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Abstract

In this paper, we develop a semi-supervised regression algorithm to analyze data

sets which contain both categorical and numerical attributes. This algorithm partitions

the data sets into several clusters and at the same time fits a multivariate regression

model to each cluster. This framework allows one to incorporate both multivariate

regression models for numerical variables (supervised learning methods) and k-modes

clustering algorithms for categorical variables (unsupervised learning methods). The

estimates of regression models and k-modes parameters can be obtained simultane-

ously by minimizing a function which is the weighted sum of the least squares errors

in the multivariate regression models and the dissimilarity measures among the cate-

gorical variables. Both synthetic and real data sets are presented to demonstrate the

effectiveness of the proposed method.
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1 Introduction

Regression analysis is a statistical technique that allows one to assess the relationship be-

tween a dependent variable and several independent variables. As a popular application

in many disciplines, the use of regression analysis has been widely discussed in literatures

[17, 20, 21, 16, 23]. In the classical regression analysis, the dependent variable and the in-

dependent variables fall into a continuous numeric domain and all statistical operations are

terminologically computed on the set of real numbers. If the given dependent variable is a

set of dichotomous data, the accuracy of regression analysis becomes sensitive to the size of

the independent variables [18].

Logistic regression has been developed to predict a discrete outcome from a set of variables

that may be continuous, discrete, dichotomous, or a mix. In logistic regression, the dependent

variable can take the value 1 with a probability of success θ, or the value 0 with probability

of failure 1-θ. By using the logistic function,

log

(

θ

1 − θ

)

= exp(α + β1x1 + · · · + βixi)

where xi are independent variables, α and βi are parameters to be estimated in the model.

The goal of logistic regression is to correctly predict the category of outcome for individual

cases using the most parsimonious model. For instance, Mlogit techniques [18, 23] use the

multinomial logit distribution to model unordered categorical variables. The dependent

variable may be in the format of either character strings or integer values. A general class

of regression models for ordinal data is developed in [17], for instance PLUM (Polytomous

Universal Model). These models utilize the ordinal nature of the data by describing various

modes of stochastic ordering and this eliminates the need for assigning scores or otherwise

assuming cardinality instead of ordinality. Two models in particular, the proportional odds

and the proportional hazards models are likely to be most useful in practice because of

the simplicity of their interpretation. These linear models are shown to be multivariate

extensions of generalized linear models. Hubert and Rousseeuw [13] explored the use of

regression models where the regressors are both numerical and ordinal data. They introduced

a robust regression method which performs a weighted least absolute values fit to both

types of data. In [9], Hathaway and Bezdek studied switching regression models and fuzzy

clustering for numerical data.

A simple regression model may not be able to handle the need of today’s information

abundance. For example, one may have a data set consisting of customer purchasing records

with attributes as stated as in Table 1. There are six numerical variables, three nominal

variables and one ordinal variable:
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Num1 – amount spend per visit;

Num2 – shopping time spent;

Num3 – age;

Num4 – number of visits within a month;

Num5 – number of purchases within a month;

Num6 – income;

Nom1 – type of purchasing products;

Nom2 – residential area;

Nom3 – service satisfaction level;

Ord1 –gender.

Suppose the company is going to launch a marketing campaign for promotion. Before making

any promotion decision, very often it is desirable to classify its customers into two groups:

Loyal or Contingent, see for instance [6]. Moreover, the company manager may intend to

fit regression models (supervised learning) with amount spend per visit as the dependent

variable for both types of customers in the hope of tackling different customer characteristics.

In this situation, one cannot directly implement any regression model to the whole data set

because it constitutes a vast mixture of information for both Loyal or Contingent. Thus,

clustering procedure (unsupervised learning) [1, 2] is required.

Variables

ID Numerical Nominal Ordinal

Num1 Num2 Num3 Num4 Num5 Num6 Nom1 Nom2 Nom3 Ord1

1 35 15 52 2 2 NA 4 Far 3 M

2 102 20 31 4 3 18000 10 Med 6 M

3 40 5 23 5 5 NA 5 Far 7 F

4 32 45 42 6 4 24000 8 Med 6 F

5 8 82 65 10 2 3000 4 Near 4 F
...

...
...

...
...

...
...

...
...

...
...

1000 20 36 28 3 1 18000 2 Near 5 F

Table 1: Variables and Customer Purchasing Records.

In this paper, we aim at developing a model namely Semi-Supervised Regression Model

(SSRM) to fulfill the practical need. The basic idea of semi-supervised clustering [4, 19]

is that the clustering algorithm is activated by a limited amount of supervisions. These
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supervisions indeed are constraints established by the labeled data. The semi-supervised

clustering algorithms use the labeled data (the constraints) to train the unlabeled data so

as to improve the clustering accuracy.

The approach of Semi-Supervised Learning inspires us to develop our SSRM. We grasp

the idea of tagging attributes with labeled data or not labeled data. Here we assume all

the numerical attributes are labeled data. One of these numerical attributes is termed as

the dependent variable (for example the amount spend per visit in the example), and other

numerical attributes are independent variables. On the other hand, we assume that all the

categorical attributes are unlabeled data. SSRM uses a clustering algorithm to cluster all

unlabeled attributes. The data set is divided into several clusters, then SSRM computes

a regression model for each cluster. The evaluation of model parameters is achieved by

measuring a function which consists of a weighted sum of the least squares errors of these

regression models and the dissimilarity measures among the categorical attributes. Such

function values are used to train the model parameters and the partitioning of the data set.

The above procedures can be repeated until the function values cannot be further improved

(see Figure 1). In this paper, we will present experimental results on synthetic and real data

sets to illustrate that the proposed method is effective.

The outline of this paper is as follows. In Section 2, we present the mathematical formu-

lation of SSRM. In Section 3, experimental results are given to demonstrate the effectiveness

of the proposed model. Finally, concluding remarks are given in Section 4.

2 The Formulation of SSRM

In this section, we present the notations which will be used throughout the discussion and

the proposed SSRM.

2.1 Notations

In this paper, we have N (indexed by n) number of records. Attributes of these records are

classified as either numerical or categorical. Numerical attributes include all those repre-

sented by real numbers and exist in a continuous space. A finite and discrete attribute is

defined as categorical. We have R (indexed by r) numerical attributes and M (indexed by

m) categorical attributes. Let

Z = (Z1, Z2, . . . , ZN)T

be an N × R matrix for the numerical attributes,

C = (C1, C2, . . . , CN)T
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START

Initialize W; Set  =  = ½, 

F = M where M is a very large number 

Minimization of the Least Squares Errors 

& K-modes dissimilarity

Fix W,  and , then determine B, V by  

Minimizing F’  F(W,B,V, , );

F’<F?

Finding the optimal weights factor W

among K clusters

Update F= F’; Fix B, V,  and , then determine W 

by Minimizing F’’  F(W,B,V, , );

Finding the optimal ratio between LSE & K-

modes dissimilarity measures

Update F= F’’; Fix B,V, W, then determine  and 

by Minimizing F’’’  F(W,B,V, , );

END

Yes

F’’< F? 

F’’’<F? 

No

Update

F= F’’’ 

No

Yes

Yes
No

Figure 1: Flowchart of the SSRM algorithm.
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be an N × M matrix for the categorical attributes, and

X = (Z, C) = (xnj), where n = 1, 2, . . . , N ; j = 1, 2, . . . , R + M,

be an N × (R+M) matrix for all the records in which the first R columns are the numerical

attributes, and the M categorical attributes as a consequence.

2.2 The Regression Model

The classical multivariate linear regression is effective in assessing the association among

numerical variables. We have a single dependent variable Y and a collection of independent

variables Z1, Z2, . . . , ZL where L = R − 1. Each set of regression coefficients is labeled as

βk
0 , βk

1 , . . . , βk
L, for k = 1, 2, . . . , K where k stands for the kth cluster. The multivariate linear

regression model aims at predicting Y by using the linear predictor BT
k Z, where

Bk = (βk
0 , βk

1 , . . . , βk
L)T and Z = (1, Z1, Z2, . . . , ZL)T .

For a given predictor of the above form, the error in the prediction of Y is the prediction

error:

Y − BT
k Z.

Since this error is random, it is customary to select Bk (for every cluster) to minimize the

mean square error : E(Y − BT
k Z)2. For a finite set of data points, the error is measured by

N
∑

n=1

(

Y (n) − BT
k Z(n)

)2
,

where

Y (n) and Z(n) = [1, Z
(n)
1 , Z

(n)
2 , . . . , Z

(n)
L ]

refer to the attributes of the nth record.

2.3 The Clustering Algorithm

As mentioned in Section 1, the main aim of our proposed algorithm is to partition the data

set into K clusters. The clustering algorithm is the K-modes algorithm [7, 10, 12] which uses

the K-means paradigm to cluster categorical data. Let W = [wn,k] be an N -by-K matrix

represents the partitioning of all records into K clusters, where one record is dedicated to

one cluster, and let

V = (V1, V2, . . . , VK)T
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be an K-by-M matrix representing a set of K-modes (that are centers) for those K clusters.

The objective here is to find W and V that minimize the functional:

F (W, V ) =

K
∑

k=1

N
∑

n=1

wn,kd(Vk, Cn), (1)

subject to

wn,k ∈ {0, 1} , 1 ≤ k ≤ K, 1 ≤ n ≤ N, (2)
K

∑

l=1

wn,k = 1, 1 ≤ n ≤ N. (3)

Here K(≤ N) is the known number of clusters, and the simple matching dissimilarity d(·, ·)

measures the distance between two records, which exists in vector form and is defined as

follows:

d(Xi, Xl) =

M+R
∑

r=R+1

δ(xi,r, xl,r) (4)

where

δ(xi,r, xl,r) =

{

0, xi,r = xl,r,

1, xi,r 6= xl,r.

It is easy to verify that the function d(·, ·) defines a metric space on the set of categorical

attributes.

The minimization of F in (1) with the constraints in (2) and (3) forms a class of con-

strained nonlinear optimization problems whose solution is unknown [3]. The usual method

for the optimization of F in (1) is to use partial optimization for V and W . Here we employed

Huang and Ng’s K-modes algorithm [11]. They have shown that the K-modes algorithm

converges in a finite number of iterations. For the K-modes algorithm, we refer to [7, 12] for

details. Here we first fix V and find necessary conditions on W to minimize F . Then, we

fix W and minimize F with respect to V . A frequency-based method for updating V , and

calculation of W for a given V has been proposed by Huang [10].

2.4 The Semi-Supervised Regression Model

The clustering (unsupervised learning) and regression (supervised learning) models work

extremely well for data in specific natures. In this subsection, we introduce a SSRM model

that integrates these two algorithms to tackle both numerical and categorical data.

In the proposed SSRM, we estimate the best fit parameters by an iterative algorithm.

There are two objectives in the proposed SSRM:
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1. The minimization of the least squares errors for all sets of regression coefficients.

2. The minimization of the K-modes dissimilarity measures of all categorical attributes.

These two objectives are incorporated into a single objective function by introducing the

weighting factors λ{·,·} and γ{·,·}. Mathematically speaking, we have the following minimiza-

tion problem:

Min F (W, B, V, λ, γ) =
K
∑

k=1

N
∑

n=1

wn,k

{

λ
η
n,k{

[

Y (n) − BT
k Z(n)

]2
+ γ

η
n,kd(Vk, Cn)

}

(5)

subject to (2), (3) and

{

λn,k, γn,k ≥ 0, 1 ≥ k ≥ K, 1 ≤ n ≤ N,

λn,k + γn,k = 1, 1 ≤ k ≤ K.
(6)

Here η is a control variable that found its best performance in the range [1,∞) from exper-

imental experience. Since the minimization problem is highly non-linear, iteration method

are employed to improve the estimation of the parameters. The iteration method may termi-

nate at a local minimum, therefore different initial guesses have been tried in our numerical

experiment. The SSRM algorithm reads:

The SSRM Algorithm.

Step 1. Choose an initial matrix W and set λn,k = γn,k = 1
2
, for all n and k

Step 2. Given W, λ and γ, determine B and V such that F (W, B, V, λ, γ) is minimized. If

the objective function value is improved, goto Step 3, otherwise stop.

Step 3. Given B, V, λ and γ, determine W such that F (W, B, V, λ, γ) is minimized. If the

objective function value is improved, goto Step 4, otherwise stop.

Step 4. Given B, V, W , determine λ and γ such that F (W, B, V, λ, γ) is minimized. If the

objective function value is improved, goto Step 2, otherwise stop.

We note that Step 2 can be determined by solving a least squares problem. Step 3 can

be found by counting the number of dominant categorical attributes [10, 11]. For the W in

Step 3, the minimizers are given by (see for instance [10])

wn,l =











1, if λ
η
n,l

[

Y (n) − BT
l Z(n)

]2
+ γ

η
n,ld(Vl, Cn)

≤ λ
η
n,j

[

Y (n) − BT
j Z(n)

]2
+ γ

η
n,jd(Vj, Xn), ∀j

0, otherwise.

8



Number of Number Number Percentage of

Data Sets of Numerical of Categorical of the Dominant

Attributes Attributes Clusters Category

Sample 1 Two Two Two 60%

Sample 2 Two Two Two 40%

Sample 3 Two Two Three 60%

Sample 4 Two Two Three 40%

Table 2: Summary of data sets.

We remark that this minimum solution may not be unique, so wn,l = 1 may arbitrarily be

assigned to the first minimizing index l, and the remaining entries of this column are set to

zero. Similarly, the other two parameters λ and γ can be found in Step 4. The flowchart

summarizes the SSRM algorithm in Figure 1.

3 Experimental Results

In this section, we present experimental results of the proposed SSRM for both synthetic

and real data sets.

3.1 Synthetic Data Sets

In order to test the performance of SSRM in varies settings, we conducted tests on several

synthetic data sets with different characteristics in Table 2. For each categorical attribute,

there are four categories.

For the numerical attributes, we used a variable σ to control the numeric variation from

synthetic linear equations. The larger σ is, the higher variation of numerical attribute values

will be. The generation of the numerical attribute values of such synthetic data sets is

proposed in [9]. To obtain the average performance, we generated 100 test cases for each

type of data sets.

Since the data sets contain real cluster labels for the data points, we use the external

cluster validation method to evaluate the performance of the semi-supervised clustering

algorithm in recovering the real clusters in the data. A clustering result is evaluated as

follows. After a data set is clustered by the semi-supervised clustering algorithm, a new

cluster variable is added to the data set to indicate the cluster each data point is assigned

to. Using the cluster variable and the genuine class variable, we form a confusion matrix.
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Let ai be the maximal number of the points assigned to cluster i and whose genuine class is

i. The clustering accuracy r is then defined as

r =
1

n

k
∑

i=1

ai

where n is the number of records in the data set.

Sample 1 Sample 2

σ Accuracy (%) # of iteration (λ, γ) Accuracy (%) # of iteration (λ, γ)

0.1 99.00 49.27 (0.92,0.08) 95.93 48.50 (0.93,0.07)

0.3 96.30 24.97 (0.75,0.25) 92.03 25.24 (0.77,0.23)

0.5 92.68 19.74 (0.63,0.37) 86.34 19.77 (0.65,0.35)

0.8 88.35 20.27 (0.50,0.50) 78.06 18.90 (0.52,0.48)

1.0 85.12 46.38 (0.42,0.58) 76.81 19.34 (0.45,0.55)

1.5 80.72 46.38 (0.29,0.71) 72.06 25.79 (0.31,0.69)

2.0 68.14 111.5 (0.21,0.79) 70.33 37.89 (0.22,0.78)

Table 3: Average clustering results.

Sample 3 Sample 4

σ Accuracy (%) # of iteration (λ, γ) Accuracy (%) # of iteration (λ, γ)

0.5 80.22 24.85 (0.55,0.45) 73.87 29.65 (0.55,0.45)

1.0 71.02 33.84 (0.40,0.60) 60.74 42.44 (0.40,0.60)

1.5 61.27 53.29 (0.29,0.71) 53.29 57.77 (0.29,0.71)

2.0 56.47 71.09 (0.21,0.79) 48.76 67.61 (0.21,0.79)

Table 4: Average clustering results.

The average synthetic results and number of iterations required for convergence are sum-

marized in Table 3 and Table 4. The results show that the proposed algorithm is efficient.

In addition, we find the crucial factor that governs the accuracy of the SSRM is the noise

standard deviation σ and the dominant percentage of the category value in the categorical

attributes. Figure 2 shows the clusters of points and their corresponding regression plots.

We observe from Figure 2 that the least-square estimates are very sensitive to outlying obser-

vation and this explains why the weighting parameter λ shifts from the numerical attributes

to the categorical attributes (λ ≥ γ) for a large σ. Because the disturbance from the numer-

ical attributes becomes more significant, which in terms increase the difficulty to perform
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regression analysis. The SSRM relies very much on the characteristics of the categorical

attributes.

We also remark that the clustering accuracies of Sample 1 and Sample 3 are better

than those of Sample 2 and Sample 4. This implies that the categorical attributes play an

important role in the clustering process. We observe that there is a significant dividend on

σ = 2.0 for the convergence rate. For σ smaller than this level, the SSRM is efficient. Figure

2 clearly shows the proposed algorithm perform quite well in the recovery of the underlying

cluster structure and regression models.

Besides linear regression models, our current framework can also be applied to other

nonlinear regression models. Here we consider quadratic regression models. Similar to the

linear case, we constructed four types of synthetic data sets, namely Sample A, Sample B,

Sample C and Sample D (see the generation of these data sets in [9]). For simplicity of

discussion, we only test for quadratic equations in several settings. For each generated data

set, we assigned two clusters and the dominant category involves in 60% of category values

in each categorical attribute. We take the average of the results obtained by performing 100

tested cases. For the numerical attributes, the aim is to plot quadratic equations for each

of those two clusters. For example, if there are two numerical attributes variables (stored

in the N × 1 vectors Z1 and Z2 where N is the number of records, and Z2 corresponds to

the dependent attributes) and two clusters are found in the data set, the regression models

would be in the form:

ZT
2 = αT

. [1, Z1, Z
2
1 ]

where α. is a 3× 1 vector with regression coefficients as entries. Here we try different initial

values ti get the best solution. For Sample A, B and D, we considered initials

α1 = (−19, 2, 0) and α2 = (−31, 2, 0).

For Sample C, we considered initials

α1 = (9, 0, 0) and α2 = (7, 0, 0).

Experimental results are reported in Table 5. The results demonstrate that the performance

of semi-supervised clustering models is quite well. High clustering accuracy results are

obtained. Similarly to those of linear regressions. Figures 3 and 4 show the clusters of

points and their corresponding regression plots. The figures clearly show that the proposed

algorithm perform quite well in the recovery of the underlying cluster structure and regression

models.
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Figure 2: Plots of two regression models for Sample 1 (upper) and three regression models

for Sample 3 (bottom) with σ = 1.5 and 1.0 respectively. (⋆, �, +) refer to different data

set labels.
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to different data set labels.
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Figure 4: Plots of Sample C (upper) and Sample D (bottom), both with σ = 1.5. (⋆) refers

to different data set labels.
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Sample σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.8 σ = 1.0 σ = 1.5 σ = 2.0

A 99.11 97.84 96.89 95.37 93.88 85.84 77.54

Accuracy B 98.94 97.58 96.58 94.88 93.06 89.22 85.14

(%) C 100.0 100.0 100.0 100.0 100.0 100.0 100.0

D 100.0 100.0 99.94 99.84 99.84 99.44 99.32

A 69.20 31.44 20.37 17.09 15.28 10.74 10.38

Number of B 67.17 30.15 19.06 15.67 13.94 11.72 10.67

Iterations C 118.9 38.29 27.74 19.91 16.55 12.94 11.33

D 228.1 130.1 92.78 67.89 67.89 42.83 34.73

A (0.87, 0.13) (0.61, 0.39) (0.46, 0.54) (0.33, 0.67) (0.28, 0.72) (0.14, 0.80) (0.09, 0.91)

(λ, γ) B (0.87, 0.13) (0.62, 0.38) (0.47, 0.53) (0.33, 0.67) (0.28, 0.72) (0.20, 0.80) (0.15, 0.85)

C (0.72, 0.28) (0.47, 0.53) (0.35, 0.65) (0.25, 0.75) (0.22, 0.78) (0.16, 0.84) (0.13, 0.87)

D (0.56, 0.44) (0.25, 0.75) (0.16, 0.84) (0.09, 0.91) (0.09, 0.91) (0.05, 0.95) (0.03, 0.97)

Table 5: Average clustering results for quadratic regression models.

3.2 A Real Data Set

To further evaluate the SSRM algorithm, we implemented it for a real data set – the Ger-

man data set [22]. The German data set has 1000 consumer credit records. The records

consist of both numerical and categorical attributes. For the credit records, the data set

can be classified into two groups: Good Credit (on-time return loan) and Bad Credit (bad

debt incurred). Thus, we can use this real classification to examine the SSRM clustering

performance. All the records were studied as there is no missing value in the data set. The

categorical data are: Status of existing checking account, Credit history, Purpose, Savings

account/bonds, Present employment, Personal status and sex, Other debtors / guaranteers,

Property, Other installment plans, Housing, Job, Telephone, and foreign worker. The av-

erage clustering accuracy for our model, compared with the given Good/Bad clusters, is

68.40%.

There are some obvious differences between the two clusters. For the Telephone at-

tributes, most Bad debt customers registered their telephone numbers under their customer

records whereas those Good debtors didn’t. Moreover, for the Present employment, most

Good debtors have employed in the present position for less than four years. On the contrary,

a large number of Bad debtors have worked at a stable position which last for more than

seven years. This is indeed a counter-pole for a common conception that a stable worker

would be capable or would take up the responsible for its own debt! There are eleven cate-

gorical choices for Purpose. For Good debtors, if the loan is for purchase, they use the money

to buy day-to-day necessities like television or radio, whereas most of the Bad debtors tend

to buy luxury goods like car.

The numerical attributes are: Duration in month (z1), Installment rate in percentage of

disposable income (z2), Present residence since (z3), Age in years (z4), Number of existing

15



credits at this bank (z5), Number of people being liable to provide maintenance for (z6), and

Credit amount (z7). The regression models obtained from SSRM are given as follow:

z7 = 50.8 + 1564.4z1 + 111.4z2 − 588.8z3 − 14.7z4 + 8.6z5 + 98.8z6 (Good Credit)

z7 = −659.3 + 4558.7z1 + 232.3z2 − 1214.3z3 + 146.1z4 + 26.1z5 − 498.6z6 (Bad Credit)

Differences and similarities are found. The positive intercept indicates that for a Good

debtor with zj = 0 for j = 1, 2, 3, 4, 5, 6, the Credit amount would be $50.8. This would be

interpreted as, in the absence of all regressors, Good debtors have the tendency to acquire

more money. However, for the Bad debtors, the initialization for borrowing is negative.

Indeed, these intercepts would evaluate the effect brought by other factors, like psycholog-

ical differences, that have not been studied in this research. The regressor Age performs

differently in these two clusters. For Good Credit, an older debtors tend to borrow less.

However, the regression coefficient for z4 indicates that a unit increase of Bad debtor’s age

will raise the Credit amount by $146.1. Also, Credit amount for Bad Credit is negatively

related to the number of people being liable to provide maintenance (z6). But two variables

are positively related for Good Debtors. This is reasonable because the debtors with good

credit record are more likely to find guaranteer. Although credit behavior is not the main

objective of our study, our SSRM works well in this situation.

4 Concluding Remarks

In this paper, we proposed a combined mathematical model, SSRM, for modeling both nu-

merical and categorical data. The cornerstone for this SSRM is integrating two conventional

mathematical methods, K-mode clustering and regression model. A major advantage is its

flexibility. SSRM can deal with both numerical and categorical data for a wide variety of

data. This model is particularly useful in analyzing data with a slight dominant categorical

data. It is also remarkable to notice the fast convergence rate of SSRM as demonstrated by

our experimental results.
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