
 1

Rotation-Discriminating Template Matching

Based on Fourier Coefficients of Radial Projections

with Robustness to Scaling and Partial Occlusion

Hae Yong Kim

Escola Politécnica, Universidade de São Paulo

Av. Prof. Luciano Gualberto, tr. 3, 135, São Paulo, SP, 05508-010, Brazil.

Tel: (55-11)3091-5605. Fax: (55-11)3091-5718.

hae@lps.usp.br

http://www.lps.usp.br/~hae

Abstract: We consider brightness/contrast-invariant and rotation-discriminating tem-

plate matching that searches an image to analyze A for a query image Q. We propose

to use the complex coefficients of the discrete Fourier transform of the radial projec-

tions to compute new rotation-invariant local features. These coefficients can be effi-

ciently obtained via FFT. We classify templates in “stable” and “unstable” ones and

argue that any local feature-based template matching may fail to find unstable tem-

plates. We extract several stable sub-templates of Q and find them in A by comparing

the features. The matchings of the sub-templates are combined using the Hough

transform. As the features of A are computed only once, the algorithm can find

quickly many different sub-templates in A, and it is suitable for: finding many query

images in A; multi-scale searching and partial occlusion-robust template matching.

Keywords: Template-matching; radial projection; rotation-invariant feature; bright-

ness/contrast-invariance; scale invariance; partial occlusion.

 2

1 Introduction

1.1 The Problem

In this paper, we consider the rotation-discriminating and brightness/contrast-

invariant template matching problem, where the algorithm must search a grayscale

image to analyze A for a query image Q. A template matching is rotation-invariant if

it can find rotated instances of Q in A and is rotation-discriminating if it determines

the rotation angle of Q for each matching. We define that two images x and y are

equivalent under brightness/contrast variation if there are contrast correction factor

β>0 and brightness correction factor γ such that 1xy γ+β= , where 1 is the matrix of

1’s.

In the literature, there are many techniques to solve this problem. The most ob-

vious solution is the “brute-force” algorithm. It makes a series of conventional

brightness/contrast-invariant template matchings between Q rotated by many differ-

ent angles and A. Conventional brightness/contrast-invariant template matching

usually uses the normalized cross-correlation (NCC). Computation of NCC can be

accelerated using fast Fourier transform (FFT) and integral images [1] or bounded

partial correlation [2]. However, even using fast NCC, the brute-force rotation-

invariant algorithm is slow because fast NCC must be applied repeatedly for many

angles.

Some techniques solve rotation-invariant template matching using previous seg-

mentation/binarization, for example [3, 4]. Given a grayscale image to analyze A,

they first convert it into a binary image using some segmentation/thresholding algo-

rithm. Then, they separate each connected component from the background. Once

the shape is segmented, they obtain scale-invariance by normalizing the shape’s size.

Next, they compute some rotation-invariant features for each component. These fea-

tures are compared with the template’s features. The most commonly used rotation-

invariant features include Hu’s seven moments [5] and Zernike moments [6]. Unfor-

tunately, in many practical cases, images Q and A cannot be converted into binary

images and thus this method cannot be applied.

 3

Ullah and Kaneko use local gradient orientation histogram to obtain rotation-

discriminating template matching [7]. Marimon and Ebrahimi present a much faster

technique that also uses gradient orientation histogram [8]. The speedup is mainly

due to the use of integral histograms. The gradient orientation histograms are not in-

trinsically rotation-invariant and a “circular shifting” is necessary to find the best

matchings.

The recently developed matching algorithms based on scale and rotation-invariant

key-points, like SIFT [9] and GLOH [10], present very spectacular computer perfor-

mance together with true scale-invariance. These algorithms are particularly fit for

finding query images with rich textures. However, they can fail to find some simple

shapes with little grayscale variations.

Many other techniques use circular projections (also called ring projections) for

the rotation-invariant template matching, for example [11, 12, 13]. The underlying

idea of these techniques is that features computed over circular or annular regions are

intrinsically rotation-invariant. The circular projection can be followed by radial pro-

jection to obtain scale and rotation-discriminating template matching [14]. This tech-

nique can be drastically accelerated using dedicated hardware, like FPGA (Field

Programmable Gate Array) [15]. However, these techniques are slow in conventional

computers, because circular and radial projections are time-consuming processes in

non-parallel computers.

1.2 The Outline of the Algorithm

Choi and Kim [16] have proposed an interesting approach to accelerate circular

projection-based rotation-invariant template matching. Their method computes circu-

lar projections for each pixel (x,y) in A (that is, the mean grayscales of the circular

rings centered at (x,y)) forming a one-dimensional vector C(A(x,y)). The circular pro-

jection reduces the 2-D information of the neighborhood of A(x,y) into a one-

dimensional rotation-invariant vector. To reduce even more the data, the method

computes the first low-frequency complex Fourier coefficients c1, c2, ... of C(A(x,y)),

and uses them as rotation-invariant features. Actually, this technique computes the

Fourier coefficients directly, without explicitly computing the circular projections, by

 4

convolving A with appropriate kernels via FFT. The features of Q are compared with

the features of each pixel A(x,y) to select the pixels candidate for the matching. A

secondary filter based on the rotation-invariant Zernike moments is used to further

test the candidate pixels. Rotation-dependent features cannot be used in this test be-

cause circular projections do not discriminate the rotation angle.

We propose to improve Choi and Kim’s algorithm by using new rotation-invariant

and rotation-discriminating features derived from radial projection, together with the

circular features. In order to provide a short name to the new algorithm, we will call

it “Forapro” template matching (Fourier coefficients of Radial Projections). We

compute, for each pixel (x,y) in A, the mean grayscales of the radial lines centered at

(x,y), forming a one-dimensional vector of radial projections R(A(x,y)). Then, we

compute the first low-frequency complex inverse Fourier coefficients r1, r2, ... of

R(A(x,y)). Actually, we do not compute the radial projections, but the Fourier coeffi-

cients directly. Convolutions in the frequency domain are used to compute quickly

the Fourier coefficients, employing appropriate kernels and FFT. Using special ins-

truction sets, like MMX (multi-media extensions) or SSE (streaming SIMD extensi-

ons), available in most of the nowadays processors, FFT can be computed 5-20 times

faster than good conventional software implementations. Differently from the circu-

lar case, the radial coefficients are not intrinsically rotation-invariant. However, it is

possible to derive many rotation-invariant features and one rotation-discriminating

feature from the radial coefficients.

We show experimentally that the rotation-invariant radial features are more ade-

quate for finding templates than circular ones. However, the maximal accuracy is ob-

tained by using both the radial and circular features. We classify query images in

“stable” and “unstable” ones and show that any local feature-based template match-

ing can fail when searching for unstable query images. Thus, we extract one or more

stable circular sub-templates T1, ..., TN ⊂ Q, find them in A, and test for false positive

errors using Hough transform or NCC. This secondary test is essential, because any

feature-based template matching reduces the original 2-D information into a set of

features, and consequently many non-equivalent templates may be mapped into the

same features, producing false positive errors.

 5

Template matchings based in pre-computed rotation- and brightness/contrast-

invariant features are advantageous principally when the algorithm must search an

image A for a large number of templates. In this case, the vector of rotation-invariant

features)),((yxAv f is computed only once for each pixel A(x,y). Then, each tem-

plate Ti can be found quickly in A by computing the vector of features)),((ooif yxTv

at the central pixel),(oo yx of Ti and comparing it with)),((yxAv f . If the distance is

below some threshold, then the neighborhood of A(x,y) is “similar” (in rotation- and

brightness/contrast-invariant sense) to the template image Ti and (x,y) is considered a

candidate for the matching. This property makes our algorithm suitable for: finding

many different query images in A; multi-scale searching and partial occlusion-robust

template matching.

Our compiled programs and some test images are available at

www.lps.usp.br/~hae/software/forapro. Note that these programs are intended only

for testing the ideas developed in this paper, and thus many parameters were pur-

posely left to be set by hand.

The remainder of the paper is organized as follows: section 2 presents the new

features and the concept “stability”; section 3 presents the new template matching

algorithms; section 4 presents experimental results; and section 5 presents our con-

clusions.

2 New Features

2.1 Radial IDFT Coefficients

Given a grayscale image A, let us define the radial projection)),((yxARλ
α as the

average grayscale of the pixels of A located on the radial line with one vertex at (x,y),

length λ and inclination α:

 ()∫
λλ

α α+α+
λ

=
0

)sin(),cos(1)),((dttytxAyxAR . (1)

 6

In practice, a sum must replace the integral, because digital images are spatially dis-

crete. The vector of M discrete radial projections at pixel A(x,y) with radius λ can be

obtained by varying the angle α:

 MmyxARmR MmyxA <≤= λ
π

λ 0)),,((][/2),(. (2)

Figures 1(b) and 2(a) depict M=36 radial projections at the central pixel of figure

1(a).

Vector of radial projections][),(mR yxA
λ characterizes the neighborhood of A(x,y)

of radius λ. If A rotates, then this vector shifts circularly. This property is illustrated

in figure 2, the vector of radial projections of figure 1(a). The k-th Fourier coefficient

of a vector of radial projections R is (we omit indices A(x,y) and λ):

 MkMkmjmRkr M

m
<≤π−= ∑ −

=
0,)/2exp(][][1

0
. (3)

The Fourier coefficients of a vector of radial projections can be computed directly

convolving A with an appropriate kernel K, without explicitly calculating the radial

projections. Figure 3(a) depicts the “sparse DFT kernel” K (with M=8 angles) such

that the convolution KA
(

∗ yields the first Fourier coefficient of the radial projections

(where),(),(yxKyxK −−=
(

 is the double reflection of K):

 ∑∑∑∑ −−=−−=∗
p qp q

yqxpKqpAqypxKqpAyxKA),(),(),(),(),)((
((

. (4)

It is well known that the convolution KA
(

∗ can be computed by multiplications in

the frequency domain:

 KA
((

⇔∗ KA , (5)

where A and K
(

 are respectively the discrete Fourier transforms of A and K
(

.

The sparse kernel in figure 3(a) does not take into account most of the outer pixels

and consequently it does not yield accurate features. To overcome this problem, the

“dense DFT kernel” depicted in figure 3(b) can be used instead. It fills all empty ker-

nel elements, except the very central pixel. The non-zero elements of this kernel are

defined as:

 ())(exp],[yjxjkyxk +∠−=ℜ , (6)

where k is the order of the Fourier coefficient and ∠(.) is the angle of the complex

number.

 7

The linear filter using this kernel has no intuitive meaning. Using the inverse

DFT, the result of the convolution acquires a meaning: it becomes analogous to the

gradient. Figure 3(c) depicts the kernel obtained using IDFT and k=1. In order to

make the kernel more “stable,” that is, to make the result of the convolution less sen-

sitive to small perturbations like sub-pixel translation or rotation, we assign less

weight to the pixels in the outer and central regions, resulting the weighted kernel

depicted in figure 3(d). We tested empirically a number of weight distributions and

chose the most stable one. We explain in subsection 2.2.3 how these tests were car-

ried out. The resulting radial kernel is:

 ())(exp)(],[yjxjkrryxk +∠−λ=ℜ , (7)

where 22 yxr += and λ is the radius of the kernel. The weights of the five central

pixels are zeroes. In order to make the weights sum to one, all weights may be di-

vided by the sum of the weights. The kernels used to obtain the inverse Fourier coef-

ficients with k=2 and k=3 are depicted respectively in figures 3(e) and 3(f).

We will call the convolution of A(x,y) with the double reflection of the k-th radial

kernel “k-th radial coefficient” and denote it)),((yxArk or simply rk. We will call

kr∠ and || kr respectively “k-th radial angle” and “k-th radial magnitude.”

2.2 Rotation-Discriminating “Canonical Orientation”

2.2.1 The First Radial IDFT Coefficient

The rotation-discriminating feature, or the “canonical orientation,” is the first

radial angle ∠r1. The canonical orientation)),((1 yxAr∠ indicates the local direction

of A(x,y) within a neighborhood of radius λ. If A rotates θ radians, then the vector of

radial projections][),(mR yxA
λ shifts circularly θ radians and, by the time shift proper-

ty of IDFT,)),((1 yxAr is multiplied by)exp(θj . In other words, if A rotates, the first

radial angle)),((1 yxAr∠ rotates by the same angle. Moreover, a brightness/contrast

change does not alter the canonical orientation.

 8

2.2.2 Stability Analysis

The canonical orientation cannot be computed if the first radial magnitude |r1| is

too small, like inside regions with constant grayscale or at the very center of a sym-

metrical shape such as ‘I’, ‘H’ and ‘O’. However, in the latter case, the orientation

can be computed shifting slightly the center of the shape. This idea can be genera-

lized using the concept “stability.” Figure 4(a) depict the coefficients r1 (using the

kernel with λ=7 pixels) as arrows. Black circles exemplify “unstable” regions, where

the orientations change abruptly. On the other hand, the orientations inside white cir-

cles are “stable,” that is, they do not change much in the neighborhood. In unstable

regions, the canonical orientation can change completely if the image is translated or

rotated even by a sub-pixel distance. Consequently, the orientations in these regions

are not reliable and cannot be used. However, this is not a practical problem because

it is possible to extracts stable circular sub-templates Ti ⊂ Q, and use Ti to find Q in

A (figure 4(b)). Seemingly, any local feature-based template matching can fail when

searching for unstable templates.

We define that the canonical orientation at a pixel A(x,y) is (ta, tm)-stable, that is,

stable with angle threshold ta and magnitude threshold tm, if the following conditions

are satisfied:

()()

⎪⎩

⎪
⎨
⎧

≥

<′′∠∠Φ
∈′′

m

ayxANyxA

tyxAr

tyxAryxAr

)),((

)),(()),,((MAX

1

11)),((),((8)

where N(A(x,y)) is the set of neighbor pixels of A(x,y) (we use 8 neighborhood) and

Φ is the difference between two angles, defined as:

 ())2,mod(2),2,mod(min),(π−−ππ−=Φ bababa , (9)

where mod(x,y) calculates x modulo y, that is, the remainder f where x = (ay + f) for

some integer a and 0 ≤ f < y. The difference Φ between two angles is limited to the

interval [0,π[.

To determine the reliability of canonical orientation, we did the following experi-

ment. We took some images, computed the first radial coefficients using λ=15 pixels,

and chose (ta=10o, tm=0.01)-stable pixels. We use gray level ranging from 0 to 1. So,

tm=0.01 would become tm=2.55 if the grayscale ranged from 0 to 255. Roughly the

 9

half of the pixels inside the circular template was stable. Then, we distorted the im-

ages and compared the orientations of the stable pixels with the orientations of the

distorted images. The distortions were:

• Contrast increasing by 35%. This operation did not saturate our images, be-

cause they were originally low-contrast ones.

• Rotation of the images by 30 degrees using bilinear interpolation. We com-

puted the canonical orientations of the rotated images obtaining the complex

orientation images, rotated the orientation images back -30o and multiplied all

complex pixels by exp(- j × 30o). If the canonical orientation is reliable, the re-

sulting orientations will be similar to the original orientations.

• Translation of the images by (0.5, 0.5) pixels. We rescaled the images by factor

4 using bilinear interpolation, shifted 2 rows and 2 columns, and rescaled them

back by factor 0.25.

• Addition of Gaussian noise with zero mean and standard deviation 0.005.

Table 1 (columns 2 and 3) shows the average and maximum differences between the

orientations in the original and distorted images. The average differences are low.

But, most importantly, the largest observed difference was 9.49o, that is, slightly less

than ta=10o. We repeated the experiments using λ=30 pixels, ta=5o and tm=0.01 (table

1, columns 4 and 5). Again, roughly the half of the pixels inside the circulate tem-

plate were stable and the largest change of orientation was 3.37o, less than ta=5o. We

conclude experimentally that the canonical orientations of stable pixels with angle

threshold ta likely changes less than ta when brightness/contrast, rotation, sub-pixel

shifting or minor noise contamination distorts the image. This is not a mathematical

theorem, but as the chosen threshold limited the largest difference, probably this in-

equality holds in almost all practical situations. This is not a surprising property, be-

cause a stable pixel (x,y) is surrounded only by pixels whose orientations differ less

than ta from the orientation of (x,y). We repeated the experiments including unstable

pixels, that is, setting ∞=at (table 1, columns 6 and 7). Although the average errors

remained low, the maximum angle difference was 178o, almost the maximal differ-

ence between two angles. This demonstrates that the canonical orientation is not reli-

able in unstable regions.

 10

2.2.3 Weights of the Kernel

In subsection 2.1, we did not explain how we chose the weights of the radial ker-

nel. The rationale of assigning low weights to the pixels in the central and outer re-

gions is to avoid that a small translation or rotation may cause a large change in the

radial coefficients. We did many experiments similar to those that tested the reliabili-

ty of the canonical orientations using various weight distributions. We chose the

most reliable one, that is, the weight distribution that minimizes the average and the

maximal orientation errors.

2.3 Rotation-Invariant “Vector of Radial Magnitudes”

Radial magnitudes are invariant to rotation because if A rotates, then the vector of

radial projections][),(mR yxA
λ shifts circularly, and a circular shifting does not change

the magnitudes of the IDFT coefficients (it only changes their angles). Radial magni-

tudes || kr , k≥1, are also invariant to brightness because a brightness alteration only

affects the DC coefficient r0. Finally, the ratios between radial magnitudes are inva-

riant to contrast (besides being rotation- and brightness-invariant), because a contrast

alteration multiplies by the same factor all the radial coefficients. For example, let r1

and rk be the first and the k-th radial coefficients (k≥2). Then, the ratio of their mag-

nitudes |||| 1rrk is invariant to rotation and brightness/contrast. In our implementa-

tion, instead of ratio, we use the following vector of radial magnitudes vrm that takes

into account the magnitudes of all radial coefficients up to degree K:

 []||,|,||,| 21 Krm rrrv Kυ= , (10)

where υ means L1-versor and consists on dividing each element of the vector by its

L1-length |||||| 21 Krrr +++ K . We use L1-distance instead of Euclidean L2-distance

because the computation of L1-norm is faster than L2-norm and we noted no differ-

ence in accuracy. As we use versor, only K-1 elements of vrm are “independent va-

riables” because, given K-1 elements, it is possible to calculate the remaining ele-

ment. We define the distance function Λ between two vrm’s as:

 ()
1

)),(()),((
2
1)),(()),,((oormrmoormrm yxTvyxAvyxTvyxAv −=Λ . (11)

 11

This distance is limited to interval [0,1].

The concept “stability”, developed in subsection 2.2.2, may be also applied here.

We define that)),((yxAvrm is (td, tm)-stable (that is, with distance thresholds td and

magnitude threshold tm) if:

()

⎪⎩

⎪
⎨
⎧

≥+++

<′′Λ
∈′′

mK

drmrmyxANyxA

trrr

tyxAvyxAv

||||||

)),(()),,((MAX

21

)),((),(

K
 (12)

where N(A(x,y)) is the set of neighbor pixels of A(x,y) and r1, ..., rK are the radial

coefficients at pixel A(x,y).

To test the reliability of vrm, we took some images, computed the first four magni-

tudes of the radial coefficients using λ=30 pixels, and chose stable pixels with td =

0.05 and tm = 0.005. Then, contrast change, rotation, sub-pixel shifting and Gaussian

noise distorted the images. In any stable pixel, the distance between the vectors of

distorted and original images was less than 0.05. Then, we repeated the experiments

in unstable pixels. The maximal observed distance between the original and distorted

vectors at unstable pixels was slightly less than 1, indicating that vrm is not a reliable

feature in unstable regions.

2.4 Rotation-Invariant “Vector of Radial Angles”

If A rotates θ radians, then the vector of radial projections][),(mR yxA
λ shifts circu-

larly θ radians and, by the time shift property of IDFT, the k-th radial coefficient

)),((yxArk is multiplied by)exp(θjk . Moreover, a brightness or contrast change

does not alter kr∠ . Thus, the difference between kr∠ and 1rk ∠ is rotation- and

brightness/contrast-invariant. We call this feature “difference of radial angles” k and

1:

 2),2,mod(dra 1 ≥π∠−∠= krkrkk . (13)

This feature is computed modulo 2π, because it is an angle. As before, we did the

“stability analysis” and concluded that this feature also is not reliable in unstable re-

gions. In our implementation, we packed the dra’s up to order K in a structure that

we named vector of radial angles vra:

 []Krav dra,,dra,dra 32 K= . (14)

 12

We define the distance Λ between two vra’s as the weighted average of the angle dif-

ferences:

[]
[]
[]

[])),((dra)),,((dra))/((

)),((dra)),,((dra))/((
)),((dra)),,((dra))/((

)),(()),,((

333

222

ooKKtK

oot

oot

oorara

yxTyxAww

yxTyxAww
yxTyxAww

yxTvyxAv

Φπ
+

+Φπ
+Φπ

=Λ

L

 (15)

where kwk /1= (2 ≤ k ≤ K), Kt wwww +++= K32 and Φ is the difference of an-

gles defined in subsection 2.2.2. This distance function is limited to interval [0,1].

We assign smaller weights to high order dra’s, because they are more easily affected

by image distortions. Let us consider an image distortion that rotates 1r∠ by a small

angle of -θ radians, while keeping constant kr∠ , for all k≥2. This distortion rotates

dra2 by 2θ radians, dra3 by 3θ radians, etc. That is, the same distortion causes a

change proportional to the order k in dra’s. So, we assign weights 1/k to equalize the

contributions of different dra’s.

2.5 Rotation-Invariant “Vector of Circular Features”

Choi and Kim have used the DFT coefficients of the circular projections as the ro-

tation-invariant features. We will continue using these features, together with the

newly developed radial features. However, we introduce two small alterations in the

circular kernels. First, to be consistent with the radial features, we use IDFT instead

of DFT. Second, instead of using the original truncated integer radius

⎣ ⎦22(int) yxr += , we use the floating-point radius 22 yxr += because experi-

ments indicate that the latter (figure 5(b)) is more stable than the former (figure 5(a)).

The resulting circular kernel is:

⎪
⎩

⎪
⎨

⎧

=

>⎟
⎠
⎞

⎜
⎝
⎛

λπ=ℑ
0if,73.0

0if,exp
2

1
],[

r

rjlr
ryxl (16)

where 22 yxr += and λ is the radius of the kernel. The weight 1/2πr is the inverse

of the perimeter of the circle where the pixel lays. The weight for r = 0 was set at

 13

0.73 to distribute evenly the angles of the complex image resulting from the convolu-

tion. In order to make the weights sum to one, all weights must be divided by the

sum of the weights. Figure 5(c) depicts the kernel used to obtain the second circular

coefficients.

We will call the convolution of A(x,y) with the double reflection of the l-th circu-

lar kernel “l-th circular coefficient” and denote it)),((yxAcl or simply cl. In our im-

plementation, we use the following “vector of circular features” that takes into ac-

count the real and imaginary components of all circular coefficients up to degree L:

 [])im(),re(,),im(),re(),im(),re(vcf 2211 LL cccccc Kυ= , (17)

where υ means L1-versor, and “re” and “im” are respectively the real and imaginary

parts of the complex number. Only 2L-1 elements of this vector are “independent

variables” because, given 2L-1 elements of this vector, it is possible to calculate the

remaining element. The distance Λ between two vcf’s is based on L1-distance:

 ()
1

)),(()),((
2
1)),(()),,((oocfcfoocfcf yxTvyxAvyxTvyxAv −=Λ . (18)

This distance is limited to interval [0,1]. As before, we did the “stability analysis”

and concluded that this feature also is not reliable in unstable regions.

2.6 Combining the Rotation-Invariant Features

In previous subsections, we obtained three rotation-invariant classes of features,

using up to K radial and L circular coefficients and packed them in three vectors: vrm,

vra, and vcf. We will group these three vectors into another structure named “vector of

features”:

 ()cfrarmf vvvv ,,= . (19)

We define the distance function Λ between two vectors of features as the weighted

average of the distances of the three constituent vectors of features:

() ()
()
())),(()),,(()/(

)),(()),,(()/(

)),(()),,(()/()),(()),,((

oocfcftc

oorarata

oormrmtmooff

yxTvyxAvww
yxTvyxAvww

yxTvyxAvwwyxTvyxAv

Λ+
Λ+

Λ=Λ

 (20)

where wm = wa = K-1, wc = 2L-1 and wt = wm+wa+wc. These three weights are propor-

tional to the number of “independent variables” in each constituent vector. This dis-

 14

tance is limited to interval [0,1]. We define that the rotation-invariant vector of fea-

tures at a pixel A(x,y) is (td, tm)-stable if:

()()

⎪⎩

⎪
⎨
⎧

<≤≥

<′′Λ
∈′′

Kktr

tyxAyxA

mk

dyxANyxA

1,||

),(),,(MAX
)),((),(. (21)

3 New Template Matching Algorithms

3.1 Searching for the Matching Candidates

As the central pixel of Q may not be stable, we extract a set of one or more circu-

lar templates {T1, ..., TN}, Ti ⊂ Q, such that the vector of features)),((ooif yxTv at

the central pixel),(oo yx of Ti is (td, tm)-stable and the canonical orientation

)),((1 ooi yxTr∠ is (ta, tm)-stable, for Ni ≤≤1 . To abridge, we will say that the tem-

plates Ti are (ta, td, tm)-stable. Figure 6 depicts the extraction of 8 stable templates

from a query image. Whenever possible, we choose stable pixels that are located far

from any unstable pixels. We also assure that a certain distance separates the chosen

templates. This way, we assure the stability at the centers of the templates. However,

the stability of A is not analyzed at all, because likely a stable template Ti will not

match unstable regions of A. Then, for all pixels in A, we compute the radial and cir-

cular coefficients rk and cl, extract the canonical orientations and compute the vectors

of features. We calculate the “matching distance images” Di, defined as:

 ())),(()),,((),(yxAvyxTvyxD fooifi Λ= . (22)

Then, we find nc candidate pixels with the smallest values in Di and store them in the

vector of candidate pixels Ci. This algorithm can be summarized by the following

pseudo-code:

 15

function subtemplates_features_candidates(image A, image Q, int N)

{ Compute radial and circular coefficients for all pixels of Q;

 Compute canonical orientation ∠r1 and vector of features vf for all pixels of Q;

 Choose N stable sub-templates T1, ..., TN ⊂ Q;

 Compute radial and circular coefficients for all pixels of A;

 Compute canonical orientation ∠r1 and vector of features vf for all pixels of A;

 For i = 1 to N {

 For every pixel (x,y) of A

 ())),(()),,((),(yxAvyxTvyxD fooifi Λ= ;

 Find nc pixels with the smallest values in Di and store them in vector Ci;

 }

 Return [{Ti}, {∠r1(Ti(xo,yo))}, {vf(Ti(xo,yo))}, ∠r1(A), vf(A), {Di}, {Ci}];

}

This algorithm has two bottlenecks: (1) The fifth line: “Compute radial and circu-

lar coefficients of A.” (2) The central double loop. Our implementation accelerates

the first bottleneck using optimized FFT/IFFT functions provided by the OpenCV

library. As a future work, we think that the second bottleneck can also be accele-

rated: (1) Using a special data structure, like kd-tree. Kd-tree is an algorithm used to

find the nearest neighbors [17]. The original kd-tree algorithm is slow, but it can be

accelerated if we allow it to find an approximate solution. (2) Writing the critical

code directly in machine language using MMX/SSE instructions. (3) Using special

hardware like GPU or FPGA.

3.2 Normalized Cross-Correlation

Using radial and circular features with the “stability” concept, we can detect the

matching candidates. Yet, a matching candidate is not necessarily a true template

matching, because many non-equivalent templates can generate the same rotation-

invariant features. We took the necessary care to avoid false negative errors, but false

 16

positive errors can still occur. So, a matching candidate must pass through other tests

to decide whether it is a true or false matching.

The first of such tests is the normalized cross-correlation (NCC), also called cor-

relation coefficient. The correlation coefficient between vectors x and y is defined:

yx

yx
xy ~~

~~
=r (23)

where ⋅ is Euclidean L2-norm, xxx −=~ is the mean-corrected vector and x is the

mean of x. Similar definitions are applicable to y. NCC is limited to the range [-1, 1]

and is invariant to brightness/contrast changes. Some care must be taken to avoid di-

visions by zero, especially in regions with constant gray-level (see [14] for more de-

tails).

The template matching using NCC becomes: Given a query image Q, extract one

(ta, td, tm)-stable template sub-image T ⊂ Q. Find the set of matching candidates C by

finding nc pixels of A with the smallest matching distances. For each matching can-

didate pixel (x, y), compute the difference α between the canonical orientations of

A(x, y) and T(xo, yo). As the consequence of the stability, the true difference of orien-

tations is situated somewhere in the range [α-ta, α+ta]. So, for a discrete set of angles

αi in [α-ta, α+ta], rotate T by αi, translate it to (x, y), and compute pixel-by-pixel

NCC between A(x, y) and rotated and translated T. If one of the angles αi yields suf-

ficient high correlation, T matches A(x,y) with rotation angle αi. This algorithm can

be summarized as below:

 17

function Forapro_NCC(image A, image Q)

{ [T, ∠r1(T(xo,yo)), vf(T(xo,yo)), ∠r1(A), vf(A), D, C]

 = subtemplates_features_candidates(A,Q,1);

 For each matching candidate pixel (x,y) in C {

 α = ∠r1(A(x, y)) - ∠r1(T(xo, yo));

 For αi = α-ta to α+ta in discrete steps {

 If NCC(rotation(T,αi), A(x,y)) > threshold

 then T matches A at (x,y) with angle αi;

 }

 }

}

3.3 Hough Transform

The second test to separate true and false matchings is an algorithm inspired by

the generalized Hough transform [18]. The underlying idea is, given a query image

Q, to localize N sub-templates T1, ..., TN ⊂ Q in A. It is possible that a single sub-

template may generate a false positive error. However, if many sub-templates agree

to point a pixel as the matching point, the probability of error is minimized. Our fea-

ture-based algorithm is appropriate for this approach, because finding N templates in

the same image to analyze A is much faster than finding N templates in different im-

ages.

The algorithm using the generalized Hough transform becomes: Given a query

image Q, extract N stable sub-templates. For each template Ti, generate the matching

distance image Di and find the set Ci of matching candidate pixels by selecting nc

pixels with the smallest matching distances. Let a matching candidate of sub-

template Ti be located at),(yx ′′ . The center of Ti matches),(yxA ′′ . However, in

order to compute the Hough transform, it is necessary to compute the pixel A(x,y)

that matches the center of Q (instead of Ti). Hence, we compute the rotation angle

)),(()),((11 ooi yxTryxAr ∠−′′∠=α . This angle, together with the position of Ti inside

Q, allows us to compute the pixel A(x,y). Increment the Hough transform accumula-

 18

tor array),(yxH by),(1 yxDi ′′− . Instead of incrementing the accumulator by 1, we

increment it based on the matching distance, to provide a tie-breaking criterion. The

matchings are the pixels of H with the largest values. The pseudo-code below sum-

marizes this algorithm:

function Forapro_Hough1(image A, image Q)

{ [{Ti}, {∠r1(Ti(xo,yo))}, {vf(Ti(xo,yo))}, ∠r1(A), vf(A), {Di}, {Ci}]

 = subtemplates_features_candidates(A,Q,N);

 Fill H with zeroes;

 for i = 1 to N {

 for j = 1 to nc {

 Let j-th candidate pixel in Ci be located at),(yx ′′ ;

 Compute the pixel (x,y) that matches Q;

),(yxH +=),(1 yxDi ′′− ;

 }

 }

 The largest values in H indicate the matching positions;

}

We can take advantage of the small number of matching candidate pixels to acce-

lerate the Hough transform, substituting the accumulator array H (of the same size as

the image A) by a small matrix V. We will name this algorithm matrix Hough trans-

form. Let us suppose that we use N sub-templates T1, ..., TN and nc matching candi-

dates for each template. Then, we construct a matrix V with N rows and nc columns.

Row i will be filled with the nc matching candidates of sub-template Ti, sorted by the

matching distances (that is, the best candidate occupies the leftmost column).

Let the j-th matching candidate of sub-template Ti be located at),(yxA ′′ . As be-

fore, compute the pixel A(x,y) that matches the center of Q and the rotation angle

)),(()),((11 ooi yxTryxAr ∠−′′∠=α . Each element V[i, j] has four entries],,,[αwyx ,

where (x,y) is the pixel of A that matches the center of Q,),(1 yxDw i ′′−= is the

 19

weight of the matching (the larger the weight, the better the matching), and α is the

rotation angle.

To find the best matching, we construct the set S of elements of V extracting at

most one element of V per row, such that all elements of S are spatially near one

another and the sum of their weights is maximal. The numerical example below cla-

rifies these ideas:

⎥⎦
⎤

⎢⎣
⎡=

2.92 0.84, 22, 1, 0.04 0.88, 135, 123,1.11 0.90, 36, 228,

2.45- 0.83, 4, 165,0.25 0.89, 137, 125,0.18 0.95, 137, 123,V

In this example, we use N=2 sub-templates and nc=3 matching candidates per sub-

template. There are three elements that are spatially near one another: V[1,1], V[1,2],

V[2,2]. As we can take at most one element per row, we can choose either S =

{V[1,1], V[2,2]} or S = {V[1,2], V[2,2]}. The best matching is S = {V[1,1], V[2,2]},

because the weight 0.95 of V[1,1] is heavier than the weight 0.89 of V[1,2]. The al-

gorithm that finds the best matching can be written using four nested loops. The spa-

tial position of the matching is defined as the weighted average of the positions (x, y)

in S, in the example:

x=(0.95×123+0.89×123)/(0.95+0.89) and y=(0.95×137+0.89×135)/(0.95+0.89).

The rotation angle of the matching is the weighted average of the angles α in S. Av-

erage of angles cannot be computed using the conventional formula. We transform

each angle α with weight w in a complex number)sin()cos(α+α jww , add them up,

and compute the angle of the resulting sum. In the example, the rotation angle is

0.113 radians. The function below summarizes this algorithm:

 20

function Forapro_Hough2(image A, image Q)

{ [{Ti}, {∠r1(Ti(xo,yo))}, {vf(Ti(xo,yo))}, ∠r1(A), vf(A), {Di}, {Ci}]

 = subtemplates_features_candidates(A,Q,N);

 for i = 1 to N {

 for j = 1 to nc {

 Fill V[i,j] with data [x,y,w,α] of the j-th candidate pixels in Ci;

 }

 }

 Find the best matching in V as described in the text;

}

Using the Hough transform, Forapro can become robust to partial occlusions up to

a certain degree, because the algorithm can locate the query image even if some of its

sub-templates cannot be located.

3.4 Robustness to Scaling

The proposed algorithm can become robust to scale changes, that is, it can find the

query image even if it appears in another scale in A (within a predefined range of

scale factors). The matching is tested using the query image rescaled by a set of scale

factors, making it a “brute force” approach. However, as the features of A are com-

puted only once, it is not too slow. Robustness to scaling can be obtained using either

NCC or Hough transform. The algorithm robust to scaling is: Given a query image

Q, rescale it by a set of predefined scales, obtaining S rescaled query images Q1, ...,

QS. Find them all in A. Take the best matchings as the true matchings. As a future

work, we think that the true scale invariance can be obtained by organizing image A

in a pyramidal structure.

 21

4 Experimental Results

4.1 Stability, Circular and Radial Features

In this subsection, we will demonstrate experimentally that:

1. The stability of template is essential to achieve a successful matching;

2. The combination of circular and radial features yields the best accuracy.

With this purpose, we took 24 memory game cards with 12 different figures. We

scanned these cards 8 times, so that each one of the 12 figures appears only once in

each scanned image (figure 7(a)). We placed magazines behind the cards to obtain

non-blank backgrounds. These 8 images (each one with 471×347 pixels) will be our

images to analyze A1, ... A8. From one of these images, we extracted the 12 query im-

ages Q1, ..., Q12, each one with 71×71 pixels (figure 7(c)). We selected (td=0.05,

tm=0.0025)-stable and unstable sub-templates from each query image (figures 7(d)

and 7(e)). In this experiment, it is not necessary to select ta, because we will not use

the canonical orientation.

Then, we constructed the matching distance images D(x,y) varying many parame-

ters: using stable and unstable templates; varying the maximum order of the Fourier

coefficients; and using circular/radial, only circular or only radial features. In each

case, we took the pixel with the smallest value in D(x,y) as the true matching pixel.

We stress that there is no guarantee that this strategy will always work. Table 2

shows the number of observed errors using this strategy. We conclude that:

1. The minimal errors are obtained using stable templates and a combination of

circular/radial features (column 2).

2. Using stable templates, radial features alone (column 4) yield better match-

ing accuracy than circular features alone (column 3).

3. Even using only stable templates and high maximal order L, many errors are

obtained when only circular features are used (column 3).

Our implementation takes 0.9 second in a Pentium 2GHz to find the 12 templates

in an image to analyze A, subdivided in: 0.20s to compute the radial and circular

coefficients of A, 0.55s to derive the features from the coefficients, and 0.15 seconds

to compute the 12 distance images and find the 12 pixels with the smallest distance.

 22

Our implementation uses optimized FFT/IFFT functions of the OpenCV library.

However, the rest of our program is written in plain C++ and is not optimized.

4.2 The Size of Templates and the Maximum Order

In this subsection, we will analyze how the size nT×nT of the templates and the

maximum orders K and L of the radial and circular coefficients affect the matching

precision. We use only stable templates and a combination of circular/radial features

(K=L) because we have already demonstrated that these choices lead to the most ac-

curate results. Table 3 shows the obtained experimental data. We conclude that:

1. High accuracy is obtained using templates with 31×31 or more pixels. Too

small templates cannot be localized with accuracy.

2. High accuracy is obtained using at least three radial and circular coefficients.

4.3 Forapro-NCC

In the last two subsections, we took the pixel in A with the smallest matching dis-

tance as the true matching pixel. This strategy may produce false positive errors, be-

cause occasionally even at a non-matching position the matching distance can be

small. This fact is illustrated by non-zero error rates observed in the last two subsec-

tions, even using the most appropriate parameters.

We tested using NCC as a secondary filter, using (ta = 9o, td = 0.05, tm = 0.0025)-

stable 31×31 sub-templates. We varied the number of matching candidates nc from 1

to 20 and chose the best matching pixel by computing NCC. For each matching can-

didate, NCC was computed 3 times with the template rotated at angles αi ∈ {-9, 0,

9}, because the canonical orientation may have imprecision of 9o. Table 4 shows that

no error was observed using 5 or more matching candidates. Our implementation

takes 1.06 seconds to find the 12 query images in A, with K=L=3 and 5 matching

candidates.

4.4 Forapro-Hough

Another possible secondary filtering is the matrix Hough transform, described in

subsection 3.3. We tested this strategy using (ta = 9o, td = 0.05, tm = 0.0025)-stable

 23

sub-templates. We used K=L=4 and varied the size nT×nT of the sub-templates and

the number N of templates. We always took 10 best matching pixels of each template

to compute the Hough transform. Table 5 shows that using 4 or more sub-templates

or using sub-templates with at least 31×31 pixels, no error occurs. Our implementa-

tion takes 1.90s to find the 12 query images in A, with nT=31 and N=4.

4.5 Partial Occlusion

To test the robustness against partial occlusions, we copied 19×19 square blocks

from 20 randomly chosen positions to other 20 random positions in each image to

analyze. Figure 8 depicts part of such an image. Then, we tested the matching using

the Hough transform, L=K=4, nc=10 candidate pixels per sub-template, and varying

the number N and the size nT×nT of the sub-templates. The results are depicted in ta-

ble 6. Using N=8 or more templates, no error was observed. Large sub-templates in-

tersect the occluded blocks with higher probability than small sub-templates. Hence,

small sub-templates yielded fewer errors. Our implementation takes 3.61s to find the

12 query images in A, for nT = 21 and N=8.

4.6 Robustness to Scaling Using NCC

To test robustness to scaling, we took 9 query images, resized them by scale fac-

tors chosen randomly in the range [0.7, 1.4], rotated them randomly and pasted them

in random non-overlapping locations over a background image, resulting eight

400×400 images to analyze (figure 9(a)). Table 7 depicts the number of observed er-

rors using the NCC test, varying the number of candidate pixels nc and the number of

scales ns. The size of the sub-templates was 45×45 and K=L=4. Using 6 or more

scales and 20 or more matching candidates, no error was observed. Our implementa-

tion took 3.20s to find all 9 query images in an image to analyze.

4.7 Robustness to Scaling Using Hough Transform

We repeated the test of the last subsection using the Hough transform. We kept

constant the size of the sub-templates at 27×27, K=L=4, and the number of the

matching candidates nc=10 per sub-template. We varied the number of scales ns and

 24

the number of sub-templates N used in each Hough transform. The observed number

of errors is depicted in table 8. Using N=4 or more sub-templates, no error was ob-

served, even using the number of scales ns as small as 3. Our implementation takes

3.86s to find the 9 query images in an image to analyze.

4.8 NCC versus Hough

According to the theoretical and experimental data gathered so far, we conclude

that Forapro-Hough is superior to Forapro-NCC because:

1. Only Forapro-Hough is robust to partial occlusions.

2. Forapro-Hough becomes robust to scaling using less discrete scales than Fora-

pro-NCC. The former needed only 3 scales, while the latter needed 6 scales to

not make errors.

Consequently, from now on we will test only Forapro-Hough.

4.9 Comparison with SIFT

SIFT (Scale Invariant Feature Transform) [9] is a very popular, accurate and effi-

cient image matching algorithm. It extracts some scale-invariant key-points and

computes their associated local features (scale, rotation and local textures). Then, to

find a query image Q in A, it is necessary only to match the key-points. We will

compare our technique with SIFT. First, we evaluated the SIFT implemented by

Lowe1 using the three sets of images used so far (subsections 4.1, 4.5 and 4.6). SIFT

made no error, like our algorithm. The processing times also were of similar magni-

tudes (typically SIFT takes 1.5 seconds to compute the key-points of an image to

analyze).

Figure 10 presents an example created especially to explore SIFT’s weakness. As

SIFT is based on key-points and local textures, it may fail to find simple shapes with

constant grayscales. We tested finding 13 simple query images in 4 different images

to analyze. Our algorithm successfully found all the query images. Meanwhile, SIFT

made 6 errors (out of 52). To find 13 query images in each image to analyze, both

1 http://www.cs.ubc.ca/~lowe/keypoints/

 25

algorithms took approximately 3 seconds. However, note that our algorithm is mak-

ing one-scale searching, while SIFT is making scale-invariant matching.

To further compare Forapro with SIFT, we used the 8 sets of images provided by

K. Mikolajczyk2. Each set consists of 6 images, totalizing 48 images. Some of them

are depicted in figure 11. This database is adequate to test the image searching algo-

rithm’s robustness to focus blur, viewpoint changes (perspective), camera aperture,

JPEG compression, zoom and rotation. For each set, we extracted 50 query images

from the first image and searched for them in the 6 images. Thus, each experiment

consisted of 300 searchings, whose results can be correct (the algorithm correctly

localizes the query image) or erroneous (the algorithm points a incorrect location or

fails to locate the query image).

Table 9 depicts the number of errors in each experiment and the principal parame-

ters. We extracted large query images (nQ = 211×211 pixels) in the sets that have

great scale variations (Bark and Boat) because they become quite small in some of

the images (figures 11(a) and 11(b)). In the remaining sets, we extracted relatively

small query images (nQ = 91×91 pixels).

SIFT is completely scale-invariant. However, Forapro needs a pre-defined scale

range. We defined adequate Forapro scale ranges for the sets Bark, Boat, Graf and

Wall. For the remaining sets, one-scale searching is the most appropriate choice.

However, we tested both one-scale and multi-scale searchings because we deemed

not fair to compare a multi-scale searching algorithm versus one-scale technique.

In average, Forapro made fewer errors than SIFT. Remarkably, Forapro made

substantially fewer errors than SIFT in sets Bikes (6 versus 111 errors) and Leuven

(5 versus 52 errors), depicted in figures 11(c)-11(f). Probably, focus blur and camera

aperture destroy the local texture, what hinders SIFT from localizing the query im-

ages. This is the same weakness already illustrated in figure 10. We conclude that

Forapro is especially suited for applications where the local texture cannot be easily

identified and the scale variation is limited within some range. Some additional ob-

servations:

2 http://www.robots.ox.ac.uk/~vgg/research/affine/

 26

• Rarely, no SIFT key-point was found inside a query image. However, even in

many of these cases, Forapro found some stable sub-templates (figure 12) and

succeeded to localize the query images.

• In set Bark, both Forapro and SIFT localized correctly the 300 queries.

• Forapro and SIFT are not affine-robust neither perspective-robust. Consequent-

ly, both algorithms made many mistakes in sets Graf and Wall.

• In set Trees, the tree leaves are waving in the wind (beside the focus blur that

distorts the images). So, both algorithms made many errors.

• Typically, SIFT takes 6s to make a searching and Forapro takes 8s.

We also tested robustness to illumination variation using a subset of ALOI data-

base3, with the resolution reduced 4 times. We took the 300 images of the first 100

objects of the database under illumination conditions 6, 7 and 8, taken by camera 1,

as the query images. We used the 100 images under illumination condition 8, clus-

tered in 5 large images as the images to analyze. The observed errors are depicted in

table 9, indicating that both Forapro and SIFT are only moderately robust to illumi-

nation changes.

5 Conclusions

This paper has proposed a new feature-based, brightness/contrast-invariant and ro-

tation-discriminating template matching. We use the first complex Fourier coeffi-

cients of the local radial projections to compute the new features. These coefficients

can be computed efficiently and directly using the appropriate kernels and FFT,

without explicitly computing the radial projections. From the radial Fourier coeffi-

cients, we have derived three classes of features: the canonical orientation that indi-

cates the local orientation; rotation-invariant features derived from the magnitudes of

the radial Fourier coefficients; and those derived from the angles of the coefficients.

We have used these features, together with the features derived from the circular pro-

jections, to obtain a new template matching. We have classified the templates in

“stable” and “unstable” and argued that any local feature-based template matching

may fail to find an unstable template. So, we have suggested extracting stable sub-

3 http://staff.science.uva.nl/~aloi/

 27

templates from the query images and finding them in the image to analyze. As the

canonical orientation computes the rotation angle, it is easy to filter the false positive

matchings, using either the normalized cross correlation or the Hough transform. Us-

ing the Hough transform, we have obtained a template matching robust to scaling

and partial occlusions. Many experiments have shown that the proposed algorithm is

robust and efficient.

6 References

[1] J.P. Lewis, Fast template matching, Vision Interface (1995) 120-123.

[2] L.D. Stefano, S. Mattoccia, F. Tombari, ZNCC-based template matching using

bounded partial correlation, Pattern Recognition Letters (26) 2005 2129-2134.

[3] W.Y. Kim, P. Yuan, A practical pattern recognition system for translation, scale

and rotation invariance, Proc. Int. Conf. Comput. Vis. Pattern Recognit. (1994) 391-

396.

[4] L.A. Torres-Méndez, J.C. Ruiz-Suárez, L.E. Sucar, G. Gómez, Translation, rota-

tion and scale-invariant object recognition, IEEE Trans. Systems, Man, and Cyber-

netics - part C: App. and Reviews 30(1) (2000) 125-130.

[5] M.K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inform.

Theory 1(8) (1962) 179-187.

[6] C.H. Teh, R.T. Chin, On image analysis by the methods of moments. IEEE

Trans. Pattern Analysis Machine Intelligence 10(4) (1988) 496-513.

[7] F. Ullah, S. Kaneko, Using orientation codes for rotation-invariant template

matching. Pattern Recognition 37 (2004) 201-209.

[8] D. Marimon, T. Ebrahimi, Efficient rotation-discriminative template matching,

12th Iberoamerican Congress on Pattern Recognition, Lecture Notes in Computer

Science 4756 (2007) 221-230.

[9] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.

Computer Vision 60(2) (2004) 91-110.

[10] K. Mikolajczyk, A performance evaluation of local descriptors, IEEE. T. Patt.

Analysis Machine Intelligence 27(10) (2005) 1615-1630.

 28

[11] Y. Tao, Y.Y. Tang, The feature extraction of chinese character based on contour

information. Int. Conf. Document Analysis Recognition (1999) 637-640.

[12] D.M. Tsai, Y.H. Tsai, Rotation-invariant pattern matching with color ring-

projection, Pattern Recognition 35 (2002) 131-141.

[13] Y.H. Lin, C.H. Chen, Template matching using the parametric template vector

with translation, rotation and scale invariance, Pattern Recognition 41(7) (2008)

2413-2421.

[14] H.Y. Kim, S.A. Araújo, Grayscale template-matching invariant to rotation,

scale, translation, brightness and contrast, IEEE Pacific-Rim Symp. Image and Video

Tech., Lecture Notes in Computer Science 4872 (2007) 100-113.

[15] H.P.A. Nobre and H.Y. Kim, “Automatic VHDL Generation for Solving Rota-

tion and Scale-Invariant Template Matching in FPGA,” V Southern Programmable

Logic Conference, pp. 21-26, 2009.

[16] M.S. Choi, W.Y. Kim, A novel two stage template matching method for rotation

and illumination invariance, Pattern Recognition 35(1) (2002) 119-129.

[17] J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches

in logarithmic expected time, ACM Trans. Mathematical Software 3(3) (1977) 209–

226.

[18] D.H. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pat-

tern Recognition 13(2) (1981) 111-122.

 29

Tab. 1: Variations of canonical orientations of stable pixels when the images are dis-
torted (columns 2-5); and variations of both stable and unstable pixels (columns 6-7).

 λ=15, ta=10o.
(stable pixels only)

λ=30, ta=5o.
(stable pixels only)

λ=30, ta=∝.
(stable and unstable

pixels)
 average maximum average maximum average maximum

contrast 35% 0.06o 3.89o 0.04o 1.05o 0.10o 38o

rotation 30o 0.29o 9.49o 0.04o 0.86o 0.11o 119o

sub-pixel shifting 1.78o 6.69o 0.92o 3.37o 2.99o 178o

noise 0.20o 2.13o 0.10o 2.01o 0.25o 67o

Tab. 2: Observed errors using templates with 31×31 pixels, without the secondary
filtering. Using stable templates, radial features yield considerably fewer errors than
circular features (columns 3 and 4).

Errors (maximum=96)
Stable templates Unstable templates

circ/rad
K=L

circular
K=0

radial
L=0

circ/rad
K=L

circular
K=0

radial
L=0

K and/or L = 3 1 60 47 33 55 80
K and/or L = 4 1 48 18 23 52 61
K and/or L = 5 1 40 8 15 22 46
K and/or L = 6 1 37 1 7 25 41

Tab. 3: Observed errors using only stable templates and both radial and circular fea-
tures (K=L), without the secondary filtering.

Errors
(maximum=96) K=L=2 K=L=3 K=L=4 K=L=5 K=L=6 K=L=7

nT = 21 58 15 11 0 2 0
nT = 31 29 1 1 1 1 0
nT = 41 25 3 0 0 1 6
nT = 51 13 0 2 2 0 1
nT = 61 12 1 1 0 0 1

Tab. 4: Observed errors using Forapro-NCC. We used sub-templates of size nT×nT =
31×31.

Errors (maximum=96) K=L=3 K=L=4 K=L=5
nc = 1 candidate 1 1 1
nc = 2 candidates 1 1 1
nc = 4 candidates 1 0 0
nc = 5 candidates 0 0 0
nc = 10 candidates 0 0 0
nc = 20 candidates 0 0 0

 30

Tab. 5: Observed errors using Forapro-Hough, with nc=10 candidate pixels per sub-
template.

Errors (maximum=96) N=2 N=4 N=6
nT = 21 2 0 0
nT = 31 0 0 0
nT = 41 0 0 0
nT = 51 0 0 0

Tab. 6: Robustness to partial occlusion using Forapro-Hough.
Errors (maximum=96) N=4 N=6 N=8 N=10 N=12

nT = 15 9 0 0 0 0
nT = 21 2 0 0 0 0
nT = 25 5 1 0 0 0

Tab. 7: Robustness to scaling using Forapro-NCC.
Errors (maximum=72) nc = 10 nc = 20 nc = 45

ns = 4 8 10 4
ns = 5 3 0 1
ns = 6 1 0 0
ns = 8 1 0 0
ns = 12 0 0 0

Tab. 8: Robustness to scaling using Forapro-Hough.
Errors (maximum=72) N = 3 N = 4 N = 5

ns = 3 1 0 0
ns = 4 0 0 0
ns = 5 1 0 0
ns = 6 0 0 0

 31

Tab. 9: Comparison between Forapro and SIFT. In each experiment, 50 query images
were searched for in 6 images to analyze, resulting in 300 searchings.

Maximum number of
errors = 300

Query
images
size nQ

One-scale
Forapro
errors

Forapro’s
scale
range

Multiscale
Forapro
errors

SIFT
errors

Bark (zoom and rotation) 211×211 - 0.28-1.0 0 0
Bikes (focus blur) 91×91 1 0.5-2.0 6 111

Boat (zoom and rotation) 211×211 - 0.36-1.0 9 6
Graf (viewpoint) 91×91 - 0.5-1.0 109 110

Leuven (camera aperture) 91×91 3 0.5-2.0 5 52
Trees (focus blur) 91×91 80 0.5-2.0 76 134

UBC (JPEG compression) 91×91 35 0.5-2.0 35 52
Wall (viewpoint) 91×91 - 0.7-1.0 90 70

ALOI (illumination) 144×192 9 0.5-2.0 46 52
Average 41.8 65.2

 32

(a) Circular template image

(b) Radial projections

(c) Circular projections

Fig. 1: A radial (circular) projection is the mean grayscale on a radial line (circular
ring).

(a) Vector of the 36 radial projections of
figure 1(a).

(b) Vector of radial projections of figure
1(a) rotated 60o

Fig. 2: Rotation of the image causes circular shifting in the vector of radial projec-
tions.

 33

(a) Sparse DFT kernel (b) Dense DFT kernel (c) IDFT kernel

(d) 1st weighted IDFT ker-
nel

(e) 2nd weighted IDFT
kernel

(f) 3rd weighted IDFT ker-
nel

Fig. 3: Radial kernels

 34

(a) Stable regions in white and unstable
regions in black.

(b) Canonical orientations of (ta=20o,
tm=0.01)-stable pixels.

Fig. 4: Stability of the canonical orientation.

(a) Truncated integer circu-
lar kernel.

(b) Floating-point circular
kernel.

(c) Second-order circular
kernel.

Fig. 5: Circular kernels.

 35

Fig. 6: Extraction of eight stable templates from a query image. The stable pixels are
depicted in blue and the centers of the eight chosen templates are depicted in white.

(a) One of the eight images to be
analyzed.

(b) The output of our algothm.

(c) A query im-
age.

(d) A stable sub-
template.

(e) An unstable
sub-template.

Fig. 7: One of the images used to test Forapro, with the respective output.

Fig. 8: Part of an image used to test the robustness to partial occlusions.

 36

(a) An image to be analyzed. (b) The output of our algorithm.
Fig. 9: A test to verify the robustness to scaling.

Fig. 10: SIFT may fail to find simple shapes with constant grayscale, like the ones in
this figure. SIFT made 6 errors (out of 52) while Forapro made no error.

 37

(a) The 1st image of set Bark. This set tests
robustness to rotation and zoom.

(b) The 6th image of the set.

(c) The 1st image of set Bikes. This set
tests robustness to focus blur.

(d) The 6th image of the set.

(e) The 1st image of set Leuven. This set
tests robustness to camera aperture.

(f) The 6th image of the set.

Fig. 11: Some of the images used to compare SIFT with Forapro. Both SIFT and Fo-
rapro localized correctly 300 queries in set Bark. SIFT made substantially more er-
rors than Forapro when the local textures could not be easily extracted, like in sets
Bikes and Leuven.

 38

(a) Forapro made 4 errors
(out of 6).

(b) Forapro made no error.

(c) Forapro found no stable
sub-template and made 6
errors.

Fig. 12: SIFT could find no key-point in these three query images and made 6 errors
in each. Forapro found some stable sub-templates and made fewer errors.

