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Abstract
Kidney cancer occurs in both a hereditary (inherited) and sporadic (non-inherited) form. It is
estimated that almost a quarter of a million people in the USA are living with kidney cancer and their
number increases with 51,000 diagnosed with the disease every year. In clinical practice, the response
to treatment is monitored by manual measurements of tumor size, which are 2D, do not reflect the
3D geometry and enhancement of tumors, and show high intra- and inter-operator variability. We
propose a computer-assisted radiology tool to assess renal tumors in contrast-enhanced CT for the
management of tumor diagnoses and responses to new treatments. The algorithm employs anisotropic
diffusion (for smoothing), a combination of fast-marching and geodesic level-sets (for segmentation),
and a novel statistical refinement step to adapt to the shape of the lesions. It also quantifies the 3D
size, volume and enhancement of the lesion and allows serial management over time. Tumors are
robustly segmented and the comparison between manual and semi-automated quantifications shows
disparity within the limits of inter-observer variability. The analysis of lesion enhancement for tumor
classification shows great separation between cysts, von Hippel-Lindau syndrome lesions and
hereditary papillary renal carcinomas (HPRC) with p-values inferior to 0.004. The results on temporal
evaluation of tumors from serial scans illustrate the potential of the method to become an important
tool for disease monitoring, drug trials and noninvasive clinical surveillance.
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1. INTRODUCTION
Kidney cancer is made up of a number of different types of cancer, where clear cell renal
carcinoma accounts for the vast majority of cases [16]. Whether hereditary or sporadic, other
types of kidney cancers include papillary, chromophobe and collecting duct renal carcinoma
[9,26,33] It is estimated that almost a quarter of a million people in the USA are living with
kidney cancer and their number increases by 51000 every year [19]. Patients with localized
disease have a 95% 5-10 year survival, but as the disease reaches an advanced stage, the 2-
year survival rate drops to 18%. While several major risk factors associated with renal cancers
have been identified, i.e. family history, obesity, smoking and hypertension medication, at least
40% of the cases are of unexplained causes. [17,19].
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The established treatments of renal cancer include surgery (radical or partial nephrectomy),
chemotherapy, radiation therapy and radiofrequency ablation [9]. New additions to the family
of available treatments are molecular therapeutic agents, which target the kidney cancer gene
pathways [1,9,18,19]. While the advance of targeted therapies is a topic of intensive research,
clinical investigations are actively involved in the development of new drugs for chemotherapy.

The state-of-the-art minimally-invasive clinical procedures for diagnosis and monitoring
kidney cancers are image-based and use computed tomography (CT) or magnetic resonance
imaging (MRI) [2,9,32,47]. Contrast-enhanced CT has proven exceptionally useful to an
improved diagnosis due to the ability to differentiate tumors from healthy kidney tissue. Figure
1 shows an example of normal kidney parenchyma and lesion intensity change in contrast
enhanced CT. The level of enhancement in the tumor is an important indication of malignancy
and can be associated with the intensity homogeneity of tissue to better classify renal
abnormalities [6,42,45,47]. Some examples of tumor variability can be found in Figure 2,
spanning from small to large, adipose to solid, and homogeneous to heterogeneous. Equally
important is the growth rate (or regression rate during treatment) of tumors for a better targeted
therapy. Recent studies emphasize the importance of optimized post-contrast injection scan
delays using contrast bolus tracking techniques to assist the diagnosis of kidney cancer [8].

The management of kidney cancers encompasses studies from biology and etiology to early
detection, diagnosis and treatment, and control and modeling. Monitoring the evolution of renal
cancer is an essential part of the process and a rich source of information for diagnosis,
understanding cancer development, and response to treatment. As manual measurements are
time consuming and show high intra- and inter-operator variability [21,23], computer-assisted
radiology (CAR) shows great promise in assisting the robust monitoring of renal tumors.
Moreover, the two-dimensional (2D) bias toward the image acquisition plane manifested
during the manual quantification of cancer can be removed by the 3D analysis allowed by
computer analysis. The advance of strategies for cancer treatment and understanding causes
of therapeutic failure will also rely on a combination of adequate perception of the underlying
biological mechanisms [15] and non-invasive imaging analysis.

Most work in renal image analysis relates to kidney segmentation and not to kidney cancer
quantification. Gao et al. proposed a 3D deformable surface model to segment the kidneys in
CT [7]. They initialize the model manually by specifying the superior and inferior poles and
the boundaries of three intermediate CT slices of each kidney and then interpolate to estimate
the model parameters. Deformable models are also employed in [13] in a multiscale medial
representation. The shape characteristics of kidneys are imbedded in a 3D statistical template
and fitted to image data using a log likelihood term. A similar deformable shape model is
presented in [28] combined with principal geodesic analysis. A comparison between manual
and automatic kidney segmentation reveals good volume overlap and important potential for
using computer-aided kidney analysis.

Recently, statistical models have been used towards multi-organ abdominal segmentation. Park
et al. use a database of hand-segmented CT abdominal scans to compute a mean image [25].
This is registered with thin plate splines to propagate the segmentation of liver, kidneys and
aorta. Using a similar principle, a priori data from probabilistic atlases is used to initialize the
segmentation of abdominal organs in [35,44]. Both methods use measures of relationship and
hierarchy between organs and manual landmarks. On a different note, contrast enhanced CT
data from four-phases are employed in [10,31]. Hu et al. [10] use independent component
analysis in a variational Bayesian mixture, while Sakashita et al. [31] combine expectation-
maximization and principal component analysis to segment abdominal CT including the
kidneys. Other groups addressed the segmentation of kidneys from dynamic MR images using
graph-cuts [4,30] or wavelets and temporal dynamics [36].
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The segmentation of renal tumors is seldom addressed. Notably, a marker controlled watershed
algorithm is used in [38] to segment both renal and lesion volumes in 2D data. Three manual
contours initialize the segmentation of the kidney, while homogeneous tumors are detected
using granulometry. Alternatively, a homogeneous region growing from a seed point is
presented in [14].

Our study proposes the semi-automated quantification of renal tumors for the assertive
management of tumor diagnoses and evolution monitoring. It quantifies the three-dimensional
size, volume and enhancement of renal tumors, as well as monitors the evolution of lesions
over time and in response to treatment. The algorithm employs registration and smoothing to
prepare the data, a combination of fast-marching and geodesic level-sets for segmentation, and
lesions quantification. As a major challenge to robust CAR remains the reliable visualization
and identification of tumor boundaries, a novel adaptive refinement step to adapt to the shape
and intensity of the lesions is proposed. We present results on segmenting and assessing various
types of renal tumors and compare automated and manual segmentation. This is, to our
knowledge, the first semi-automated method that allows the temporal analysis of renal tumors
and enhancement quantification for lesion classification.

2. METHODS
The method can be subdivided into three major steps, each consisting of several sub-stages.
Data from the three-phase scans are first aligned by the image position relative to the body.
The pre-processing of images includes an intra-patient inter-phase registration and data
smoothing. The registration corrects for abdominal motion between subsequent acquisitions,
while smoothing removes noise and enhances edges. The next step segments the renal tumors
using geodesic active contours and an input from fast marching level sets. Tumor margins are
difficult to identify in the majority of cases, and lesions tend to have a variety of shapes other
than spherical. Hence, the method analyses local values of gradients starting from the provided
landmarks and adapts the segmentation parameters accordingly. Finally, the size and
enhancement characteristics of each tumor are computed and the temporal evolution of lesions
is analyzed. A diagram of the algorithm is presented in Figure 3. The implementation uses
Visual C++ 8.0 (Microsoft), OpenGL (SGI) and the Insight Segmentation and Registration
Toolkit (ITK) 2.4 (Kitware, Inc.) [11].

2.1 Data Smoothing
CT data are smoothed using anisotropic diffusion to enhance the homogeneity of abdominal
objects and ensure boundary preservation. We employ the classic Perona-Malik anisotropy
model [27]. During the diffusion process, smoother versions of an image I are computed
iteratively

(1)

Iσ is the result of the convolution of I with a Gaussian of standard deviation and div the
divergence. The resulting image provides stable edges over a large number of iterations based
on a rapidly decreasing diffusivity g, but will only enhance those edges for which the gradient
is larger than the contrast parameter k.

The smoothing process respects a minimum-maximum principle and does not alter the mean
value inside of the smoothed object. The standard deviation is decreased due to the reduction
of noise and homogenization of intensities. Heterogeneous objects will however have high
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standard deviation, as they comprise edges inside their volume and edges are preserved during
smoothing by anisotropic diffusion. Figure 4 shows an example of kidney CT smoothing. A
compelling review of anisotropic diffusion can be found in [43].

2.2 Intra-patient Inter-phase Registration
An example of multi-phase CT is presented in Figure 1. Although the acquisitions are done
during the same session and intra-patient, note the abdominal motion between the three images.
Hence, a motion correction is necessary to monitor the enhancement of lesions between the
three phases, especially in the cranial-caudal direction [29,39]. Based on the irregularity of
abdominal motion, a rigid deformation (translation and rotation) would not be sufficient; hence
we assume that the best deformation will be non-rigid [46]. An affine motion model is equally
considered [3].

The images from the first two phases of contrast-enhanced abdominal CT data (non-contrast
or I1, and arterial or I2) are registered to the portal (or venous or I3) phase. Since data are
acquired during a single acquisition session, inter-acquisition motion is mainly due to breathing
and cardiac pulsation, though small patient movements are also present. The relatively limited
range of motion between phases permits the use of the demons non-rigid registration algorithm,
which requires partial overlaps between the objects to be registered, in this case between each
organ over multiple phases [40]. The deformation field D of image I to match image J is
governed by the optical flow equation and can be written as [40].

(2)

The multi-phase CT data is intra-modal, but the different levels of organ enhancement justify
the use of a multimodal similarity measure. Mutual information m accounts for intensity
variability within the same organ during multi-phase acquisitions, where p(i,j) is the joint
probability distribution of images I and J, and p(i) and p(j) the marginal distributions [22,41].

(3)

Registration results are interpolated with cubic B-splines. A comparison between affine and
non-rigid registration algorithms for intra-patient inter-phase abdominal CT images was
performed, as seen in Figure 5. We employed an entropy-based affine transformation [37] for
this comparative example. Both transformations produce the major shift in the cranial-caudal
direction to align the tumor present in the right kidney (Figure 5). However, as noted from the
difference images, the non-rigid registration finds better local correspondences between the
individual organs boundaries, as well as globally between the body edges. Moreover, the
difference in intensity between images due to contrast enhancement is clearly depicted by the
non-rigid transform, which is better adapted locally (as seen in the left kidney).

2.3 Segmentation
The second stage of the method is the segmentation of renal lesions and our approach uses a
combination of fast marching and geodesic active contour level sets [5,24,34]. Level sets are
surfaces that expand or contract, split or merge in the direction orthonormal to the surface.
Their definition allows level sets to be adapted to the image conditions and by using knowledge
of shape, curvature and edge to segment incomplete data. Like other types of isosurfaces, level
sets are expressed as time-crossing maps.
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A fast marching level set is used to initialize the segmentation [34]. The fast marching method
assumes that the surface can only expand starting from the seed point provided by the user.
The speed of expansion is constant and along the surface normal n. The venous phase CT scan
(I3) provides the feature image, while the sigmoid of the gradient of I3 supplies an edge image
(or speed function) Ie, with α and β computed from ∇I3. The first segmentation given by the
fast marching level set is If.

(4)

A better-adapted level set based on geodesic active contours in used to refine the fast marching
segmentation [5]. In deformable models there are two types of forces that govern the evolution
of the active contour: the internal forces within the surface, which keep the model smooth
during the deformation, and the external forces from the image data, which attract the model
towards edges. To initialize the model, we use the fast marching segmentation as input level
image (zero-level) into a geodesic active contour IL. The weights w1, w2 and w3 control
respectively the speed c, curvature k and attraction to edges [5].

(5)

2.4 Parameters
The adaptation of algorithm to image characteristics is important for the robustness of the
segmentation and the independence of the method on parameter setting and user intervention
[20]. Notably, the edge image Ie plays an essential role in the evolution of the isosurfaces
resulting from the segmentation using level sets. As seen in equation (4), the definition of Ie
is dependent on parameters α and β computed from the gradient image. α relates to the minimum
gradient measure on the lesion boundaries, while β is a measure of the mean gradient values
within the tumor. The estimation of parameters α and β is addressed next.

As lesions can be heterogeneous, only a boundary analysis of the image would not suffice, as
segmentation algorithms would stop at inner-lesion edges. Hence, the initialization of the
segmentation is performed manually to provide both information about the location and range
of size of the lesion to quantify, and knowledge about the strength of the tumor boundaries in
relation to its inner edges. However, to keep the user intervention minimal, only two points are
required: one for the approximate tumor center pc, and a second along its boundaries pb. The
first approximation of lesion is that of a sphere of radius r given by the Euclidian distance d=|
pc ,pb|. An example of tumor landmark selection is presented in Figure 6. pc is approximated
using axial and sagittal views, while pb is placed on the same axial slice as pc.

Given the locations of center and boundary of lesion, the gradient values along 26 rays
originating from pc are recorded. As shown in a simplified 2D representation in Figure 7, we
retain the gradient values on segments of length d centered on the sphere boundary to
computeα. The dashed circle in the left part of Figure 7 represents the area that is used to
computeβ. Hence, we allow errors in the initial estimation of tumor size to vary to ±50%, as
many tumors are not spherical. This further allows correcting for the erroneous placement of
pc and pb.
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(6)

The analysis of the histogram of gradient candidates permits to eliminate the outliers. Both the
location of the edge (with the maximum gradient along the ray) and the value of α can now be
estimated. We also assume that the first approximation of α must be at least 20% higher than
the initial estimate ofβ.

The centroid of the object within the new set of boundaries updates the location of pc, and the
spherical form r=(d,d,d) is changed to an ellipsoidal model r=(rx, ry, rz ), with rx≠ry ≠rz , as
shown in the right side of Figure 7. The gradient values along the edges and inside the ellipsoid
are recalculated and the resulting location of the tumor center pc is used as seed point for the
fast marching level set. The updated values of α and β provide an adapted speed function, as
in equation (4), to assist with the segmentation of lesions.

The ellipsoidal model provides a search space and not an approximation of the tumor shape.
It finds edges in this search space, which are subsequently used to compute parameters α and
β. There is no shape constraint in segmenting the tumor; α and β estimate the edge strength.
However, highly heterogeneous tumors may have edges inside the lesion body as strong as its
boundaries. Enforcing a higher α than β, the computation of the sigmoid will provide a speed
image that will overlook the internal boundaries in the lesion.

2.5 Lesion Quantification
We compute the linear and volumetric measurements of a lesion from its segmentation (manual
or automatic). We first apply a principal component analysis (PCA) [12] to compute the
principal axes, then project the lesion surface to the principal axes and compute the linear
measurement. PCA computes the statistically significant principal axis (the longest axis) from
the entire object; hence, more robust than using a 3D bounding box, which is sensitive to
outliers and noise in the segmented object. The PCA method can be written as

(7)

where Yi is a vertex on the surface, n is the total number of vertices, Y is the centroid of the
surface, and C is the covariance matrix. The eigenvectors Φ = {ϕ1,ϕ2,ϕ3} of C form the principal
axes of the lesion. The linear measurement is then computed

(8)

where Ψϕk (Yi) is a function to project Yi to axis ϕk, and Max and Min are functions to find the
two extreme points of the projections. L1 is the longest linear measurement of the lesion. The
volumetric measurement is simply the summation of all voxels inside the segmented region.

(9)
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VA is the segmented volume and P(vi) is the volume of a voxel vi inside the segmented region.

For the accurate estimate of segmentation overlap between the automatic and the manual
segmentations, we compute the Dice Coefficient as one metric for validation

(10)

D is the Dice Coefficient, SA is the segmented region of the automatic method, and SM is the
manually segmented region by an expert. SA ∩ SM is the common voxels in both SA and SM.

3. RESULTS
The semi-automated renal tumor segmentation method was evaluated on a combination of
benign cysts and cancers, namely von Hippel-Lindau (VHL) syndrome cases and hereditary
papillary renal carcinomas (HPRC). Contrast-enhanced CT data had three acquisitions at
corresponding to three time points. The first image was obtained before contrast administration.
Then the patients were injected with 130ml of 1SOVUE-300 and two more contrast-enhanced
data acquisitions were completed during arterial and portal phases. The distinction between
phases was performed using fixed-delays of 25-30s and 65-70s for the arterial and venous
phases respectively, depending on the scanner. The CT data were collected using GE
LightSpeed Ultra and GE LightSpeed QX/i scanners from GE Healthcare, and Philips MX
8000 from Philips Medical Systems. Image resolution ranged from 0.70 × 0.70 × 1.0 mm3 to
0.97 × 0.97 × 1.00 mm3. Image size ranged from 512 × 512 × 189 voxels3 to 512 × 512 × 316
voxels3.

3.1 Tumor Segmentation
Data from 10 patients with tumor lesions were analyzed: 5 diagnosed with hereditary papillary
renal carcinoma (HPRC) and 5 diagnosed with von Hippel-Lindau syndrome (VHL). A total
of 31 individual lesions were analyzed from the patient scans, including 14 HPRC, 8 VHL and
9 benign cysts. Patients had between one and two scans, bringing the number of analyzed
lesions to 55.

Lesions are segmented in the venous phase, where they appear better differentiated from the
enhanced renal tissue. Cysts are adipose and remain radio-opaque during enhancement having
well defined edges and a homogenous appearance, while VHL lesions tend to be solid and
enhance more. HPRC tumors vary from cystic to solid and the mix of the two types. The most
difficult segmentation occurs for mixed heterogeneous lesions that are both solid and cystic.
The inner edges may confuse the estimation of segmentation parameters and a new
segmentation seed may be required.

The segmentation of renal tumors is visually validated by overlaying the segmented data on
the CT volumes, as shown in Figure 8. Tumors are robustly segmented, as confirmed by expert
clinicians. Figure 8 presents segmentation examples for the three groups of lesions that we
addressed.

Twelve lesions (5 HPRC, 5VHL and 2 benign cysts) were segmented manually by two
observers for the precise quantification of the segmentation. The maximum size of lesions
varied from 11.17mm to 71.82mm. The overlaps of the segmented lesions were computed, as
described in Section 2. The inter-observer measurements show an overlap of 0.807±0.064,
while the overlap between the computer segmentation and each of the observers is 0.806±0.065
and 0.805±0.056 respectively. Thus, the comparison between manual and semi-automatic
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quantifications shows disparity of the same magnitude as the inter-observer variability. The
sizes of lesions were quantified and the correlations and p-values of the paired t-test between
measurements are presented in Table 1. Once more, results show similar variability between
observers as between computer and human measurements. Figure 9 presents the best linear fit
for the comparative measurements.

Further analysis was performed using available clinical measures for 21 of the 31 lesions
described above. They varied in size from 9.08mm to 69.7mm. There were 5 VHL, 9 HPRC
and 7 cystic benign lesions. The manual measurements were performed on 2D axial CT slices
at the maximum size of the lesion. The correlation coefficient between the clinical
measurements and the automatic quantifications was of 0.993, and the p-value of the pared t-
test of 0.003. The best linear fit for the correlated measurements is shown in Figure 10 and has
an R-squared value of 0.987.

3.2 Robustness
The goal of this semi-interactive technique is to provide the best segmentation of renal lesions
for cancer monitoring. Therefore, it allows to repeat the segmentation if the result of
segmentation was not satisfactory after visual inspection. The chosen segmentation will be
referred as the best segmentation.

The technique is particularly sensitive to the placement of seed points in two circumstances:
(1) when the size of the tumor is over-or under-estimated, as the search space for edges changes
and number of iterations of the geodesic active contour varies with the approximation of the
size of the tumor; and (2) when tumors are highly heterogeneous. Two experiments were
designed to determine the sensitivity of the algorithm to the variation of the seed points: one
in which the central seed point (pc) is kept unchanged, while the first estimate of the radius r
of the tumor is varied by changing the boundary point (pb); and a second in which the radius
is kept constant, but pc is moved. Figure 11 shows the variation of the relative errors in
estimating the tumor size, volume and enhancement with the changes in the placement of the
two seed points. Through the adaptation of the algorithm to tumor characteristics, the method
is less sensitive to the change of the central seed point with 3.6% volume error, 2.3% size error
and 1.9% enhancement error for a variation of 10 voxels in the position of pc (the seed points
are always inside the tumor boundary). The errors increase when the manual estimation of the
tumor size r changes dramatically and become 31% of the volume, 10% of the size and 12%
of the enhancement, when the radius size is varies by 25% of the maximum size of the tumor.

The parameter k in the smoothing (equation 1) was 15 and chosen empirically, from training
on seven tumor cases, which were not included in the test set. For this application, we aimed
to enhance the edges in our data besides increasing the tumor homogeneity, as the edge
properties are important for the segmentation. Weak edges within the tumor tend to be
smoothed with the chosen value of k and increase the homogeneity of heterogeneous lesions.

The initial training of method parameters was performed on a database of seven cancers and
cysts. Their n values were kept unchanged for the segmentation of the analyzed renal lesions
(VHL, HPRC and cysts). The robustness of parameter choice is reflected in the quality of the
segmentation results.

The influence of parameter k and of the number of iterations of the anisotropic diffusion is
presented in Figure 12. The method is robust to small changes of the contrast value and relative
errors in size and volume estimations increase over 5% when k is varied by more than 10 units.
Errors remain smaller than 2% when the number of iterations is varied, but increase to 9%
volume error, 7.7% size error and 3% enhancement if no smoothing is employed. Examples
of segmentation with and without employing anisotropic diffusion are shown in Figure 13. The
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subsequent tumor classification is performed using the mean intensity (Hounsfield units) inside
the segmented tumor, without smoothing the data. The anisotropic diffusion is employed to
facilitate the segmentation, but not to quantify the lesions.

3.3 Enhancement Analysis
Based on observations from prevailing literature [42,45,47], we analyzed the patterns of lesion
enhancement aiming to observe if the computer-assisted quantification can differentiate
between different types of lesions. For the enhancement analysis, we selected 15 lesions, 5 of
each type: VHL, HPRC and benign cysts. From data registration, scans obtained before contrast
and at arterial phase were aligned to the venous phase. Then the computer segmentations of
lesions from the venous phase were used to estimate the mean intensity of lesions in the other
phases. Mean intensities were normalized by the values between contrast intake and the speed
and level of enhancement between lesion groups were compared. Figure 14 exemplifies the
enhancement patterns of VHL versus HPRC and benign lesions, while in Figure 15 we show
an example of multi-phase segmentation of lesions after image registration. Although there is
insufficient intensity information for the direct segmentation of tumors from the non-contrast
and arterial phases, from non-rigid registration and propagation of segmentation through
phases, our method allow the accurate quantification of lesions at different stages of
enhancement.

Statistical analyses of the patterns of enhancement were performed for groups of lesions (VHL-
HPRC, VHL-cysts and HPRC-cysts). For all 15 lesions we calculated the enhancement
(difference of intensity) between phases (arterial and before contrast, venous and arterial, and
venous and before contrast) and we computed the Pearson correlation coefficients and the p-
values of two-sample t-test. Numerical results of the analysis can be found in Table 2. Note
that the best differentiation between them is achieved using the relative enhancement between
the venous phase and the acquisition before contrast administration. We obtained p-values of
0.004 (VHL to HPRC), 0.002 (HPRC to cysts) and 0.001 (VHL to cysts). Figure 16 shows the
boxplots between the three groups of lesions grouped by two. The three categories of lesions
are robustly differentiated by the algorithm and have mean relative enhancement values of
10.06 (cysts), 27.936 (HPRC) and 88.1 (VHL).

3.4 Temporal Comparison
Our method for renal lesion quantification allows the monitoring of temporal changes in
tumors. This could be an important tool for the assessment of lesion evolution and response to
treatment. For exemplification, we present temporal analysis of lesion size in two patients in
Figure 17. The first patient has 3 HPRC cancers scanned at an interval of 6 month, and the
second patient has 1 VHL cancer and 2 benign cysts imaged at an interval of 3 months. None
of the patients was undergoing cancer therapy. As expected, both patients present an
enlargement of lesions over time.

Analogous patterns of evolution of lesions can be observed in other patient serial data. The
rate of change in tumor size is neither constant amongst the patients, nor between individual
tumors. More analysis of temporal data will be performed on images acquired from patients
undergoing therapy for the monitoring of response to cancer treatment. Presently, the method
assists in the temporal quantification of lesions of patients diagnosed at NIH.

In a similar manner, the change of lesion intensity over time can be carried out to evaluate the
possible changes of lesion solidity. Some normalization is required to quantify the intensity,
as data were enhanced differently at various time points. We propose the level of enhancement
in the healthy kidney tissue as a normalizing factor for a more accurate comparison of tumor
enhancement over time. Figure 18 presents the intensity changes for the lesions addressed in
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Figure 17. While lesions grew in size, their intensities tend to remain constant, but may increase
or decrease, probably related to the tumor solidity, as seen in two of the HPRC cases. We will
address the tumor intensity over time more thoroughly in future work, when data from
therapeutic trials will be available.

4. DISCUSSION
We presented a method for the semi-automated quantification of renal tumors to assist in the
clinical management of tumor diagnoses and monitoring. The method is tailored to the difficult
segmentation of variable kidney lesions through a novel step to adapt to the tumor shape and
intensity. Furthermore, the lesions are quantified via principal component analysis (PCA),
which is robust to outliers and noise in the segmentation. We quantify automatically, for the
first time, the three-dimensional size and volume of renal tumors. Additionally, our method
analyzes the enhancement of segmented lesions, as well as monitors the evolution of tumors
from serial scans. The combination of registration, smoothing, segmentation and quantification
of renal data using contrast-enhanced images is new to our knowledge.

Three types of renal lesions were analyzed: benign cysts, von Hippel-Lindau (VHL) syndrome
cancers and hereditary papillary renal carcinomas (HPRC). The computer-assisted
segmentation of tumors was compared with the manual segmentation of two independent
observers and the average segmentation overlap was 80.55%. Tumors are robustly segmented
by the semi-automated method and the comparison between manual and semi-automated
quantifications shows disparity within the limits of inter-observer variability. The difference
in tumor size estimations between our method and the clinical measurements are not
statistically significant with a p-value of 0.003.

The analysis of lesion enhancement for tumor classification shows great separation between
benign cysts, VHL cancers and HPRC cancers, with p-values inferior to 0.004. These results
represent the first automatic analysis for renal tumor classification and show great promise
toward computer-assisted kidney diagnosis. Moreover, our method allows combining the
enhancement analysis with the temporal monitoring of lesions. The initial results on temporal
evaluation of tumors from serial scans illustrate the potential of the method of becoming an
important tool for disease monitoring, drug trials and noninvasive clinical surveillance.

Future work will involve a larger database, including data from patients undergoing cancer
therapy. The method will investigate the characterization of renal lesions from time evolution
and enhancement between subsequent contrasted acquisitions to monitor the response to
medical trials for optimal tumor management. Presently, the analysis is performed in contrast-
enhanced abdominal CT, but multi-modal investigations will also be considered (i.e. MRI).
The method will study cystic, solid and mixed-type tumors and has the potential to be applied
to other types of abdominal abnormalities (i.e. liver, spleen and pancreatic tumors).
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Figure 1.
Multi-phase abdominal 4D CT data. 2D slices of 3D volumes: (a) before contrast, (b) arterial
enhancement phase and (c) venous/portal enhancement phase data. For visualization purposes,
3D volumes are aligned according to the position in the scanner. Note the improved
differentiation between normal renal tissue and tumors during enhancement.
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Figure 2.
Examples of renal tumors in the portal phase. The level of enhancement, intensity and
homogeneity inside the lesion are indications used in diagnosis and classification. The
examples include small, large, cystic (lower intensity, non-enhancing), solid (higher intensity,
enhanced), homogeneous and heterogeneous tumors. VHL tumors are shown in (a) and (d); in
(b) and (e) there are only cysts, although cysts can be found in (a) and (d); and HPRC lesions
are shown in (c) and (f).

Linguraru et al. Page 16

Pattern Recognit. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Diagram of the algorithm flow. Ie represents the edge image, If the fast marching segmentation,
L the final level set and n the number the time acquisitions.
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Figure 4.
Image smoothing. When noise is removed from the original CT image (a), the smoothed image
(b) exhibits increased homogenous in regions of similar enhancement, and well-preserved
heterogeneity in volumes that comprise edges.
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Figure 5.
Intra-patient 3D registration. This example shows results of registering data from arterial and
portal phase: (a) a 2D slice from portal phase; (b) the corresponding 2D slice at arterial phase,
aligned by the position in the body, as seen at the spinal cord; (c) the registered image from
(b) using the demons algorithm; (d) the difference image between (a) and (c) after non-rigid
registration; (e) the registered image from (b) using affine registration; (f) the difference image
between (a) and (e) after affine registration.
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Figure 6.
An example of landmark selection. The axial and sagittal views are used to choose the
approximate center of tumor (pc) shown in red. The point on the boundary (pb) is marked in
green on the same axial slice as pc at a location along the tumor edge.
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Figure 7.
Parameter adaptation. The initial lesion model is spherical with the radius d, as seen in the
simplified 2D representation on the left. The elements di used for the estimation of tumor edges
and parameter α are shown in orange, the inner object used to compute β in dashed black, and
the user landmark pc and pb in red and respectively green. The process of parameter calculation
is repeated for the updated ellipsoidal model shown on the right.
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Figure 8.
Examples of 3D segmentation of renal lesions. Row (a) shows the segmentation of an HPRC
lesion; on row (b) we present a VHL cancer; and on row (c) a benign cyst. Near 2D slices from
the 3D CT volumes, we present the segmentation results using our method for renal tumor
segmentation and quantification. The 3D volumes of the segmented lesions are overlaid on the
CT scan at the location of the tumor.
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Figure 9.
The best linear fits for correlated measurement results between the automated method and the
two sets of 3D manual measures. From top to bottom, the charts show correlated data
corresponding to the largest size of the segmented lesions. R-squared measures confirm that
the variability between the automated method results and those of observers are in the same
range as inter-radiologist variability.
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Figure 10.
The best linear fit for correlated measurement results between the automated method and the
clinical 2D measures.
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Figure 11.
Seed point variation. The errors in size, volume and enhancement estimations are presented,
relative to the best segmentation. The chart on the left shows the relative errors when the center
seed point is moved with 5, 10 and 20 voxels, without changing the manual estimation of the
tumor radius. On the right, the manual radius estimate is varied with 5, 10, 25 and 50% of the
maximum tumor radius, without changing the central point.
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Figure 12.
Anisotropic diffusion variation. The errors in size, volume and enhancement estimations,
relative to the best segmentation are presented. The chart on the left shows the relative errors
when the contrast value in the anisotropic diffusion is varied with 5, 10 and 20 units. On the
right, the number of iterations is varied with 5, 10, 25 and 50 iterations.
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Figure 13.
The influence of anisotropic diffusion. (a) and (b) show the smoothed CT scan in magnified
axial and sagittal views; (c) and (d) are the segmentation results on non-smoothed data, but
using smoothing during the segmentation process. (e) and (f) show the non-smoothed CT scan;
and (g) and (h) are the segmentation results on non-smoothed data, without using smoothing
during the segmentation process.
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Figure 14.
Variable enhancement between different lesion types. From left to right, images are captured
before contrast, at arterial phase and at venous phase. The top row (a) shows the enhancement
of a VHL lesion, the middle row (b) a less enhancing HPRC tumor, and the bottom row (c)
presents a non-enhancing benign cyst.
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Figure 15.
Multi-phase segmentation of renal lesions. Row (a) shows a multi-phase segmentation example
for an HPRC lesion; on row (b) we present a VHL cancer; and on row (c) a benign cyst. The
columns illustrate 2D slices of 3D CT data from three phases of enhancement at the location
of the tumor, next to the segmentation provided by the computer-assisted method. The
propagation of segmentation between registered images from three phases, allows the accurate
quantification of tumors, although there is insufficient image information for the direct
segmentation from all phases.
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Figure 16.
Differentiation of lesions from the statistical analysis of enhancement data. We show the
boxplots corresponding to each category of tumor based on the relative enhancement of lesions
between the venous phase and the acquisition before contrast injection.
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Figure 17.
Serial quantification of lesion size. The case on the top represents results from a patient with
3 HPRC lesions scanned at a six-month interval. The bottom chart is the sequential
quantification from a patient with 1 VHL tumor and 2 benign cysts scanned at three-month
interval. The rates of change of tumor sizes are marked on the chart in the color code of the
lesions. None of the patients are undergoing cancer therapy.

Linguraru et al. Page 31

Pattern Recognit. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 18.
Serial quantification of lesion intensity on the group of lesions quantified in Figure 14. The
rates of change of normalized lesion intensities are marked on the chart in the color code of
the lesions.
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Table 1
Lesion quantification variability. The columns present the Pearson correlation coefficient/p-value of the paired t-test
between volume and maximum size measurements, and segmentation overlaps. The rows show the comparisons
between each of the two independent observers and the computer quantification/segmentation (CAD) system, and the
inter-observer variability on the last row

Volume Correlation/p-value Size Correlation/p-value Overlap

Observer1 - CAD 0.999/0.156 0.984/0.02 0.805

Observer2 - CAD 0.999/0.388 0.985/0.055 0.806

Inter-observer 0.999/0.007 0.983/0.39 0.807
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Table 2
Lesion enhancement quantification. The columns present the Pearson correlation coefficient/p-value of the two-sample
t-test of the intensity difference (enhancement) between the three acquisition phases (before contrast administration,
arterial and venous phase) for groups of lesions: VHL-HPRC, HPRC-cysts and VHL-cysts

Arterial-NonContrast Correlation/p-value Venous-NonContrast Correlation/p-value Venous-Arterial Correlation/p-value

VHL - HPRC 0.718/0.01 0.442/0.004 0.054/0.478

HPRC - Cysts -0.227/0.451 -0.572/0.002 0.328/0.005

VHL - Cysts -0.263/0.009 0.175/0.001 -0.4/0.1
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