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Abstract

We study the problem of estimating the time delay between two signals represent-
ing delayed, irregularly sampled and noisy versions of the same underlying pattern.
We propose and demonstrate an evolutionary algorithm for the (hyper)parameter
estimation of a kernel-based technique in the context of an astronomical problem,
namely estimating the time delay between two gravitationally lensed signals from a
distant quasar. Mixed types (integer and real) are used to represent variables within
the evolutionary algorithm. We test the algorithm on several artificial data sets, and
also on real astronomical observations of quasar Q0957+561. By carrying out a sta-
tistical analysis of the results we present a detailed comparison of our method with
the most popular methods for time delay estimation in astrophysics. Our method
yields more accurate and more stable time delay estimates: for Q0957+561, we ob-
tain 419.6 days between images A and B. Our methodology can be readily applied
to current state-of-the-art optical monitoring data in astronomy, but can also be
applied in other disciplines involving similar time series data.
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1 Introduction

The estimation of time delay, the delay between arrival times of two signals
that originate from the same source but travel along different paths to the
observer, is a real-world problem in Astronomy. A time series to be analysed
could, for instance, represent the repeated measurement, over many months
or years, of the flux of radiation (optical light or radio waves) from a very
distant quasar, a very bright source of light usually a few billion light-years
away. Some of these quasars appear as a set of multiple nearby images on the
sky, due to the fact that the trajectory of light coming from the source gets
bent as it passes a massive galaxy on the way (the “lens”), and, as a result, the
observer receives the light from various directions, resulting in the detection
of several images [29,46]. This phenomenon is called gravitational lensing, and
is a natural consequence of a prediction of the General theory of Relativity,
which postulates that massive objects distort space-time and thus cause the
bending of trajectories of light rays passing near them. Quasars are variable
sources, and the same sequence of variations is detected at different times in
the different images, according to the travel time along the various paths. The
time delay between the signals depends on the mass of the lens, and thus it is
the most direct method to measure the distribution of matter in the Universe,
which is often dark [43,29].

In this scenario, the underlying pattern in time of emitted flux intensities from
a quasar gets delayed and corrupted by all kinds of noise processes. For ex-
ample, astronomical time series are not only corrupted by observational noise,
but they are also typically irregularly sampled with possibly large observa-
tional gaps (missing data) [33,40,32,27]. This is due to practical limitations of
observation such as equipment availability, weather conditions, the brightness
of the moon, among many other factors [17]. Over a hundred systems of lensed
quasars are currently known 2 , and about 10 of these have been monitored for
long periods, and in some of these cases, the measurement of a time delay has
been claimed. Here we focus on Q0957+561, the first multiply-imaged quasar
to be discovered [51]. This source, which has a pair of images (here referred to
as A and B), has been monitored for over twenty years, and despite numerous
claims, a universally agreed value for the time delay in this system has not
emerged [30,14].

In an earlier paper, we presented an analysis of repeated radio observations,
along with simulated data generated according to the properties of these ob-
servations [14], to show that a kernel-based approach can improve upon the
currently popular methods of estimating time delays from real astronomi-

2 A growing list of multiply-imaged gravitationally lensed quasars can be found at
http://cfa-www.harvard.edu/castles.
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cal data. The more common form of observations, however, employs optical
telescopes for monitoring known multiply-imaged sources, and these obser-
vations have inherent problems that require the modification of our previous
approach. Here we present a largely modified approach that outperforms on
optical datasets our previous appraoch, as well as alternative approaches in
use in astrophysics.

Here we introduce a novel evolutionary algorithm (EA) to estimate the pa-
rameters of a model-based method for time delay estimation. The EA uses, as
a fitness function, the mean squared error (MSECV ) given by cross-validation
on observed data, and also performs a novel regularisation procedure based
on singular value decomposition (SVD). Our population is also represented by
mixed types, integers and reals.

The contribution of this paper is in several directions: i) an evolutionary al-
gorithm has been introduced to form a novel hybridisation with our kernel
method, ii) a principled automatic method has been proposed to estimate the
time delay, kernel width, and SVD regularisation parameters, iii) the applica-
tion of EA driven by a model based formulation to a real-world problem, and
iv) we carefully study statistical significance of the results on different data.

Our EA is an evolutionary optimisation technique in presence of uncertainties
[28] and missing data with mixed representation – through two linked popu-
lations, each devoted to one particular data type. The parameters to optimise
come from a kernel machine. We do parameter optimisation and model selec-
tion at the same time. This approach can be applied to other problems, not
only time series from gravitational lensing. For instance, the missing data prob-
lems cover those cases where instrumental equipment fails, observations are
incorrectly recorded, sociological factors are involved, etc. Therefore, the data
are unevenly sampled, which restricts the use of Fourier analysis [42](§13.8).
Problems with noisy and missing data occur in almost all sciences, where the
data availability is influenced by what is easy or feasible to collect (e.g., see
[12,6]).

We compare the performance of our EA in several ways:

(1) The performance of our method is assessed against that of two of the
most popular methods in the astrophysical literature [50,18,33,11,22], i.e.,
(a) the Dispersion spectra method [36,37,35,14] and (b) a scheme based
on the structure function of the intrinsic variability of the source, here
referred to as the PRH method [41].

(2) Because the true time delay of observed fluxes from quasars is not known,
we assess the performance of algorithms in a controlled series of experi-
ments, where artificially generated data with known delays are used. We
employ three kinds of artificial data sets: large scale data [14], PRH data
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[41,14] and Wiener data (as outlined in [23,24]).
(3) To justify our EA, an analogous non-evolutionary model-based approach

(K-V) is also employed in this paper.

Our statistical analysis shows that the results from our EA are more accurate
and significant than state-of-the-art methods. We use our EA as well as a
(1+1)-ES algorithm [45] on actual astronomical observations, where the twin
images were observed over several years with optical telescopes [30].

The remainder of this paper is organised as follows: the data under analysis is
described in §2. The kernel approach is outlined in §3, and the EA is presented
in §4. The results and our conclusions are in §5 and §6 respectively. Finally,
our future work is presented in §7.

2 Data

2.1 Optical Data

In this paper, we use optical observations 3 of the two images of the quasar
Q0957+561, from a monitoring program at the Apache Point Observatory,
New Mexico, USA [30]. This data set has 97 observations, where, in each
observation, fluxes are measured of all the multiple images of the source, in
the g-band (a standard yellow-green filter), from December 1994 to July 1996.

The observed time series (here called light curves) are given in Table 1, where
the Time column, representing the time of observation (note that it is irreg-
ularly sampled), is given in Julian days (JD, defined as the number of days
since Noon GMT on January 1, 4713 BC). The fluxes observed from images
A and B are given in the astronomical unit of magnitude (mag m), defined
as m = −2.5 log10 f , where f is the flux measured when observed through a
green filter 4 (g-band). In Fig. 1, the time series are shown. The measurement
errors, which are standard deviations (std) of the flux measurement, are given
in the Table 1 as Error A and Error B; these are the error bars. The source was
monitored nightly, but many observations were missed due to cloudy weather
and telescope scheduling. The big gap in Fig. 1 is an intentional gap in the
nightly monitoring, since a delay of about 400 days, the pattern, was known
‘a priori’ – monitoring programs on this quasar started in 1979. Therefore, the
peak in the light curve of image A, between 700 and 800 days, corresponds to
the peak in that of image B between 1,100 and 1,200 days.

3 Astronomers observe quasars at other wavelengths as well, e.g., with radio tele-
scopes [22].
4 This data set is available online [30].
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Table 1
Optical data: Q0957+561 observed in the g-band, from [30]

Time Image A Error A Image B Error B

(days) (mag) (mag)

689.009 16.9505 0.0152 16.8010 0.0152

691.007 16.9439 0.0111 16.7957 0.0111

695.001 16.9356 0.0090 16.7949 0.0090

... ... ... ... ...

1253.672 17.0544 0.0084 16.9206 0.0084

1266.665 17.0544 0.0205 16.9808 0.0205

1268.642 17.0798 0.0170 16.9261 0.0170

1270.652 17.0928 0.0145 16.9597 0.0119

700 800 900 1000 1100 1200
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17.2

17.3

Julian date − 2449000

G
 (

m
ag

)

Optical data: 0957+561

 

 
A
B

Fig. 1. Observations of the brightness of the doubly-imaged quasar Q0957+561, in
the g-band, as a function of time (Top: Image A; Bottom: Image B, see Table 1).
The time is measured in days (Julian days–2,449,000 days).

2.2 Artificial Data

Since the definite time delay for the Q0957+561 is unknown, one cannot test
the accuracy of methods through real data. Therefore, many attempts have
been made to generate synthetic data in order to test the performance of
methods (e.g. [41,39,7,17,23,24]). Below we describe three kinds of artificial
data sets that we have used, representing the major classes of data sets used
by others: large scale data, PRH data and Wiener data.
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Table 2
Simulated Large Scale Data sets

Gap size

Noise 0 1 2 3 4 5

0% 1 10 10 10 10 10

0.036% 50 500 500 500 500 500

0.106% 50 500 500 500 500 500

0.466% 50 500 500 500 500 500

Sub-Total 151 1510 1510 1510 1510 1510

Total = 7,701 data sets per underlying function.

5 underlying functions yield 38,505 data sets.

2.2.1 Large Scale Data

In this data set (DS-5), the true time delay is 5 days [15], and the true offset in
brightness between image A and image B is M = 0.1 mag. The intention here
is to simulate optical observations as in Ovaldsen et al. [33]. We employ only
the first five underlying functions 5 . These data sets are irregularly sampled
with three levels of noise and gaps of different size as shown in Table 2; for more
details see [14,15]. We use 50 realisations per level of noise only. Consequently,
this yields 38,505 data sets (see Table 2), with 50 samples each, of which two
are shown in Fig. 2.

2.2.2 PRH Data

These data sets are generated by Gaussian processes, following [41], with a
fixed covariance matrix given by a structure function according to Pindor [40].
The variance representing the measurement errors is 1×10−7. They are highly
sampled with periodic gaps [17], simulating a monitoring campaign of eight
months; yielding 61 samples per time series. There are seven true delays and
100 realisations for each value of true delay [14]. Two plots are shown in Fig. 3.

2.2.3 Wiener Data

These data sets, generated by a Bayesian model [23], simulate three levels of
noise with 225 data sets per level of noise, where each level of noise represents
the variance: 0.12, 0.22 and 0.42. The data are irregularly sampled and the
true time delay in all cases is 35 days. Some examples are shown in Fig. 4.
Each time series has 100 samples.

5 Plots are available at http://www.cs.bham.ac.uk/∼jcc/artificial-optical/
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Fig. 2. The simulated Large Scale Data sets, as outlined in Table 2. (a) The first un-
derlying function (DS-5-1) without noise and no gaps. Error bars represent 0.106% of
mag.(b) This data set corresponds to the same underlying function (DS-5-1), with-
out noise, and the gap size is five (first realisation). Error bars represent 0.466% of
flux.

3 Kernel Approach

In previous papers, [14,15], we have introduced a kernel-based approach, and
we would refer the reader to these papers for further detail, since not all
derivations will be repeated here at the same level of detail. The aim of this
section is to come up with the parameters to evolve in §4.

We model a pair of time series, obtained by monitoring the brightness of
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Fig. 3. Examples of the simulated PRH Data. The error bars represent a variance
of 1× 10−7. (a) This is a realisation for a true delay of 34 days. Image A has been
shifted upwards by 0.08 for visualisation. (b) In this realisation, the true delay is
66 days. Image A has been shifted upwards by 0.1 for visualisation.

images A and B (see §2), as

xA(ti) = hA(ti) + εA(ti)

xB(ti) = hB(ti)⊖M + εB(ti),
(1)

where ⊖ = {×,−} denotes either multiplication or subtraction, so M is either
a ratio (used in radio observations, where brightness is quoted in flux units) or
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Fig. 4. Simulated Wiener Data. (a) The first realisation of data sets with noise of
variance 0.12. Image A has been shifted upwards by a factor 1.5 for visualisation.
(b) The first realisation of data sets with noise of variance 0.42. Image A has
been shifted upwards by 2.9 for visualisation. In each case, error bars represent the
standard deviation.

an offset between the two images (as in optical observations, where brightness
in represented in logarithmic units). We use the latter option here. Values of
the independent variable ti, i = 1, 2, ..., n represent discrete observation times.
The observation errors εA(ti) and εB(ti) are modelled as zero-mean Normal
distributions

N(0, σA(ti)) and N(0, σB(ti)), (2)
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respectively, where σA(ti) and σB(ti) are standard deviations. Now,

hA(ti) =
N
∑

j=1

αjK(cj, ti) (3)

is the “underlying” light curve that underpins image A, whereas

hB(ti) =
N
∑

j=1

αjK(cj +∆, ti) (4)

is a time-delayed (by ∆) version of hA(ti) underpinning image B.

The functions hA and hB are formulated within the generalised linear re-
gression framework [25,47]. Each function is a linear superposition of N ker-
nels K(·, ·) centred at either cj, j = 1, 2, ..., N (function fA), or cj + ∆,
j = 1, 2, ..., N (function fB). We use Gaussian kernels of width ωc: for c, t ∈ ℜ,

K(c, t) = exp
−|t− c|2

ω2
c

. (5)

The kernel width ωc > 0 determines the ‘degree of smoothness’ of the models
hA and hB . We position kernels at the position of each observation, implying
N = n. The width ωj ≡ ωc is determined through the k nearest neighbours of
cj (equal to tj) as

ωj =
k
∑

d=1

(tj − tj−d) + (tj+d − tj) =
k
∑

d=1

(tj+d − tj−d). (6)

The weights ~α (3)-(4) are obtained as follows [14]:

~K~α = ~x, (7)

where ~α = (α1, α2, ..., αN)
T ,

~K =















KA(·, ·)

KB(·, ·)















, ~x =















xA(·)/σA(·)

xB(·)/σB(·)















, (8)

and the kernels KA(·, ·), KB(·, ·) have the form:

KA(c, t) =
K(c, t)

σA(t)
, KB(c, t) =

M ⊖K(c +∆, t)

σB(t)
. (9)
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Hence,

~α = ~K+~x. (10)

Our aim is to estimate the time delay ∆ between the temporal light curves
corresponding to images A and B. Typically, ∆ is estimated by a set of trial
time delays in the range [∆min, ∆max] with a specific measurement of good-
ness of fit [14]. In Eq. 10, the superscript “+” represents a pseudoinverse of
a matrix, the pseudoinverse rather than the inverse is required because the
matrix is not squared, that is, an over-determined system is involved [42].

Finally, the parameters are the time delay ∆ [as given in Eqs. (3) & (4)],
the variable width k [as in Eq. (6)], and the regularisation parameter θ (see
below).

3.1 Regularisation

In practice, the matrix ~K (8) may be singular because ~K is an over-determined
system, and noisy time series (2) are involved. We therefore regularise the in-
version in (10) through singular value decomposition (SVD) [14]. To avoid
singularity, the most straightforward method is to find a threshold λ for sin-
gular values [42,21]. This means that the singular values less than λ are set to

zero, following which ~K+ (10) is obtained through SVD [42].

In other words, λ tells us how many singular values to set to zero. Hence, for
a given ∆, the number of singular values to keep may vary. We illustrate this
through Fig. 5, representing artificial and optical data, where θ is the number
of singular values to set to zero. One can see a well defined pattern in the
range θ = [15, 27] (∆ = 5) in Fig. 5a, and θ = [49, 72] (∆ = 419) in Fig. 5b.
Thus, if one can find a proper λ that falls in this range, then one can claim
that the estimation of ∆ is “robust”. But the range of this pattern may change
for other M and k parameters, in which case there is no guarantee that the
estimated λ falls in this range. Furthermore, no matter which method is used
for assessing the goodness of fit, if we test ∆ in a specific range with a fixed
λ, then we may come up with different values of θ – some inside the pattern,
some outside, none inside, etc.

Instead of λ, we use θ as a regularisation parameter in §4. In fact, we aim to
create an automatic algorithm that performs a global search for all parameters,
and then finds the proper θ that falls in the pattern; with our EA, we have
done this (see §4). A review of other general regularisation techniques for
inverse problems can be found in Conan [13].
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Fig. 5. Patterns. In each relation (∆, θ), the best time delay has been plotted,
i.e., the best ∆ (y-axis) versus the number of singular values θ set to zero (x-axis).
The best time delay is found through log-likelihood [14] by evaluating time delay
trials in a given range. (a) DS-5-1-G-0-N-0. This data set has no noise and no
gaps; ∆ = [0, 10] with increments of 0.1; M is set to its true value M = 0.1 (for
more details concerning these data, see §2.2.1). The pattern is at θ = [5, 27], where
∆ = 5 (true value). (b) Actual g-band optical observations of quasar Q0957+561,
∆ = [400, 450] with unitary increments. The data set is as in §2.1; M was set to
0.117 [30] and k = 3 (6). The pattern is at θ = [49, 72], where ∆ = 419 (see Tables 3
and 4, and §5).

3.2 Optimisation

The above formulation can be seen as an optimisation problem where the
variables are ∆, k and θ. Conventional gradient-based optimisation techniques
cannot be used since the above kernel-based approach is not differentiable with
respect to the discrete variables k and θ, regardless of the loss function.

Of course, since both k and θ are finite range discrete variables, one can employ
a brute force search driven by cross-validation. Apart form having to deal in a
systematic and time-consuming manner with a huge search space, it is also not
clear what the appropriate ranges and resolutions should be for parameters
such as ∆ or k. In any case, we compare our EA approach (see section §4) with
a non-evolutionary kernel-based approach (K-V) for estimating time delay ∆
by cross-validating k and the regularisation parameter λ [14,15].

An example of the search landscape is in Fig 6. We use ∆min = 400 and
∆max = 450 with unitary increments, and θ = 1, 2, ..., n, where n = 97. The
parameter k is fixed to 3, and the offset M to 0.117. The real optical data
(g-band) in §2 is used. Then, Algorithm 1 (explained later in §4) is applied to
obtain the MSECV . Note that this landscape may change for other k values
and for other data sets. We can see that from θ = 80 to n the error surface
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Fig. 6. Example of Search Landscape. The data is from the doubly-imaged quasar
Q0957+561, in the g-band. The parameters k was fixed to 3, and the offset M to
0.117. Algorithm 1 is used to obtain the log(MSE); see §4. The surface has been
shifted upwards by 10 units for visualisation.

is quite complicated for simple search algorithms, e.g., gradient descent (if
differentiable), hill climbing or simulated annealing search. There are also
more local minima when θ < 45; see also Fig. 5. In the θ-∆ plane, the mark
(x) shows the best parameter combination; i.e., minimum MSECV . To smooth
the surface and help the visualisation, we use a logarithmic scale.

4 Evolutionary Algorithm (EA)

Following the kernel-based approach in §3, we have three parameters: (i) the
time delay ∆; (ii) the variable width k; and (iii) the number of singular values
to retain θ. Besides, we have a measurement of fitness (objective function),
e.g. log-likelihood or a loss function, which, along with the others, gives us a
third-dimensional search space Φ. Therefore, we follow an EA to avoid local
minima [4,20,48].
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Algorithm 1. Fitness function (∆x, kx, θx)

Blocks← 5
PointsPerBlock ← n/Blocks
for i← 1 to PointsPerBlock
{

Remove the ith observation of each block and include it
in the validation set V
Compute ~hA and ~hB for the training set T
Get MSECV on the validation set V
R(i)← MSECV

}
fx ← mean(R)
return fx

Let us define as our population

~Pℓ =



































∆1 θ1 k1 f1

∆2 θ2 k2 f2

... ... ... ...

∆x θx kx fx

... ... ... ...

∆p θp kp fp



































, (11)

where each row in ~Pℓ is a hypothesis commonly referred to as individual or
chromosome, which is a set of parameters {∆x, θx, kx}, randomly initialised.

Then we have p hypotheses [31]. Each hypothesis x is evaluated by fx, which
is a measure of fitness. For this, we use the mean squared error (MSECV ) given
by Cross Validation (CV), in Algorithm 1, where T = O − V is the training
set, O is the set of all observations such as O = {(xA(ti), xB(ti))|i}, and V is
the validation set (the log-likelihood or simple mean squared error can also be
used, but this might lead to overfitting). Thereafter, we apply artificial genetic
operators such as selection, crossover, mutation and reinsertion to generate
~P2, ..., ~Pg populations. At the g generation, we choose from ~Pg the best set
of parameters (or individual) according to its fitness; i.e., with minimum fx.
This procedure is summarised in Algorithm 2, and the details are in §4.1.

This process leads to artificial evolution, which is a stochastic global search and
optimisation method based on the principles of biological evolution [20,48].

14



Algorithm 2. Evolutionary Algorithm

(See 4.1 for details)

Initialise population ~P1 = [ ~P 1
1

~P 2
1 ]

Evaluate population ~P1 with Algorithm 1
for ℓ← 2 to g
{

Select ~P 1′

ℓ and ~P 2′

ℓ from ~P1

Recombine ~P 1′

ℓ , Recombine ~P 2′

ℓ

Mutate ~P 1′

ℓ Mutate ~P 2′

ℓ

Evaluate ~P
′

ℓ = [ ~P 1′

ℓ
~P 2′

ℓ ] with Algorithm 1

Reinsert ~P
′

ℓ into ~Pℓ−1 to obtain ~Pℓ

}
4.1 Representation and Evolution Operators

We represent every population ~Pℓ in every generation ℓ = 1, 2, ..., g, as two

linked populations of the same size p, ~Pℓ = [ ~P 1
ℓ

~P 2
ℓ ]. The x-th individual

in population ~Pℓ corresponds to the x-th individual in populations ~P 1
ℓ and

~P 2
ℓ . The population ~P 1

ℓ uses reals to represent ∆x, while ~P 2
ℓ employs inte-

gers to represent θx and kx. First we initialise randomly ~P1 and evaluate the
population with the above fitness function. Second, we select half of the pop-
ulation ~Pℓ for reproduction. This selection of individuals is then applied to

each sub-population ~P 1
ℓ ,

~P 2
ℓ , i.e. the indexes of selected individuals in both

sub-populations are the same. We use roulette wheel selection to obtain ~P 1′

ℓ

and ~P 2′

ℓ . Third, we apply individually recombination and mutation on ~P 1′

ℓ and
~P 2′

ℓ . Finally, we evaluate the new linked population ~P
′

ℓ = [ ~P 1′

ℓ
~P 2′

ℓ ] to obtain its

fitness and perform reinsertion of offsprings between ~Pℓ and
~P

′

ℓ (elitist strat-

egy). We repeat the above procedure until ~Pg is obtained. Note that ~P1 to ~Pg

have always the same size.

We use linear recombination and mutbga as mutation 6 (as in Breeder Genetic

Algorithm [10]) for ~P 1′

1 , and double-point crossover and discrete mutation for
~P 2′

1 . In both cases, we use 0.5 as mutation rate. We employ a population size
of p = 300 individuals and g = 50 generations, unless other values are given.
The above evolutionary algorithm 7 is what we refer hereafter as EA (with
mixed representation unless otherwise stated).

Moreover, we evolved the M parameter, and, rather than mixed types, we also

6 We also tested Gaussian mutation, which leads to a similar performance.
7 We use the Genetic Algorithm Toolbox for MATLAB [10,9], which is available
online with good documentation.
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tested only real representation with a single population performing two kinds
of flooring for integers, in the population and in the fitness function.

5 Results

Here we present the results of the application of our evolved kernel approach on
real and artificial data. We compare the performance of our EA, on the same
data sets, against two of the most popular methods from the astrophysics
literature: (a) Dispersion spectra method [36,37,35], and (b) the structure-
function-based method (PRH, [41]). In addition, we compare with the perfor-
mance of our previous approach, based on kernels with variable width (K-V)
[14], which was applied to a different (radio) observational data set and one
of the synthetic data sets (large scale data only).

Two versions of Dispersion spectra are used; D2
1 is free of parameters [36,37]

and D2
4,2 has a decorrelation length parameter δ involving only nearby points

in the weighted correlation [37,35]. For the case of the PRH method, we use
the image A from the data to estimate the structure function [41]. In the last
subsection, we compare EA against a Bayesian method on data sets generated
by this Bayesian approach [23].

In the first section below, we present the results of our analysis of the real
observational data, followed by the results from the various synthetic data:
large scale, PRH and Wiener data (see §2)

5.1 Astronomical observations

Here we use the observational optical data outlined in §2.1. We begin by
showing the results of our EA evolving M with real representation only. The
integer parameters are floored at fitness function. For M , and each parameter
in Eq. (11), we define the following general bounds: ∆ = [400, 450], k = [1, 15],
θ = [1, n], and M = [0.10, 0.20]. The results of ten runs (realisations) are
given in Table 3. The set {∆, M , θ, k} is the best solution (individual) at
g = 50 according to fx (i.e., MSECV ). The column Convergence shows at
what generation a stability has been reached, i.e., from what generation the
MSECV is constant.

Of the continuous optimisation approaches, we tested one, (1+1)ES [45], which
is based on the Gray-code neighbourhood distribution, and uses real represen-
tation. (1+1) means that one parent is selected and one child is produced in
each single step of the Evolutionary Strategy (ES). We chose the (1+1)ES
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Table 3
Evolutionary algorithm with all reals: results on DS1

Run ∆ M θ k fx Convergence at

1 419.67 0.1495 58 3 0.0019249601 40

2 419.67 0.1462 58 3 0.0019249602 43

3 419.67 0.1923 58 3 0.0019249605 40

4 419.68 0.1398 58 3 0.0019249620 46

5 419.68 0.1217 58 3 0.0019249577 38

6 419.68 0.1197 58 3 0.0019249593 33

7 419.68 0.1733 58 3 0.0019249592 28

8 419.68 0.1516 58 3 0.0019249615 37

9 419.67 0.1482 58 3 0.0019249588 47

10 419.68 0.1656 58 3 0.0019249586 40

∆ is given in days

approach because our fitness function is costly, so one expects to require fewer
fitness evaluations than our EA. Rowe et al. [45] have shown superior per-
formance of their (1+1)ES over Improved Fast Evolutionary Programming
(IFEP), on some benchmark problems, and on a real-world problem (medi-
cal tissue optics). IFEP is also a continuous optimisation approach [52]. For
(1+1)ES, the precision is set to 200, and variable bounds set as above, allow-
ing until 15,000 iterations. The convergence is reached after 14,410 iterations
by using the same fitness function (Algorithm 1 in §4), so we also floor at
fitness function for integer variables. This ES yields ∆ = 419.6, M = 0.1732,
θ = 58, k = 3, and MSECV = 1.9249617× 10−3.

In Table 4, we present ten runs, resulting from our EA with mixed types as
discussed in §4.1. Here, M is not evolved, being fixed to 0.117. The variable
bounds are also set as above. Table 3 shows that regardless of the value of
M , the time delay ∆ is consistent, this justifies that M does not need to be
evolved. Rather, we use the reported value M = 0.117 [30].

We point out that in Tables 3 and 4 the EA suggests θ = 58, which falls within
the pattern in Fig. 5b.

In Table 3, we can see that the parameter M is not crucial in the time delay
estimation. Therefore, in Table 4, we omit it. The results of these tables yield
similar ∆ estimates regardless of the representation (reals or mixed types).

The results of the (1+1)-ES are also consistent, even though (1+1)-ES requires
a larger number of iterations. On the one hand, for our EA, when g = 50
(maximum number of generations), we perform 7,800 evaluations of the fit-
ness function, because of our elitist strategy. On the other hand, (1+1)-ES
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Table 4
Evolutionary algorithm with mixed types: results on DS1

Run ∆ θ k fx Convergence at

1 419.68 58 3 0.0019249744 42

2 419.67 58 3 0.0019249722 34

3 419.69 58 3 0.0019249722 47

4 419.67 58 3 0.0019249719 49

5 419.66 58 3 0.0019249691 40

6 419.66 58 3 0.0019249670 45

7 419.66 58 3 0.0019249753 44

8 419.67 58 3 0.0019249724 47

9 419.47 71 3 0.0018908716 32

10 419.67 58 3 0.0019249711 49

∆ is given in days

tends to converge in around 14,000 iterations across different initialisations.
Every iteration corresponds to a fitness evaluation. (1+1)-ES demands more
computational time (about twice as much) and therefore we do not use this
algorithm to analyse artificial data. Since we use the same fitness function,
one would expect to get similar performance to the EA. Moreover, a theo-
retical analysis in multi-objective optimisation suggests a better performance
of population-based algorithms (such as the EA used here), compared with
(1+1)ES [19].

In the astrophysics literature, the best (smallest quoted error) previous mea-
sures for this time delay can be found to be 417±3 days [30] and 419.5±0.8
days [15]. Therefore, the results in Tables 3 and 4 are consistent. However,
we think that the estimate of 417±3 days, from this data set, is underesti-
mated because, for the quasar Q0957+561, the latest reports also give esti-
mates around 420 days by using other data sets [33]. One is reminded that
the gravitational lensing theory predicts that the time delay must be the same
regardless of the wavelength of observation [43,29,46].

5.2 Artificial Data

For the analysis of real data presented above, we do not know the actual value
of the time delay. In order to evaluate the relative performance of various
methods, we therefore present the analysis of synthetic data sets, produced
from a set of known parameters.
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5.2.1 Large Scale Data

In all cases, the time delay under analysis is given by trials of values between
∆min = 0 and ∆max = 10 (also bounds in our EA), with increments of 0.1,
where the ratio M is set to its true value 0.1. The parameter δ is set to 5,
for D2

4,2. When using the PRH method, we use bins in the range of [0, 10]
for estimating the structure function from the light curve of Image A. In our
EA, besides the above ∆ bounds, we use the following bounds: θ = [1, n], and
k = [1, 15]. For K-V, we cross-validate k and λ; the ranges are k = [1, 15] and
λ = [10−1, 10−2, ..., 10−6] (see §3.1).

Table 5 presents the results for all time delay estimates; i.e., η = 38, 505. The
best results are highlighted in bold. Regarding the statistics in Table 5, let
∆̂j , j = 1, 2, ..., η, be estimated time delays, where η is the quantity of time
delay estimates. The empirical mean is

µ̂ =
1

η

η
∑

j=1

∆̂j , (12)

and the empirical standard deviation is

σ̂ =

√

√

√

√

1

η − 1

η
∑

j=1

(∆̂j − µ̂)2. (13)

The estimators µ̂ and σ̂ are used to estimate the bias and variance of time
delay estimates, respectively. The mean squared error is given by

MSE =
1

η

η
∑

j=1

(∆̂j − µ0)
2, (14)

where µ0 is the true time delay. The average of absolute error is

AE =
1

η

η
∑

j=1

|∆̂j − µ0|. (15)

The 95% confidence intervals (CI) for µ̂ are given by µ̂± 1.96× σ̂/
√
η, where

the constant depends on the desired confidence level and the sample size; e.g.,
see Table IIIa in [3].

We also performed a t-test on these results, where the hypothesis to test is
H0: µ0 = 5. The results are shown in Fig. 7, where the estimates are grouped
by the underlying function, the level of noise and gap size. Since T follows a
Student’s t-distribution, which is centred at zero, those values close to zero are
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Table 5
Large scale data results: statistical analysis

Statistic D2
1 D2

4,2 PRH K-V EA

95% CI [5.00, [5.58, [2.67, [4.94, [5.00,

5.02] 5.59] 2.73] 4.95] 5.02]

CI range 0.02 0.01 0.06 0.01 0.02

MSE 0.74 0.99 13.46 0.47 0.63

AE 0.52 0.59 3.01 0.39 0.41

µ̂ 5.013 5.589 2.704 4.946 5.015

σ̂ 0.86 0.80 2.86 0.68 0.79

Table 6
Large scale data results: t-test

Method 0% 0.036% 0.106% 0.466%

D2
1 10 13 21 20

D2
4,2 6 1 0 0

PRH 0 2 14 16

K-V 11 5 6 13

EA 22 23 24 22

see §5.2.1 for details

statistically significant [1,16,3]. The horizontal dotted line shows the threshold
for a significance level of 95%, α = 0.05; i.e., when P < α, where P is known
as the p-value. Thus, the threshold values for |T | in Fig. 7 are 2.2, 2 and 1.9
for ν = {9, 49, 499}, degrees of freedom, respectively (see Table 2).

In Table 6, we show the number of cases that satisfy the above threshold values.
In other words, see Fig. 7 and count the number of points below the horizontal
dotted line per level of noise– the significant results. In Table 6, the results
are grouped by noise level only, and the best ones are highlighted in bold.
We also tested the significance of time delay estimates with nonparametric
hypothesis testing, such as sign test and Wilcoxon’s signed-rank test [3], with
similar results.

Like Table 6, Table 7 shows the quantity of cases where the true delay, ∆ = 5,
falls within the 95% CI. The results are also grouped by noise level. In Fig. 8,
we illustrate the 95% CI for DS-5-1, i.e., one underlying function with 0% of
noise only.

In Fig. 9 are shown the results of MSE (14), where the estimates are grouped
by level of noise as in the previous figure – Fig. 7. Here, for low levels of
noise: 0% and 0.036%, the asterisk (the proposed EA) has and outstanding
performance because the MSE is close to zero. The AE statistic (15) gives
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Fig. 7. The t-test results applied to artificial Large Scale data. Each row corresponds
to a different underlying function (DS-5-1,DS-5-2,...,DS-5-5), and each column cor-
responds to a different level of noise (0%, 0.036%, 0.106% and 0.466%). Every plot
shows the results of |T | from five methods; i.e., D2

1, D
2
4,2, PRH, K-V and EA; shaded

point, circle, diamond, triangle and asterisk respectively. Note that all the plots have
the same scale on the y-axis. See §5.2.1 for details.

Table 7
Large scale data results: 95% CI

Method 0% 0.036% 0.106% 0.466%

D2
1 23 14 22 20

D2
4,2 12 4 0 0

PRH 0 0 0 6

K-V 19 6 6 13

EA 27 23 25 22

see §5.2.1 for details

similar results with this grouping (not shown).

From Table 5, the best results are forD2
1, K-V and EA. Since the noise is about
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Fig. 8. 95% Confidence Intervals on Large Scale Data, DS-5-1 with 0% of noise only.
This plot shows the 95% CI from five methods: D2

1, D
2
4,2, PRH, K-V and EA. The

PRH intervals are not visible here because are below the bound of 4.5 days (see
Table 5). We use this bound for visualisation purposes. The horizontal and dotted
line is located at the true delay, ∆ = 5.

0.01 mag (< 0.106%) (standard deviation) in the observational optical data,
we are interested in exploring the effects of various levels of noise. Therefore, in
Table 8, we show the results of the estimates grouped by noise level, regardless
of the gap size. The best results are highlighted in bold. As in Tables 6 and
7, and Figure 9, the results from EA are promising.

Finally, we compare the performances of methods D2
1, K-V and EA through

paired tests on time delay estimates and MSE. As an example, in Fig. 10, we
show K-V against EA with paired t-test. The bars represent the mean estima-
tor µ̂−µ0 for each method, where µ̂ is the mean of time delay estimates, and µ0

is the true time delay. At the top of each plot appears either a circle or a plus
symbol representing K-V and EA, respectively. If MSEK−V < MSEEA then
a circle appears, and we display the plus symbol when MSEK−V > MSEEA.
The asterisk at the top means that the difference is significant at the level
P < 0.05, i.e., 95% confidence level. In simple words, if the bar is large then
the results are bad, because one is far from the true value µ0 = 5. Note that
when the noise is low, 0%, 0.036% and 0.106%, the empty bars (EA) are small,
that is, when the plus symbol (+) appears at the top. Therefore the results
from EA are interesting. Moreover, note that the asterisk (*) at the top ap-
pears in some cases. The asterisk means that the comparison is significant
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Fig. 9. The use of MSE on artificial Large Scale Data. Each row corresponds to a dif-
ferent underlying function (DS-5-1,DS-5-2,...,DS-5-5), and each column corresponds
to a different level of noise (0%, 0.036%, 0.106% and 0.466%). Every plot shows the
results of MSE statistic from three methods; i.e., D2

1, K-V and EA, indicated by
shaded point, triangle and asterisk, respectively.

when performing the paired t-test with a 95% confidence level.

In Table 9, we summarise the number of cases where P < 0.05, including
paired sign test and paired-sample Wilcoxon signed-rank test. We also compare
the results from D2

1 with K-V and EA. For each comparison, the pairs are
represented by M1 (o) and M2 (+). The columns corresponding to t-test show
two quantities. The first one corresponds to the quantity of symbols “o” (M1)
with an asterisk also. The second one is the quantity of symbols “+” (M2)
with asterisks. To obtain these numbers one should imagine a figure similar to
Fig. 10 for the methods involved. The columns for sign test and signed-rank
test are obtained in a similar manner; rather than t-test in Fig. 10, were used
other tests. Note again that the best results are from EA.

Now lets summarise the results found so far, Table 5 contains the results of the
analysis of these data sets over all time delay estimates regardless of noise and
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Table 8
Large scale data results grouped by noise level

Noise Level

Statistic 0% 0.036% 0.106% 0.466%

Method: D2

1

MSE 0.017 0.044 0.182 2.014

AE 0.060 0.147 0.321 1.121

µ̂ 4.95 4.98 4.98 5.07

σ̂ 0.12 0.20 0.42 1.41

Method: K-V

MSE 0.029 0.041 0.084 1.312

AE 0.117 0.139 0.219 0.833

µ̂ 4.93 4.94 4.93 4.96

σ̂ 0.11 0.13 0.21 0.83

Method: EA

MSE 1.9e-4 0.008 0.090 1.831

AE 4.7e-3 0.066 0.216 0.984

µ̂ 4.99 4.99 4.99 5.05

σ̂ 0.01 0.09 0.30 1.35

η 255 12,750 12,750 12,750

Table 9
Large scale data results: paired tests

t-test sign test signed-rank test

M1 (o) M2 (+) ∗o ∗+ ∗o ∗+ ∗o ∗+
D2

1 EA 3 46 2 23 3 37

D2
1 K-V 18 51 17 50 17 49

K-V EA 28 53 25 49 29 51

see Fig. 10 and §5.2.1 for details

gap size. Each row corresponds to a different statistic: 95% CI, MSE, AE, µ̂
and σ̂. The accuracy is measured by MSE and AE, where the best results are
for K-V, which is followed by EA. Since µ̂ and σ̂ are the mean and standard
deviation over all estimates, these statistics can be seen as a measurement of
bias and variance of time delay estimates over all data sets. Since the true
delay is µ0 = 5, the minimum bias is for D2

1 (|5.013− µ0| = 0.013); in second
place is EA (|5.015− µ0| = 0.015). The minimum variance is for K-V (0.68);
in second position is EA (0.79).

However, in practice, the noise is about 0.01 mag (< 0.106%) for the optical
data. In Tables 6 to 8, and Figs. 7, 9 and 10, the results are grouped by noise
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Fig. 10. Paired t-test on Large Scale Data. The paired t-test is performed on time
delay estimates from K-V and EA. Bars represent the estimator µ̂−µ0. At the top
of each plot, a circle appears when MSEK−V < MSEEA, and the plus symbol when
MSEK−V > MSEEA. The asterisk at top means that the p-value resulting from
paired t-test is less than 0.05, i.e., 95% confidence level.

level. Tables 6 and 7 suggest that the results from EA are more statistically
significant than others (see §5.2.1). Table 8 shows that the results are also
better from EA, particularly when the noise is less than 0.106%. If the noise
level is equal to 0.106%, depending on the statistic, the best performance is
by either K-V or EA. When the noise is high (0.466%), the best results are
from K-V. This can be also seen in Figs. 9 and 10.

The results from paired tests in Table 9 also suggest that the EA is capable of
producing significantly superior time delay estimates, when compared to D2

1

and K-V.
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Table 10
PRH data results: statistical analysis of the idealised method, PRH method with
SF*.

µ0 P T 95% CI CI range AE MSE

34 1.000 0.000 33.5 - 34.4 0.92 0.44 5.28

43 0.702 0.382 42.2 - 44.1 1.87 1.54 21.96

49 0.839 2.375 49.2 - 52.0 2.81 2.36 52.32

59 0.447 1.899 58.9 - 61.1 2.21 1.78 31.96

66 0.465 0.272 65.5 - 66.5 1.02 0.71 6.55

76 0.671 2.026 76.0 - 77.5 1.55 0.95 15.67

99 0.001 2.701 99.5 - 102.3 2.86 2.79 55.39

Avg 0.374 1.89 1.51 27.02

5.2.2 PRH Data

Now lets compare the performance of the proposed method EA with another
kind of data. Here we use the artificial data generated by the PRH method-
ology (see §5.2 in [41] and §6 in [14]), so we compare only the PRH method
against EA. In fact, we compare the performance of EA with the PRH method
by fixing the PRH parameters to those values used to generate the data (the
ideal scenario). The structure function (SF) to define the covariance matrix in
the PRH method is used in two ways: SF is fixed to its true value (SF*) and
then estimated following the PRH method (SF+).

Note that for these data there are several true time delays, µ0. In all cases, we
use bounds 8 of µ0 ± 30 days with unitary increments during the time delay
analysis. The measurement error is also fixed at its true value (variance of
1× 10−7) for all methods.

The results for the PRH method, SF* case, are in Table 10. The column µ0

denotes the true time delay, which is also our hypothesis in the t-test, whereas
η = 100. The following columns are the statistics used in this analysis (see
section §5.2.1). The last row is the average (Avg). The results for the SF+
case and for EA are in Table 11 and Table 12 respectively. An analysis of bias
(|µ0 − µ̂|) and variance (σ̂) is in Table 13.

Results from paired tests are in Table 14, where the p-values are shown. The
best values are in bold, i.e., P < 0.05.

Tables 10-13 show the results of the analysis applied to PRH data. Two ver-
sions of the PRH method were used: SF* and SF+ (see 5.2.2). Here, contrary
to the analysis of the large scale data, the noise level and gap size are fixed

8 These bounds are also used to estimate the structure function SF+ by the PRH
method.
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Table 11
PRH data results: statistical analysis of PRH method with SF+.

µ0 P T 95% CI CI range AE MSE

34 0.000 -4.881 18.9 -27.6 8.72 22.79 593.45

43 0.210 1.260 81.8 - 48.2 6.46 13.51 266.19

49 0.315 -1.008 43.7 - 50.7 6.96 15.15 307.95

59 0.977 -0.028 54.6 - 63.1 8.51 19.66 455.20

66 0.257 -1.138 58.7 - 67.9 9.23 22.21 542.99

76 0.031 -2.188 66.7 - 75.5 8.83 20.95 513.97

99 0.407 -0.832 93.0 - 101.4 8.39 18.84 446.00

Avg 0.314 8.16 19.02 446.54

Table 12
PRH data results: statistical analysis of EA.

µ0 P T 95% CI CI range AE MSE

34 0.600 0.525 32.3 - 36.8 4.58 7.68 132.27

43 0.330 0.977 42.5 - 44.4 1.96 2.28 24.34

49 0.389 -0.864 46.8 - 49.8 2.94 3.99 54.69

59 0.684 0.407 57.2 - 61.9 4.35 7.28 119.00

66 0.957 -0.052 63.9 - 67.9 3.98 7.16 99.53

76 0.301 -1.039 73.0 - 76.9 3.83 6.89 93.42

99 0.830 0.214 96.7 - 101.7 4.94 8.61 153.43

Avg 0.585 3.80 6.27 96.67

Table 13
PRH data results: Bias (|µ0 − µ̂|) versus Variance (σ̂).

PRH with SF* PRH with SF+ EA

µ0 µ̂ σ̂ Bias µ̂ σ̂ Bias µ̂ σ̂ Bias

34 34.0 2.3 0.00 23.2 21.9 10.73 34.4 11.8 0.46

43 43.1 4.7 0.18 45.0 16.2 2.05 43.7 4.8 0.79

49 50.6 7.0 1.68 47.2 17.5 1.77 48.4 7.7 0.57

59 60.0 5.5 0.07 58.9 21.4 0.06 59.9 9.7 0.96

66 66.0 2.5 0.07 63.3 23.2 2.65 65.7 9.2 0.21

76 76.7 3.8 0.79 71.1 22.2 4.87 75.1 10.2 0.86

99 100.9 7.2 1.95 97.2 21.1 1.76 99.8 12.2 0.89

Avg 4.7 0.81 20.5 3.41 9.4 0.68
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Table 14
PRH Data results: paired tests

paired t-test paired sign test paired signed-rank test

µ0 SF* & EA SF+ & EA SF* & EA SF+ & EA SF* & EA SF+ & EA

34 0.685 2.7e-5a 0.483 0.001a 0.556 4.2e-5a

43 0.364 0.476 0.057 0.089 0.004b 0.249

49 0.021a 0.567 0.012a 0.193 0.002a 0.425

59 0.919 0.673 0.012b 0.069 0.284 0.847

66 0.759 0.358 0.617 0.483 0.706 0.358

76 0.112 0.113 5e-4b 0.368 0.001b 0.145

99 0.457 0.288 0.920 0.012a 0.920 0.238

see §5.2.2 for details.

a EA with minimum MSE.
b PRH method with SF* has the minimum MSE.

(see §2). Rather, we use different short delays in the range of 30 – 100 days.

Comparing Tables 10-12, the highest significance level (P) on µ0 = {34, 43}
is for the PRH method (SF*). EA has better significance levels than the PRH
method for µ0 = {66, 99}, even considering the idealised case. For CI range,
MSE and AE statistics, SF* has the best performance on any µ0. But, on all
statistics EA performs better than SF+. Therefore, EA is more accurate than
PRH method (SF+).

In Table 13, we have µ̂ and σ̂ as a time delay estimator and a measurement
of uncertainty, respectively. Hence, the column Bias is given by |µ0 − µ̂|. The
last row has the average (Avg). Therefore, the minimum bias is for EA (on
average). If we use σ̂ as variance measurement, the minimum variance is for
PRH method (SF*). But, EA has lower variance than SF+.

Table 14 shows that in few cases the paired difference between estimates is
statistically significant (in bold). In those cases, EA is more accurate than
PRH method (SF+), and in some cases EA is also more accurate than PRH
method (SF*).

5.2.3 Wiener Data

Similarly, we compare the performance of EA with another kind of data (see
§2). These data come from a Bayesian approach [23]. We performed an analysis
as above with η = 225, so the hypothesis to test is H0 : µ0 = 35.
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Table 15
Wiener Data results: Statistical Analysis

Data Set

Method Statistic 0.1 0.2 0.4

P 0.59 0.63 0.06

Bayesian method T 0.52 0.48 1.87

MSE 32.18 9.43 41.89

AE 1.84 1.94 3.7

µ̂ 35.2 35.1 35.8

σ̂ 5.7 3.1 6.4

P 0.92 0.76 0.007

EA T 0.09 0.30 2.70

MSE 10.06 23.25 66.99

AE 1.76 3.28 5.72

µ̂ 35.0 35.1 36.4

σ̂ 3.1 4.8 8.0

Table 16
Wiener Data results: Paired Tests

Data Set

Paired test 0.1 0.2 0.4

t-test 0.633 0.982 0.264

sign 0.505 0.893 0.007

signed-rank 0.827 0.766 0.005

The results 9 are shown in Table 15. Since the data were generated by the
Bayesian method, we aim to compare such a method with EA only.

In Table 16 are the results from paired tests between Bayesian estimation
method and our EA. We highlight in bold the p-values that are less than 0.05.

In Table 15, the EA results are more significant for data with noise levels of
0.1 and 0.2, where P is 0.92 and 0.76 respectively. But for a noise level of
0.4, it does not perform as well. In terms of bias, EA performs better for the
data with a noise level of 0.1, and ties in the case of that with 0.2 data and
on the noise of 0.4 data, the performance is not good enough. Talking about
variance σ̂, EA is better on data set of noise 0.1 only. It needs to be emphasised
though, that these data was generated by the Bayesian estimation method, so
the comparison is positively biased towards the Bayesian method. However,

9 µ̂ and σ̂ for the Bayesian method are not reported in detail in [23,24]
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Table 16 suggests that most of the paired differences between estimates by
both methods are not statistically significant.

The poorer performance of the Bayesian method for low noise data, com-
pared to medium noise is explained by the posterior sampler, which does not
converge properly in some of the cases, giving biased estimates. This can be
easily avoided when analysing any given data set, since the convergence can
be assessed and the sampler re-run with different parameters. With the re-
peated runs performed here, the same parameters for the sampler with all of
the datasets were used. In the low noise case, the convergence measurement
indicates that, for a number of cases, these have not been optimal.

5.2.4 Loss Functions

Talking about loss functions, we compared the K-V and EA methods on
Large Scale data (see §5.2.1). On the one hand, K-V employs the negative
log-likelihood (Q)[14] as loss function, where the parameters k and λ are es-
timated via cross-validation for trial time delays in the range 0−10. On the
other hand, the fitness function of EA is the MSECV given by cross-validation.
We also compared the K-V method with EA by using the mean squared er-
ror 10 as the measurement of goodness of fit for K-V, rather than the negative
log-likelihood. Thus, the observational error is considered constant, because
the negative log likelihood fitting criterion in K-V has the form [14],

Q =
n
∑

i=1

(

(xA(ti)− hA(ti))
2

σ2
A(ti)

+
(xB(ti)−M ⊖ hB(ti))

2

σ2
B(ti)

)

. (16)

For the K-V method, the negative log-likelihood cost function (16) lead to
more accurate estimates.

Furthermore, we tested another fitness function on these data. Instead of
MSECV , the fitness is given by the log-likelihood Q, where no cross-validation
is performed, since k and θ are also evolved. The results are that MSECV

performs better than Q, where Q is less time-consuming.

5.2.5 Evolving Weights

We also tried to evolve all the free parameters; that is, the weights ~α in (3)-
(4). This allowed us to avoid SVD in (10), which is O(n3) (without cross-
validation). However, the performance is poor because the number of param-

10 We point out that this mean squared error is different to MSECV ; i.e., Eq. (16)
without σ2

A(ti) and σ2
B(ti)

30



eters to evolve increases with the number of samples n. In fact, we tested this
approach on artificial data and the performance was inferior to that of our
EA. This is due to an overwhelming number of variables. Typically, using evo-
lutionary approaches, one can well optimise in about 30-dimensional search
space [49]. Perhaps a new framework can overcome this problem.

6 Conclusions

From observed optical monitoring data, we suggest 419.6 days as the best
plausible value of the time delay between the two main images (A and B) of
the distant lensed quasar Q0957+561.

Regarding the artificial large scale data, the results from EA are important,
because its accuracy in this application is matched to the precision and low
levels of noise with which the current state-of-the art optical monitoring data
are being acquired for multiple-image time delay measurement [11,33,40,17].

From PRH data, we conclude that EA is more accurate than PRH method
(SF+), and competitive with the idealised case (SF*). Unfortunately for the
PRH method, the idealised case does not exist in practice.

For the Wiener data, the conclusion is that for these data, EA outperforms
Bayesian estimation method for low levels of noise (0.1 data). In other cases,
depending on the statistic, EA can show better, equal or worse results. We
stress that the current real optical obsrevational data are indeed characterised
by low levels of observational noise. It is exactly in this context where our EA
method outperforms the Bayesian estimation method.

An evolutionary algorithm has been introduced to form a novel hybridisation
with our kernel method, which is an automatic method to estimate the time
delay, kernels width, and SVD regularisation parameters. It is a successful ap-
plication of EA driven by a model based formulation to a real-world problem.
The study of the statistical significance of results on different data shows that
EA is a promising approach on gravitational lensing, in astrophysics, but it
can also be applied in other disciplines involving similar time series data.

7 Future Work

One of the main issues to deal with, in future extensions of this work, is speed-
ing up our EA, which potentially can be done in several ways. First, we would
seek the optimum procedure to invert (10) and its regularisation to deal with
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ill-conditioning (see 3). Alternative ways for model selection, rather than using
cross-validation, which is O(n3), are desirable (see in §4). The natural paral-
lelisation of EA is another research line to follow; e.g., see [8]. To speed up the
EA, fitness approximation techniques may also help with this problem [44,34]
since our fitness function is costly. Moreover, other evolutionary approaches
in presence of uncertainties have not been tested [28,2].

The time delay problem is still a huge issue in astrophysics. The next gen-
eration of large-scale monitoring projects with dedicated telescopes, LSST
(http://www.lsst.org/) and PAN-STARRS (http://pan-starrs.ifa.hawaii.edu/)
will produce monitoring data for thousands of potential multiply-imaged sources
(as opposed to the 10 sources for which data are now available). These datasets
will be available in a few years time, and a large effort is underway to develop
algorithms that are far more sophisticated than the currently available ones
that would deal with this data in an automated way, and can cope with the
inevitable noise and gap features of the data. We are attempting to develop
robust methods that will do this.
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