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Abstract

This paper proposes a generic methodology for segmentatidmeconstruction of
volumetric datasets based on a deformable model, the TgipaldActive Volumes
(TAV). This model, based on a polyhedral mesh, integratatufes of region based
and boundary based segmentation methods in order to fit thieuwrs of the objects
and model its inner topology. Moreover, it implements awtimprocedures, the
so called topological changes, that alter the mesh stmietnd allow the segmen-
tation of complex features such as pronounced curvaturbsles, as well as the
detection of several objects in the scene. This work pregaetTAV model and the
segmentation methodology and explains how the changes ifAY structure can
improve the adjustment process. In particular, it is foduse the increase of the
mesh density in complex image areas in order to improve thestwent to object
surfaces. The suitability of the mesh structure and the satation methodology
is analyzed and the accuracy of the proposed model is proitadoath synthetic
and real images.

Key words: 3D image segmentation, Topological Active Volumes, adapti
topology,

1. Introduction

The recent development of 3D acquisition technologies ashasized the
need of techniques for the understanding of volumetricsdaiain several fields
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such as medical imaging [1, 2] or non—destructive testingrofiucts [3, 4]. Ob-
ject segmentation and reconstruction are important taskisel image processing
pipeline. Nevertheless, the detection of objects in volmimelatasets is a chal-
lenging problem due to the size of the data and the varighofitthe features of
interest.

Deformable models are well-known tools in image analysis ltlave been ap-
plied successfully in several fields such as image segmemthd reconstruction,
pattern recognition, surgery simulation or tracking. Theyre introduced by Kass
et al. [5] and generalized to 3D by Terzopoulos et al. [6].

Deformable models can be broadly classified into expliciinaplicit mod-
els. On one hand, the explicit technigues represent thetjyemeans of meshes
(curves, surfaces or solids) which shape evolves undentlhience of external and
internal forces. The shape deformation is the main advantéthis kind of mod-
els since it allows the adjustment to different objects. esv, since the model
topology is created before the deformations, deformabldeatsoare not generally
able to segment complex shapes with genus higher than 0.dér tw overcome
this limitation, several works have been developed in paats, Mclnerney and
Terzopoulos [7] have proposed thesnakesan extension of the classic snakes that
enables topological flexibility by means of an iterative agpmetrization of the
contours. To this end, they decompose the image domain idisceete grid and
compute the intersections between the countour and the@eilihgette and Mon-
tagnat [8], Duan and Qin [9] and Lachaud et al. [10, 11] hawekiged techniques
based on detecting the self-intersections in the evolviagimand merging the col-
liding regions using a set of remeshing rules. Moreover,sRomd Boissonat [12]
have proposed an approach where the mesh is iterativelytegddg computing
the restricted Delaunay triangulation of the deformed akjeOn the other hand,
the geometric deformable models [13, 14] are based on tled e formulation
[15] and they are represented implicitly. This kind of regmetation of contours
and surfaces provides topological flexibility in the segtagan process so that the
topological changes are automatically handled. Howetnrakes difficult the user
interaction and increases the computational cost. Neslerth, some optimizations
have been proposed to increase the efficiency of the segtioanpaocess [16, 17].

The Topological Active Volumes (TAV) [18] is a parametric 3I2formable
model based on the active nets model. The active nets modefissaproposed
by Tsumiyama and Yamamoto [19] as a variant of the deformaimeels that
integrates features of region—based and boundary—bagetestation techniques.
To this end, this model has two different kinds of nodes: retlenodes for surface
adjustment, and internal nodes, for modelling the inneoltmyy. The former uses
boundary information whereas the latter is related to tg@reinformation. This
duality is the main advantage of this model over other modslievel sets since
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it allows not only the surface adjustment but also the atglgkthe inner object
features. The nodes are organized in a polyhedral meststdafarmed under the
influence of energy functions.

Besides, another advantage of the TAV model is its abilitpeéoform topo-
logical changes in its structure in order to adjust to coitiesy detect holes and
find separate objects in the scene. The topological adaptatithe TAV model
is based on the detection of complex areas in the scene ardbtedopment of
appropriate changes in the mesh topology to achieve thstatfmt. The complex
areas are detected by means of computing several variadésd to the mesh fea-
tures whereas the changes are related to the insertiotiotede transformation of
nodes. This way, the insertion of new nodes in areas withqumeced curvatures
improves the mesh adjustment. Also, the deletion of nodewslthe adjustment
to convex areas as well as the detection of several objedteiscene. Finally,
the transformation of the type of node is used for detectaagures such as holes
inside the objects.

This paper reviews the model and segmentation methodolsgyedl as de-
scribes the techniques to modify the TAV structure basedhemgmoval of nodes
in order to improve the segmentation results. In this setims® paper is focused
on the analysis of complex image areas using the structnsetén order to detect
object curvatures. The increase of the mesh density in theses improves the
adjustment to the object surfaces. To this end, this pamgroges several proce-
dures to add new nodes to the existing mesh. Moreover, therésaof the mesh
topology as well as the proposed methodology are analyzddcampared with
other techniques. Finally, several segmentation resultsnages with different
complexity are presented.

This paper is organized as follows. Section 2 presents ttares of the TAV
model. Section 3 explains the steps followed in the segrtientprocess. Section
4 reviews how the TAV model can perform topological changesrder to detect
complex structures in the scene. Section 5 shows some s&gfioarresults that
prove the model suitability and finally, section 6 presehtsdonclusions and the
intended future work.

2. Modd

A Topological Active Volume (TAV) is a three-dimensionafgtture composed
of interrelated nodes located at the vertices of a polyhe{it8]. This polyhedron
is repeated throughout the mesh and defines the neighb@liamigpnships among
nodes. There are two types of nodes: internal, inside thdynzesl external, on
the surfaces. Each type of node represents different ofgatires. The external



Figure 1: TAV meshes with 8 3 x 3 nodes. The dark nodes represent the external nodes whereas
the light one is the internal node. Left: cubic mesh. Rigétrahedral mesh.

nodes fit the surface of the object whereas the internal nodeke! its inner topol-
ogy. This fact allows the integration of information baseddiscontinuities and
information based on regions. The former is associatedtermad nodes and the
latter, to internal nodes. Figure 1 shows TAVs with cubic &tdahedral topolo-
gies.

Parametrically, a TAV is defined as#r, s,t) = (x(r,s,t),y(r, s t), z(r,s,t)), where
(r,s,t) € ([0,1] x [0,1] x [0,1]). The state of the model is governed by an energy
function defined as follows:

E(v) = /01/01/01 Eint (V(r,s,1)) + Eexi(V(r, s, t))drdsdt (1)

whereE;; andEey are the internal and the external energy of the TAV, respelgti
The former controls the shape and the structure of the retaltulus depends on
first and second order derivatives which control contractiad bending, respec-
tively. The internal energy term is defined by:

Eim(V(r,S,t)) = G(\Vr(r,&t)|2+\Vs(r,s,t)\2+|vt(r,$t)|2)+
B(|vir (1, 5,)[ + Vss(r, 8,12 + [wie (1,5, 1)[?)+ @)
2y(|wrs(r,8,1)|2 + Vit (r,8,1) |2 + |vst(r, 5,1)[?)

where subscripts represent partial derivatives @nfl andy are coefficients that
control the smoothness of the net. In order to compute theygntihe parameter
domain|0,1] x [0,1] x [0,1] is discretized as a regular grid defined by the internode
spacing(k,l,m) and the first and second derivatives are estimated usingriite fi
differences technique in 3D.

Eex represents the features of the scene that guide the adjtspmueess and
is defined as follows:

p 1
Eext(V(r,s,t)) = wf[I(v(r,s,1))] + aso| peD%S’U Vst =Pl fI(v(p))] (3



wherew andp are weights| (v(r,s,t)) is the intensity value of the original image in
the positionv(r,s,t), f is a function related to the image intensity, did,s,t) is
the neighborhood of the node s,t). This way, given that the repeated polyhedron
in the mesh defines the node neighborhoods, the shape oflftegmn influences
not only the flexibility of the mesh, but also the way the nodesadjusted to the
objects.

Since the internal and external nodes model different pHrthe objects,f
should be adapted for both types of nodes. On one hand, ibijleets to detect are
dark and the background is light, the energy of an interndenaill be minimum
when it is on a point with a low grey level. On the other hane ¢émergy of an
external node will be minimum when it is on a discontinuitydam a light point
outside the object. In this situation, functidris defined as:

h[I(v)n] for internal nodes

fllv)] = { 4)

h{lmax— 1 (V)n + &(Gmax— G(V))] + GD(v)  for external nodes

whereg is a weighting term)max and Gmax are the maximum intensity values of
imagel and the gradient imag®, respectively) (v) andG(v) are the intensity val-
ues of the original image and the gradient image in the nodgipov(r,s,t), Wn

is the mean intensity in ax n x n cube,h is an appropriate scaling function, and
GD(v) is the gradient distance, this is, the distance from the podéionv(r,s,t)

to its nearest edge. This way, the combination of gradienigeand intensity val-
ues in an area allows the integration of both boundary andmeagformation in
the external energy term.

3. Segmentation methodology

The segmentation process consists of several stages as 2ighows. First, a
mesh with an homogeneous distribution of nodes is creatddomated automat-
ically over the whole image. This way, the mesh is able todeaibjects located
throughout the scene. After the initialization stage, thesimenergy is minimized
iteratively by means of a greedy algorithm. This algorithraves iteratively the
mesh nodes to neighboring voxels where the node energy &r.ldivstops when
the energy functions reach a minimum, this is, when the mesbcated around
the objects.

After the minimization stage, the number of nodes in each Bxecomputed
to adapt the mesh size to the object size; for example, if Hjecois longer than
wider, the number of nodes in the x-axis will be increasedrehg the number of
nodes in the y-axis will be decreased. The mesh is also ckatrer the detected
objects in order to get a node distribution independent@bthject location. Then,
the mesh energy is minimized again.
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Figure 2: Stages in the segmentation process.
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Finally, topological changes are performed to increaseflthébility of the
model and, after a local energy minimization step, to adjustmesh to concave
surfaces, holes, or separate objects. There are three diindgological changes.
First, the removal of nodes allows the adjustment to consaviaces and the de-
tection of several objects in the scene. Second, speciglrésasuch as internal
holes can be detected by changing the behavior of some nBdesly, the inser-
tion of new nodes increases the accuracy of the adjustmestrters and sharp
edges.

The TAV model has been developed using several base polyhestopol-
ogy based on cubes was implemented first. Even though theesggtion results
using this configuration were good [18], the cubic topologg limitations in the
adjustment to surfaces with pronounced curvatures as figj@gows. Hence, a
new mesh topology based on tetrahedra was developed in wrdemprove the
segmentation results [20]. Nevertheless, the tetrahedeahes have an important
drawback since their higher link density increases the absbmputing the node
energies. For this reason, a mixed approach was develogedmixed approach
combines a cubic mesh in the early stages for a fast objeettitmt and a tetrahe-
dral mesh in the last stages for fine adjustment. Thus, thaesfély is increased
whereas the accuracy is maintained.

4. Topological changes

The TAV size and topology are defined at the beginning of tlgenemtation
process as any other deformable model. Since the objece shamknown, the
final segmentation results could be inaccurate. Some autfawe proposed to per-
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Figure 3: Adjustments of meshes based on cubes and teteahédft: original object. Center:
results using a cubic mesh with 220 x 20 nodes. Right: results with a 2020 x 20 tetrahedral
mesh. The tetrahedral mesh is able to detect the small rdurmles in the surface of the object but
the cubic mesh only detects them roughly. An increase of thghnsize does not improve the cubic

results.

form topological changes in the mesh structure in order fwrave the adjustment
of the deformable models [7, 21, 8, 9, 10, 11].

Regarding the TAV model, three kinds of topological changas be per-
formed. On one hand, if nodes are removed, the mesh flexislincreased and
complex areas such as concave surfaces or external holéeg citected more ac-
curately. On the other hand, the nature of the nodes can IngetiaSince external
nodes define surfaces and internal nodes represent thieiriethe objects, inner
holes can be segmented if some internal nodes inside thehofeeare turned into
external nodes. Moreover, new nodes can be added to thealrigesh. Thus, a
higher mesh density can improve the adjustment to compléacas.

Each topological change involves several steps. The pueeddarts with the
identification of the complex areas where the mesh is notsgetju After that, the
mesh is reconfigured according to the kind of topologicahgeaand, finally, the
energy is locally minimized to achieve the local adaptation

This section describes the topological changes that haae developed in the
TAV meshes in order to improve the adjustment to the objetztilde

4.1. Removal of nodes
Due to its fixed topology, the TAV meshes are not able to segjro@mplex
areas such as concave regions, external holes or sepajatésads figure 5 (a)

shows. These areas can be pointed out by internal nodes asiegriound as well
as external nodes far from surfaces. Since an internal neelebackground can
also point out an inner hole, the external nodes far fromasesd are chosen to

detect the external complex areas [22].
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Figure 4: Removal of a node in a cubic mesh. After the topalaigihange, the neighboring internal
nodes become external since they are on the surface of the mes

The distance of each external node to its closest surfaceuresathe level of
adjustment. Since the Tchebycheff's inequality identifies outliers in the set
of external nodes, an external node is wrongly located i&iifies the following
equation:

GD(r,s,t) > Pep + 206D (5)

whereGD(r,s,t) stands for the gradient distance of the external negdet), and
Hep andogp are the average and standard deviation of the gradienhdestaf the
set of external nodes, respectively. We are consideringhb#5% of the external
nodes can be outliers.

In the node removal procedure, there is a priority that wisighe gradient
distance. This priority forces the removal of nodes in thmesarea in order to
avoid anarchical removals that sometimes cause a wrongesggtion result. At
the beginning, the priority of each node is initializated tand this value is doubled
every time that a topological change is performed in thehi®mghood of a node.

Once the set of external nodes far away from the object baigsda identified,
next node to remove is the node that fulfils

GD(r,st) « p(r,s,t) > GD(r',8,t") x p(r’, s, t'),

(r',s,t') € {(x,y,2)|GD(x,Y,2) > Hep+ 20GD} ©6)

where p(r,s,t) is the priority of the noddr,s,t). Thus, the choice of a node to
remove relies on the node location in the image and on eadide removals in the
node neighborhood.

A node removal implies not only the elimination of a node bsbahe breaking
of its links and the removal of the tetrahedra the node betongrigure 4 depicts
the removal of a node in a cubic mesh (for simplicity). Notattthe neighboring
internal nodes become external after the node removal.

After each node removal, the mesh energy is locally minichizeaccomplish
the local adjustment. Figure 5 shows the results of the nexh@val procedure in
several synthetic examples.



Figure 5: (a) TAV meshes before performing any topologitarmge. (b) TAV meshes after removing
nodes. The node removal procedure allows the detectiorvefaeobjects on the scene as well as
the segmentation of complex surfaces.

4.2. Transformation of nodes

After the minimization stage, external nodes should be ersthifaces whereas
internal nodes should stay inside the objects. This faotallthe reconstruction
of the external surfaces as well as the analysis of the ireaufes of the objects.
Moreover, the removal of nodes improves the surface defimitiHowever, the
initial mesh configuration is not able to detect some stmestinside the objects,
specifically inner holes, since internal nodes model thiénsf the objects and
avoid the boundaries and the background of the inner holbss,Tsome kind of
mesh reconfiguration should be performed in order to segthest areas.

As the external nodes are able to detect surfaces, someaxtedes should be
generated inside the mesh in order to segment the inner. Atlesstraightforward
solution is the transformation of several internal nodes axternal nodes inside
the mesh, the so called hole nodes. These internal nodesomoser background
inside the inner holes, this is, they must be wrongly located

Since the energy of an internal node reaches a minimum wiearoidhe is inside
the objects, a high energy value represents an internal moideorrectly located.
Using the Tchebycheff’s inequality, an internal node wél\wwrongly located if its
energy valueE(r,s,t), verifies that:

E(r,S,t) > UE+30E (7)

wherepe andog represent the average and the standard deviation of tHeetota
ergy, i.e., the sum of the internal and external energiebatet of internal nodes.
Using this equation, we consider that the 89% of the intemodes should be cor-
rectly located.

Once the outliers are identified, a tetrahedron that costdie worst located
node and other three wrongly located nodes is chosen. Adetimedes become
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Figure 6: Transformation of nodes. Left: Internal nodesd@she hole become hole nodes. Center
and right: Removals of nodes inside the hole. Light nodesesgmt internal nodes whereas dark
nodes represent hole nodes.

Figure 7: Segmentation results in synthetic objects witleirholes. The figures show a cross section
of two synthetic objects.

hole nodesthis is, external nodes inside the mesh. Then, several reodevals
are performed from the hole nodes until no wrongly locatelé imode is found.
This way, the hole nodes are able to detect the hole structinese two steps, the
transformation of internal nodes into hole nodes and thevaihof hole nodes are
repeated until no more inner holes are found. Figure 6 showexample of this
procedure in a 2D version of the tetrahedral mesh for sirtylic

Figure 7 shows the cross-sections of several segmentedt®hjdth inner
holes.

4.3. Insertion of new nodes

The mesh is defined initially as a discrete grid of a fixed siz¢he surface
adjustment in complex areas such as pronounced curvatuoesners sometimes
is not accurate even though the aforementioned topologitahges have already
been performed. A larger mesh size can improve the adjusttoezomplex sur-
faces at the expense of a higher computational effort. M@esince the object
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complexity is a priori unknown, it is impossible to set theshappropriate mesh
size. Hence, the addition of new nodes in complex areas cproima the results
even with small meshes.

The development of a technique to insert new nodes in the teask to two
main issues. On one hand the definition of complex area antheoather hand,
the mesh reconfiguration task related to the insertion ofaanuzle.

First of all, a metric is computed to point out complex araahsas pronounced
curvatures or corners. The metric must take into accounbmigtthe object curva-
tures but also the reliability of the object contours. Thiythe noise sensitivity
is reduced and the true complex areas are enhanced. Withithisve have used
the 3D version of the metric proposed in [11]. The eigenwlokthis metric are
chosen as follows:

_ [i K?nax] _ [K_f ] _ [K_§ ]
M1 = <, K2, 11@, Ho = K%mul 1y, M= K%]axul 1L (8)

Kref
wheres is the intensity of the point where&s andk, measure the curvatures in
the principal directionskmay is the maximum curvature value found in the image;
Sef andkes are the intensity and curvature of reference, respectiviely is, the
minimum value that is reliable. They were empirically se9Q@% of the maxi-
mum values of intensity and curvature detected in the imddge notation[- |ap
constrains its arguments between the boumdsdb.

The curvature and, by extension, the node density of a defolensurface
aligned with the image contours is determinedibyand 3. Note the influence
of the voxel intensity in the computation of the curvatures.

The structure tensor is used for computing the intensitythaaturvature from
the image. It is defined as a positive symmetrical matrix Wwiian be evaluated
at each point of the image. Its spectral decomposition chexiaes the way the
image gradient changes in the neighborhood of a chosen.voxel

If Vgl is the gradient of the imagesmoothed by a Gaussian filter of standard
deviationo, the gradient tensaly, is obtained by computing, at each point of the
image, the Cartesian product of the gradient ve(n;oplz)T with itself:

2
Ix Iy Ixlz
Jo‘l - lel X lel - lel X VO'lIT - Iy X (leylz) == ley I)% Iylz
I, Iz Iyl 12

The convolution of this tensor with a Gaussian filter of stmddeviationp
leads to the structure tensor:

o, * (I o, * (Ixly)  Qo, * (Ixl2)
‘]02-,01 = gUz ('xly) gUz (|2 902 *( y| ) (10)
Iyl |

|
* * (ly |
9o, * (Ixlz)  Gop * (Iylz)  Qo, * (I
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Figure 8: Curvature metric. Left: original slice of the 3Ddage. Center and right: curvature of the
contours in the principal directions representegiaandys, respectively.

wherea; defines the neighborhood in which the image structures anpoted.

The eigen-decomposition of the structure tensor desctie$ocal features.
The matrixJs, o, has three positive eigenvalues, &> and&s, and three corre-
sponding eigenvectong, v» andvs. The first eigenvectoy; is aligned with the
surface normal whereas the remaining two eigenvecterandvs, lie in the prin-
cipal directions of the surface. This way, the highest eigkre measures the inten-
sity of the contours whereas the lowest eigenvalues areaguot to the curvature
of the contours.

According to [11], the intensity and the curvatures are coteg from the
eigenvalues of the structure tensor as follows

s=v&1, Ki=3/e2 Ko=23/c% (11)

wheree is a positive constant that assures the definition of theimigtregions
whereg; ~ 0. Experimentally, this constant was sette 0.1e]"X

Figure 8 shows the proposed metric computed from a slice efthject in
figure 3.

Once the curvature metric is computed, next task is thetinseof new nodes
in complex areas. The remeshing implies the developmenteaxftanique to insert
anode in a tetrahedron and a procedure to find the tetraheldtad to the complex
areas pointed out by the metric.

Regarding the insertion of a node in a tetrahedron, tworsteres have been
taken into account. The first one is the split of a link and theosd one is the
division of a face of a tetrahedron. The former splits eattabedra that shares
the involved link into two tetrahedra whereas the laterd#egi the tetrahedron into
three tetrahedra. In both cases, the node is inserted in itd@lerpoint of the
corresponding structure. Figure 9 depicts these two &gt

The procedure for the insertion of a node by means of the apétlink has
several steps. First, the links between external nodesregzed. In order to

12



Figure 9: Methods for the insertion of a node. Left: origitettahedron. Center: a connection split.
Right: a face split.

produce uniform meshes and avoid an excessive remeshingia areas, only ex-
ternal connections longer than a given threshold are takeraccount. Typically,
this threshold is set as follows

lthreshold= M + O} (12)

wherey is the media and is the standard deviation of the length of the links
between external nodes. This threshold decreases lingahyhe iterations.

The curvature of the set of links longer thiaReshoiqis checked in a restricted
neighborhood of the image following a line defined by the radgubint of the link
and an inner point of the mesh. Since the object curvatueetafregions and it is
not an isolated feature, the analysis of the points thahleline is enough to find
the closest curvatures. If the link belongs to tetrahedth imternal nodes, the in-
ner point is computed as the average coordinates of thenaiteodes. Otherwise,
the inner point is computed as the average coordinates aitieenal nodes of the
tetrahedra that share the link. The curvature is checked apglistance equal to the
previously computed thresholgheshoi¢ This way, only the closest curvatures are
taken into account. Finally, a node is inserted in each liakied near to curvature
and the mesh energy is locally minimized. In the adjustmiet,node generally
follows the line defined in the curvature check.

The insertion of nodes can be also performed by means of tigati of an
external face of a tetrahedron. The procedure is similanacsplit of links. First,
only the tetrahedra composed by external nodes are analyeel same length
threshold is applied to the links of the tetrahedra to plieithe divisions and
avoid an excessive remeshing. Once the set of candidatdéelra is obtained,
the curvature is checked following a line defined by the neddbint of a face
composed by three external nodes and the coordinates ofthiee mode in the
tetrahedron. The curvature is checked up to a distance emtled length threshold
too. Finally, a node is inserted in the middle point of thesfaf each tetrahedron
near to curvature and the TAV energy is locally minimized.
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Figure 10: Insertion of nodes in synthetic images. First.rbefore the insertion of nodes. Second
row: after the insertion of nodes.

Figure 10 shows the results of inserting nodes in TAV mesihste the im-
provement in the adjustment to curved surfaces in the ficssanond columns and
the better definition of the internal hole in the third colunmthese examples, the
procedure to split links was used for the insertion of newasod the mesh. Next
section analyzes the suitability of both methods.

5. Resaults

This section shows the segmentation results in both syathet real 3D im-
ages. In the examples, the input image was used in the ekesraagy term for
both internal and external nodes. The gradient images vanguted using a 3D
Canny detector. The model parameters as well as the inigahmeize of the exam-
ples presented in this section are summarized in table 1.

First of all, a statistical analysis has been performed depto validate the
segmentation results. To this purpose, the values of 8gtysénd specificity have
been computed in several segmentation examples. In tres ttessensitivity mea-
sures the proportion of object voxels that are segmentethdoyfAV whereas the
specificity measures the proportion of background voxetssegmented by the
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Table 1: Parameters used in the segmentation examples

Figures Mesh size a B Y p w g
10 (left) 15x 15x 15 30 0.00001 000001 30 30 50
10 (center) X9x9 15 0.00001 000001 30 30 50
10 (right) 17x 17x 17 25 0.00001 000001 30 30 50
11 25 0.00001 0.00001 3.0 3.0 5.0
12 3.0 0.00001 0.00001 3.0 3.0 5.0

16 (left) 22x22x 22 3.5 0.00001 0.00001 3.0 3.5 5.0
16 (right) 20x 20x 20 25 0.00001 0.00001 3.0 3.0 5.0

17 34x 34x 34 25 0.00001 0.00001 3.0 3.0 5.0
18 40x 40x 40 25 0.00001 0.00001 3.0 3.0 5.0
19 46x 46 x 46 25 0.00001 0.00001 3.0 3.0 5.0

TAV mesh. These measures are computed as follows

Sensivity= +p-t Specifity= +y s (13)

where TP is the number of true positives, i.e. the number of voxelgemtly
segmented by the mesiiN is the number of true negatives, i.e. the number of
background pixels not segmentdelP is the number of false positives, i.e. the
number of background pixels segmented by the mesh Fahds the number of
false negatives, i.e. the number of object voxels not setgden

The first experiment involves the analysis of the mesh featufo this end, the
sensitivity and specificity measures were computed fronsémgmentation results
obtained with the cubic topology [18] and the tetrahedrabtogy. Objects with
concave and convex surfaces were studied. For the convex@&D image with
a sphere was selected to perform the statistical analygjsrd-11 shows the seg-
mentation results with both cubic and tetrahedral top@egising the greedy strat-
egy as well as the evolution of the sensitivity and specjfieitiues with respect to
the mesh size. The sensitivity value, i.e., the proportibalbgect voxels correctly
segmented, increases with the mesh size in both topologies & large number of
nodes improves the adjustment. Also, the tetrahedral twl@rg is always better
than the cubic adjustment. Regarding the specificity, thgegaslightly decrease
with the mesh size because the segmentation of more objgetsvoan include
some neighboring background voxels since the faces areume¢dt However,
the specificity values are always greater than 0.999, whichdgood adjustment.
The results of the tetrahedral approach are also betterttiearesults of the cubic
topology.
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Figure 11: Sensitivity (left) and specificity (right) of a fige with convex surfaces.

In the concave case, an object with small holes was segmesitteoth cubic
and tetrahedral topologies (figure 3). The holes are big gmdor not requiring
topological changes. Figure 12 shows the segmentatiottgasing the greedy
strategy and the evolution of the statistical measuremdrits results of the con-
cave case are different from the convex case. Since the mdsb is not adjusted
correctly to the concave surfaces, the specificity valuéisdrtubic mesh are lower,
i.e., a high number of background voxels are considered jestodreas. As a con-
sequence, all the object voxels in the hole are also segthant¢hat the sensi-
tivity is greater in the cubic meshes. The tetrahedral neesie able to discard
background voxels so their specificity is higher but theisstivity is a bit lower
because they fail in the detection of some object voxelseplat the concave sur-
faces. However, the adjustment is good since the worst ssgitien results have
a sensitivity higher than 0.95 and a specificity higher th&80

The second experiment studies the suitability of the pregasethodology.
Figure 13 shows the measures of sensitivity and specificityugh the segmenta-
tion process of the images from figure 10. Since the meshligitovers the whole
image, the regions of segmented background are reduced asgmentation pro-
cess advances, so that the specificity is increased at egrbfdhe segmentation
procedure. On the contrary, the sensitivity is slightlyueedl in each segmenta-
tion step since an improvement in the node adjustment sorastieduces the seg-
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Figure 12: Sensitivity (left) and specificity (right) of a fige with concave surfaces (figure 3).

Figure 13: Sensitivity (left) and specificity (right) meass at each segmentation step of the images
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Figure 14: Example of mesh adjustment before (left) and #fight) the insertion of a node. The
insertion of new nodes diminishes the false positive ratesbmetimes increases the number of false
negatives due to the object surface features.

mented object area as figure 14 shows. This situation ariees wurved surfaces
are approximated by polygonal meshes. However, at the etifteafegmentation
process, the specificity is near 1 and the sensitivity istgrehan 0,92 in all the
examples.

Moreover, our model was compared with the B-surface algarif23] and the
Huang’s method [24] in order to test the adjustment to theailgurfaces. A sphere
with radius 40 was segmented and the distances from the TA&lcgupoints to the
sphere points were computed. Table 2 summarizes the regthtslifferent mesh
sizes. The distance of the external nodes to the objectcasrfia always 0 since
the external nodes are adjusted to the object surfaces.ovierdghe distance from
some interpolated points (the midpoint of each externad)féxthe sphere surface
was also computed. The results show that this value deperadsly, on the mesh
density. The global mean values (external nodes + intetgublpoints) obtained
with the TAV mesh improve the results of the previous methotise B-surface
algorithm obtains a 0.05 mean distance error whereas thedg$tumethod obtains
a 0.1 mean distance error. However, the maximum distanoe @fthe B-surface
algorithm is lower (1 voxel) because it has more surface iinpdiats (52 surface
patches with 400 surface points each) than the TAV model éx@&nal nodes in
the 12x 12 x 12 mesh).

The proposed methods for the insertion of nodes have betstistdly ana-
lyzed too. Figure 15 shows the evolution of the sensitivity #he specificity in
several segmentation examples with different mesh size=gai@ing the speci-
ficity, the split of links and the combination of both techmés produce better re-
sults than the division of faces. The sensitivity values\aw® close for all the
proposed methods and only in the last example with inneishtde measurements
of the division of faces are slightly higher.

Moreover, figure 15 shows the behavior of the segmentatisualteewith re-
gard to the mesh size. On one hand, the sensitivity incrasgeshe mesh size
since a higher node density allows a better surface adjmstm@n other hand,

18



O-M 0,992 ,\0 //53——«.0
0,96 = ~o. o <
-~ 0991 ¥ ® '~u\“o',/yf’
> >
2 0,988
s oo &
=
§ S 0,986
0,92 ]
& & 0984
—&— Method 1 0,982 - ——a&— Method 1
0,9 ~—#—— Method 2 ~——@— Method 2
Method 1 + 2 0,98 - Method 1 + 2
0,88 7 T 7 T 7 0,978 7 T 7 T T
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Nodes Nodes
' J
0,982
0,98
’,‘43—15.,:4p:({; 0,98 1
= >
2 2 0,978
S =
= 5 0976
a @
g & 0974
—&— Method 1
=— Method 2 0,972 —&— Method 1
Method 1 + 2 —#— Method 2
0,97 Method 1 + 2
0,8 T T T T 0,968 T T T T
1000 2000 3000 4000 1000 2000 3000 4000
Nodes Nodes
0,942 —4&— Method 1
0,94 1 ~——#— Method 2
g 0,9975 Method 1 + 2
0,938
>
"E 0,936 5 00
2z 0 =
= ]
g 09344 Q 0,9965
(2]
1]
0.932 —— Method 1
0,93 4 ——— Method 2 0,996
' Method 1 + 2
0,928 T T T T 0,9955 T T T
5000 10000 15000 20000 5000 10000 15000 20000
Nodes

Nodes

Figure 15: Evolution of the sensitivity (left column) andesfficity (right column) in the methods
for the insertion of nodes. The charts show the statistiegirentation results of the images shown
in figure 10. Method 1 stands for the insertion of nodes by medithe split of links, method 2 is
the division of faces and method 1 + 2 stands for the comluinatf both techniques.
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Table 2: Evolution of the distance (in voxels) from TAV suapoints to the actual object surface
with respect to the mesh size in figure 11.

Mesh size
9x9x9 10x10x10 11x11x11 12x12x12
Mean distance 0 0 0 0
External Nodes -
Max. distance 0 0 0 0
. Mean distance 0.198 0.075 0.054 0.052
Interpolated Points -
Max. distance 2 2 2 2
Global mean distance 0.142 0.054 0.039 0.037

Figure 16: Segmentation results on synthetic images.

the specificity is very high, close to 1, and independent efrttesh size since the
background area is bigger than the object area so a smakiserof true negatives
related to a higher mesh size does not affect the specifialtyev
Figure 16 shows the segmentation results of some synthatiplex objects

whereas figures 17, 18 and 19 shows the results in real CT sn&géhese cases,
the surface reconstruction includes the node distributicorder to show how the
nodes are adjusted to the object features. Note how the ndasrare inserted in
areas with complex curvatures, how both internal and eatdrales are detected
and how the noise is skipped in figure 19.

6. Conclusions

This paper presents the Topological Active Volumes (TAVdeloa 3D defor-
mable model focused on segmentation and reconstructiks. thkis model allows
the adjustment of complex features such as holes or proedunavatures as well
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Figure 17: Segmentation of an engine from CT images. Leftroat engine reconstruction using 3D
Doctor software. Right column: TAV volume reconstructidrhe blue nodes represent the external
nodes whereas the purple nodes represent the new insetes. no
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Figure 18: Segmentation of a tibia and a fibula from CT imagesft column shows the bone
reconstruction using 3D Doctor software and the right caluthe TAV surface reconstruction. The
second row shows a cross section of both bones. The blue nepgiessent the external nodes, the
green nodes are the internal nodes, the purple nodes repthsenew inserted nodes and the red
nodes are the hole nodes used as a seed to create the inrger hole
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Figure 19: Segmentation of a knee from CT images. Left colshmws the bone reconstruction
using 3D Doctor software and the right column, the TAV suefaeconstruction. The blue nodes
represent the external nodes and the purple nodes repteserdw inserted nodes.
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as the detection of several objects in a scene by means dbgipal changes in
its structure. Three kinds of topological changes have Ipgeposed. First, the
removal of nodes, that increases the flexibility of the mesth allows the split
of the mesh. Also, the change of the nature of the nodes allogvsletection of
inner holes inside the mesh. Finally, the insertion of nedesoincreases the node
density in some areas and improves the adjustment to corspléxces. To this
end, two methods have been proposed: the split of links aaditlision of faces.
The statistical analysis of the segmentation results grolie superiority of the
former method and the suitability of the overall segmeataprocess.

Future work includes the improvement of the efficiency amddbcuracy of the
model by means of the development of other minimizationriggres as well as
the addition of different energy terms.
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