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Abstract

Neuroblastoma (NB) is one of the most frequently occurring cancerous tumors in children. The 

current grading evaluations for patients with this disease require pathologists to identify certain 

morphological characteristics with microscopic examinations of tumor tissues. Thanks to the 

advent of modern digital scanners, it is now feasible to scan cross-section tissue specimens and 

acquire whole-slide digital images. As a result, computerized analysis of these images can 

generate key quantifiable parameters and assist pathologists with grading evaluations. In this 

study, image analysis techniques are applied to histological images of haematoxylin and eosin 

(H&E) stained slides for identifying image regions associated with different pathological 

components. Texture features derived from segmented components of tissues are extracted and 

processed by an automated classifier group trained with sample images with different grades of 

neuroblastic differentiation in a multi-resolution framework. The trained classification system is 

tested on 33 whole-slide tumor images. The resulting whole-slide classification accuracy produced 

by the computerized system is 87.88%. Therefore, the developed system is a promising tool to 

facilitate grading whole-slide images of NB biopsies with high throughput.
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1. Introduction

Peripheral neuroblastic tumors (pNTs) are a group of embryonal tumors of the sympathetic 

nervous system, and include neuroblastoma (NB), ganglioneuroblastoma, and 

ganglioneuroma category [1]. Each year, more than 600 children and adolescents are 

diagnosed with pNTs in the United States, and it comprises about 8–10% of all childhood 

cancers [1,2]. Of all the cancer categories in pNTs, NB, com-posed of neoplastic neuroblasts 

in various maturation grades with no or limited Schwannian stromal development, is the 

most common tumor that affects children ranging from newly born infants to teenagers.

According to the International Neuroblastoma Pathology Classification System (the 

Shimada system), NB can be further classified into three categories, namely undifferentiated 

(UD), poorly differentiated (PD), and differentiating (D) subtype, based on the grade of 

differentiation [3]. A simplified classification tree diagram of this recommended 

classification system is shown in Fig. 1. NB, with different grades, usually has unique 

pathological characteristics and micro-texture features [4]. Representative tumors of the 

three differentiation grades are shown in Fig. 2. Typical features of these subtypes can be 

briefly summarized as follows:

1. Tumors in the UD subtype often present such features as small to medium-sized 

NB cells, thin cytoplasm, none-to-few neurites, round to elongated nuclei, and 

the salt and pepper appearance of chromatin with or without prominent nucleoli.

2. As for PD cases, the typical rosette formations and/or clearly recognizable 

neurites are observed in tumor tissues.

3. Tumors in the D subtype contain > 5% of D neuroblasts characterized by nuclear 

and cytoplasmic enlargement; an eccentrically located nucleus containing a 

single prominent nucleolus in most cases; and the increased ratio of the diameter 

of the cell to that of the nucleus (typically > 2).

It is usually the case that the more differentiated tumors are, the less aggressively they 

behave. As a result, patients with tumors of higher grades of differentiation may have better 

chances to survive. In clinical practice, treatments for cases with different neuroblastic 

grades are quite different. For this reason, an accurate grading of a NB sample is crucial to 

make an appropriate choice of treatment plans.

In current clinical practice, differentiation grading is made with visual examinations of 

tumors by pathologists under the microscope. There are several weaknesses associated with 

visual evaluations. First of all, it is often time-consuming and cumbersome for pathologists 

to review a large number of slides in practice. Secondly, visual evaluations can be subject to 

unacceptable inter- and even intra-reviewer variations. A recent study reports that there is a 

20% discrepancy between central and institutional reviewers [5]. Thirdly, for practical 

reasons, pathologists often sample slide regions to be examined, making the whole process 

subject to sampling bias. However, this may lead to erroneous results for tumors exhibiting 

strong heterogeneity.
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To overcome these weaknesses rooted in the visual evaluation process, several computerized 

methods that automate the image analysis procedures are being developed with promising 

initial results [6–8]. However, to the best of our knowledge, no research work, so far, has 

been devoted to developing a computer-aided classification methodology that automates the 

process of classifying NB whole-slide images in accordance with the grade of 

differentiation. In this study, we propose an image analysis framework that integrates 

intensive computer vision and machine learning techniques for the purpose of grading NB 

images. Within this system, an image hierarchy consisting of multiple image resolution 

levels is established for each given tumor image. Furthermore, the system dynamically 

changes the image resolution level at which it proceeds with sequential image analysis steps. 

At each image resolution level, every image is first segmented into four cytological 

components using an automated image segmentation method. Discriminating features 

extracted from segmented image regions are then used to classify each image into one of the 

three grading classes by a family of classifiers. The resulting decisions are next combined 

using a two-step classifier combining mechanism. Each classification decision is first 

evaluated with a confidence measure that indicates the degree of agreements across different 

classifiers. Based on the evaluation results, the proposed system either stops its analysis 

process or continues with further investigations by including more image details.

2. Methods

2.1. Image acquisition

In this study, all NB tumor slides are collected from Nationwide Children’s Hospital in 

accordance with an Institutional Review Board (IRB) protocol. According to the protocols 

commonly used in the Children’s Oncology Group, these tissue slides are cut at a thickness 

of 5 μm and soaked in paraffin at the preparation stage. Each NB slide in the dataset is 

prepared using a dual staining procedure in which haematoxylin and eosin (H&E) are used 

to increase the visual contrasts among different cytological components. After being stained 

with H&E, each thin tissue slide is then fixed on a scanning bed and digitized using 

ScanScope T2 digitizer (Aperio, San Diego, CA) at 40× magnification, allowing for clear 

visualization of tumor architectures. The resulting whole-slide images are quite large with 

their sizes up to 40 GB. Due to the limited hardware storage capability, the resulting digital 

images are compressed following the JPEG compression standards at approximately a 1:40 

compression ratio. After the compression, the typical image sizes can vary from 1 to 4 GB. 

To make the image analysis more tractable, we partition each histology slide image into 

multiple non-overlapping image tiles of the size 512 × 512 in pixels, rather than requiring 

our classification system to work on the whole-slide image. Another benefit of breaking 

down whole-slide images into tiles is that we can make full use of the distributed 

computational infrastructure. The parallel implementation details will be discussed in 

Section 2.3.

2.2. Image dataset

The image dataset used in this study consists of 36 NB cases, covering all three subtypes of 

neuroblastic grading. All tumor slides are selected in such a way that they are good 

representatives of different grade subtypes and contain a sufficiently large number of 
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cytological components of interest in the tissue regions. In our study, the training dataset 

consists of 389 image tiles of the size 512×512 in pixels, equally selected at random from 

three representative cases (one from each subtype). The remaining 33 case images from the 

dataset are used for the testing purpose. The images in our database are evaluated by an 

experienced pathologist who visually categorized them into three distinctive differentiation 

grades. The average storage size of testing slides is about 20 GB before compression, which 

approximately corresponds to 27,400 image tiles of 512 × 512 pixels in size.

2.3. Software and hardware

The developed classification algorithm and the graphical user interface are designed using 

MATLAB (The MathWorks, Inc., Natick, MA). All experimental evaluations of our work 

are carried out on a 64-node cluster with Linux OS owned by the Department of Biomedical 

Informatics at The Ohio State University. Each node of the cluster is equipped with dual 2.4 

GHz Opteron 250 processors, 8 GB of DDR400 RAM with 1 GB dimms and a 250 GB 

SATA hard disk. The computation infrastructure is designed with a master–client 

architecture in which a master application and multiple client applications work in a 

collaborative pattern [9]. For each computation task, one master node is responsible for 

partitioning the tumor slide images into image tiles with a fixed size and distributing data to 

clients for further processing in a round-robin fashion. Each client keeps local copies of the 

assigned image tiles and initiates a local MATLAB application to analyze the cached image 

tiles with the developed classification algorithm. Once the automated image analysis process 

ends, the master node is, again, in charge of collecting classification results from client 

nodes and re-assembles them in order before it produces the grading classification results 

over the whole-slide images.

2.4. Multi-resolution paradigm

Multi-resolution analysis has shown its power in many computer-aided diagnosis (CAD) 

systems, as CAD systems usually involve processing a large volume of medical image data 

with prohibitive computational costs. In the work presented by Liang and Page [10], they 

addressed the problem of demanding computations by adjusting the weights in the neural 

network with a multi-resolution strategy. Yu et al. took the similar idea and used a 

hierarchical clustering method to obtain the coarse-to-fine classifiers from a clustering tree 

[11]. Furthermore, a multi-resolution classification model was proposed by He et al. who 

classified data using the support vector machines (SVM) in a multi-resolution classification 

model [12]. In another histopathological image analysis application, Doyle et al. performed 

pixel-wise Bayesian binary classification at each image resolution level to produce the 

likelihood scenes from selected regions of interest [8].

Our CAD system for discriminating the grade of neuroblastic differentiation makes full use 

of the multi-resolution principle in that the system emulates the way pathologists examine 

histology slides with different magnifications. In accordance with the coarse-to-fine strategy, 

the developed classification system begins analyzing images at the lowest image resolution 

level. Processing at higher resolution levels is only invoked when the classification 

performance associated with the lower resolution level is not sufficient.
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At each image resolution level, a complete and automated analysis pipeline is followed. As 

shown in Fig. 3, the sequence of processes include image–tile generation, establishment of 

the multi-resolution hierarchy, color conversion, clustering-based segmentation, feature 

construction, feature selection, dimensionality reduction, multi-classification, classifier 

combination, and performance evaluation [13].

As the initial step of the whole process, each image tile analyzed by the computerized 

system is decomposed into a set of image representations in such a way that the lower 

resolution image contains most of the relevant image details from higher resolution levels.

Let us denote IL[n, m] as the input image tile at the full resolution, where L is the number of 

resolution hierarchies. The image versions with a sequence of resolutions can be represented 

by

(1)

where Il[n, m] is the image that is down-sampled for L−l times from the full resolution copy 

IL[n, m];  and  are the integer fields associated with row and column directions at the 

revolution level l; Nl and Ml, respectively, designate the row number and the column number 

of Il[n, m].

For each down-sampling process, we follow such a method that the output image is a non-

aliasing version in the spatial frequency domain of the next higher resolution tile. This 

process can be mathematically expressed as

(2)

where  and . In Eq. (2), Fl[k, s] is the two-dimensional 

discrete Fourier transform of Il[n, m]. Although there is no particular reason to claim that 

Il[n, m] has a limited bandwidth, we can in general run an ideal window filter and truncate 

its bandwidth in the spatial frequency domain:

(3)

The ideal low pass filter Hl[k, s] is defined as

(4)
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where α(≤ 1) is the size reduction factor. In our application, α = 0.5. Therefore, the resulting 

down-sampled image can be obtained by taking the inverse Fourier transform of the non-

zero response area in Hl[k, s].

The designed algorithm initially examines the image tiles at the lowest resolution that 

corresponds to the lowest optical magnification under the microscope. The lower-resolution 

image is scaled by a factor of two on each image dimension, thus a quarter as large as the 

image tile of the next higher resolution level. In our tests, a four layered multi-resolution 

hierarchy is built up, with {(512×512), (256×256), (128 × 128), (64 × 64) as the set of tile 

sizes from the highest to the lowest resolution, respectively. An example of image resolution 

hierarchy with its resolution decreased from the bottom to the top level is shown in Fig. 4, 

where L = 4.

Since the lowest resolution images are the smallest ones in size within the image 

representation hierarchy, it requires the least amount of time to process these images. 

However, if the images at lower resolution levels do not contain sufficient image details, the 

computerized system automatically switches to work on images at the next higher 

resolution. As a result, the dynamic change across images of different resolution levels is an 

analogy to the way a pathologist adjusts the microscope magnification based on the amount 

of details needed to analyze a particular portion of a tumor slide.

2.5. Image segmentation

At each resolution level, each image is segmented into multiple cytological components 

necessary for further analysis. Although there are large variations of tissue architectures in 

images of NB samples having different differentiation grades, five salient components 

(nuclei, cytoplasm, neuropil, red blood cells (RBCs), and background) can usually be 

discerned. Additionally, relatively discriminating color contrasts enhanced by the H&E 

staining process provide us many useful image clues. For example, nuclei and cytoplasm 

regions are stained with blue-purple in color while regions with pink and red hues suggest 

neuropils. As a result, it is promising to develop a clustering-based segmentation analysis 

that identifies different cytological components in a well-formulated feature space. Guided 

by these ideas, we develop a novel segmentation method, namely EMLDA [14], that works 

in a feature space constructed with combined color and entropy information extracted from 

the RGB and the La*b* image channels.

The La*b* color space is developed by the Commission Internationale d’Eclairage (CIE) 

[15]. When it is compared to other color spaces such as HSI, YIQ, and YUV, it presents the 

desired color perceptual uniformity that allows the use of Euclidean distance metric rational. 

The La*b* color space is also a good choice in terms of its ability to represent luminance 

and chrominance information separately. By its definition, channel L carries the information 

for the light intensity while color information is contained in a* and b* components. As a 

supplement, three entropy statistics computed with a 9 × 9 window shifting across the R, G, 

and B image components are used to enrich the feature vector.

Our novel segmentation approach integrates the Fisher–Rao criterion into the generic 

expectation–maximization algorithm and iteratively partitions data in the resulting feature 
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space in such a way that the data associated with different classes can be separated as much 

as possible. This process is repeated until the Fisher–Rao criterion, the ratio of the sum of 

squared between-class distances to the sum of squared within-class distances, converges to 

its maxima.

Suppose C components are to be segmented from a given image. Let us denote 

 as the dataset in a p-dimensional feature space. The expectation and 

maximization step of the EMLDA method can then be summarized as follows.

1. E step (expectation):

Find the optimal projection matrix:

(5)

where J(V|θ) is the Fisher–Rao criterion to be maximized. V* is a p×s matrix 

consisting of s discriminant vectors as its columns, where s ≤C−1. In addition, θ, 

is the labelling configuration determined from the previous step, while SB and 

SW are the between- and within-class scatter matrices that are symmetric and 

positive-definite [16].

2. M step (maximization):

The matrix V* maximizing the Fisher–Rao criterion J(V|θ) is composed of s 
column-wise discriminant feature vectors onto which the set of data X are 

projected. By , the projected data  are mapped to a 

lower dimensional space where the data associated with the C classes can be best 

discriminated.

Next, find:

(6)

Where Θ = {1, 2,…, C} is the label set; mi and  are the means of class i in the original and 

reduced dimensional feature space that are related by . After finding the labels 

for all data points, we substitute θ with  and repeat steps (1) and (2) again, until J(V*|θ) 

converges to a local maximum.

One beauty associated with this method is that one can simply skip the feature normalization 

step due to the following theorem.

Theorem 1—Feature normalization by linear scaling to unit range does not change the end 

classification result with EMLDA.
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Proof of Theorem 1—Suppose the mapping functions are linear scaling transformations 

that map each feature x to a specific unit range, i.e., , where M = diag(m11,

…,mpp) and D = (d1⋯dp)T, then the between-class scatter matrix in the transformed data 

space is

(7)

where m is the overall mean and ni is the number of samples of class i.

Similarly, we have the within-class scatter matrix in the transformed data space as 

 Furthermore, we have

(8)

where .

Eq. (8) reveals the fact that J and  can be simultaneously maximized when . The 

projected and the mean in the lower dimension space spanned by the discriminant vectors 

for X = {x|x ε Rp
} are xTV*and , while those associated with  are

(9)

i.e., the projected data derived from X and  are related by a simple translation. Therefore, 

the end classification results in X and  feature space are conserved to be the same. ■

In our study, we define four classes: nuclei, cytoplasm, neuropils, and background (i.e., C = 

4). Given the fact that RBCs may occupy a large area within image tiles, a simple yet 

efficient threshold-based method is used to identify the RBC regions before the iterations are 

initiated. As a result, the number of defined classes is kept as low as possible, which 

contributes to the reduction of time costs. A set of segmentation results on a typical image 

tile associated with the UD grade are shown in Fig. 5, which verifies the effectiveness of this 

segmentation approach.

Kong et al. Page 8

Pattern Recognit. Author manuscript; available in PMC 2017 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.6. Feature construction

Although pathologists tend to rely heavily on morphologic features such as nuclear size and 

cellularity, a large amount of information derived from textures of different histological 

structures is integrated into their decision procedures in an implicit way [17]. By creating the 

feature vector, it is our intention to input into the computerized system information that 

helps discriminate different pathological components effectively. Therefore, in our 

implementation, all features are derived from color information and textural patterns as they 

depend less on the segmentation accuracy.

In our study, local statistical measures are computed only from the segmented regions 

associated with cytoplasm and neuropils identified by the proposed segmentation algorithm 

in that they usually bear texture patterns considerably distinct across tumor tissues of 

different grades. Associated with cytoplasm and neuropil regions, four textural Haralick 

features [18] are computed: the entropy, mean, and variance of the range of values within a 

local neighborhood, and the homogeneity degree of the co-occurrence matrix in L, a* and b* 

channels. As a result, a feature vector composed of 24 elements is constructed as a symbolic 

representation of each image tile. For comparison, summaries of the set of features used by 

pathologists and those employed in the computerized system are reported in Tables 1 and 2, 

where two apparent distinctions can be observed.

1. Pathologists tend to use morphological and pathological characteristics in their 

prognosis, while the computer system prefers using statistical features.

2. The characteristics used by pathologists are qualitative, as opposed to the 

quantitative features utilized by the computer system.

2.7. Feature selection and classification

Although we use a vector of features to characterize the texture patterns of cytological 

structures, it is not the case, in general, that each extracted feature component contributes to 

the characterization of the texture patterns. More importantly, they may not increase the 

classification accuracy in equal proportions. Some features may contain far more 

discriminating information than others. By contrast, some other features may contribute less 

in improving the classification accuracy.

The choice of the most discriminating subset of features is not only conducive to substantial 

reduction in computational complexity, but it also leads to improved classification 

accuracies. In fact, if more than the necessary number of features are used, the classification 

performance can deteriorate due to the “peaking phenomenon” [16]. As a result, we are 

interested in seeking out the best subset of features that yield the best classification accuracy 

and have the least number of members. In our application, the subset of features sufficient 

for classifying well-organized data are determined by a popular feature selection technique, 

namely the sequential floating forward selection (SFFS) procedure [19]. The SFFS 

procedure is an upgraded version of the sequential selection procedures with back-tracking 

mechanisms, such as plus l − take away r algorithm. In addition to these methods, the 

number of forward and backtracking steps (i.e., l and r) in SFFS are dynamically adjusted 

rather than fixed values set in advance. In other words, SFFS allows a dynamic number of 
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features that have been selected to be removed in a dynamic number of posterior steps. As a 

result, SFFS is very efficient and effective even on problems of high dimensionality with 

non-monotonic feature selection criterion functions.

Since our proposed multi-resolution hierarchy has four resolution levels, the optimal subset 

of features needs to be determined with training image tiles from each resolution layer. This 

is due to the fact that neither histopathological nor statistical characteristics of image tiles 

across different resolution levels are necessarily the same. In practice, they could be 

considerably distinct from each other. As a result, the ensuing subset of selected features 

may not be the same when computed at different resolutions. After the optimal subsets of 

features extracted from the training data associated with different resolutions are obtained in 

the training phase, we can establish the new feature vectors with only those feature 

components selected in the training process and classify the feature data in a lower 

dimensional feature space in the testing stage.

Furthermore, the feature selection process is carried out in combination with different 

classifiers over all the training data in an offline pattern. To achieve a good classification 

performance, multiple classifiers were employed: K-nearest neighbor (KNN), linear 

discriminant analysis (LDA) & KNN, LDA & nearest mean (NM), correlation LDA 

(CORRLDA) [20] & KNN, CORRLDA & NM, LDA & Bayesian and SVM [21] with a 

linear kernel.

KNN is a very intuitive classifier that assumes observations associated with the same class 

label are close to each other measured by some metric in a feature space. Assuming {x1, x2,

…, xk} is a set consisting of the nearest K observations, under the distance}metric d(.,.), to 

the given data x whose class label is to be determined, the class·label of x is the majority 

vote of the nearest K neighbors. Likewise, NM classifier assigns data to the class associated 

with the closest class mean. Unlike the non-parametric classifiers, Bayesian classifier can 

reach the optimal recognition result given that all underlying true class-conditional 

probability density functions are known. Another useful classifier widely used n machine 

learning process is known as SVM that can deal with non-linearly separable cases by 

mapping data from a lower dimensional space to a higher dimensional one where data 

becomes linearly separable.

In addition to the four classifiers, two feature extraction methods, i.e., LDA and CORRLDA, 

are used in combination with the classifiers in reducing the dimensionality of the feature 

space. LDA aims at finding the best subspace where the between-class variance is 

maximized while the within-class variance is minimized. However, it does not necessarily 

guarantee the minimum Bayes error of the given data distributions when the eigenvectors 

associated with the largest eigenvalues of the between-class scatter matrix have a high 

correlation with the most principal eigenvectors of the within-class scatter matrix. By 

contrast, CORRLDA is a method to select the most discriminative eigenvectors of the 

within-class scatter matrix that is often singular. Rather than picking up the most principle 

eigenvectors, it keeps the eigenvectors that are most correlated to the bases spanning the 

range space of the between-class scatter matrix. For more detailed discussions on these 

methods, readers are referred to [16,20,21].

Kong et al. Page 10

Pattern Recognit. Author manuscript; available in PMC 2017 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As different feature extraction approaches and classifiers are optimal under different 

assumptions, no single combination of one specific dimensionality reduction technique and 

one fixed classifier can guarantee the best feature representation and the resulting minimum 

Bayes error in the absence of assumptions on feature distributions. As a result, no general 

algorithm exists that can always achieve superior recognition rates to those of others under 

all possible circumstances. However, one feasible way to boost the system classification 

performance is to use a collection of classifiers, rather than a single one. It has been shown 

that the overall error rate decreases monotonically as more classifiers are used in a system, 

as long as each individual classifier has an error rate less than random guessing [22]. As 

each classifier has its own feature regions where it yields the best performance, a 

combination of classifiers can achieve higher classification accuracies in theory. As a result, 

the ensemble classification system comprising seven classifiers is developed for the 

decision-making component. Since the seven classifiers included in this classification group 

present different characteristics and various classification mechanisms, aggregation of these 

classifiers can help improve the end recognition performances.

2.8. Classifier combiner

To make full use of the group of classifiers, a combination strategy is proposed to combine 

those decisions made by the collection of classifiers in a parallel pattern. Although a number 

of architectures for classifier combination have been proposed, such as the dynamic 

classifier selection (DCS), classifier hierarchical concatenation (CHC), and serial 

combination (SC), we choose to aggregate the outputs of the multiple classifiers with a 

straightforward two-step classifier combining mechanism that consists of a voting and 

weighting procedure. This is due to the fact that a sum rule-based combination paradigm 

outperforms the others in general [23]. The combining mechanism can be described in the 

following two steps.

Step 1: The combiner evaluates the outputs of all K classifiers (K = 7 in this work) and 

produces a final decision θ* that refers to the decisions supported by the majority of the K 
classifiers:

(10)

where Ψ(i) is the number of votes for the ith class collected from the K classifiers and C is 

the number of classes (C = 3 in this work).

Step 2: We next evaluate the confidence degree of the voted classification result at the 

current resolution level. Since the combination scheme of the sum rule is usually superior to 

the others, the confidence degree in this study is defined as the sum of weights assigned to 

classifiers that concur with the combiner. The corresponding weight assigned to each 

classifier, in each resolution level, is computed by normalizing the priori classification 

accuracies of all the classifiers over the training data with the leave-one-out validation 

process. The higher the priori classification accuracy one classifier has, the more biased it is 

weighted. If the sum of weights of the classifiers whose decisions concur with each other is 
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greater than a given threshold, the ensemble decision supported by the majority of classifiers 

is accepted as an end result. Otherwise, the system switches to work on the image version at 

the next higher resolution level where the same sequence of image processing steps are 

followed again.

In summary, the hypothesis test and the resulting decision rule can be written as

H0: classification result is good enough; quit the process;

H1: go to the next higher resolution level for classification;

where

(11)

In Eq. (11), wl(i) is the priori recognition rate of the classifier i at resolution level l; δi,j is the 

Kronecker delta function; θ(i) is the class label decided by the classifier i; γl,l+1 is the 

threshold of the confidence measure with which the system decides whether or not it needs 

to proceed with further analysis from image resolution l to l + 1.

3. Results

Before the developed system can achieve reasonably good grading accuracy, it needs to be 

well trained. A brief outline of the training–testing process is shown in Fig. 6, where solid 

and dashed arrows indicate the steps executed online and offline, respectively. In the offline 

training stage, multiple statistical learning models are used to enrich the system knowledge 

base with the ground-truth given by an experienced pathologist. As the computer system is 

trained with more and more typical patterns, it starts producing outputs similar to those 

made by the pathologist. After the training process is finished, testing data can then be 

passed into the “educated” system for evaluating its performance.

3.1. System training

For training purpose, a priori knowledge on the architectural patterns of NB with different 

neuroblastic differentiations is derived from a training dataset. It consists of 387 image tiles 

extracted from three representative whole-slide images. Achieving a good separation of the 

features from the training tiles of different grades, the training set is considered a good 

representation of the underlying discriminating information. In order to visualize how well 

the training data can be separated in an appropriate feature space, we show in Fig. 7 the 

scatter plots of training features associated with the four resolution levels in a two-

dimensional feature space obtained with a combined use of the dimension reduction 
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technique of LDA and the classifier of KNN (K = 5). The resulting plots illustrated in Fig. 7 

show that the data cloud of each class is relatively compact and well apart from the others. 

This considerably contributes to a good grading accuracy in the following classification 

process.

In Table 3, we report the numbers of selected features associated with different choices of 

classifiers on each image resolution level over the training data using the leave-one-out 

cross-validation method. In this cross-validation approach, all but one sample of training 

data is used for training purpose. The sample left out is then used for testing with the trained 

classifiers. This is repeated for all possible ways of leaving one training sample out (i.e., 

leaving out one sample selected in a cyclical pattern).

It can be noticed from Table 3 that the resulting numbers of selected features associated with 

different classifiers vary considerably. For example, numbers of selected features with 

LDA&BAYESIAN are much larger than those associated with CORRLDA&NM. Although 

there are no direct clues that can help explain the differences, some educated explanations 

can be given by a careful look at the working criteria different feature extraction approaches 

take and natures various classifiers exhibit. Again, the example of the comparison be-tween 

LDA&BAYESIAN and CORRLDA&NM is used for illustration. It is well known that LDA 

tries to maximize the ratio of the between-class to the within-class distance. Therefore, a 

larger set of features allow LDA a larger degree of freedom in finding the best projection 

vectors. CORRLDA, in contrast, computes eigenvectors of the within-class scatter matrix 

and only cares about those most correlated to the bases that span the range space of the 

between-class scatter matrix. This results in its preference over smaller sets of features, as 

the selection of a small number of features helps increase the degree of correlation. 

Furthermore, Bayesian classifier is a parametric classifier and thereby usually requires a 

relatively larger set of features for a better estimation of its parameters. Unlike Bayes, NM is 

a non-parametric classification machine that demands a higher ratio of the number of 

samples to the dimensionality of the feature space. As a result, LDA&BAYESIAN selects a 

larger sets of features than CORRLDA&NM across all resolution levels.

Table 4 presents the corresponding classification accuracies using the leave-one-out cross-

validation method. It can be concluded with Table 4 that, in general, higher resolution levels 

yield better classification accuracies, although they require longer processing time.

3.2. System testing

To evaluate the generalization ability of the developed system to new clinical data, we carry 

out experiments on an independent testing dataset comprising 33 whole-slide images: 10 

from UD, 10 from PD, and 13 from D subtypes.

In our experiments, we process images with the most critical confidence threshold setting:
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where Ω5 is the confidence configuration label;γl,l+1 is the confidence threshold with which 

the system decides whether or not it is necessary to move from resolution level l to l + 1 (see 

Eq. (11)).

The grading accuracies on the whole-slide level can be summarized in Table 5 where the 

accuracies of identifying UD, D, and PD cases are presented, in addition to the overall 

grading accuracy of 87.88%.

In addition to the ensemble results reported in Table 5, results of three representative slides 

(one from each grading class) are also presented to illustrate the experimental results in more 

details. The description of the characteristics of the three typical slides is reported in Table 6.

Besides the most critical confidence threshold setting Ω5 used for slide-based evaluations, 

four other configurations for the classifier combiner are also created for testing these three 

slides. Each one represents a different strategy of manipulating the dynamic resolution 

changes in our multi-resolution grading system. These five configurations, each consisting 

of three threshold values, are summarized in Table 7.

In Fig. 8, the image tile-level classification accuracies associated with the confidence 

configurations Ω1–Ω5 are shown for the slides from Nos. 1 to 3, as presented in Table 6. For 

better visual effects, it is worth mentioning that the vertical scale of Fig. 8(a) begins from 

92%. Generally speaking, the larger the threshold (i.e., a value between 0 and 1), the more 

difficult it becomes to satisfy the system at each resolution level. As a result, a better grading 

accuracy can be expected, but at the cost of longer execution time.

To illustrate classification results of the three typical tumor slides, we assign to each image 

tile (512×512 in size) a color that represents its grade of neuroblastic differentiation 

identified by our system. We name the resulting image representations as classification 

maps, as shown in Fig. 9(b), (e), and (h). With these classification maps, we are able to 

recognize quickly how tumors of different grades are spatially distributed. In our 

application, the colors blue, cyan, and yellow are used for image tiles classified as UD, PD, 

and D, respectively. Likewise, a gray level is assigned to each image tile as an indicator of 

the resolution level at which the accuracy of the grading evaluation process convinces the 

system. The resulting images, consisting of resolution levels at which final grading decisions 

are made, are named decision level maps, as shown in Fig. 9(c), (f), and (i). The gray level 

of each pixel indicates the decision level of the corresponding image tile.

4. Discussions

The developed system is a useful tool that pathologists and clinicians can use in diagnosing 

the grade of NB. Although decision accuracy of the computerized system is promising in our 

tests, it should be emphasized that the role of the computerized system should always be 

limited to that of a second reader or pre-screener who can make consistent decisions on NB 

classification in parallel with expert pathologists. In other words, the computerized 

methodology is not intended to replace the pathologist, but to support the conventional 

prognostic procedure. Coincidentally, one similar paradigm of having a computerized 
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system as a second reader for diagnosis in the field of radiology has been shown to be safe 

and effective [24].

Additionally, the computerized system is consistent and does not suffer from certain human-

reader limitations even experienced pathologists may encounter. One other benefit of this 

system is that it provides a relatively generic methodology that can be modified for a vast 

number of practical applications involving pathological image analysis components. 

Furthermore, given the fact that the selected features exhibit the helpful information for class 

discrimination, this proposed generic multi-resolution paradigm can be also tailored to other 

medical image analysis systems with minor efforts.

Although a large number of CAD and prognosis systems have been proposed in the 

literature [7,25], our system has multiple advantages over these systems:

1. The whole-slide image dataset is analyzed. The storage size of a typical H&E 

stained image before being compressed is around 25 GBs, which gives rise to the 

following two challenges that we have to overcome: the demanding 

computational complexity and the large-scale data storage. These two difficulties 

in our application are solved with a generalizable computational infrastructure 

for grid-based biomedical image processing applications developed within the 

Department of Biomedical Informatics at The Ohio State University [9]. Within 

this service-based infrastructure, multiple developers can have access to a 

common image data and code repository where a pool of different resources can 

be shared with the public. This is specifically designed for very large-scale image 

processing projects that require pipelined processing capabilities. In this system, 

the images are automatically de-clustered by a central coordinator. Then, the 

remaining slave nodes follow the processing sequence and analyze the assigned 

image blocks cropped by the central coordinator. Finally, the image processing 

results, either saved in texts or as an image, are collected and assembled in 

compliance with the de-cluster order at the central coordinator.

2. Color images are analyzed. Instead of analyzing gray level images, 

discriminating information derived from three color channels were jointly used 

in our application. In addition to combining the color with the entropy 

information in constructing features, we apply feature selection and extraction 

techniques to the established feature pool, resulting in the most discriminating 

features that lead to promising grading accuracies.

3. A multi-resolution schema is used. An automated dynamic change in the image 

resolution is devised in the developed system to eliminate from the analysis as 

many superfluous computations as possible. By emulating the way pathologists 

examine tumor slides, the computerized system is designed to work in an 

efficient way that produces much savings of computational resources.

Since neuroblastic differentiation is the key for the correct protocol assignment, we will 

further improve the developed system in our future work. Since the higher-order decision 

information may contribute to either a more efficient or accurate global labelling 

configuration, it is desirable to develop a labelling scheme that takes into account decision 
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information from adjacent image tiles. Expansion into an even larger group of features is 

another part of work we will explore in future study, as only color and texture information is 

used in our current implementation. We will also investigate the way to group the best 

training dataset, since data generalization is a critical problem that may impact overall 

performance significantly. With all these aspects improved, it is promising to expect even 

better classification accuracy sufficient for the clinical requirements in practice.

5. Conclusions

This article presents an automated grading system for the quantitative analysis of the 

histological images of the H&E stained NB cross-sections. To emulate the way pathologists 

assess resected specimens, the complete image analysis pipeline is designed within a multi-

resolution paradigm. When tested on 33 whole-slide images, the overall classification 

accuracy of the system is 87.88%. The developed algorithm chooses to work on images of 

the lowest resolution level where sufficient image details are retained for the grading 

analysis. On each resolution of the whole image hierarchy, crucial statistical features needed 

for accurate evaluations are constructed from the segmented image regions where the most 

discriminating information resides. Systematic selection of the best subset of features not 

only improves the system efficiency but also the ensuing grading accuracy. Moreover, a 

collection of classifiers is used for exploring different areas of the feature space, which 

mimics the scenario when multiple pathologists are available within a prognosis panel. The 

resulting competitive classification accuracy and high throughput performance suggests that 

the developed system is promising for the grading assessments of NB.
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Fig. 1. 
A simplified tree diagram of the International Neuroblastoma Pathology Classification (the 

Shimada system), where UH represents “unfavorable histology” and FH stands for 

“favorable histology”.
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Fig. 2. 
Typical tissue images associated with the three differentiation grades: (a) undifferentiated 

grade, (b) poorly-differentiated grade, and (c) differentiating grade.
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Fig. 3. 
Flowchart of the developed image processing system. A whole-slide image of a 

neuroblastoma tumor with its size of 59, 412×64, 990 in pixels (13, 932 μm×15, 183μm) is 

processed with steps involving color conversion, image segmentation, feature construction–

selection–extraction, classification, and classifier aggregation, where the scalar N, n, and m 
satisfy N ⩾ n ⩾ m. Additionally, k indicates the number of independent classifiers used in 

the system.
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Fig. 4. 
A typical example of the multi-resolution representation hierarchy with image sizes scaled 

by half at each dimension from bottom to top resolution level.
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Fig. 5. 
The segmented components in a typical image from undifferentiated subtype are shown. (a) 

Original image. (b) Partitioned image shown in colors with nuclei in blue, cytoplasm in 

cyan, neuropil in yellow, red blood cells in gray, and background in red. (c) Nuclei 

component. (d) Cytoplasm component. (e) Neuropil component. (f) Background component.
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Fig. 6. 
Flowchart of the developed classification system. The solid arrows indicate online steps and 

the dashed arrows indicate offline steps.
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Fig. 7. 
Scatter plots of the training features in a two-dimensional feature space associated with four 

resolution levels (from the lowest to highest) are shown in (a)–(d). These features are 

selected and extracted when LDA and the classifier of KNN (K = 5) are used.
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Fig. 8. 
Percentages of image tiles graded as undifferentiated, poorly differentiated, and 

differentiating for the three testing slides (i.e., Nos. 1–3 in Table 6) are shown in (a)–(c), 

respectively. For each slide, classification results associated with confidence configurations 

Ω1–Ω5 in Table 7 are presented, respectively. For better visual effects, the vertical axis of (a) 

starts with 92%.
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Fig. 9. 
Image tile-level classification results of three typical tumor slides using configuration Ω5 are 

shown. (a), (d), and (g) are the H&E stained whole-slide images classified as 

undifferentiated, poorly differentiated, and differentiating class by an experienced 

pathologist. (b), (e), and (h) are the corresponding classification maps where the colors blue, 

cyan, and yellow represent undifferentiated, poorly differentiated, and differentiating class 

identified by the developed computer system. (c), (f), and (i) are the associated decision level 

maps where the intensity of each pixel represents the resolution level at which each 512 × 

512 image tile is eventually classified. Darker intensities indicate higher resolution levels.
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Table 1

Features used by pathologists in the visual grading process

Features Description Category

Neuropil The degree of presence of neuropil No/minimal/sparse/moderate/prominent

Cell cellularity Number of cells per HPF (high power field) Low/intermixed/high/intermediate

Nuclear size Variation of nuclear size Variable/uniform/pleomorphic

Nuclear shape Shape regularity Round-to-oval/pleomorphic

Mitotic karyorrhectic index Number of tumor cells in mitosis and karyorrhexis Low/intermediate/high

Mitotic rate Number of mitoses in 10 contiguous HPFs at 400× magnification Low/high

Calcification Presence of dense basophilic clumps or amorphous granular material Yes/no
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Table 2

Statistical features derived from L, A*, and B* image channels used by the developed computerized system in 

the automated classification process

Features Description

Entropy A measure of the uncertainty of the local pattern from the information theory

Mean of the range of values The mean value of the differences between the maximum and minimum values within neighborhoods across 
the image

Variance of the range of values The variance of the differences between the maximum and minimum values within neighborhoods across the 
image

Homogeneity A statistical value that measures the uniformity of a neighborhood
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Table 3

When our system is trained with the training data using the leave-one-out cross-validation method, the 

numbers of features selected using the SFFS procedure for different classifiers are presented

Feature extraction and classification Resolution level

1 2 3 4

KNN 9 7 7 6

LDA&KNN 16 13 10 11

LDA&NM 10 16 11 9

CORRLDA&KNN 8 8 6 6

CORRLDA&NM 4 9 2 6

LDA&BAYESIAN 17 16 11 11

SVM 3 6 10 5
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Table 4

When our system is trained with the training data using the leave-one-out cross-validation method, the 

resulting tile-level classification accuracies with the use of the SFFS procedure for different classifiers are 

presented

Feature extraction and classification Resolution level

1 2 3 4

KNN 94.32% 94.57% 95.35% 97.16%

LDA&KNN 98.97% 98.19% 98.45% 99.48%

LDA&NM 98.19% 98.45% 98.19% 98.97%

CORRLDA&KNN 96.12% 95.35% 97.67% 98.19%

CORRLDA&NM 94.32% 95.35% 95.61% 97.16%

LDA&BAYESIAN 98.71% 98.19% 98.71% 99.22%

SVM 98.72% 97.44% 98.72% 97.44%
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Table 5

Classification accuracies of the whole-slide experiments are shown

Confidence configuration Slide-level classification accuracy

Undifferentiated Differentiating Poorly differentiated Overall

Ω5 90.00% 84.62% 90.00% 87.88%
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Table 6

Neuroblastic differentiation grades of typical three testing slides diagnosed by pathologists and their whole-

slide image sizes are presented

Slide no. Differentiation grade Image size (uncompressed) (GB)

1 Undifferentiated 10.8

2 Poorly differentiated 15.5

3 Differentiating 28.5
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