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Abstract

The hit-or-miss transform(HMT) is a fundamental operation on binary images, widelgdusince forty years. As it is not
increasing, its extension to grey-level images is not gitédrward, and very few authors have considered it. Mogeov
despite its potential usefulness, very few applicationshef grey-level HMT have been proposed until now. Part | of thi
paper, developed hereafter, is devoted to the descripfiantbeory leading to a unification of the main definitions of th
grey-level HMT, mainly proposed by Ronse and Soille, repely (part Il will deal with the applicative potential ohé
grey-level HMT, which will be illustrated by its use for vetsegmentation from 3D angiographic data). In this first,pae
review the previous approaches to the grey-level HMT, @afig¢he supremalone of Ronse, and thietegral one of Saille;
the latter was defined only for flat structuring elements,ibcéin be generalized to non-flat ones. We present a unifienfythe
of the grey-level HMT, which is decomposed into two stepsstrafitting associates to each point the set of grey-levels for
which the structuring elements can be fitted to the imagen &uille’s approach, this fitting step can benstrained Next,

a valuation associates a final grey-level value to each point; we proffuse valuationssupremal(as in Ronse)integral
(as in Soille) andvinary.

Key words: Mathematical morphology, hit-or-miss transform, greyeleinterval operator, angiographic image processing.

1. Introduction XeB= U Xp and XeB= ﬂ Xy .
beB beB

Consider a Euclidean or digital spaEgE = R" or This leads to the operatosg : X — X & B (dilation
Z"). ForX € P(E), write X® = E\ X (the complement by B) andeg : X — X & B (erosion byB); here B

of X), X = {-x | x € X} (the symmetrical oX), and s considered as a structuring element that acts on the
for pe E, Xp = {x+ p| x € X} (the translate oK by binary imageX. (NB. Our terminology follows [1,2],

p). Then the Minkowski additio® and subtractior in accordance with the algebraic theory of dilations
are defined by setting foX, B € P(E): and erosions; it is slightly éierent from that of [3,4],

in the sense that for some operations, the structuring
elementB is replaced by its symmetric#, see [2,5]

* Corresponding author: Benoit Naegel. fora more det?"ed d|SCUSS|9n-) .
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pair (A, B) of structuring elements, and looks for all The operatoX — (X(*)(A, B))EBA has been consid-
positions wheré\ can be fitted within a figur¥, andB ered in [18] (it was suggested to the author by Heij-
within the background&®, in other words it is defined  mans), and later in [4, p. 149], where it was calted

by or-miss openinglt is idempotent and anti-extensive,
like an opening, but not increasing.
X® (A B) = {peE|A,C X andB, C X% AIthoggh the HMT is widely used in binary image_
Q) processing, there are only a few authors who consid-
= (XeAN(X°eB) . ered its possible extension to grey-level images (we

review the main works in the next section). The main
One assumes th#& N B = (), otherwise we have al- difficulty resides in the fact that this operator uses both
ways X @ (A, B) = 0. One callsA and B respectively the setX and its complemenx®, and is thus neither
theforegroundandbackgroundstructuring element. In - increasing nor decreasing. Let us explain how to re-
practice, one often uses bounded structuring elementsmove X°¢ from the definition (1).
A andB. Let A,B € P(E) such thatA ¢ B. Consider the

This operation was devised by Matheron and Serra interval
ir_1 the mid-sixties [6,3], and has b_een widely _used [AB] = ({CePE)|ACCCB) .
since. It represents the morphological expression of
the notion of template matching. Then we defineya g), theinterval operator by[A, B],

The binary hit-or-miss transform is often applied in by setting for everyX € P(E):
shape recognition, for example in document analysis
[7-9]. Hardware implementations with optical corre- 7agl(X) = {p€ E| X € [A B]} )
Iatprs have be_en stud_ied in_[10—15]. Thes_e implgmen- = {peE|A,CXCBy . 2)
tations seem interesting, since computational time is
independent from the size of the structuring element Heijmans and Serra [19] were the first to consider such
used, which is obviously not the case with software an operation, but they wrote X ® (A, B) instead of
ones. niag|(X). Clearlyna g/ (X) = X® (A, BY). Here the in-

A recurrent issue consists in determining the struc- clusion constrainé ¢ B (without which we always get
turing elements (SEs) in order to cope with the noise g (X) = 0) corresponds to the disjointness condi-
and the variability of the patterns to be recognized. tion ANB°® = () of the corresponding HMX & (A, B).

Zhao and Daut [16] propose a method to match In practice, one usually choosésand the comple-
imperfect shapes in an image. They start with a set of mentB¢ of B to be bounded.
shapes to be recognized, then smooth each element of This variant formulation was fruitful. First it al-
this set by some kind of opening. The boundaries of lowed to give a very short proof of the theorem of
these smoothed sets are then used as SEs for the HMTBanon and Barrera [20], namely that every translation-

Doh et al. [17] discuss the choice of SEs for the invariant operator is a union of HMTs. More precisely,
recognition of a class of various objects. They start given atranslation-invariantoperatory : P(E) —
from two sets: a set of hit SEs (i.e., SEs that fit the P(E), Matheron'skernel[6] is the set
objects to be recognized) and a set of miss SEs (SEs
that fit the background). Their conclusion is to use a V(%) = (A€ P(E) [0 y(A)} , ©)
synthetic hit SE composed of the intersection of all hit 5,4 indeed Matheron showed thifay is increasing
SEs and a synthetic miss SE composed of the union e have
of all miss SEs.

Bloomberg et al. [8,9] introduce a blur HMT which  ¢(X) = [ ] XeA (4)
consists in dilating both seX and complemenk®. AcV(¥)

They also propose to subsample the structuring el- ¢, every X € P(E), in other wordsy is a union of

ements by imposing a regulgr grid.. This allows the erosions. Consider now ths-kernel[19]
HMT to be less sensitive to noise while preserving the

global characteristics of the shape. W) = {(A B) e P(E)?| AC B,[A B] C V(1)) .(5)



then an elegant proof in [19] shows that for evérg
P(E) we have

¥(X) = U nas(X)

(AB)eW()

(6)

in other wordgy is a union of interval operators (equiv-
alently, of HMTS).

However, the main advantage of considering an in-
terval operator (2) instead of a HMT (1), is that it gave
way to the first theory (by Ronse [18]) of interval op-
erators on grey-level images and more generally on
complete lattices, in particular the operatégga g
are part of a very interesting family of idempotent
and anti-extensive operators, called in [b8en-over-
condensations

A few years later, Soille [21,4] gave independently
another definition of a HMT for grey-level images. His

In Section 3 we give a unified theory of grey-level
interval operators. Such an operator can be decom-
posed into two steps:

(i) afitting which extracts from a grey-level image

and a pair of structuring functions, a set of pairs
(p,t) (pa pointt a grey-level); we have two ver-
sions (following the approaches of Ronse and
Soille), and each one can optionally lsen-
strainedas in Soille’s approach;

(i) a valuationwhich constructs from this set of
pairs (o,t) the resulting grey-level image; we
have three versions: supremalone (following
Ronse), arintegral one (following Soille), and
a binary one (which produces a binary image).

This gives thus in theory a set of six unconstrained
grey-level HMTs, and six constrained ones (however,
there is some redundancy in this set).

The Conclusion summarizes our findings and gives

framework was restricted to the use of flat structuring some perspectives for further research. In particular,
elements and of discrete grey-levels. However, as we we have not extended our theory to the general frame-
will see in the next section, it can easily be generalized work of complete lattices, nor have we analysed the
to non-flat structuring functions and to images with operators obtained by composition of the HMT and the

arbitrary grey-levels (continuous or discrete). More-
over, he introduced the possibility of constraining the
HMT; as we will see later on, this constraining of the
HMT can also be applied to Ronse’s version.

When it is extended to non-flat structuring elements,
the unconstrained version of Soille's HMT has some
resemblance with Ronse’s interval operator [18], and is
also very similar to an operation introduced by Barat et
al. [22—24] under the name aforphological probing

The authors have successfully applied grey-level
HMTs to the detection of blood vessels in 3D angio-
graphic images [25-28]. In fact, we used both Ronse’s

and Soille’s unconstrained versions, but also some new

variants. Therefore we have felt that it would be use-
ful to make a review of the étierent grey-level HMTs
found in the literature, and to give a unified theory
containing each one as a particular case.

The paper is organized as follows. In Section 2 we
review the various approaches to the grey-level HMT
found in the literature, mainly the ones of Ronse [18],
Soille [21,4] and Barat et al. [22—24]; we general-
ize Soille’s approach to arbitrary (not necessarily flat)
structuring elements and arbitrary (not necessarily dis-
crete) grey-levels. We will see that these HMTs can

be better understood by expressing them as grey-level

extensions of the interval operatgp g (2).

dilation by the foreground structuring element (both
things were done in [18] for one version of the HMT).

Part 1l of this paper [29] will provide a review of
our work on the application of grey-level HMTs to the
detection and enhancement of blood vessels in 3D an-
giographic images, but also algorithmic remarks about
grey-level HMT, still valid for more general applica-
tions.

2. Existing approaches to the grey-level HMT

We will review the various forms given in the lit-
erature for the grey-level HMT. But let us beforehand
recall the basics from grey-level morphology [1,30].

We consider a spade of points, which can in gen-
eral be an arbitrary set. However, in order to define
translation-invariant operators (like the dilation and
erosion by a structuring element), we need to add and
subtract points, so in this case we assub¢o be
the digital spacez" or the Euclidean spacR", for
which the addition and subtraction of vectors are well-
defined.

We have a set of grey-levels, which is part of the
extended real lin®R = R U {+c0, —co}. We requireT



to be closed under nonvoid infimum and supremum Note in particular thaC; = Cg;. Also, forh € E and

operations (equivalentlyl is a topologically closed
subset ofR); for example we can tak& = R, T =

Z =ZU{+00,—c0}, T = [a,b] (a,be R, a < b) or
T=Ja...b] =[ablnZ (a,be Z,a< b). ThenT

is acomplete latticg1] w.r.t. the numerical ordex.
Write T and L respectively for the greatest and least
elements ofT.

Grey-level images are numerical functios— T,
they are generally written by capital letté¢sG, H, . ..
The sefTE of such functions is a complete lattice for
the componentwise ordering defined by

F(p) < G(p) ,

with the componentwise supremum and infimum op-
erations:

F<G — VpeE,

\/Fi E = V:pw supFi(p)
and il iel

/\Fi 1E - VipeinfFi(p) .

iel

Let us now introduce some notation. GiverG € TE,
we write G > F (or equivalentlyF <« G) if there is
someh > 0 such that for everp € E we haveG(p) >
F(p) + h. ForF € TE andp € E, thetranslateof F
by pis the functionF, : E - T : X = F(x—p). The
supportof a functionF is the set supi) of points of
E having grey-leveF(p) strictly above the least value
1:

(7)

and thedual supporbf F is the set supi§F) of points
of E having grey-leveF (p) strictly below the greatest
valueT:

supp(F) ={peE|F(p) < T} . (8)

For everyt € T, write C; for the functionE — T
with constant valud: Vp € E, Ci(p) = t. We see

suppfF) ={peE|F(p) > 1},

in particular that the least and greatest elements of

the latticeTE of numerical functions are the constant
functionsC, andC+ respectively. For an c E and

t € T, thecylinder of base B and leveld the function
Cg, defined by

t if peB,
VpeE, Cei(p) = 9)

1 if pgB.

t e T, theimpulse j; is the cylinderCyy, thus

tif p=h,

VpeE,  in(p) = { (10)

Lif p#h

ForF € TE, we haveip; < Fiff t < F(h), and
F=\/linlheE teT t<F(h),

in other words every function is a supremum of the
impulses below it.

Thedual cylinder of base B and leveld the func-
tion C, defined by

t if peB,

VpeE,  Cg(p)= { (11)

Tif p¢ B.

For VW e TE with V < W, we have thenterval
[VVW]={FeET|V<F<W.

Everyincreasingoperators : P(E) — P(E) on sets
extends to dlat operatory™ : TE — TF on grey-level
images [31]. For everf € TE andt € T we define
thethreshold sef1]

X(F)={pcE|F(p) >t} .

Clearly X;(F) is decreasing with respect toNow "
is defined by applyings to each threshold set and
stacking the results. Formally:

W' (F) = \/ Cuxns » (12)
teT

so that for every poinp € E we have

yT(F)(p) = \/Ite T I pey (X(F) . (13)

In particular, whenE = R" or Z", the dilationdg
and erosioreg by a structuring elemer® extend as
follows:

sL(F)=\/Fo and ef(F)= \Fo , (14)
beB beB
so that for every poinp € E we have
SE(FY(P) = \/ F(p—b)
and beB (15)
eL(F)(P) = /\ F(p+Db) .
beB



We will also write F @ B and F e B for §5(F) and
g (F) respectively.

Let us now consider morphological operations with
structuring elements that are functions instead of sets.
Here grey-levels will be added and subtracted in for-
mulas, thus in order to avoid grey-level overflow in
computationsT must necessarily be unbounded (so
T = +o0 and L = —o0), in fact we assume that = R
or Z (howeverT = aZ = {az| z € Z} U {+c0, —o0},
wherea > 0, is also possible). L&’ = T \ {+o0, —oco},
the set of finite grey-levels. We saw above that a func-
tion F can be translated by a poipte E, thisis a hor-
izontal translation; now there is also a vertical transla-
tion, namely by a finite grey-levéle T’, transforming
F into F + t. Combining both, we get the translation
by (p, ), the translate oF by (p,t)is Fpy = Fp+t:

X — F(x - p) +t. We consider impulseis; only for
t € T’. Theumbraof a functionF e TE is the set

(16)

UF)={(hty|heE,te T t<F(h) .

Note that for an impulsi, we haven; < Fiff (h,t) €
U(F), and

F=\/find| () e UF)) -

ForF,G e TE, we can define the Minkowski addition
F @ G and subtractior © G as follows:

17)

FeG = F(h,t)
(hH)eU(G)

FeG = F(—h,—t) .
(hH)eU(G)

and (18)

At every pointp € E we have
(Feo)p) = sup (F(p—h)+ G(h)

sup (F(p-h)+G(h)
hesuppG)

and

(FeG)(p)

inf  (F(p+h)-G(h)
inf

Lt (F(p +h) - G(h)) .

SinceT = RorZ, the term$ (p-h), F(p+h), andG(h)
can have an infinite value, so the expressibiip —
h)+G(h) andF (p+h)—G(h) can take the formco—co

or —o + oo, Which are arithmetically undefined; then
their evaluation is achieved by the following rules:

— Inthe formulafor E®G)(p), we consider thatco =
VT’ and—co = \/ 0, S0+ — o0 = Vi, Vyeo(t +
t') = V0 = —c0, in other words expressions of the
form +co — 0o Or —oo + co must be evaluated asw.

— Dually, in the formula for F ©G), we consider that
+00 = AD and-co = A T’, so expressions of the
form +oco — 0o Or —oo + 00 Must be evaluated asx.

We obtain thus the dilation and erosion By namely

0c . F—» FeGandes : F —» FoG. These two

operations form amdjunction[1]:

VF,FoeTE, F10G<F, & F1<F,0G .(19)

Consider thesymmetricalG of G defined byG(x) =
G(-x), and thegrey-level inversion T T : t — —t,
which extends to functions by transformirkg into
—F : x> —F(x). From (18) is easily seen that

~(F®G) = (-F)eG

< (20)
-(FeG) = (-F)eG ,
in other words, erosion is théual under grey-level
inversionof the dilation with the symmetrical struc-
turing function. Let us define théual of G asG*
-G x> —G(=X).

Taking a setB € P(E) as structuring element, the
flat dilation and erosion by seen in (14,15) are a
particular case of dilation and erosion by a grey-level
function, since we have:

F@BZFGBCB,O and FGBZFGCB,(). (21)
More generally, foit € T’, we have

FeCg: = (FoB)+t
and o = (FOB) (22)

FoCgi=(FeB)-t.

Structuring functions of the forr@g are also called
flat structuring elements

Grey-level Minkowski operations do not always
preserve the bounds of image grey-levels:
Lemma 1l Let F G e TE such that Kp) € [a, b] for
all p € E, and let g= sup,.¢ G(p). Then for all pe E
we have(F @ G)(p) e [a+ g,b+g] and(Fe G)(p) €
[a-g,b-d].
Proof From (18) we check easily that for ahy T,
Ci®G = Ci.g andC;oG = Ci_y. The fact that/p € E,
F(p) € [ab], means thaC, < F < Cy,. Hence we
getCag =Ca®G < F®G < Cy®G = Cpyg and



VpeE, (FoG)(p)ela+gb+gland FeG)(p) e
[a—0.b-g]. Q.E.D.

The next result is fundamental for our analysis:
Proposition 2 Let FV,W € TE, pe€ E and te T'.
Then:

() Vipy < Fiff (FoV)(p) 2 L.

(i) Vpy < Fiff (FeV)(p) > t.

(i) F <Wpy iff (FeW)(p) <t.

(iv) F < Wy iff (FeW)(p) <t.
Proof 1. (FeV)(p) >t meansipy < FoV, and
by adjunction (19) this is equivalent ig,y @V < F;
butipy @V = Vpy, so the result follows.

2. Vi < F iff there is somdr > 0 with V(py <
F—h; by item 1, this is equivalentt((F—h)evg(p) >
t, in other words F © V)(p) — h > t for someh > 0,
thatis F e V)(p) > t.

3. By grey-level inversionF < Wpy iff —F >
—(Wp.n) = (W) (p.-n- Applying item 1, this is equiv-
alent to ((—F) e (—V\/))(p) > —t. Inverting again,
this means—((—F) e (—V\/))(p) < t; by duality (20),
~((-F)e(-W)) = ~(-F)&(-W)" = F&W", and the
result follows.

4. F < Wy iff there is somén > 0 with F +
h < Wpy; by item 3, this is equivalent t(J(F +h)e

W))(p) < t, in other words £ & W*)(p) + h < t for
someh > 0, that is £ & W*)(p) < t. Q.E.D.

Let us apply this result to the case whefFex(V)(p)
or (F @ W¥)(p) has an infinite value:
Corollary 3 Let FV,We TE and pe E. Then:

i) (FeV)(p) = + iff (\/t e T, Vpy < F) T
Vier Vi < F.
(i) (FeV)(p) = ~oo iff (Ve T, Vipy £ F).

(iii) (F®W)(p) = +c0 iﬁ”(Vt €T, F ¢ vv(p,t)).

(V) (FoW")(p) = —c iff (Vt €T, F< W(,m) i
F < Ater Wpy-

Proof Items 1 and 2 follow from item 1 of Proposi-
tion 2, and the fact thateo is the only value> t for
allt e T’, while — is the only one# t for all t € T".
Items 3 and 4 follow from item 3 of Proposition 2, and
the fact that+oo is the only valuet t for all t € T,
while —co is the only one< tforallte T'. Q.E.D.

Note that if F has all its values in an inter-
val [to,t] ¢ R, and supeV(p) = v € R and
infpee W(p) = w € R, then by Lemma 1F eV and
F @ W* will have all their values in the intervals
[to— v, t; — V] and [to — w, t; — w] respectively, hence
infinite values do not occur in such a case.

2.1. Ronse’s supremal interval operator

The basic ideas in Ronse’s approach [18] are to start
from the interval operator (2) instead of the HMT,
and to consider the fact that a grey-level image is a
supremum of impulses (17) as the parallel of the fact
that a set is a union of singletons. We still assume
thatT = Z or R. We define thus fol, W € TE such
thatV < W the supremal interval operat017[3\,’v\,J by

setting for everyF € TE:

U[S\AVV](F)
= \/liy 1 (PO €EXT', Fpy € [V\W])
= \/tiy 1 (PO €EXT', Vipyg < F < W) -

(23)

Note that following [19], Ronse wrotE @ (V, W) for
nwy(F)- By Proposition 2, fort € T’, Vipy < F <
Wy iff (F @ W)(p) <t < (F e V)(p). Hence for
everype E,

T][S\/,\/\/](F)(p) =sudteT’| Vipy < F Wyt -

Now for a < b, we haveb = sufte T’ |a <t < b},
exceptifa= b = +o0, in which case we get the empty
supremum, that isco. We obtain thus:

M (F)(P) =
(FeV)(p) if (FeV)(p) = (FeW)(p)

# too |,

(24)

—00 otherwise.

Note that if F e V)(p) = (F ® W*)(p) = +oo, by
Corollary 3 we haves £ W,y for all t € T’, so that
MR (F)(P) = —eo, and not-co.

In practice, one usually choos&swith bounded
support, and/V with bounded dual support (i.eW*
has bounded support). For example, we can take
Cha andW = Cg,, see Fig. 1; theW” = Cy_,, and
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Fig. 1. Top: The two structuring elemen#s(in black) andB (in
grey). Bottom: the cylinde¥ = Ca (in black) has suppor@ and
the dual cylinderwW = Cr, Bb (in grey) has dual suppoB.

by (22),FeV = (FeA)—aandFeW* = (Fe&B)—b,
so that (24) gives here:

T (F)(P) =
(FeA)(p)-aif (FeA(p)=(FeB)p)+a-b
# +oo
—0o0 otherwise.

For A, B and a fixed, ’7[\/\/\4(':) increases witth, as
more and more points will get the value$ A)(p) —a
instead of-co. We illustrate this in Fig. 2.

The operatobyiy,,,; mapsF € TF on

\/ Vo | () € EXT, Vipy < F < Wpy) -

It is idempotent and anti-extensive like an opening
[18], but not increasing. It is part of a family of oper-
ators callecbpen-over-condensations

In [18] the theorem of Banon-Barrera (5,6) was also
extended to grey-level images (and more generally,
in a complete lattice where Minkowski operations are
properly defined [2]): every translation-invariant op-
erator is a supremum of supremal interval operators.
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Fig. 2. HereE = Z andT = Z. On top we show the two structuring
elementsA and B (the origin being the left pixel of\), with the
associated levela = 0 andb = -1 (thusV = Cap andW = C _,).

Below we show a functiorF, and in grey we have;v (F)
forming three peaks. The left peak would dlsappearb‘&t -2,
and the right one fob < -3.

2.2. Sollle’s integral HMT

Soille [21,4] assumes discrete grey-levels (an inter-
val in Z) and flat structuring elements. If we return
to the formula (13) for the construction of the flat op-
eratory” from anincreasingset operatow, the set
of all t € T such thatp € ¢ (X(F)) is a closed inter-
val [ L, b], whereb gives the valug/" (F)(p) (NB. this
holds because we have discrete grey-levels; otherwise
we could have the half-open interval [b[). This is
no longer valid ify is not increasing; in particular, if
Y is a HMT, we will see below that it is an interval,
but generally not containing. The idea in [21,4] is
to take as value of the grey-level HMT the length of
that interval.

Let A,B € P(E) be disjoint structuring elements,
and consider the finite grey-level sBt= [to...t1] C
Z. Soille’s (unconstrained) HMT on grey-levelimages,
written UHMT 4, is defined [4, Eq. (5.3) p. 143] by
setting for everyF € TE andp € E:

UHMTag(F)(p) =
cardite T | pe X(F) ® (A, B)}

(25)

Note that the resulting grey-level values will be non-
negative, in fact they belong to the interval {p- to].
We illustrate it in Fig. 3 (to be compared with Fig. 2).
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Fig. 3. HereE=Z andT =[0...t;] c Z. On top we show the
two structuring element#\ and B (the origin being the left pixel

of A). Below we show a functiorF- (the same as in Fig. 2); the
dots indicate the pairsp(t) with p € X(F) ® (A, B), and in grey

we haveUHMTag(F).

In order to analyse Soille’s operator, we embed the
grey-level seff into Z:
Proposition 4 Let AB € P(E), T = Z and T =
[to...t1] CZ. Foreveryte T, Fe TE and pe E, we
have pe Xi(F) ® (A, B) iff

(Cao)pn = Capt < F < Cg 1 = (Cgo)py

iff (FoB)(p) <t< (FoAp).
Proof Recall thatq € X;(F) iff F(g) > t. The con-

dition p € X(F) @ (A, B) means tha\, € X;(F) and
Bp € X(F)°. The first partA, C X;(F) translates as:
for everyq € A,, F(Q) > t; on the other hand, fay ¢
Ap, we have alway$§ (g) > —oo; henceA, € X(F) &
Ca,t < F. The second pai8, C Xi(F)¢ translates as:
for everyq € By, F(q) < t, thatisF(g)+ 1 < t; on the
other hand, fog ¢ By, we have always-(q) + 1 <
t1+1 < +oo; henceB, € X(F)° & F <« C* There-
fore p e Xi(F) ® (A.B) iff Cox < F < C* ow
clearly Ca,t = (Cao)py andCg ; = (CBo)(pt) AIO'
plying Proposition 2, and the fact tha@ )" = Cgy,
the condition Cao)py < F < (Cgp)py is equivalent
to (F®Cgp)(p) <t < (FoCap)(p), in other words

by (22), F @ B)(p) < t < (F  A)(p). Q.E.D.
We get thus:
UHMTas(F)(p) =
max{(F e A)(p) - (F & B)(p). 0} .
in other words [4, Eq. (5.4) p. 143] it has value
(F e A)(p) - (F @ B)(p)

(26)

if (F e A)(p) > (F @ B)(p), and 0 otherwise.

From Proposition 4, we see that Soille’s grey-level
HMT is not restricted to flat structuring elements; the
two setsA andB correspond implicitly to the cylinder
Cao and the dual cylindeCy . Also, it does not re-
quire discrete grey-levels; we have simply to measure
at each poinp the half-open interval(F & B)(p), (F&
A)(p)]. Now the Lebesgue measurefand the dis-
crete measure (cardinal) &y when applied to a half-
open interval @, b], both give its lengthb — a.

Assume thu§ = Z or R. Let mesbe the measure
used onT’ (Lebesgue’s folT” = R and discrete for
T’ = Z).ForV,W e TE suchtha¥v < W, we define the
integral interval operatorn{\,yv\,] by setting for every

FeTEandpeE:

M (F)(P)
=megit e T' | Vipy < F < Wpy})
=megite T'| (FoW)(p) <t < (FeV)(p)})

= max(F o V)(p) - (F @ W")(p). 0} .

(27)

In the third line of the equation, an expression of the
form +co — 0o Or —co + oo for (FeV)(p) — (FeW*)(p)
must lead to the value 0. Indeed, iF & V)(p) =

(F ® W*)(p) = +0, Corollary 3 givesk £ Wy for

all t € T/, while if (F e V)(p) = (F & W*)(p) = -
Corollary 3 givesV(py) £ F forallt € T’; in both cases
the second line of the equation giveeg0) = 0

We can take, as above with Ronse’s operatos
Caa andW = C . ForA, B anda fixed, increasingp
mcreases;v (F) by the same amount on all points
having non- zero value. For flat structuring elements
(V =Cao andW = Cg ), we obtain Soille’s original
operatotUHMTa .

As can be seen with Fig. 2 and 3, the two inter-
val operatorsﬁ, andn[vwJ can be used to detect in
an image all [dcatlon:p where the grey-level ol
is higher than that o8, by at least some heigltt
here we take/ = Cao andW = CE,b with h=a-b.
While ’7[vw1 behaves as the erosiex at such loca-
tions, ’l[v measures thefkective diference between
the grey-levels imA, and By,

Note that, contrarily toévn[SV’WJ, the operator
5V’7[vw1 is not necessarily idempotent. Take for ex-
ampleE = Z, the flat structuring elementd = {0}



andB = {-1} (thusV = Cjg 0 andW = C(*—l),o)‘ Then
6y = ey is the identity, whiledy- is the translation
by +1. We illustrate in Fig. 4 the construction of
5V’7[VWJ(F) and 5\,77[ (F) for F givenbyF(2) =z
forz= .5 andF(\Ag 0 otherwise.

(© (d)

0123456 0123456

(e)

0123456

Fig. 4. (a) The functionF; we have F eV = F (with

V = Cg0). (b) The functionF’ = F @ W* (with W = C?—l},O)
is the translate ofF by +1. (c) G = '7{\/,\/\/](':) is given by

G(p) = max(F(p) - F'(p).0}; we haveG = 6v(G) = vy, (F),
andG =GeV. (d) G = Ge W is the translate 06 by +1. (e)
H= TI{V,W] (G) is given byH(p) = maxG(p) — G’(p), 0}; we have

H = 6(H) = vy (G) = (8w (F).

Soille introduced a constrained varia@MHTa g
of his HMT. Here we assume that one of the two
structuring element# and B contains the origiro.
If 0 € A, in (25) we require thap € X;(F) ® (A, B)
for t = F(p), which means that{ @ B)(p) < F(p) <
(F © A)(p); if the requirement is not met, the result is

0. Aso € A, we always haveRo A)(p) < F(p), hence
we get

CHMTag(F)(p) =

cardite T | (F® B)(p) <t < (F e A)(p) = F(p)}

in other words it is equal to

(Fe A)(p) - (F @ B)(p) if F(p) = (F o A)(p)
> (FeB)(p) ,

0 otherwise.

If o € B, in (25) we require thap € Xi(F) & (A, B) for
t = F(p)+1, which means thaH&B)(p) < F(p)+1 <

(Fe A)(p) that is F @ B)(p) < F(p) < (F © A)(p),
and the result is Q if this condition fails. Ase B, we
always havet @ B)(p) > F(p), so we get

CHMTaB(F)(p) =
cardite T | F(p) = (F @ B)(p) < t < (F © A)(p)}
in other words it is equal to
(Fo A)(p) - (Fo B)(p) if (Fo A)(p) >

(FoB)(p) =
0 otherwise.

F(p) »

In order to generalize this to arbitrary structuring
functions, we can forget the requirement tidaor B
contains the origin, but keep only the constraint that
F(p) = (Fe A)(p) or F(p) = (F @ B)(p). Thus we ob-
tain, forV, W e TE such thatv < W, theconstrained
integral interval operatow[cvw, which gives for every

FeTEandpeE:

M (F)(P)
M (F)(P) if F(p) = (F e V)(p) (28)
= or F(p) = (FeW’)(p) .
0 otherwise.

2.3. Barat's morphological probing

Barat et al. [22—24] introduced under the name of
morphological probingan operation which has some
similarity to the integral grey-level interval operator
U{v,wl- We consider again two structuring functions
V,W e TE; the idea is to measure at each pgint E
two numerical valuet, andt,, defined as followsty is
the greatest such thatvp; < F, while t, is the least
such thatF < W,; then one associates fothe value
tw — tv.

From Proposition 2 and Corollary 3, we have

(FeV)(p) =sudte T | Vpy < F}
(FeW)(p) =infiteT" | F <Wpy} -

(29)

Moreover:
— if (FeV)(p) # £+, (FeV)(p) is the greatesdte T’
such thaVpy < F;



— if (FeW*)(p) # +oo, (F&W*)(p) is the least € T’
such thatF < Wpy.

Thus Barat's morphological probing operatdiPy

is given by

MPyw(F)(p) = (F @ W')(p) - (F e V)(p) (30)

for everyF € T® andp € E. We haven,, (F)(p) =
max—MPyw(F)(p), 0} by comparison to (27). We il-

lustrate in Fig. 5 the diierence between morphological
probing and the integral grey-level interval operator.

by—

LN\

v.iopo

Fig. 5. Left: In morphological probing, we look for the least
interval fty,ty] such thatVpg, < F and F < Wpy,. Right: in

the integral interval operator, we look for the greateservel
{t|Vpt < F < Wpg}.

Contrarily to the two interval operators seen above,
here we do not require on the structuring functidhs
andW thatV < W, but rather that we always have
F e W* > F e V. For example consider two func-
tionsG,, G, defined on a suppoB, such that-co <
Gw(p) < Gy(p) < +x for all p € S, and letV, W be
defined byV(p) = Gy(p) andW(p) = Gu(p) for p €
S, while V(p) = —co andW(p) = +co for p ¢ S. Here
we will have

(FoW)(p) ﬁgSF(F(p +h) = Gu(h))

inf(F(p+h) - Gu()
(FeVv)(p .

In [22—24] the particular case whef®, = G, was

considered. For instance, &, = G,, has constant
value 0 onS, we getV = Cgp andW = Cgo, as in the
left image in Fig. 5.

\%
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2.4. Other works

Khosravi and Schafer [32] use a single structuring
functionV and define a grey-level HMT oR as the
arithmetical sumf e V] + [(-F) e (-V)]; by duality
(20), this is equal tof © V] — [F @ V*]. This is thus
the same as{v’\,], except that negative values are not
changed into O.

Schaefer and Casasent [13] use two structuring
functionsV andW, and define a grey-level HMT on
F as the meetf o V] A [(-F) @ W] (however they
use a non-standard notation for expressing this).

Raducanu and Grafna [33] compare the grey-level
HMT (GHMT) defined by Khosravi and Schafer [32]
with an operator called the level set hit-or-miss trans-
form (LSHMT). This operator consists in applying a
binary HMT to the successive thresholds of a func-
tion F and of a structuring functio, and keep the
supremum of all results:

F®G=sudteT|peX(F)® (X(G). X(G))) .

3. Unified theory

From the two interval operators described in Sub-
sections 2.1 and 2.2, we see that both involve two
steps: first ditting which associates to an imagea
set of pairs p,t) € E x T’, for which the translates
Vipy andW,y have some relation tg; it can even-
tually be associated to the operationcainstraining
second aaluationwhich derives from this set ofx t)

a new grey-level image.

AssumeV,W € ET with V < W. The fitting used
in Ronse’s supremal interval operator will be written
Hvw, it is defined by

Huw(F) = {(p.t) e EX T" | Vipyy < F < Wepy} . (31)

Another one was used in Soille’s integral interval op-
erator, we write itKy,, it is defined by

Kyw(F) ={(p,.t) e EX T’ | Vipy < F < Wy} -(32)

Next, the constraining is the opera®yw : TE —
P(ExT’), associating to a functiof : E — T the set

Cuw(F) = {p€ E| F(p) = (Fe V)(p)

(33)
or F(p)=(FeW)(p)}xT .



We get thus the twoonstrained fittings §,, andKg,,
defined by

HGw(F) = Huw(F) N Cyw(F)
K\(/:’W(F) = K\/,W(F) ﬂC\Lw(F) .

and (34)

The valuation must associate to any subséi »fl’
a functionE — T. The one used in Ronse’s supremal
interval operator is the upper envelope opereior
associating to any € P(E x T’) the function
SY):E->T:prsudteT |(pt)eY}. (35

Note thatS is a dilation in the algebraic sense [1], that
is:

s(J¥)=\/s ;

i€l i€l

(36)

the adjoint erosion [1] is the map associating to a
functionF its umbraU(F), see (16).

Soille’s integral interval operator uses another one,
written|, associating to any € P(ExT’) the function

I(V):E->T:prmegiteT |(peY}), (37)

wheremesmeans the measure (Lebesgue’s Tor=
R and discrete fofT” = Z). Following [19], for a
sequenceX, of sets and a seX, we write X, T X to
mean that the sequeng (n € N) is increasing (i.e.
Xn € Xnp1 for all n e N) and converges tX (i.e., X =
Unen Xn); similarly for a numerical sequencg rp Tr

means that the sequence is increasing and converges

tor (i.e.,r < rpeq forallne N, andr = supg,y fn). A

well-known property of measures is that for a sequence

Xn of measurable setX,, 1 X = megX,) T megX)
(see Theorem 1.8(c) on p. 25 of [34]). We have thus
for a sequencd®, (ne N) in Ex T":

YaTY = 1(Yn) TI(Y) .

which is weaker than being a dilation, as in (36).
We introduce a third valuation, the binary oBe
which associates to any € P(E x T’) the set

(38)

B(YY)={peE|AteT, (pt)eY}. (39)

We can represent it as a function with valser on
B(Y) and —x elsewhere, this gives thus the binary
mask valuatiorM associating tor the function
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MY):E->T:
{m if AteT, (p)eY,
pH

Note thatB and M are also dilations in the algebraic
sense, that is:

B v) = B

i€l i€l

e M(LJY) = \/ Mo

i€l iel

(40)

—oo otherwise.

(41)

their adjoint erosions are respectively: ithe map
PE) > PEXT'): X» XxT’, and forM the map
{—00, +00}E 5 P(EXT’) : F > suppf)xT’ = U(F).
Composing one oHyw or Kyw, optionally con-
strained by intersection witBy,w, by one ofS, | and
M, we obtain an interval operator. We have thus six
unconstrained operato&H,w, S Kuw, IHvw, [Kvw,
MHyw and MKyw, as well as six constrained ones,
SHiw S Kow: HG: 1KGys MHG,, andMKE,,. We
see then that Ronse’s supremal interval operator is
S Hyw, Soille’s unconstrained integral interval oper-
ator is IKyw, while the constrained one I$(\‘2W. In
[27,28] we used a union @dHy, for various choices
of pairs , W), as a form of segmentation of tubular
shapes, while in [25,26] we associated to an imBge
the image

FA MKV,W(F) .
{F(p) if Ite T, Vipy < F < Wy
[ d

—oo otherwise,

which represents tubular shapes with their original
grey-level.

Let us compare, for each valuati&) | or M, the
interval operators according to the two fitting operators
Hvw (31) andKyw (32). The relation between the two
fittings differs with the choice oZ or R for T:

T=2Z:

Huw = Kvws1  and Kyw = Hyw-1 ;
T=R:

Huw = (] Kvawse and Kyw = || Hvwe -

&>0

(42)

&>0



Since intersection with the s€&, distributes union
and intersection, by (33) these equalities remain valid
for constrained fittings, in other words if we replace
H by H® andK by K€ in each expression.

For T = Z, each one of the six interval operators
usingHyw (with valuationS, | or M, with or without

[to, ta]. If V andW are flat / = Cap andW = CE,o)’

or more generally if
supV(h) = inf W(h) =0
heE heE

then by Lemma 1F eV andF & W* have their grey-

constraining) is equal to the corresponding operator levels in fo,t1]. This shows thatv and W are not

with Kyw.1. Consider now the case whefe= R. As
S is a dilation (36), by (42) we get

T=R: SKw=\/SHw: .

&>0

(43)

and similarly for the constrained versioﬁsﬁw and

S Hj_.- For the integral valuatiom, the fact that a
closed interval § b] has the same Lebesgue measure
as the corresponding half-open intenallj] (namely,

its lengthb — a), we get

meg(te T’ | (FeW')(p) <t< (FoV)(p))

max{(F & V)(p) - (F ® W")(p), 0}
meg{te T/ | (FeW')(p) <t < (FoV)(p)) .

so that forT =R, IKyw = IHyw andIK§,, = IHG,,

(but this is not true foll = Z, wherelKyw(F)(p) =
maxX|Hyw(F)(p) — 1,0}). Finally, asB andM are di-
lations (41), we get

BKvw = ) BHyw-e

>0

MKvw = \/ MHyw-¢

>0

and (44)

and similarly for the constrained versions.

3.1. Bounded grey-levels

As we did not make any restriction on structuring
functions, we presented our operators in the frame-
work of unbounded grey-levels, namély= Z or R,
for which it is guaranteed that the result of an opera-
tor will not produce a grey-level overflow. In practical
situations, one takes as grey-level set a finite interval
T = [to,t1] € Z, and we have to see how the theory
adapts to this situation.

The first problem is to ascertain that the result of our
operations will have their grey-levels in the interval
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necessarily iff E. In other wordsthe space of grey-
level images is often glierent from that of structuring
functions

If we use Soille’s approach, hence the integral val-
uationl, as we get only non-negative values in the
result, we must assume thigt= 0, so fo,t1] c N.

With Ronse’s approach, and the supremal valua-
tion, we use the lattice-theoretical supremum opera-
tion. NowinT = [to, t1], all suprema and infima are the
same as iz andR, , except the empty oresupd = L
gives— o0 in Z andR, , buttp in [to, ta], while inf @ = T
gives +oo in Z andR, butt; in [to, t1]; thus the re-
sulting value—co in (24) or in an empty supremum
returned byS, must be set tdy instead of-co

Note also that the special interpretation of the case
(FeV)(p) = (FeW*)(p) = +o0in (24), and of the case
(FeV)(p) = (FeW)(p) = £ in (27), which arose
because ¢ T’, does not apply here foFeV)(p) =
(FeW*)(p) =t or to.

Finally, in the binary mask valuatioM, the result-
ing values+oo and—co should be replaced by and
to.

We have thus the following guidelines for translat-
ing our theory to the case of an arbitrary complete lat-
tice T of numerical values (with greatest element
and least element):

(i) Choose the structuring functions W in such

a way that the result of the interval operators
will have their grey-levels inT (no overflow);

in particularV andW do not necessarily have
their values inT.

(i) Let T" = T n R, the set of finite values of .

All special cases given above fdf 6 V)(p) or
(FoW*)(p) = +o0 or —co do not apply tor and
1 when the latter are finite.

(iii) Anempty supremum (in the supremal approach)
must be set ta_ instead of-co. The valuestoo
and — in the binary mask valuatioM must
be replaced byr and L.

We illustrate in Fig. 6 the application of the three
unconstrained interval operators with fittikgin the



case of bounded non-negative integer grey-levels.

B A B
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Fig. 6. HereE =Z andT =[0...t;] c N. We use flat structuring
elementsA and B (the origin being the left pixel ofd), setting

V =Cpp andW = C ;. From top to bottom, we shoB Kyw(F),
IKyw(F) and MKVW(F) as they are computed in the framework
of bounded grey-levels; each time the result is given \witshown
dashed.

It is interesting to see what happens for binary im-
ages, that is foll = {0, 1}. Taking two disjoint struc-
turing elementdA, B, the cylinderV = Cap and dual
cylinderW = Cg , then the 3 unconstrained and 3 con-
strained interval operators usikgw (namely,S Kyw,
IKvw, MKyw, S I(}W, IKG,y andM KCW) are all equal;
in fact forF : E — {0, 1}, S Kuw(F) (or anyone of the
5 others applied t&) has value 1 on all pointp € E
where € © A)(p) = 1 and € @ B)(p) = 0, and value
0 on other points. Now every subs¥tof E corre-
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sponds to its characteristic function having value 1 on
X and 0 onX¢; thus if F is the characteristic function
of X, thenS Kyw(F) is the characteristic function of
(Xe A)\ (X& B) = X® (A, B). To summarize, all six
interval operators wittky,w are equal, and correspond
to the original HMT by A, B) for sets (1).

4. Conclusion

Hit-or-miss transforms have proved to be very use-
ful in binary image processing. However, they have
seldom been considered in the case of grey-level im-
ages, the greatest obstacle being ttieatilty to extend
this non-increasing operator to grey-level images. This
contribution provides a comprehensive theory of the
various forms of HMTs for grey-level images while
generalizing the previous approaches[18,21,4] and the
variant of morphological probing [22—24].

Applications of morphological probing were given
in [22—-24,35,36]. Several applications of the grey-
level HMT have been given in [4]. In Part Il of this
paper [29] we will present some applications of the
grey-level HMT in the specific case of analysing 3D
angiographic image (i.e. medical images visualizing
vessels) [25-28]. This should convince the reader of
its wide applicability in the field of grey-level image
processing.

In the same way as the composition of dilation and
erosion leads to opening and closing, it would be in-
teresting to analyse the properties of the operators ob-
tained by composition of an interval operator and the
dilation by the first structuring element. For example
5V’7[VWJ is idempotent, but noivn VW] -

Also, a complete theory of interval operators in a
complete lattice still remains to be done. Some steps in
that direction were made in [18]. Let us give a further
pointer. We consider a complete lattigewith a sup-
generating family Sthat is

VX e £, X:\/{SGSISSX};

(say, for£ = P(E), S consists of all singletons, for
£ =TE, Sis the set of impulses). Given two algebraic
dilationsé, 8’ such thats < ¢’, we define the interval
operatoms,s) by

Mss1(X) = \/(s€ S16(s) < X < 5(9))



Using the tools of [18], it can be shown th&j;s s is
idempotent. It would be interesting to see under which
conditions an arbitrary operator dhis a supremum of
interval operatorgys s1. This topic will be the subject
of a future paper.
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