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Abstract

The hit-or-miss transform(HMT) is a fundamental operation on binary images, widely used since forty years. As it is not
increasing, its extension to grey-level images is not straightforward, and very few authors have considered it. Moreover,
despite its potential usefulness, very few applications ofthe grey-level HMT have been proposed until now. Part I of this
paper [1] was devoted to the description of a theory enablingto a unify the main definitions of the grey-level HMT, mainly
proposed by Ronse and Soille, respectively. Part II of this paper, developed hereafter, deals with the applicative potential
of the grey-level HMT, illustrated by its use for vessel segmentation from 3D angiographic data. Different HMT-based
segmentation methods are then described and analysed, leading to concrete analysis techniques for brain and liver vessels,
but also providing algorithmic strategies which could further be used for many other kinds of image processing applications.

Key words: Mathematical morphology, hit-or-miss transform, grey-level interval operator, angiographic image processing.

1. Introduction: 3D angiographic imaging

The development of medical imaging techniques
during the last twenty years, has led to the creation
of three-dimensional (3D) data acquisition processes.
The most important ones are magnetic resonance
imaging (MRI) and computed tomography (CT),
which are respectively based on nuclear magnetic res-
onance properties of the atoms and on their behaviour
when exposed to X-rays.

∗ Corresponding author: Benoı̂t Naegel.
Email: benoit.naegel@hesge.ch, tel: (+41) (0)22 338 05 66.

Since visualisation of vessels or flowing blood
(for surgery planning, vascular pathology detection
or functional analysis) constitutes an important issue
in medical imaging, both CT and MRI have been
adapted to enable a correct discrimination of vascular
structures. These specific techniques, called computed
tomography angiography (CTA) [2] and magnetic res-
onance angiography (MRA) [3] generally provide 3D
data of vessels (i.e., of blood) with a millimetric or
submillimetric resolution. It has to be noticed that CT-
scans of hepatic structures, which require an injection
of a contrast material in order to discriminate healthy
from non healthy parts of the liver, also provide infor-
mation on the vascular network. Examples of slices
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Fig. 1. Slices of three-dimensional angiographic data. Left: sagittal slice (medial plane) of a MRA of the brain, visualising arterial and
venous flowing blood. Right: axial slice of a CT-scan of the abdomen, visualising hepatic structures and branches of the portal network
(on the left part of the slice).

of MRA and liver CT-scans are illustrated in Fig. 1.
Angiographic images are generally characterized by

a high signal of the flowing blood (obtained by inject-
ing a contrast agent: gadolinium in contrast-enhanced
MRA [4] or iodinated contrast material in CT-scan,
or by only using the physical properties linked to the
blood flow in phase-contrast [5] and time-of-flight [6]
MRA) by comparison to other tissues, whose signal is
generally lower or removed.

This signal contrast between blood and other tis-
sues, coupled with geometric and topological proper-
ties of blood vessels (which are elongated structures
generally organized in tree-like networks) theoreti-
cally enable to easily analyse 3D angiographic data.
However, such data are generally huge, being com-
posed of hundreds of slices, and often present a low
SNR. A straightforward consequence of these prop-
erties is to make three-dimensional angiographic data
analysis a long and error prone task for radiologists.

2. Use of grey-level HMT for vessel segmentation

Although classical two-dimensional visualisation
techniques such as maximum intensity projection
(MIP) [7] are often used for the analysis of 3D an-
giographies, the development of vessel segmentation
strategies enabling to generate a volumic object cor-
responding to the vascular network represented in a
CTA or a MRA, has been an active research field

for the last fifteen years. Several papers have ad-
dressed the problem of 3D vessel segmentation, some
of them being cited and discussed in the following
overviews [8–11]. Most of the proposed methods
rely on assumptions concerning the high intensity of
blood signal and the tubular shape of vessels. These
assumptions have been used to design algorithms
based on many image processing concepts including
deformable models, vessel-tracking or mathematical
morphology. However, the use of grey-level HMT
had never been considered before our work proposed
in [12–15] (more generally, grey-level HMT had not
been much considered for image processing applica-
tions, before this work, except by Soille in [16], and
by Barat et al. who used morphological probing for
a few industrial applications [17,18], or illustrated its
behaviour when applied on 2D medical data [19]).

Despite its low involvement in 3D vessel segmenta-
tion, the grey-level HMT presents properties justifying
a more intensive use. Indeed, its definition in terms
of foreground and background structuring elements
(SE) is appropriate to the invariant vessel properties
in terms of shape and intensity with respect to the re-
maining tissues. For vessel segmentation purpose, the
HMT can be used in different ways. It can be involved
in classical filtering strategies consisting in applying
well-chosen structuring elements on the whole image,
in order to detect the vessels. It can also be used as a
part of heuristic criteria providing information on the
“vesselness” of voxels or sets of voxels of the pro-
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cessed image, such kinds of criteria being adapted to
be incorporated in vessel-tracking or region-growing
segmentation strategies.

The use of grey-level HMT for vessel segmentation
from 3D angiographic data however requires to cor-
rectly choose parameters such as shape or intensity,
and to deal with the possibly high algorithmic com-
plexity inherent to its use on huge data. The following
section proposes a synthetic description of three meth-
ods, previously proposed in [12–15], and of some re-
sults they provide, illustrating the way the grey-level
HMT can be used for vessel segmentation, and hope-
fully justifying its usefulness for many other kinds of
medical and non-medical applications.

3. A few grey-level HMT-based methods

Vessel segmentation is often applied on angio-
graphic data visualising cerebral or hepatic structures.
In such cases, the segmented vessels can be used for
planning surgical procedures on the brain or the liver,
or to detect and quantify vascular pathologies. The
three vessel segmentation methods relying on grey-
level HMT discussed in this section, are devoted to
such hepatic and cerebral applications. Two versions
of the first method [12,13] are designed to automati-
cally recognize a precise part of the hepatic venous
tree from CT-scans: the entrance of the portal vein
(EPV) of the liver. The second method [13] proposes
a segmentation of this whole hepatic venous tree from
similar data. The third one [14,15] enables to segment
both venous and arterial structures from MRA of the
brain.

In the sequel, the considered 3D angiographic im-
ages, denoted byF, will be considered as functions
E → T with E = [0, dimX− 1] × [0, dimY− 1] ×
[0, dimZ− 1] ⊂ Z3 (wheredimX, dimY, anddimZ are
the dimensions of the image) andT = [a, b] ⊂ Z, then
dealing with the discrete nature of medical imaging
data. The structuring functions involved in grey-level
HMT, denoted byV,W will then be functionsE→ Z.
All notations used hereafter follow those of Part I of
this paper [1]. The grey-level HMT operators are also
the ones defined in Section 3 of [1].

3.1. Choice of structuring functions

The first issue, when using grey-level HMT for
segmentation, is to correctly determine the structur-
ing functions enabling to obtain correct results. More
especially, the choice of the “shape” of these func-
tions, which means the support supp(V) of the fore-
ground functionV and the dual support supp∗(W) of
the background functionW, is fundamental. The ge-
ometric properties of vessels, which can be modelled
as elongated structures presenting a globally circular
cross-section, can be used to guide this determination.
Since the chosen shapes can present degrees of free-
dom in terms of size and of orientation, two strategies
can then be considered.

The first one consists in determining a fixed shape
for the structuring functions. It is applicable when the
searched structures present few variations between dif-
ferent patients. However it can sometimes be useful
to cope with these variations when using fixed shape
structuring functions. To match noisy objects or struc-
tures with slightly different shapes the usual method
then consists in relaxing the constraints imposed by
the structuring functions. Several strategies have been
proposed in the literature:
– The erosion of both structuring function supports

(increasing the “don’t care space” [20]). The main
drawback of this method is the possible alteration
of the boundaries of structuring function supports:
important characteristics of the searched shape may
then be removed.

– Using the HMT with rank-order operators [16,21–
23], which is an efficient way to detect shapes
slightly altered by noise or imperfections.

– The subsampling or decimation of the structur-
ing function supports in a regular manner, using
Bloomberg’s method [21,24].

It has been experimentally observed that the decima-
tion method provides similar results as those obtained
from HMT with rank-order operators, with the advan-
tage that decimation reduces the computational com-
plexity.

Using a fixed shape for the structuring functions is
the strategy considered in [12,13] where the structur-
ing function supports are chosen according to a pri-
ori anatomical knowledge. Indeed, the purpose is to
segment a particular structure: the EPV of the liver,
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Fig. 2. Mean shape of the EPV, computed from a 18 case trainingbase. Left: sagittal view. Middle: coronal view. Right: axial view.

which presents few anatomical variations. To auto-
matically detect the EPV from CT-scans of the liver,
two different versions of the methods are used. In
[12], the shapes of the structuring functions are cho-
sen according to the mean shape of the EPV calcu-
lated on a training base of images (see Fig. 2). The
shapes deduced from this mean representation model
(illustrated in Fig. 3) are the following: supp(V) is a
cylinder parallel to the coronal plane and presenting
an angle ofπ/4 with the axial plane, while supp∗(W)
is a hollow cylinder with the same axis as supp(V)
and with higher radius. A grey-level HMT (based on
Soille’s integral interval operatorIKV,W) is then used
with these structuring functions, enabling to highlight
all the candidates structures. A next step consists in
eliminating the false-positives based on some heuris-
tics on the localisation and the size of EPV. In [13],
another version of such a strategy is used. A first step
detects the superior mesenteric vein (SMV) which is
a structure connected to the EPV, while a second step
detects the EPV itself. The shape of the SMV is al-
ways similar to an elongated vertical structure, justi-
fying the choice of a vertical cylinder for supp(V), and
of a hollow cylinder with the same axis for supp∗(W).
For detecting the EPV, a horizontal cylinder is cho-
sen for supp(V), while a set of three hollow cylinders
of same axis but with different sizes is considered for
supp∗(W). This enables to deal with the variability of
the EPV in terms of size (it has to be noticed that the
EPV presents few variations between patients in terms
of orientation). These structuring functions are illus-
trated in Fig. 4. Once both grey-level HMTs have been
performed, the intersection between the two resulting
images permits keeping only the points belonging to
the EPV and SMV, and hence eliminating false pos-
itives. A morphological reconstruction starting from
these points can then be performed to reconstruct the
connected component corresponding to the EPV.

The second strategy for determining the structuring

Fig. 3. Shape of the structuring functions used in [12]. Left: fore-
ground element (supp(V)). Right: background element (supp∗(W)).

functions consists in considering a large set of ele-
ments, each one differing in terms of size and orien-
tation. This approach is the one proposed in [14,15],
where it is assumed that any size and any orienta-
tion can lead to the creation of structuring functions
which may be used during the HMT segmentation.
Here supp(V) is chosen as being a discrete sphere. The
use of the discrete version of an isotropic shape is jus-
tified by the presence of tortuous arterial vessels which
could hardly be detected by elongated structures such
as ellipsoids. The background shape supp∗(W) is a set
of points regularly sampled on a discrete circle with
the same centre as supp(V). The use of a subset of a
discrete circle instead of a whole one enables to obtain
more robust results at positions such as bifurcations,
where the vessels present a non circular cross section.
These discrete shapes and their theoretical continuous
versions are illustrated in Fig. 5. They present different
properties linked to two degrees of freedom in terms
of size (one for supp(V) and one for supp∗(W)) and
two degrees of freedom in terms of orientation (for
supp∗(W)). Then, this second strategy leads no longer
to a unique element, but to a large family of structuring
functions varying according to the different parame-
ters. A subset of this family of elements is illustrated
in Fig. 6.

The last parameter which has to be determined is the
intensity of the structuring functions, i.e. the respective
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Fig. 4. Shape of the structuring functions used in [13]. First row: structuring functions used for detecting the SMV. Left: foreground element
(supp(V)). Right: background element (supp∗(W)). The central point represents the origin and does not belong to supp∗(W). Second row:
structuring functions used for detecting the EPV. From leftto right: foreground element (supp(V)), background elements (supp∗(W)). The
central point represents the origin and does not belong to supp∗(W).

Fig. 5. Shape of the structuring functions used in [14,15]. Left:
theoretical continuous shapes. Right: real discrete ones.The fore-
ground elements (supp(V)) are represented in dark grey, while the
background ones (supp∗(W)) are represented in white.

values ofV andW on supp(V) and supp∗(W). In [12–
15], V andW are assumed to present each a constant
value on supp(V) and supp∗(W). These two values
are chosen in such a way that the smallest positive
difference between image values on supp(V) and on
supp∗(W) leads to a positive response. Thus we take
– V = Csupp(V),0, that isV(x) = 0 for all x ∈ supp(V),

and
– W = C∗supp∗(W),−1, that is W(y) = −1 for all y ∈

supp∗(W), with the fittingHV,W, or equivalently ([1])
– W = C∗supp∗(W),0, that is W(y) = 0 for all y ∈

supp∗(W), with the fittingKV,W.
This enables the methods to rely more strongly on

Fig. 6. Subset of the possible structuring function supports used
in [14,15]. The foreground elements (supp(V)) are represented in
dark grey, while the background ones (supp∗(W)) are represented
in white. They present specific properties in terms of size (supp(V),
supp∗(W)) and of orientation (supp∗(W)).

shape properties of the searched vessels than on the
possibly low or inhomogeneous signal of the flowing
blood, caused by noise or artifacts.

Note that in the particular case of the integral val-
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uation, it is sometimes possible to derive the interval
operator from the corresponding one with flat struc-
turing functions. Consider two structuring elements
A, B ∈ P(E), the structuring functionsV = CA,a and
W = C∗B,b (for a, b ∈ T′), and the associated flat struc-
turing functionsV′ = CA,0 and W′ = C∗B,0. Then for
any functionF ∈ TE and p ∈ E, we have

IHV′,W′ (F)(p) = max
[

(F ⊖ A)(p) − (F ⊕ B̌)(p), 0
]

and

IHV,W(F)(p) =

max
[

(F ⊖ A)(p) − (F ⊕ B̌)(p) − a+ b, 0
]

.

If a ≥ b we get:
– IHV,W(F)(p) = max

[

IHV′,W′ (F)(p) − a + b, 0
]

, and
similarly

– IKV,W(F)(p) = max
[

IKV′ ,W′ (F)(p) − a+ b, 0
]

.
In other words, whena ≥ b, from the integral valu-
ation associated to the fitting obtained with two flat
structuring functionsV′ andW′, we can derive the in-
tegral valuation associated to the fitting obtained with
non-flat structuring functionsV = CA,a andW = C∗B,b.

If a < b this relation does not hold anymore, and
we can only say that

IHV′,W′ (F)(p) > 0 =⇒

IHV,W(F)(p) = IHV′ ,W′ (F)(p) − a+ b ,

and similarly forIKV,W(F)(p). Indeed, the integral val-
uation “loses” all negative differences (F ⊖ A)(p) −
(F ⊕ B̌)(p), whose valuation is set to 0.

From an algorithmic point of view, in order to com-
pute multiple grey-level hit-or-miss transforms (with
integral valuation) with structuring functionsV = CA,a

andW = C∗B,b for increasingt = a−b ≥ 0, (a, b ∈ Z), it
is sufficient to compute only one HMT withV = CA,0

andW = C∗B,0. Other HMTs are obtained by subtract-
ing t to each point. Note thatt = a − b < 0 is not a
problem in practice: one can for example define an-
other integral valuation taking all possible (i.e. posi-
tive and negative) values.

3.2. A few remarks about the flat/non-flat structuring
functions

The vessel segmentation methods described in this
paper only use structuring functions with constant

grey-levels, flat or not (those structuring functions
being cylindersCA,t). Theoretically, it is however
possible to design non-flat structuring elements with
non-constant grey-levels. Such structuring functions
are more constrained, enabling to segment precise
structures according to their shape but also to precise
local intensity properties. In the case of angiographic
data analysis, a few situations could justify the devel-
opment of strategies using non-flat structuring func-
tion with non-constant grey-levels. Such situations
are related to vascular (or more generally anatomical)
objects presenting characteristic textures.

A first case is linked to the well known partial
volume effect, leading to smooth transitions between
structures, in the regions where voxels contain several
different tissues. A HMT using grey-level structuring
elements to detect this type of transitions (relying on
a family of structuring functions whose slope is the
same as the transition between tissues) could be con-
sidered in this kind of situation. However in such a
case, a flat structuring element with an integral valu-
ation could also be used to detect the local variations
of the function.

A second case is linked to a precise category of
MRA, called Phase-Contrast MRA, which detects the
flowing blood movement, and more especially the
phase shift of moving spins in the blood. The spin
movement being cyclic, signal artifacts can appear in
the resulting angiographic data. They generally corre-
spond to a signal decrease at the center of the vessels,
where the blood signal should reach its maximal
value. These aliasing artifacts lead to a blood signal
locally similar to a high intensity ring surrounding a
lower intensity area (which can sometimes be even
lower than the background signal). A HMT using
grey-level structuring elements could then enable the
detection of blood signal, by considering a structuring
function correctly fitting this kind of partial signal.
However, the definition of such functions would first
require to model the physical phenomena leading to
these artifacts, and to consider several acquisition
parameters which are not necessarily available. More-
over, even in this case, the use of a flat structuring
function with well-chosen shapes (for example two
hollow cylinders of same axis, modeling the vessel
and the background) could probably also deal with
this kind of artifacts.

Finally, in practical cases (where the purpose is
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generally to characterize structures from their shape
by imposing a constraint on the difference of con-
trast between the object and a particular neighbor-
hood), flat structuring elements are generally suffi-
cient. The determination of situations where the use of
non-flat structuring elements could be justified is not
an easy task. This is a general question in mathemat-
ical morphology, as erosions and dilations using non-
flat and non-constant structuring functions have seen
little practical use for now. This is the case when one
wants to impose not only constraints on the contrast
between an object and its neighborhood, but also a
particular ordering of the grey-levels inside the shape
or its neighborhood. However the main difficulty re-
mains the choice of grey-levels in order to deal with
the variability of real image objects. In such situations,
indeed, one has to face with “horizontal” variability
(variation of “shape”) along with “vertical” variabil-
ity (variation of scene illumination, scaling of intensi-
ties), thus incresing the number of parameters of the
problem.

3.3. Algorithmic process

As previously stated, the grey-level HMT can essen-
tially be used in two main ways: in a classical filtering
process, or as part of heuristic criteria for guidance of
iterative segmentation processes.

3.3.1. Filtering segmentation
Filtering segmentation consists in applying afitting

which associates toF a set of points (p, t) ∈ E×T′ for
which V(p,t) andW(p,t) have some relation toF. Such
an exhaustive strategy implies that all the considered
pairs of structuring functions (V,W) have to be tested
on each point of the processed imageF. This leads to
complexities:
– O1 = O(card(E)) = O(dimX.dimY.dimZ), for the

number of points where HMTs are applied;
– O2 = O(card({V,W})), for the number of applied

HMTs on each point (where card({V,W}) stands for
the number of applicable pairs of elementsV and
W);

– O3 = O(card(V).card(W)), for the application of
one HMT on one point ofF.

The global complexity of a filtering vessel segmen-
tation O = O1.O2.O3 can then become prohibitive if

an exhaustive approach is considered. (Note however
that the complexityO1.O3 of a single HMT can be re-
duced when the structuring elementsV andW satisfy
some conditions, see [25,26] and [16, p. 81].)

In [12], the processed images are subsampled to re-
duce the complexityO1. Moreover, since a fixed num-
ber of structuring functions are considered, theO2

complexity is equal toO(1). Finally,O3 is also reduced
by simplifying the structuring function supports ac-
cording to Bloomberg’s method [24] which consists in
removing points in a regular manner (see Fig. 7). Note
that in this case the primary goal of this simplification
(or decimation) is not the reduction of the complex-
ity, but rather the relaxing of the constraints imposed
by the structuring functions (see Subsection 3.1). Here
the complexity reduction then appears as an “interest-
ing” side effect of decimation.

Thefittingstep in [12,13] isKV,W (following Soille’s
approach), while thevaluationis the binary mask one
M. The resultMKV,W is then intersected with the origi-
nal image to keep the original grey-levels, finally lead-
ing to the following filtering segmentation formula:

F ∧ MKV,W(F) :

p 7→



















F(p) if ∃t ∈ T′, V(p,t) ≤ F ≪W(p,t) ,

−∞ otherwise .

Fig. 7. Structuring function support subsampled on a regular grid.
Left: sagittal plane. Right: axial plane.

In [14,15], the number of pairs of structuring
functions used for HMT (i.e. theO1.O2 complex-
ity) is O(dimX.dimY.dimZ.RV.RW.θW.φW), where
RV,RW, θW, φW are the radii of supp(V) and supp∗(W)
and the orientations of supp∗(W) in a spherical frame
(i.e. the degrees of freedom of parameters of the
structuring function supports), respectively. Since this
complexity forbids to obtain results without expen-
sive computation time, the proposed way to reduce
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O1.O2 consists in using an atlas, which is a function
A defined onE and indicating for each pointp ∈ E
if a grey-level HMT has to be applied onp or not,
and what are the subsets of parametersRV,RW, θW,
and φW which should be considered to define the
different structuring functionsV andW applicable on
p. In the sequel, the notation (V,W) ∈ A(p) will be
used to indicate that the pair of structuring functions
(V,W) presents correct properties with respect toA,
and can then be applied on pointp. TheO1.O2 com-
plexity is then no longer equal to the previously given
formula, but toO(

∑

p∈E card(A(p))). In the case of
cerebral MRA segmentation, such an atlasA (which
can be generated by an anatomical property extrac-
tion process [15,27]) enables to dramatically reduce
the number of HMT applications without altering the
quality of the results. Thefitting step of the HMT
segmentation proposed in [14,15] (based on Ronse’s
HV,W) can then be defined by:

HA(F) =
{

(p, t) ∈ E × T′ |

∃(V,W) ∈ A(p),V(p,t) ≤ F ≤W(p,t)

}

.
(1)

The chosenvaluation used for this segmentation
method is the binary oneB. It has to be noticed that
since the main purpose of this method is to determine
a binary image of the whole vascular structures, it
is necessary to finally provide a volumic object. As
the previously defined set represents a “skeletal” seg-
mentation only visualising the centre points of the
vessels, a volumic segmentation can be obtained by
dilating each segmented point with the foreground el-
ement supp(V) which enabled its detection. The final
segmentation can then be defined by:

⋃

p∈E

{supp(V) ⊕ {p} | ∃t ∈ T′,∃W,

(V,W) ∈ A(p),V(p,t) ≤ F ≤W(p,t)} .

(2)

3.3.2. Heuristic criteria for region-growing
segmentation

While filtering methods tend to apply HMT on each
point of the processed image, the use of HMT as a
heuristic criterion is quite different, as it consists in ap-
plying it only on candidate points during a vessel seg-
mentation process. The use of such criteria is generally
considered in iterative segmentation processes such

as region-growing or vessel-tracking ones. The appli-
cation proposed hereafter is based on region-growing
and corresponds to the method described in [13].

Region-growing segmentation consists in starting
from a seed point, or a seed region which is assumed to
belong to the searched object. It then iteratively adds
points of the image to this seed, until obtaining the
whole structure to be segmented. As a consequence,
a region-growing segmentation only requires two el-
ements: the seedS ⊂ E and a heuristic criterionC
(which can be seen as a Boolean function defined on
E and depending on several parameters) indicating if
a candidate point can be added to the currently seg-
mented object. The region-growing segmentation of
an imageF can then be formalised as the construction
of a sequence{Sk}k∈N:

S0 = S ,

∀k ≥ 0,Sk+1 =



































Sk ∪ {p} if ∃p ∈ N(Sk),

C(E,Sk, p, . . .) = true ,

Sk otherwise .

where N(Sk) represents the set of neighbour pixels
of Sk according to a chosen connexity. The obtained
segmentation is then given by:

S =
∞
⋃

k=0

Sk = lim
k

Sk .

The sequence{Sk}k∈N being increasing, the segmenta-
tion process necessarily ends for finite images.

A heuristic criterion based on shape and contrast is
used in [13] to characterize bright tubular structures.
It is assumed that bright pixels surrounded by a ring
of darker ones are likely to be included in a vascu-
lar network. This is the principle of the criterion used
to segment the vascular network of the liver. Region-
growing segmentation is performed by starting from
the EPV, this seed being preliminarily detected by the
previously described filtering method. The criterion
used for the region-growing segmentation can be ex-
pressed as:

C(F, p) =























true if
3

max
i=1

[S KO,Ri (F)](p) > 0 ,

f alse otherwise ,

or:
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C(F, p) =
3
∨

i=1

(

[S KO,Ri (F)](p) > 0
)

,

whereO = i0,0 (ip,t being the impulse function) is the
structuring element only composed of the origin and
Ri (i = 1 to 3) are structuring elements used to con-
strain the pointp to belong to a tubular structure. Such
structuring elementsRi are three orthogonal discrete
rings of radiusr and thicknesst, parallel to the axial,
coronal and sagittal planes (see Fig. 8). These two pa-
rameters can be used to control the segmentation re-
sult by determining the size of the branches detected
during the region-growing (see Fig. 9 and 10).

Note that in this case, as the criterionC does not
vary during the propagation (i.e. it remains the same
for all p ∈ E), the result of the region-growing al-
gorithm is equivalent to applying the criterionC to
all points and keeping in the resulting binary image
the connected component containing the seedS (us-
ing the same connexity as for the neighborhood func-
tion N). However from an algorithmic point of view
it is more interesting to use the region-growing for-
mulation since it reduces the complexity: the HMTs
are computed only for the points included in the fi-
nal result (for which the criterionC is true) and their
neighbors (for which the criterionC is false).

r
t

Fig. 8. Discrete ring of radiusr and thicknesst, used to generate
structuring elementsRi involved in the region-growing segmenta-
tion process of [13].

3.4. Results

The segmentation methods devoted to the EPV, de-
scribed in [12,13], have been applied on a 16 case
dataset. The detection of the EPV was successful for
all images, leading to a detection rate of 100%. This

segmentation enables to obtain a robust seed (robust in
the sense that small variations in seeds lead to similar
results) used in a second step to segment the hepatic
portal network using a region-growing algorithm (de-
scribed above and in [13]). As illustrated in Fig. 11,
the process provides visually satisfying results. The
number of segmented branches and the global quality
of the segmentation are variable between the cases,
depending on the quality of the CT-scan acquisition.
Indeed, the highlighting of the vascular network ob-
tained from the contrast medium varies with the acqui-
sition time. This leads to a great variability between
acquisitions. It should also be noticed that the main
purpose of these acquisitions remains the highlight-
ing of the liver, and not the hepatic network. In such
conditions, the obtained results are quite satisfactory
since the maximal information available in the images
is extracted. A comparative study has been performed
between this method and a previous one described in
[28–32]. This other method uses also a region-growing
algorithm but involves a criterion based on a fixed
threshold. It has been experimentally observed, on the
image dataset, that the threshold was either set too
high, leading to poor results (with very few branches),
either set too low, leading to an erroneous propaga-
tion extending into neighbouring organs. The better
results obtained from our method are mainly justified
by the criterion used for segmentation, which relies no
longer on threshold information as in [28–32], but on
local contrast, which seems actually more robust and
accurate.

The segmentation method proposed in [14,15] has
been applied on a dataset composed of 30 cerebral
phase-contrast MRA (left part of Fig. 1), presenting
dimensions varying from 2562 × 150 to 2562 × 180
voxels and millimetric resolution. The obtained binary
segmentations have been compared to those provided
by another vessel segmentation process [33], empha-
sising imperfect but already promising results in terms
of false negatives, and quite satisfying ones in terms
of false positives. By comparison with other brain ves-
sel segmentation strategies, this method presents spe-
cific properties which are strongly linked to the use of
grey-level HMT. Indeed, since it relies much more on
shape properties of the vessels than on intensity prop-
erties of the flowing blood, this segmentation process
is less sensitive to vascular signal imperfections which
can happen in MRA, such as aliasing artifacts, signal
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Fig. 9. Segmentation result of the region-growing segmentation of [13], using the criterionC andRi elements of fixed thicknesst = 1 mm
and increasing radii (top left to bottom right:r = 2 mm to r = 9 mm).

Fig. 10. Segmentation result of the region-growing segmentation of [13], using the criterionC and Ri elements of fixed radiusr = 5 mm
and increasing thickness (top left to bottom right:t = 2 mm to t = 9 mm).

inhomogeneities or signal loss due to flow turbulence,
or patient movement artifacts. This shape-based be-
haviour is a major advantage for vessel segmentation
applications which do not require to mainly consider
blood intensity, as neurosurgery planning or vascu-
lar landmark detection for functional analysis. A seg-
mented vascular tree obtained from this dataset, visu-
alising both arterial and venous structures of the brain,
is illustrated in Fig. 12.

Finally, the different methods proposed in this sec-
tion and the results they provide for segmentation of
hepatic and cerebral vessels tend to demonstrate the
usefulness and efficiency of the grey-level HMT in

the field of angiographic data analysis, but also in
the more general one of medical image analysis. In-
deed, the high adaptiveness of this operator concerning
shape and intensity, and its ability to detect structures
by considering their properties but also the properties
of their neighbourhood, constitute real advantages for
applications related to medical images, where high-
level a priori anatomical knowledge about the studied
structures can often be used to guide image processing
tools.
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Fig. 11. 3D surface rendering visualisation of the portal network
structures segmented from CT-data of the liver.

Fig. 12. 3D surface rendering visualisation of cerebral vascular
structures segmented from a phase-contrast MRA of the brain.

4. Conclusion

After the unified theory proposed in the first part of
this paper [1], this second part has presented applica-
tive aspects of grey-level HMT. Several vessel segmen-
tation methods devoted to 3D angiographic data have
been described. The accuracy of the results they pro-
vide on datasets prove that the underuse of grey-level

HMT is probably unjustified in the fied of medical im-
age analysis, and more globally in the field of image
processing. The different discussions in the previous
sections also emphasize several ways enabling to eas-
ily involve grey-level HMT in various general segmen-
tation strategies (region-growing, filtering, . . . ), but
also to reduce the computational complexity of HMT-
based methods by considering various heuristics. This
should convince the reader of the wide applicability
of these operators in grey-level image processing.

In the field of vessel segmentation from 3D data,
further works based on grey-level HMT will now con-
sist in improving some of the methods described in
this paper by increasing the adaptiveness of the struc-
turing functions used for HMT, in order to improve
the segmentation accuracy and robustness.
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2000) and the Université Louis Pasteur, Strasbourg
(M.Sc., 2002; Ph.D., 2005), specialising in image pro-
cessing. During his research practice, he worked at
the LSIIT and IPB-LNV (Université Louis Pasteur,
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