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Abstract

A method is proposed for the temporal segmentation of cyclic human motion from video sequences. The proposed method is divided into
three processing steps. Once silhouettes and body part locations are obtained, a set of individual 1-D signals representing motion trajectories
of body parts is extracted for the entire sequence. The second step performs the individual segmentation of all signals in the set in order to
localize their periodic segments. In the final step, all individual segmentations are coherently merged into a global segmentation for the entire
sequence and set of signals. The proposed approach has been successfully tested on a variety of sequences containing cyclic activities such as

aerobic exercises and walking along different directions.

© 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Human motion analysis is a very active topic in computer
vision. Research in this field is driven by theoretical challenges
specific to video understanding, as well as by the wide spectrum
of applications in surveillance, perceptual interface design, and
health. One may identify two main themes in video-based hu-
man motion analysis, related to: (a) biometrics, namely gait-
based person identification and (b) activity recognition. Since
walking is an activity per se, these two goals can be reformu-
lated as: (a) recognizing a person from the way he performs an
activity and (b) recognizing the activity itself.

The recognition problem can be tackled in both cases only
after an accurate detection of the temporal boundaries of the
activity of interest. However, most of the published work in ac-
tivity recognition, such as Polana and Nelson [1] and Ben-Arie
et al. [2], does not address the boundaries detection problem as
each chosen experimental video sequence contains a single ac-
tivity instance. This choice allows one to focus on finding the
most appropriate motion representation for activity recognition
purposes. However, it is unclear whether the generation of an
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activity-specific motion representation would function well for
the detection of that activity in sequences containing multiple
activities. The missing link to be addressed in this paper is the
temporal segmentation of activities prior to activity represen-
tation, analysis and recognition.

Though highly desirable, a generic segmentation method is
not easily attainable as no clear definition exists of what generic
pattern of motion may represent a human activity. For instance,
Rui and Anandan propose in Ref. [3] an approach for tempo-
ral segmentation based on the temporal discontinuities of the
spatial pattern of image motion that captures the action. Their
approach results in a fine-grained segmentation with segments
corresponding to simple, continuous motions, such as an uni-
directional arm swing. Such segments would have to be fur-
ther aggregated in order to form a higher level description of
a human action. One may conclude that defining a human ac-
tion as a temporally consistent motion results in temporal over-
segmentation.

Gao et al. propose in Ref. [4] a method for the temporal
segmentation of activities in a dining room. Their work is also
based on the concept of temporal consistency of human ac-
tions and involves mainly hand-head relative motion analysis
of seated subjects. Hence, adding contextual constraints and fo-
cusing on a specific type of human action eliminates the over-
segmentation problem.

0031-3203/$30.00 © 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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Min and Kasturi describe in Ref. [5] a method for the high-
level segmentation of human actions which uses multiple mo-
tion trajectories of body parts. The motion trajectories are first
extracted by locating significant motion points and a color-
optical flow-based tracker. Next, motion trajectories are used
as features for the temporal segmentation of human activities.
The human activities of interest are ballet steps, thus defined on
a semantic level rather than from a spatiotemporal consistency
perspective. A priori knowledge about the activities of interest
is embedded in the training phase of the temporal segmentation,
which involves HMM models for hands and legs trajectories.

The approach proposed in this paper focuses on the tem-
poral segmentation of cyclic activities, a significant subset of
human activities. According to Ref. [1], cyclic activities are
those composed of regularly repeating sequences of motion
events. Locomotion-related human activities, such as walking
and running, are present in surveillance and medical monitor-
ing contexts and they are cyclic in nature. Other examples of
human activities that are cyclic in specific contexts include eat-
ing, reading, writing, playing, physical training, dancing, bicy-
cling, clapping, swimming, working, etc. The cyclic nature of
activities of interest allows for formulating their definition as
a trade-off between low-level temporal consistency and high-
level semantic definitions. In the context of our work, the mo-
tion events are described as multiple trajectories of body parts
extracted using skeletal topologies.

Based on the above definition, we propose a new generic
method for the temporal segmentation of cyclic human activi-
ties from a video sequence. The main idea behind our approach
consists in relating the change in the human activity to disconti-
nuities in the periodicity of the signals representing the activity.
For instance, a change in the walking direction is interpreted as
a separator between two walking activities, since this change
is reflected as a temporal break between the two correspond-
ing sets of periodic signals. Moreover, our approach is able to
differentiate activities in terms of the composition of their set
of periodic signals, such as walking followed by simultaneous
walking and waving one hand.

Our main contribution lies in the capability of the proposed
approach to accurately detect temporal boundaries of cyclic
activities without using activity-specific prior knowledge, ac-
tivity modeling, or training. In fact, the only prior knowledge
embedded in the proposed approach is the cyclic character of
the activities of interest. The experimental results are to show
that the proposed approach provides reliable results not only
on sequences containing ample body motions, such as aerobic
exercises, but also on sequences involving more common mo-
tions such as human walking. Preliminary results of our study
appeared in Quirion et al. [6]. The present paper contains a
comprehensive description of the proposed method, which fea-
tures significant conceptual updates with respect to Ref. [6]
and is extensively validated using new performance evaluation
measures over an enriched experimental database.

The proposed method is divided into three processing steps.
Once silhouettes and body part locations are obtained, a set
of individual 1-D signals representing motion trajectories of
body parts is extracted for the entire sequence. The second step

performs the individual segmentation of all signals in the set
in order to localize their periodic segments. In the final step,
all individual segmentations are coherently merged into a sin-
gle global segmentation for the entire sequence and set of sig-
nals. The rest of the paper is structured as follows. Section 2
presents related work in the field of periodic motion analysis.
The detailed description of the proposed method is given in
Section 3. Section 4 presents the results of an extensive exper-
imental validation. Section 5 draws conclusions and describes
future work.

2. Related work in periodic motion analysis

Periodic motion instances, often a direct manifestation of
basic rhythms of life, are to be found in the natural world. This
makes periodicity a powerful cue for extracting information
about topics ranging from marine life [7] to animal and human
gait [8—10] and to human gestures analysis [11].

The literature on video-based periodic motion analysis is
structured along a few major research directions. The two main
ones are detailed below and supported by appropriate references
which were selected among the most relevant field-specific con-
tributions in the last decade.

Periodicity can be used for discriminating between human
and non-human motion, and thus for detecting pedestrians
in a surveillance context. Cutler and Davis [9] differentiate
between periodic (human), periodic (animal) and aperiodic
(translational) motion by computing an inter-frame similarity
matrix and its normalized autocorrelation for each type of
motion. They extract information about the period of motion
by fitting a lattice on the autocorrelation matrix, a technique
inspired from earlier work on spatial periodic texture analysis
[12]. Ran et al. [13] describe a method for detecting pedestri-
ans in videos acquired from moving cameras. Their method is
based on the extraction of a periodic pattern for each walking
pedestrian by using a twin-pendulum model. A similar idea
is used in Ref. [14] for classifying objects (pedestrians, cars)
from infrared videos by analyzing the periodic signature of
their motion pattern with finite frequencies probing.

Periodicity also plays a major role in approaches for gait-
based person identification, where gait is described by pixel-
or region-based oscillations. For example, Little and Boyd [15]
use the discrete Fourier transform to first extract the fundamen-
tal frequency of gait, and then to measure relative phase dif-
ferences between motion signals computed from optical flow.
They conclude that some phase features are consistent for one
person, and show significant statistical variation between per-
sons. Tsai et al. [16] detect gait cycles using autocorrelation
and Fourier transform of the smoothed spatio-temporal trajecto-
ries of specific points on the walking human body. They found
that cyclic motion is helpful in reducing the overhead of the
motion-based recognition by performing cycle segmentation as
a preprocessing step. Cunado et al. [17] use periodicity infor-
mation in representing the periodic hip rotation during walking
by Fourier series. They use this representation in conjunction
with velocity Hough transform for building a feature-based,
subject-representative gait model.



8 A.B. Albu et al. / Pattern Recognition 41 (2008) 621

While not questioning the merits of the above-mentioned
work in periodic motion analysis, one may notice a general lim-
itation in the applicability of the existing techniques. All meth-
ods are based on the assumption that periodic motion occurs
continuously, i.e. people walk in a regular way, without stop-
ping or changing their activity pattern. This assumption is not
valid in real-life situations. Periodic motion (i.e. gait) is usually
interrupted by stops, changes in the walking direction, or other
aperiodic, human activities. This is why an accurate temporal
segmentation of periodic human activities from video data is
necessary prior to periodic motion analysis.

Yazdi et al. [18] describe a temporal segmentation method
for cyclic activities using a 2-D inter-frame silhouette-based
similarity plot. However, their analysis applies only to sym-
metrical cyclic activities, where the motion performed during
the first semi-cycle is repeated in the opposite direction dur-
ing the second semi-cycle. Another limitation is that all cycles
must be complete, which is not to be the case in the proposed
method.

This paper proposes a new method for the temporal seg-
mentation of cyclic activities from a set of 1-D signals cor-
responding to the spatiotemporal trajectories of body parts.
Experimental results are to show that our method is able to ac-
curately detect temporal boundaries of cyclic activities in video
sequences containing multiple activities. The detailed descrip-
tion of the proposed method is to be found in the following
section.

3. Proposed approach

The proposed approach describes human motion in terms of
a set of 1-D signals associated with the spatiotemporal trajecto-
ries of a limited number of feature points located on the human
body. One spatiotemporal trajectory can be described by one
or more 1-D signals in the set. A cyclic action involving one
or more body parts will translate into a periodic segment on at
least one signal in the set.

3.1. Signal extraction

Signal extraction is a preprocessing step which must first
deal with the detection of significant points; second, it has to
describe the trajectory of each significant point with a num-
ber of 1-D signals. The proposed work has used two different
methods for detecting significant points which will be briefly
detailed below. The generation of the signal set following each
method of significant point detection will also be explained.
It is worth mentioning that the proposed segmentation ap-
proach is compatible with any other method of signal extrac-
tion, provided that this method successfully converts a cyclic
activity into a set of signals containing a subset of periodic
segments.

3.1.1. Detection of significant points by skeleton fitting

A sequence of binary silhouettes is first obtained from each
input sequence via a simple differential background subtraction
technique. Next, a 14-segment skeleton is fitted to each silhou-

ette using the method proposed by Vignola et al. [19]. This
first method for significant point detection (thereafter called
“SPD1”) performs a sequential skeleton fitting process on a
frame-by-frame basis, as shown in Fig. 1; the edges of the
skeleton represent the significant points to be detected. A six-
segment torso model is first fitted to the silhouette by using
information from the distance transform (DT). Specifically, the
brightest points of the DT image form a medial axis of the hu-
man silhouette which can be viewed as a rough partial estimate
of the skeleton. Next, the configuration of the skeleton is com-
pleted with an iterative algorithm searching for local maxima
in the DT image of the silhouette (see Fig. 1f).

A limitation of detecting significant points by a two-
dimensional skeleton fitting method is the sensitivity to the
pose of the subject. It was found in our experiments that robust
and reliable results are obtained for the frontal pose only.

3.1.2. Detection of significant points by motion tracking

A second method for significant point detection (thereafter
called “SPD2”) is the one proposed by Jean et al. [20]. It is used
here to automatically detect and track six significant points (the
centers of mass of the head, the hands, the feet, and the entire
silhouette). Tracking is fully automatic, with no manual initial-
ization required. Feet are detected in each frame by first finding
the space between the legs in the human silhouette. The issue
of feet self-occlusion is handled using optical flow and motion
correspondence. Skin color segmentation is used to find hands
in each frame and tracking is achieved by using a bounding box
overlap algorithm. The head is defined as the center of mass
of a region filling a predefined percent in the upper silhouette.
Fig. 2 shows a typical result of significant point detection in
a walking sequence. The detection of significant points from
motion tracking yields robust results regardless of the pose of
the subject.

3.1.3. Generation of the signal set

The set of 1-D signals is used to describe the spatiotemporal
trajectories of the detected significant points. Since periodic
segments on these 1-D signals must correspond to cyclic ac-
tivities, it is required to discriminate between common and
relative motion. Indeed, some cyclic human activities (e.g.
walking) exhibit common translational motion. In order to
minimize the impact of common motion on the temporal seg-
mentation of cyclic activities, information about relative and
common motion will be explicitly stored in different signals.

When detecting significant points with SPD1, relative motion
is described using the temporal variation of angles at joints of
adjacent segments, as well as the spatiotemporal trajectory of
relative x and y positions with respect to the adjacent joint
closest to the torso (see Fig. 3 for an example). When detecting
significant points with SPD2, relative x and y positions of the
points corresponding to head, feet, and hands are computed
with respect to the silhouette’s center of mass. Angles between
all pairs of segments defined by the silhouette’s center of mass
and a significant point were also tracked over time.

Torso motion can be considered as an accurate approx-
imation of common motion when using SPDI1. Therefore,
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Fig. 1. (a) Articulated 14-segment skeleton, with annotated indexes of each segment; (b) binary silhouette resulting from background subtraction, and its division
into four rectangular search boxes for further skeleton fitting; (c) DT of the silhouette in b; (d) torso fitting along the medial axis of the DT; (e) six segment
torso model superimposed onto the binary silhouette; and (f) final result obtained after the sequential fitting of all segments corresponding to arms and legs.
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Fig. 2. Detection of six significant points during human walk.

common motion is described in this case by the spatiotem-
poral trajectories of the x and y coordinates of the torso
segment, as well as by the temporal variation of the angle be-
tween the torso and the vertical image axis (see Fig. 4). When
extracting significant points with SPD2, common motion is
roughly approximated by the motion of the silhouette’s center
of mass; therefore, it is described through the spatiotemporal
trajectory of the x and y coordinates of the silhouette’s center
of mass.

The temporal variations of angles and of x and y locations
for all significant points are stored into a set of 1-D signals de-
scribing the activity content of the analyzed video sequence.
The number of signals in the set is 34 (11 x-trajectories; 11
y-trajectories; 12 angles) when working with SPD1 and 22
(6 x-trajectories; 6 y-trajectories; 10 angles) when working
with SPD2. Individual 1-D signals depict local translational and
rotational motion of body parts occurring during human ac-
tions; these motions are strongly inter-related and constrained.

Though it is possible to consider anatomical constraints for
combining information from individual signals, initial attempts
at doing so were not conclusive. Besides, a signal weighting
scheme would be appropriate if the study of a specific motion
(i.e. upper body motion) was targeted. This is not the case here
since the proposed approach addresses the detection of generic
cyclic motion. Therefore, experimental results in this paper are
obtained without imposing anatomical constraints, nor using a
weighting system for the signals in the set. These results in-
dicate that the mere redundancy of periodic features found on
more than one signal in the set is usually a sufficient cue for the
segmentation of cyclic activities when no a priori knowledge
of expected motions is available.

3.1.4. Discussion

Working with two different methods for significant point
detection allowed the robustness of the segmentation algo-
rithms to be explored with respect to noise generated by signal
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Fig. 4. Description of common motion: (a) temporal variation of the torso orientation when jumping to the right; (b) temporal plot of X and Y positions of

torso joints; and (c) temporal plot of the angle between the torso and the horizontal axis.
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extraction. For instance, SPD1 works on a frame-by-frame ba-
sis and it does not impose any temporal smoothness constraint
on silhouettes in consecutive frames. As a result, the skeleton
sequences contain “jitter” noise.

While generating smoother spatiotemporal trajectories for
the tracked body parts, SPD2 extracts a smaller number of
feature points. This enabled an exploration of the impact of the
low redundancy of the periodic information contained in the
signal set on the final result of cyclic activity segmentation.
Moreover, angle signals extracted with SPD2 do not describe
the articulated motion of anatomic joints; working with such
signals enabled an investigation of the adequacy of a low-level,
non-anatomical model for the detection of articulated human
periodic motion.

3.2. Individual signal segmentation

It can be shown that for a discrete signal S composed of I,
samples (frames), there are 25! possible segmentations or
partitions, where each segment of the partition corresponds to
a given number of consecutive frames. Even by adding con-
straints such as a minimum number of frames for each segment,
the number of possible segmentations remains exponential
in I;. Hence, a brute force approach to detect the temporal
boundaries of cyclic activities in a sequence is not appro-
priate. Instead, a deterministic greedy algorithm is proposed
where the segments of the partition are extracted sequentially,
beginning with the most periodic segments. In order to rank
signals according to their periodicity, a new periodicity score is
proposed.

3.2.1. Periodicity score

The decision whether a signal is periodic or not is binary.
However, our approach does not focus on the detection of
pure periodic signals since signals extracted from cyclic body
motion usually exhibit noise, local irregularities and slight
variations in amplitude/period. Non-ideal periodic signals
have also been studied by Seitz and Dyer [21], who intro-
duced the notion of period trace. However, their approach
deals with the quantification of local irregularities, as well as
with recovering the mean rate of increase/decrease of the pe-
riod. Such measurements are not applicable in the context of
our work.

The proposed approach for assessing the periodicity of 1-D
signals is based on autocorrelation and thus similar to some
extent to the method proposed by Cutler and Davis [9]. The
main idea behind our approach is to compare the autocorrela-
tion of a non-ideal periodic signal of average period cs with
the one of an ideal periodic signal of exact period cg; more
specifically, the corresponding maxima of the two autocorre-
lation functions will be compared. Let us consider two or-
dered sets of indexes of autocorrelation maxima: Mg for the
non-ideal periodic signal and Eg for the periodic signal. Eg
can be expressed as Es = (0, cs, 2cs, ..., ncs) where n is
the number of cycles included in the periodic signal. It is as-
sumed that the cardinal of the two sets is identical, |[Mg| =|Es]|

and therefore a biunivocal correspondence exists between the
two sets.

The periodicity score Vs is designed as a measure of prox-
imity between pairs of corresponding maxima. For each pair,
¥ depends on their difference in lag normalized by the cycle
length:

_|Es(i) — Ms ()|
cs '

Vs ol ey

¥ s also depends on the difference in magnitude of the autocor-
relation function Ag. For the ideal periodic signal, As(Es(i))=
1 foralli =1...n. Therefore,

Vs o Ag(Ms(i)). @)

The final expression of the periodicity score is obtained via
averaging over the entire set of pairs of maxima:

M|

Es(i)— Ms(i
Z(l_M> As(Ms(D)). (3)

C
i=2 s

1

Pg=—
|Ms|—1

The score of a periodic signal is equal to one and it decreases
as the signal becomes less and less periodic. The score may
be negative for degenerate cases (i.e. difference in lag greater
than cg) although such cases were never encountered in
experiments.

To eliminate multiple partial detections of the same periodic
segment, long periodic segments are preferred. Length has to
be favored in periodic segments only, and therefore a threshold
1; is needed to distinguish between what is considered periodic
and what is not. This threshold is used for defining a length-
normalized periodicity score as follows:

_ =G=i+1/ls) (j—i+1/ls)
YS[[.__/.] = 111 . TS[IZ_/] . (4)

As the length of the segment [i, j] approaches Is, Yg ;, ap-
proaches g, ;. Also, as the length of segment [i, j] approaches
0, Y ;, approaches the threshold #;. In other words, length im-
proves the score of a periodic segment (i.e. a segment [, j] with
¥'s;; ;) > ;) but decreases the score of a non-periodic segment.

3.2.2. Greedy segmentation

The proposed segmentation algorithm works iteratively. It
first extracts the ‘best’ (most periodic) segment in the sig-
nal by using a simple global maximum search algorithm (see
Algorithm 2). This segment is included in the segmentation set
provided that its length surpasses a minimum length £ and its
periodicity score is above a threshold #,,. The remaining por-
tions of the signal are processed in the same fashion until no
segments satisfying the length and periodicity criteria are to
be found. The pseudo codes for the greedy segmentation, as
well as for the extraction of the best segment are given by
Algorithms 1 and 2, respectively.
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Algorithm 1. SEG = GreedySegmentation(S, 3, 11,)

(1) initialize segmentation set SEG <« ¢

(2) define set of segment search spaces X <« {(1, length(S))}

(3) WHILE X # ¢
(a) pick at random (I, J) from X
®IFJ—-I14+1>p
(i) (i, j) < BestSegment (S, 1)
(i) IF ¥, ;> my

(2) update segmentation result SEG < SEG U {(i, j)}

(iii) END IF

(iv) update set of search spaces X <« X U{(1,i), (j, J)}

(c) END IF

(d) update set of search spaces X < X —{(I, J)}

(4) END WHILE

Algorithm 2. (i, j) = BestSegment(S)
(1) initialize (i, j) < (0,0)
(2) FOR m <« 1 to length(S)
(a) FORn < m + f§ — 1 to length(S)
(@) IF Yy, > Y55
@) (i, j) < (m,n)
(ii) END IF
(b) END FOR
(3) END FOR

Algorithm 1 returns a set of periodic segments belonging
to the same signal S, while algorithm 2 returns the temporal
boundaries [7, j] of the most periodic segment in S. The segment
search spaces used in Algorithm 1 are contiguous parts of the
signal defined by their minimum and maximum indexes; they
are used for limiting the search of the best segment to a specific
part of the signal.

Fig. 5 presents a complete matrix of values for the length-
normalized score as computed in order to obtain the ‘best’
segment in terms of length-normalized periodicity score.

3.3. Global segmentation

The aim of the global segmentation step is to detect the tem-
poral boundaries of cyclic human activities manifested as pe-
riodic segments on at least one individual signal in the signal
set. Cyclic human activities typically give rise to a set of par-
tially overlapping periodic segments located on different sig-
nals. To extract the precise location of temporal boundaries for
each cyclic activity, the proposed approach uses a global peri-
odicity score and a greedy algorithm for combining individual
signal segmentations.

3.3.1. Global periodicity score

For one segment defined by its temporal boundaries [i, j]
(with i < j) the global periodicity score is computed over the
entire set of 1-D signals extracted from the initial video se-
quence. This score measures to what extent the segment iso-
lates a periodic portion of the signal set. It is computed as a
sum of the corresponding individual periodicity scores which
are above the threshold #;. This threshold is less strict than
the one used in the individual segmentation (1; <1;) as false

detections have already been addressed using the high threshold
during individual signal segmentation. Howeyver, the #; thresh-
old is needed to insure that non-periodic segments with low
individual scores do not sum up to a significant global score.
Formally, the global periodicity score is expressed as

n
G, 1= Vo ®)
k=1

where the summed elements are

VY, .. if Yg . . >n,
l‘wgk[i.j]z{ e iy = (6)

0 otherwise.

Formulating the global periodicity score as a sum of individual
scores above a threshold enables an exploitation of the redun-
dancy of the periodicity information contained in the signal set.
A segment [i, j] corresponding to periodic portions on several
individual signals in the set is likely to represent a cyclic human
activity and thus receives a high global periodicity score. How-
ever, localized periodic motions which translate into few indi-
vidual periodic segments are not disfavored due to the design of
the greedy approach for combined segmentation. The need for
normalizing the global periodicity score through averaging is
not justified by the further use of this score; moreover, averaging
may negatively impact the extraction of a localized periodic mo-
tion described by a small number of strong periodic segments.

3.3.2. Greedy algorithm for combining individual
segmentations

Since a cyclic human activity is represented by at least one
periodic segment located on one individual signal, each periodic
segment detected in the individual segmentation step is an input
candidate for the global or combined segmentation. Hence, the
global periodicity score is computed for each candidate using
Eq. (5). The result of the combined segmentation is the highest
scoring non-overlapping subset of candidates.

Given the high number of possible combinations, a greedy
combination algorithm is used where the best candidate, ac-
cording to the global periodicity score, is identified and retained
at each step. A straightforward solution consists in iteratively
finding the highest scoring candidate from the current set of can-
didates, and adding it to the segmentation set before updating
the set of candidates accordingly. The simplest update would
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Fig. 5. (a) One-dimensional motion signal. Highlighted window represents a periodic segment of the greedy segmentation. (b) Length-normalized periodicity
scores matrix. The score corresponding to the periodic segment in (a) is indicated by intersecting lines.

consist in removing the chosen candidate along with all par-
tially overlapping candidate segments in the set. However, this
approach has resulted in many missed detections in sequences
of cyclic actions with close temporal boundaries. To increase
the robustness of the global segmentation, the update discards
only the overlapping portions of the remaining candidates. The
remaining parts, called difference segments, are tested for peri-
odicity and length. If their individual periodicity score exceeds
1, on at least one signal, then they are consistent with the set
of candidates and therefore included in it. The pseudo code for
combined segmentation is given by Algorithm 3.

Algorithm 3. SEG=Fusion({Sy, Sa, ..

(1) initialize global segmentation set SEG « ¢

4. Experimental results

The proposed approach aims at the temporal segmentation
of generic cyclic activities from video sequences. Therefore,
the experimental database needs to be carefully assembled in
order to enable a comprehensive validation. The content of this
section is structured as follows. The design of the experiment
is described in Section 4.1, while the results of the quantitative
performance analysis are presented in Section 4.2.

., Sn}, {SEG, SEGs, ..

, SEG,})

(2) initialize set of candidates with the result of all individual segmentation

processes C=J/_,SEG;
(3) WHILE C # ¢/

(a) choose segment [/, J] from C with maximum global periodicity score
(b) remove segment from candidates C=C —{[I, J]}

(¢) add segment to global segmentation SEG = SEG U {[I, J]}

(d) search for partial overlaps between [I, J] and any other segment in C
(e) create new difference segments by eliminating all partial overlaps
(f) test all difference segments for periodicity and length

(g) update C by including the successfully tested difference segments

(4) END WHILE
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Fig. 6. Examples of sequences of A, B, N, and C types containing ample and natural motion.

4.1. Design of the experiment

The database for this study contains sequences with cyclic
activities involving ample limb motion (arm waving, side-
stepping, and various combinations of synchronized arm and
leg motion), as well as sequences containing natural cyclic
motion (walking). The video sequences were acquired with a
monocular camera in front of a static background at 30 frames
per second; they contain between 2 and 5 cyclic activities each
and their total length varies between 300 and 1200 frames.

In sequences containing natural cyclic motion, walking along
different linear trajectories is interpreted as different cyclic ac-
tivities; such an interpretation serves well the practical purpose
of detecting and analyzing changes of direction in the trajec-
tory of pedestrians. Moreover, the capacity of the proposed
approach to differentiate between normal and abnormal gaits
was also tested (see Fig. 6).

The test sequences are partitioned according to their expected
level of difficulty. Type A sequences contain cyclic activities
temporally bounded by pauses or silences. In sequences of type
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Fig. 7. Segmentation results for A-type sequences. Left: input signals obtained with SPD1; right: input signals obtained with SPD2.

B, at least one activity is temporally adjacent to another activity
or to non-cyclic movements. Finally, in sequences of type C
at least one activity fuses with another, like waving one arm
immediately followed by waving two arms. Fig. 6 presents
examples from each sequence type. Test sequences of type A
and B which contain natural cyclic motions are referred to as
N-type sequences.

The design of the experiment involves two simplifying as-
sumptions. First, a cyclic activity must contain at least three
cycles in order to be detected; this constraint is helpful for elim-
inating false detections due to noisy input signals. Second, it
is assumed that the maximum frequency of a cyclic activity is
5Hz. These assumptions result in § = 18, where f stands for
the minimum length of a cyclic activity.

4.2. Performance analysis and validation

The periodicity thresholds #; and #;, used in the individual
and global signal segmentation steps have been determined em-
pirically using a thorough performance analysis of the proposed
approach against manual reference segmentation over the entire
database. The selected values are 17, =45% and 1, =85%. They
provided an optimal performance of the proposed approach on
our test sequences. Moreover, our approach yields stable results
when n; € [15%, 60%] and n;, € [75%, 85%].

The performance of the proposed approach was mea-
sured using as a reference the average manual segmentation
from ten volunteers who outlined the temporal boundaries of
cyclic activities. The validation results can be visualized in
Figs. 7-9. In addition, two quantitative measures, precision

and recall, are used to compare the obtained segmentation
with respect to the corresponding reference segmentation on
a sequence-by-sequence basis. Precision and recall measures
help determine whether the obtained segmentation is suffi-
ciently accurate. A true positive corresponds to a detected
segment for which 1% of its length overlaps a reference pe-
riodic segment. In all experiments 7 is set to 75%. False
positives correspond to segments with either no such corre-
spondence or with correspondence with an already assigned
reference segment. For each analyzed sequence, precision is
the ratio of the number of true positives to the total number
of detected segments. Recall is the ratio of the number of
true positives to the total number of periodic segments in the
reference.

Tables 1-3 summarize the results of the validation process.
It includes start and end frame numbers of cyclic activities, as
detected with our approach and from the corresponding refer-
ence segmentation, as well as the computed precision and recall
for each sequence containing ample limb motion. Table 4 con-
tains the same information as Tables 1-3 for the test sequences
containing natural motion. Due to previously mentioned limi-
tations of SPD1, the detection of significant points for natural
motion was performed only with SPD2.

Tables 1-4, together with Figs. 7-9, indicate that the pro-
posed approach performs well. More than three out of four
experiments resulted in perfect precision and recall. A major-
ity of the remaining cases have perfect precision which means
no false detection. Recall and precision are always at 50% or
more. Only three sequences had false detections, two of which
also have missed detections. Missed and false detections result
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from using fixed periodicity thresholds #; and #;, over the entire
database.

A missed detection from natural cyclic motion sequence N5
is shown in Fig. 10b and c. This sequence contains four cyclic
activities defined by four different walking directions with re-
spect to the camera axis, namely: orthogonal to the axis and left-
wise; parallel to the axis and away from the camera; orthogonal
and right-wise; parallel and towards the camera. The missed
detections correspond to the parallel trajectories of motion fea-
turing a low signal-to-noise ratio due to low-amplitude signals.
Walking away or towards the camera along the camera axis is
not detectable as a cyclic activity using our approach. How-
ever, other walking directions (90°, 45° from the optical axis)
always gave rise to successful detections in sequences N1-N35.

Differences may exist between the obtained start and end
frame numbers and their correspondents in the reference man-
ual segmentation even when a cyclic activity is properly de-
tected. Those differences occur since factors in the way humans
perceive periodicity are not accounted for by the proposed pe-
riodicity measure. Indeed, human perception may accommo-
date large variations in speed, amplitude and frequency between
successive cycles of the same activity; the proposed approach
tolerates only a limited amount of inter-cycle variability, with
the upper limit fixed by the threshold #;. Besides, one may re-
call that the reference segmentation is an average which may
partly explain the noted differences.

Finally, one may ask which set of signals (generated for
significant points detected with SPD1 or SPD2) is more suitable



Table 1
Experimental results obtained for A-type sequences

Sequence (no. of Start-end frames Start-end frames Recall Precision
contained activities) (proposed approach) (reference) (%) (%)
SPDI SPD2 SPDI SPD2 SPDI SPD2

Al (2) (71-146; 242-331) (46-161; 228-310) (47-163; 218-334) 100 100 100 100
A2 (4) (58-195; 246-357; 396-512; 610-752) (61-142; 249-353; 398-514; 608-752) (48-199; 247-359; 393-516; 612-755) 100 100 100 100
A3 (3) (24-111; 160-247; 285-368) (30-111; 161-247; 291-366) (24-115; 160-251; 282-368) 100 100 100 100
A4 (3) (45-189; 310-397; 506-597) (45-181; 305-399; 533-639) (44-189; 257-402; 451-640) 100 100 100 100
A5 (2) (34-107; 253-346) (24-107) (24-134; 248-402) 100 100 50 100
Input data are extracted with SPD1 and SPD2.
Table 2
Experimental results obtained for B-type sequences
Sequence (no. of  Start-end frames Start-end frames Recall Precision
contained activities) (proposed approach) (reference) (%) (%)

SPD1 SPD2 SPD1 SPD2 SPD1 SPD2
B1 (5) (178-294; 332-395; 588-718; 732-873; 950-1136) (204-293; 314-378; 595-741; 786-862; 918-1138) (145-292; 297-452; 588-730; 733-873; 881-1152) 100 100 100 100
B2 (2) (95-325) (8-88; 94-154; 155-300) (6-93; 95-337) 50 100 100 67
B3 (4) (24-147; 152-246; 353-450; 493-582) (26-141; 155-226; 356-452; 462-555) (24-143; 145-275; 354-450; 458-598) 100 100 100 100
B4 (3) (24-131; 290-398; 402-501) (39-150; 165-407; 408-496) (27-151; 281-409; 413-513) 100 100 67 67
B5 (4) (78-159; 160-377; 389-506; 519-592) (50-135; 154-304; 392-503; 504-591) (37-154; 158-373; 383-504; 506-598) 100 100 100 100

Input data are extracted with SPD1 and SPD2.
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Table 3

Experimental results obtained for C-type sequences

Precision

(%)

Recall
(%)

Start-end frames

(reference)

Start-end frames

Sequence (no. of

(proposed approach)

contained activities)

SPD2

SPD1

SPD2

SPD1

SPD2

SPD1

100 100 100

(87-210; 213-353) 100

(137-229; 233-349) (88-205; 236-335)

Cl1 (2)

100

80

100

60

(11-82; 83-159; 160-226; 228-298; 302-372)

(82—-159; 229-299; 300-371) (9-77; 85-161; 218-290; 304-371)

C2 (5)
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100 67 50

(8-170; 171-247; 248-324; 343-419) (2-85; 160-331; 333-417) 100

(18-86; 159-344; 345-420)

C3 (3)

Input data are extracted with SPD1 and SPD2.

for detecting and differentiating between cyclic activities. For
a better visualization of this comparison, Figs. 7-9 may be
displayed side by side. Some sequences are better segmented
when using input data extracted with SPD1 (A5, B4, C3), while
SPD2 works better for other sequences (C2 and perhaps B2); in
general, the performances of the two methods are comparable.
The similar quality of the segmentations obtained with input
data extracted with either SPD1 or SPD2 is an encouraging
result; it indicates that natural cyclic motion can be successfully
detected using a small set of signals extracted with real-time
tracking.

4.3. Computational complexity

The individual segmentation step computes the length-
normalized score for every possible segment [i, j] at each
iteration. For a signal S of length Ig, there are (I — )% /2 pos-
sible segments with a minimum length of . The computational
complexity for an individual periodicity score is O(/s log(ls))
if the autocorrelation is computed using the fast Fourier trans-
form (FFT). Therefore, the computational complexity of the
individual segmentation is O(Iglog(ls) - (Is — ﬁ)z) which re-
duces to @(lg log(ls)) when f is small with respect to /g, as
is usually the case. The length /g of all signals in the signal
set representing a video sequence is equal to the length of the
sequence.

The global segmentation step has two computationally
intensive components. The first one consists in the pre-
computation of global periodicity scores for all candidates
extracted during individual segmentation. The computation
of one global periodicity score has complexity O(nlglog(ls))
where 7 is the number of signals in the set (n = 34 for SPDI1
and n = 22 for SPD2). The maximum number of candidates
for a given signal set is less than nlg/f5, since one signal
cannot contain more than g/ segments. Therefore, the com-
putation of periodicity scores for all candidates is bounded
by O(n*131log(ls)).

The second computationally intensive component of the
global segmentation is the iterative test for updating the set
of candidates with newly created difference segments (see
pseudo code of Algorithm 3). This test is performed during a
maximum number of n2(lg/ [3)2 iterations; therefore, its com-
putational complexity is limited by (O(nzl?g log(ls)). One may
conclude that the global segmentation step has a computational
complexity of O(n?13 log(ls)).

The proposed approach for temporal segmentation was im-
plemented on a 3.0 GHz Pentium IV personal computer with
1024 MB RAM. The time necessary for performing the tempo-
ral segmentation on test sequences in the database varies be-
tween 2.5 s and 5 min, depending on the length of the sequence
and its content. Approximations to the individual segmenta-
tion step, which strongly dominates the computation time, is
therefore needed in order to limit the computation time of
the algorithm for near real-time applications. Such approxima-
tions are currently under study for a comparative performance
evaluation.
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Table 4
Experimental results obtained for N-type sequences

Sequence Start-end frames

Start-end frames Recall Precision
(no. of contained activities) (proposed approach) (reference) (%) (%)
NI (2) (0-154; 378-518) (0-154; 369-519) 100 100
N2 (2) (6-176; 249-416 ) (0-195; 235-460) 100 100
N3 (2) (11-133; 215-343) (0-140; 170-360) 100 100
N4 (2) (38-121; 128-259) (25-140; 141-260) 100 100
N5 (4) (22-165; 415-560) (0-153; 173-373; 391-555; 570-810) 50 100

Input data are extracted with SPD2.
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Fig. 10. (a) Segmentation results for N-type sequences; (b) key frames in sequence NS5 representing different cyclic actions; and (c) identification of periodic

portions on one signal in the input set for sequence NS5.
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5. Conclusions

This paper has presented a new approach for the temporal
segmentation of cyclic activities using multiple trajectories of
body parts. These trajectories were extracted using two differ-
ent methods and assembled into a set of 1-D signals which rep-
resents the input data for the proposed segmentation approach.
The rationale behind the chosen data representation is the direct
correspondence between a cyclic human activity and periodic
segments located on 1-D signals. Periodicity information is first
extracted on a signal-by-signal basis using a length-normalized
periodicity score and a greedy algorithm. This first step identi-
fies on each signal which segments are most likely to indicate
cyclic activities. A second step combines individual detections
into a global segmentation using a global periodicity score and
a maximum search algorithm which updates the pool of candi-
dates iteratively.

The proposed approach has been successfully tested on a
variety of sequences containing cyclic activities such as aer-
obic exercises and walking along different directions. The
validation has also proved the robustness of the proposed
approach with respect to the way the input data (i.e. the set
of signals describing the sequence of activities) is generated.
Experimental results indicate that natural cyclic motion can
be successfully detected using a small set of signals describ-
ing head, hands and feet motion and extracted with real-time
tracking.

This paper advances the state-of-the-art in video-based hu-
man motion analysis by filling a missing link in the video
understanding process. This missing link corresponds to the
accurate detection of temporal limits of the activities of inter-
est within a video stream. As outlined in the introduction, it is
believed that the temporal segmentation of an activity is an es-
sential step for activity representation and recognition. It was
shown that this temporal segmentation is feasible for human
cyclic activities of different levels of complexity.

Ongoing work focuses on the reduction of the rates of
false and missed detections by optimizing the global seg-
mentation step; a greedy approach might not be ideal as
false positives in the individual signal segmentation are likely
to survive at the next step. Also, future work will explore
various other approaches for extracting the set of input sig-
nals, in order to improve the signal-to-noise ratio in the
input data.
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