributes used = 20/33 = 0.61; # coefficients = 34

Variables Bias X∗
1 X∗

2 X∗
3 X∗

8 B1 B2

Pima
Coeff.
Std error −10.166 2.172 13.212 −1.975 −1.698 15.977 −1688.149

0.955 0.821 1.221 0.979 0.979 2.152 663.683
p-value 0.000 0.008 0.000 0.044 0.083 0.000 0.011

B1 = (X∗
2)−0.697(X∗

4)−0.118(X∗
6)1.560(X∗

7)0.417(X∗
8)0.453

B2 = (X∗
2)5.026(X∗

3)−1.434(X∗
4)−2.332(X∗

5)1.409(X∗
6)2.876(X∗

7)4.435(X∗
8)3.282

rate of attributes used = 1; # coefficients = 19

Variables Bias X∗
4 X∗

17 X∗
18 X∗

22 X∗
28 X∗

37 X∗
39 X∗

40

Sonar
Coeff.
Std. error 43.977 20.988 31.098 −30.534 −4.387 −5.009 27.547 −24.505 23.469

20.217 11.226 10.560 10.852 2.785 2.771 9.554 8.428 7.447
p-value 0.030 0.062 0.003 0.005 0.115 0.071 0.004 0.004 0.002

Variables X∗
46 X∗

47 X∗
49 X∗

50 X∗
51 X∗

60 B1 B2

Coeff.
Std. error −36.852 72.971 −29.178 30.721 −22.54 −22.790 20.088 −109.828

14.952 26.131 8.763 9.349 9.517 11.483 7.909 39.551
p-value 0.014 0.005 0.001 0.001 0.018 0.047 0.011 0.005

B1 = (X∗
11)

−0.117(X∗
19)

0.028(X∗
36)

0.135, B2 = (X∗
4)0.125(X∗

38)
0.010(X∗

47)
0.188(X∗

60)
−0.097

rate of attributes used = 18/60 = 0.3; # coefficients = 24

Table 4
Mean classification accuracy and standard deviation for LMT, SLogistic, MLogistic, C4.5, CART, Lotus using simple logistic regression (LotusS) and
Lotus using multiple logistic regression (LotusM), M5′ for classification, ABoost and LRLPU model

Dataset LMT SLogistic MLogistic C4.5 CART LotusS

Cancer 96.18 ± 2.20 96.21 ± 2.19 96.50 ± 2.18 95.01 ± 2.73 94.42 ± 2.70 94.61 ± 2.66
Card 85.04 ± 3.84 85.04 ± 3.97 85.33 ± 3.85 85.57 ± 3.96 84.55 ± 4.20 84.35 ± 4.18
German 75.37 ± 3.53 75.34 ± 3.50 75.24 ± 3.54 71.25 ± 3.17 73.34 ± 3.66 72.69 ± 3.11
Heart 83.22 ± 6.50 83.30 ± 6.48 83.67 ± 6.43 78.15 ± 7.42 78.00 ± 8.25 77.63 ± 7.16
Ionosphere 92.99 ± 4.13 87.78 ± 4.99 87.72 ± 5.57 89.74 ± 4.38 89.80 ± 4.78 89.04 ± 4.57
Pima 77.08 ± 4.65 77.10 ± 4.65 77.47(±4.39 74.49 ± 5.27 74.50 ± 4.70 75.08 ± 5.14
Sonar 76.32 ± 9.58 75.93 ± 8.51 72.47 ± 8.90 73.61 ± 9.34 74.77 ± 9.76 72.38 ± 9.13

Dataset LotusM M5′ ABoost (10) ABoost (100) LRLPU P(Best > LRLPU)

Cancer 96.44 ± 2.13 95.85 ± 2.15 96.08 ± 2.16 96.70 ± 2.18 98.3 (*) 0.231
Card 85.14 ± 4.03 85.39 ± 3.87 84.01 ± 4.36 86.43 ± 3.98 90.7 (*) 0.142
German 72.55 ± 3.36 74.99 ± 3.31 70.91 ± 3.60 74.53 ± 3.26 75.6 (*) 0.471
Heart 83.67 ± 6.43 82.15 ± 6.77 78.59 ± 7.15 80.44 ± 7.08 91.2 (*) 0.121
Ionosphere 87.72 ± 5.57 89.92 ± 4.18 93.05 ± 3.92 94.02 ± 3.83 92.0 0.701
Pima 77.47 ± 4.39 76.56 ± 4.71 71.81 ± 4.85 73.89 ± 4.75 82.8 (*) 0.112
Sonar 72.27 ± 7.92 78.37 ± 8.82 79.22 ± 8.70 85.14 ± 7.84 82.7 0.632
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5.2. Application to microbial growth/no growth

Listeria monocytogenes has been a serious problem that
has concerned food industries due to its ubiquity in the
natural environment [45,46] and the specific growth con-
ditions of the pathogen that lead to its high prevalence
in different kinds of food products. One impetus for this
research was the problem of listeriosis [47] and different
strategies were proposed to limit levels of contamination at
the time of consumption to less than 100 CFU/g (European
Commission, [48]).

The use of ANN to describe the growth/no growth
interface of several pathogens has already been imple-
mented. Generally speaking, the use of ANNs were found
to outperform the LR methods. Hajmeer and Basheer [49]
reported the use of a Probabilistic Neural Network (PNN)

Table 5
Mean tree size (number of leaves) and standard deviation for LMT, LotusS
and LotusM

Dataset LMT LotusS LotusM

Cancer 1.24 ± 0.99 4.51 ± 1.89 1.02 ± 0.14
Card 1.15 ± 0.59 2.58 ± 0.75 2.03 ± 0.30
German 1.00 ± 0.00 2.37 ± 0.65 2.11 ± 0.40
Heart 1.04 ± 0.32 3.57 ± 1.86 1.00 ± 0.00
Ionosphere 4.40 ± 1.86 3.59 ± 0.85 1.00 ± 0.00
Pima 1.03 ± 0.30 2.86 ± 0.97 1.00 ± 0.00
Sonar 2.12 ± 1.51 1.65 ± 0.95 1.00 ± 0.00

Table 6
Rate of the number of cases that were classified correctly in the recognition of growth/no growth of Listeria monocytogenes with LR and LRLPU models

Training PCR Generalization PCR

Predicted Y = 1 Y = 0 Y = 1 Y = 0

Target LR
Y = 1 99 35 73.9 76 30 71.7
Y = 0 22 149 87.1 21 107 83.6
CCR 81.3 78.2

LRLPU
Y = 1 123 11 91.8 95 11 89.6
Y = 0 10 161 94.2 9 119 93.0
CCR 93.1 91.5

Table 7
Best LRLPU model to growth/no growth of Listeria monocytogenes

Variable AA∗ AC∗ B1 B2 B3 B4 B5

Listeria
Coeff. −16.769 −11.741 34.707 120.219 −290.944 −14.709 −0.00032
Std error 4.526 2.859 5.827 20.225 48.996 3.513 5.657e-5
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B1 = (T ∗)0.417; B2 = (pH ∗)1.653(AA∗)−0.915; B3 = (pH ∗)1.777(AA∗)−0.767(AC∗)0.262

B4 = (pH ∗)−0.111(AA∗)0.270(AC∗)0.089; B5 = (T ∗)0.139(pH ∗)0.654(AA∗)−3.532(AC∗)−1.890

#coefficients = 19.

approach combining the Bayes theorem of conditional
probability and Parzen’s method to estimate the probability
density functions of random variables. This study was ap-
plied to classify growth/no growth of E. coli R31 as a
function of temperature and water activity.

In this section we present an application of the LRLPU
model to determine the probability of L. monocytogenes
growth as a function of storage temperature, pH, citric (CA)
and ascorbic acid (AA) and to compare it to the result using
LR models (linear and quadratic).

A fractional factorial design was followed in order to find
the growth limits of L. monocytogenes. Two hundred and
Thirty two different conditions were chosen for the model
with eight replicates per condition, of which we have elim-
inated those that were far removed from the growth/no-
growth range, so that we have considered 305 data to form
the training group, 57% and 234 pieces of data to form the
generalization group. This experimental design was intended
to explore the survival/death interface. Data were collected
at concentrations of citric and ascorbic acid between 0 and
0.4% (w/v), at 4, 7, 10, 15 and 30 ◦C with a pH range of
4.5–6 in order to homogenize the values of the input nodes
that were scaled over the range [0.1, 0.9].

A backward stepwise conditional method was used for
determination modelling, where the coefficient estimates,
and statistics with the significant (P > 0.05) effects are
shown in Table 6. For the training set, the degree of agree-
ment between predictions and observations was 81.3% for
LR and 93.1% for the LRLPU model. For the test set 78.2%
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is for LR and 91.2% for LRLPU. The fact that there were
20 coefficients estimated should be noted: seven were asso-
ciated with the regression coefficients and 13 with those of
the product-unit basis functions, which is not excessive if
we take into account that a complete quadratic polynomial
model has 15 coefficients. The existence of 5 basis func-
tions (see Table 7) shows a strong interaction among the four
factors or covariates that determine the growth limits of L.
monocytogenes.

Considering these results the model proposed using
LRLPU is again the best whether using linear LR or not.
Moreover, it is a sufficiently short model as far as the num-
ber of coefficients is concerned to allow a greater degree of
interpretability.

6. Conclusions

In this paper, we focus on binary classification problems.
We propose a LR method based on the hybridation of linear
models and a special class of feed-forward neural network,
namely product-unit neural networks. The nonlinear basis
functions express the possible strong interactions between
the covariates. The methodology to estimate the coefficients
of the model is based on the combination of an EA to de-
termine the basic structure of the product-unit model and a
local optimization procedure carried out by standard logis-
tic regression to find the final model. We include a back-
ward stepwise method to select the best covariates to explain
the response. In this way, we control the number of coeffi-
cients in the final model and we decrease the risk of building
overly complex models that over fit the training data. The
proposed model has been applied to seven benchmark data
sets and a hard real microbiological world problem. The re-
sults obtained outperform the linear model constructed by
means of logistic regression with initial covariates and also
the nonlinear part of the model obtained with a logistic re-
gression with all the product-unit covariates. In this way, the
hybrid model determines a good balance between the linear
and nonlinear part. Furthermore, the empirical results show
that the proposed hybrid model is very promising in terms
of classification accuracy and simplicity as well as very ef-
ficient in terms of the total number of coefficients and basis
functions needed for constructing the final binary classifiers
and yielding a state-of-the-art performance. Moreover, we
can show the best model for each classification problem. It
is important to note that the number of coefficients of the
best models is considerably lower than in the alternative
techniques considered.
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