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Abstract
The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds
nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called
kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle
inequality to accelerate the searching for nearest neighbors in a high dimensional space. The
kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures
such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to
preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest
training objects starting from the nearest cluster to the query object and uses the triangle inequality
to reduce the distance calculations. Experiments show that the performance of kMkNN is
surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms
such as kd-trees and ball-trees. On a collection of 20 datasets with up to 106 records and 104

dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold
speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs
significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a
ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for
searching nearest neighbors in high dimensional spaces.

I. Introduction
THE k-nearest neighbor (k-NN) algorithm is widely used in many areas such as pattern
recognition, machine learning, and data mining. The traditional k-NN algorithm is called a
lazy learner, as the buildup stage is cheap but the searching stage is expensive — the
distances from a query object to all the training objects need to be calculated in order to find
nearest neighbors for the query object [24]. One advantage of the traditional k-NN algorithm
is that the running time is sublinear to k. For example, given a training set with n objects and
m dimensions, if we maintain a max-heap structure for a set of k current nearest training
objects, then the time complexity of the traditional k-NN algorithm is O(mnlgk) for a single
query.

In 2D or 3D space, graph-based searching methods such as Voronoi diagram [17] and
proximity graph [21] are efficient in searching for nearest neighbors, but it is very hard to
extend these methods to higher dimensions. A number of spatial searching methods such as
ball-trees [18], kd-trees [4], metric-trees [5] [22], quadtree [16], and R-trees [11] have been
proposed to efficiently reduce the distance calculations and find exact nearest neighbors in
higher dimensions. These methods iteratively divide training objects and build tree
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structures using criteria such as absolute coordinates and relative distances, so that a query
object needs to check distances with only a limited number of training objects instead of the
whole dataset. One problem for these methods is that when the dimensionality of a dataset is
high, most of the training objects in the data structures will end up being evaluated and the
searching efficiency is no better to or even worse than the traditional k-NN algorithm [10]
[18], especially for large k values.

Due to the difficulty of accelerating the k-NN algorithm in high dimensional space, some
methods have focused on finding approximate answers. For example, the hashing method
from [9] and the priority queue based method from [3] achieved a speedup of several fold
over the traditional k-NN by outputting k neighbors within (1+ε) of the true nearest neighbor
distances. Hart [13] and Wilson [23] used techniques called condensing and editing to
reduce objects from the dataset and accelerate the searching for nearest neighbors.

In this paper, we present a new algorithm called kMkNN (k-Means for k-Nearest Neighbors)
to efficiently search exact k nearest training objects for a query object. The kMkNN
algorithm incorporates two simple methods, the k-means clustering and the triangle
inequality, into the nearest neighbors searching and achieves good performance compared to
other algorithms. The basic idea is that we first classify training objects into different
clusters regardless of the classes of training objects, and then for a given query object q, we
use the triangle inequality to avoid distance calculations for some training objects in the
clusters that are far from q.

The kMkNN algorithm has two stages. In the buildup stage, we separate the dataset into
clusters and record the distance from each training object to its closest cluster center. In the
searching stage, we first calculate the distances from a query object q to all cluster centers.
Then we visit each training object starting from the nearest cluster to q and maintain a set of
k current nearest objects and the largest distance dmax for the k nearest objects. For a training
object p with its closest cluster center c, since we have the triangle inequality for the
distances of p, q, and c such that ∥q – c∥ < ∥p – c∥ + ∥p – q∥, if dmax < abs(∥q − c∥ – ∥p – c∥),
then dmax < ∥p – q∥. Then we do not need to explicitly calculate the distance ∥p – q∥.

Figure 1 shows a scenario of the kMkNN algorithm with a two-classes dataset. One class is
shown as triangles, the other class is shown as pluses, and the query object is shown as a
black circle. The dataset is separated into 6 clusters and most of the query objects’ nearest
neighbors are in the bottom-right cluster. In the searching stage, kMkNN first calculates the
distances from the query object to all cluster centers. Then it searches k nearest training
objects starting from the bottom-right cluster and uses the triangle inequality to avoid
distance calculations for some training objects in some clusters such as the top-left one.

If the training objects can be well separated into clusters, then the kMkNN algorithm should
be able to significantly reduce the distance calculations and accelerate searching for nearest
training objects by using the triangle inequality. If the training objects are uniformly
distributed or condensed together and there is no good way to build well separated clusters
(for example, a uniformly distributed random dataset), then the triangle inequality may not
apply and kMkNN may end up calculating the distances to all the training objects. It should
be noted, though, that since the number of clusters is much smaller than the total number of
training objects, the cost of extra distance calculations from the query object to the cluster
centers is small compared to the total number of distances calculations. So the worst-case
performance of kMkNN will be comparable to the traditional k-NN.

We tested the kMkNN algorithm on a collection of 20 datasets. The datasets, collected from
the UCI Machine Learning Repository [8] and the National Cancer Institute, have up to 106

objects and 104 dimensions. We conducted three experiments on the datasets and all of them
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used a small k value 9 and a large k value 101. In the first experiment, we compared kMkNN
to the traditional k-NN algorithm on the reduction of distance calculations and the speedup
of running time. The results show a 2- to 80-fold reduction in distance calculations and a 2-
to 60-fold speedup in running time for 16 datasets. The performance of 2 worst datasets is
comparable to the traditional k-NN algorithm (less than 5% of the slowdown of the running
time). In the second experiment, we compare kMkNN to the kd-tree based algorithm on the
speedup over the traditional k-NN for all datasets. The results show that kMkNN performs
much better. In the last experiment, we compare to the ball-tree based algorithm [18] on the
overall running time (the breakdown of the buildup and searching time is not available for
the ball-tree based program we obtained [18]) and kMkNN shows better performance for
most of datasets. All three experiments show that the kMkNN algorithm can effectively
reduce the distance calculations and accelerate the searching for nearest neighbors in high
dimensional spaces. It can be considered as an alternative for existing tree-based exact k-NN
algorithms.

II. METHODS
Assume there are n objects pi for (1 ≤ i ≤ n) in a training dataset and each object pi has m
dimensions. We present a new algorithm kMkNN (k-Means for k-Nearest Neighbors) that
searches for exact k nearest neighbors to a query object q, shown as follows:

Algorithm 1
The kMkNN algorithm

The BUILDUP stage—Input: n training objects pi for (1 ≤ i ≤ n); each with m
dimensions.

Output: kc cluster centers cj for (1 ≤ j ≤ kc) with the assignment of each object pi to its
nearest cluster.

1. Set  , where s > 0.

2. Classify the n objects into kc clusters using a k-means clustering algorithm.

3. Calculate and record the distance dij from each object pi to its nearest cluster center
cj.

4. For each cluster center cj, sort the distances dij in descending order for all the
training objects associated to cj.

The SEARCHING stage—Input: kc cluster centers cj for (1 ≤ j ≤ kc) with the
assignments of each object pi to its nearest center cj; a query object q; the number of nearest
neighbors k.

Output: A set of k nearest training objects to q.

1. Initialize the set of k nearest objects of q by using a maximum distance as the k
distances. Set the maximum distance in the set of k current nearest objects to dmax.

2. Calculate the distances ∥q – cj∥ for all cluster centers cj that (1 ≤ j ≤ kc) and sort the
distances in ascending order.

3. For each cluster cj from the nearest to the farthest to q, do the step 4.

4. For each object pi in the cluster cj from the farthest to the nearest to the cluster
center cj:
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if dmax ≤ ∥q – cj∥ − ∥pi – cj∥, go to step 3 to visit the next cluster;

otherwise, calculate the distance ∥q – pi∥ from q to pi and if dmax > ∥q – pi∥, remove the
object with distance dmax from the set of k current nearest objects and insert pi with the
distance ∥q – pi∥; update dmax.

The kMkNN algorithm runs in two stages. In the buildup stage, we separate the n training
objects into kc clusters using a k-means clustering algorithm. After the clustering, we record
the distance from each object to its nearest cluster center and sort all the distances for each
cluster in a descending order. In the searching stage, we first initiate the distances of k
nearest neighbors to a maximum value and calculate and sort the distances ∥q – cj∥ from q to
each cluster center cj for (1 ≤ j ≤ kc). Then starting from the nearest cluster to q, we use the
triangle inequality to check each object pi in a cluster cj. If dmax ≤ ∥q – cj∥ − ∥pi – cj∥, where
dmax is the maximum distance in the set of k current nearest objects to q, then we skip the
whole cluster cj. Otherwise, we calculate ∥q – pi∥ and if ∥q – pi∥ < dmax, we remove the
object with the distance dmax from the set of k current nearest objects, insert pi, and update
dmax. After we check all the clusters cj for (1 ≤ j ≤ kc), the set of k current nearest objects
contains the k nearest neighbors to q among all training objects pi for (1 ≤ i ≤ n).

In the searching stage, given a query object q, we have two assumptions on how to visit the
clusters and the objects in the clusters: (a) it is most likely that we can find most of the k
nearest training objects to q in only a few nearest clusters to q; (b) for each object in a
cluster other than the cluster closest to q, it is more likely that the distance from the object to
the cluster center is shorter than the distance from q to the cluster center.

Assumption (a) is obvious, so in the algorithm, we visit each cluster from the nearest to the
farthest to q after we calculate the distance ∥q – cj∥ from q to each cluster center cj for (1 ≤ j
≤ kc) and sort the distances.

Assumption (b) does not hold for the cluster nearest to q (for example, the lower right
cluster in Figure 1), but it does hold for other clusters (for example, the clusters other than
the lower right one in Figure 1). The objects in those clusters will have shorter distances to
their corresponding centers than the distances from q to those cluster centers, that is, q can
be considered as an outlier for the majority of clusters.

Based on assumption (b), we can use the triangle inequality to reduce unnecessary distance
calculations from some training objects pi to q. For the cluster nearest to q, we mostly likely
will check all objects and obtain a set of k current nearest objects with a small dmax. For
other clusters, say, cj, most likely we have ∥q – cj∥ > ∥pi – cj∥, that is, q is farther from cj
than a training object pi associated with cj. Also based on the triangle inequality, we have ∥q
– cj∥ − ∥pi – cj∥ < ∥q – pi∥. If dmax ≤ ∥q – cj∥ − ∥pi – cj∥, then we have dmax ≤ ∥pi – q∥ and
we do not need to calculate the distance ∥pi – q∥. Note that we do not use dmax ≤ abs(∥q – cj∥
− ∥pi – cj∥), since it is rare to have ∥pi – cj∥ > ∥q – cj∥, in which case q is closer to cj than pi
for a non-nearest cluster to q, so we check dmax < ∥q – cj∥ − ∥pi – cj∥ only in the
implementation.

To further reduce distance calculations, for each cluster, we check from the farthest training
object associated with the cluster center to the nearest one. The reason is that, first of all, for
any cluster cj other than the nearest one, generally ∥q – cj∥ > ∥pi – cj∥ for any object pi
associated with cj. Given two objects pi1 and pi2 associated with cj, if ∥pi1 – cj∥ > ∥pi2 – cj∥
(i.e. pi1 is farther from cj than pi2), we have ∥q – cj∥ − ∥pi1 – cj∥ < ∥q – cj∥ − ∥pi2 – cj∥ and
pi1 is more likely to be a candidate of nearest neighbors to q than pi2, so in the buildup stage
we sort the distances from all training objects to their cluster centers in a descending order
and in the searching stage we check the objects in that order.
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By checking training objects from the farthest one to the nearest one for a cluster, we can
even avoid checking the triangle inequality for some objects. For example, for any cluster cj
other than the one nearest to q, if we have dmax < ∥q – cj∥ − ∥pi – cj∥ for a training object pi,
then we can skip the remaining training objects in cj and move to the next cluster. Since we
have ∥pi – cj∥ > ∥pix – cj∥ for any of the remaining objects pix in the cluster cj, ∥q – cj∥ − ∥pi
– cj∥ < ∥q – cj∥ − ∥pix – cj∥.

To efficiently obtain the largest distance dmax from the set of k current nearest objects to q,
we can build a max-heap for the k distances that the root object has the largest distance (i.e.
dmax) to q. Every time when we find a new training object with a smaller distance to dmax,
we can efficiently remove the root object and insert new object in O(lgk) time. During the
initialization, we set all the k values to a same maximum value, so the initial heap is built
automatically.

One more issue is to choose the number of clusters kc. If the kc is not chosen carefully, then
the k-means clustering may yield poor results. For kMkNN, the purpose of the clustering
process is to separate the dataset into groups, so we may reduce the number of distance
calculations in the searching stage. If we use a small number of kc, then each cluster will
have many training objects and if the clusters are not separated very well, then the query
object may be “close” to most of clusters, so kMkNN may result in a large number of
distance calculations and the running time will increase. On the other hand, if we use a large
number of kc, although each cluster will have a few training objects and we may have fewer
distance calculations, the running time may also increase since a large number of kc have
high extra costs.

Since it is very likely that we need to calculate distances from q to all objects in the cluster
nearest to q and it is unlikely that we need to calculate distances from q to objects in other

clusters, if we generate  clusters with  objects in each cluster and if the
number of nearest neighbors  , then in the searching stage, kMkNN calculates
distances to the training objects in only a few of the nearest clusters and finds k nearest
neighbors. Calculating the distances from a query object q to all cluster centers takes

 , sorting of all the clusters from the nearest to the farthest to q takes  ,
checking triangle inequality for all training objects (in the worst case) takes O(n), and

calculating distances from q to all training objects in a few nearest clusters takes 
(in the worst case; note kMkNN may calculate the distances from q to most but not all
training objects in those nearest clusters – – the actual number of calculations is determined
from the triangle inequality), so if m << n, then we may achieve a near optimal performance
by choosing  . In practice the dataset is never ideal and many factors will influence
performance.

The ideal complexity analysis above does not consider the constant factor associated with

each time complexity term, so in the implementation we set  by
introducing a constant s > 0. Our experiments in Section 3 show that kMkNN achieves good
running time for most of datasets when s = 2.0, but the optimal value of s may vary
depending on a specific dataset and the number k.

We note that the searching stage of the kMkNN algorithm adds a small overhead when

comparing to the traditional k-NN algorithm in the worst case. Given  clusters,

calculating and sorting the distances from q to all cluster centers takes  time,
and comparing dmax with ∥q – cj∥ − ∥pi – cj∥ for all training objects using the triangle
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inequality takes O(n) time in the worst case, so the total extra cost is  ,
which is less than the O(mn) running time for the traditional k-NN. The small overhead
mean that even in the worst case scenario when the triangle inequality does not work and we
end up calculating all the distances, the running time of kMkNN is still close to the
traditional k-NN.

In the buildup stage, the goal is to split the dataset into clusters, so any clustering algorithm
will work. We use Lloyd’s algorithm [19] in the implementation, which is a simple heuristic
algorithm that iteratively converges to a local minimum. There are faster k-means clustering
algorithms available [6] [7] and we can use these algorithms to speed up the buildup stage of
kMkNN.

There is no guarantee that Lloyd’s algorithm [19] will converge to the global minimum, that
is, minimizing the sum of all the distances from all the objects to their nearest centers — an
NP-hard problem in general [1] and an O(nmk+1lgn) problem, given m dimensions and k
clusters [14]. Ideally, if the clustering algorithm converges to a local minimum closer to the
global minimum, then each cluster is relatively denser and we may reduce the number of
distance calculations in the searching stage. Some k-means clustering algorithms [2] [15]
have shown to be able to produce better results than Lloyd’s algorithm, but for this paper,
we already achieve excellent performance by using the naive Lloyd’s algorithm. It will be
interesting to see how performance can be further improved by integrating these algorithms.

III. EXPERIMENTS AND DISCUSSION
A. Datasets

We test the kMkNN algorithm on a collection of 20 datasets, as listed in Table 1. The C++
code of kMkNN and all the processed datasets are available upon request.

18 datasets (abalone, arcene [12], car, chess, dorothea [12], gisette [12], image, ipums [20],
isolet, kddcup99, letter, multiple, musk1, musk2, poker, satalog, semeion, spambase) are
from the UCI Machine Learning Repository. For the chess, we use the dataset King-Rook vs.
King. For the dorothea, we use the first 654 features as each object has different number of
features. For the ipums, we use the ipums.la.97 dataset and predict farm status. For the
kddcup99, we use the 10% subset. For the musk1 and musk2, we use the clean1 and clean2
in the Musk (Version 2).

2 other datasets (ds1.10pca and ds1.100pca) are derived from dataset ds1 in the Open
Compound Database provided by the National Cancer Institute (NCI), whereas they are the
linear projection of the top 10 and 100 dimensions by principle component analysis (PCA).

B. Experiments
We compared the performance of kMkNN to the traditional k-NN, kd-tree based, and ball-
tree based algorithms in three experiments. All experiments used a 10-fold cross validation.
We tested the performance of kMkNN on a small k value 9 and a large k value 101.
Furthermore, we used s = 2.0, which generates  clusters. We tested s = 1.0, 2.0,
and 3.0 and s = 2.0 shows the best overall performance.

In the first experiment, we compared kMkNN to the traditional k-NN algorithm on the
reduction of distance calculations and the speedup of running time. The results are shown in
Tables II and III. For the distance calculations and the running time, we recorded the total
number of distance calculations and the total running time in all cross validations. For the
running time of the kMkNN algorithm, we ignored the buildup time and recorded the
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searching time. For the traditional k-NN algorithm, the total number of distance calculations
is 0.9n2 for a 10-fold cross validation test with a dataset with n objects, so the number of
distance calculations is the same for any k value.

In the second experiment, we compared kMkNN to the kd-tree based algorithm on the
speedup over the traditional k-NN. The results are shown in Table IV. We used the kd-tree
based algorithm implemented in MATLAB and the speedup was calculated by comparing
the running time to the traditional k-NN algorithm implemented in MATLAB (labeled
“exhaustive”). For both the kd-tree based and the traditional k-NN algorithms in MATLAB,
we ignored the classifier buildup time and compared the searching/classifying time only, as
the classifier buildup time in MATLAB may have some extra costs.

In the last experiment, we compared to the ball-tree based algorithm [18] on the overall
running time (buildup + searching time). The results are shown in Table V. For the ball-tree
based algorithm, since only an executable version is available from [18], we could not break
down the buildup and searching time. So we compared the total running time.

C. Results and Discussion
In the first experiment, the comparison to the traditional k-NN algorithm in Tables II and III
shows that the kMkNN algorithm can effectively reduce the distance calculations as well as
accelerate the k-nearest neighbor searching, whereas the worst case performance is still close
to the traditional k-NN algorithm. Both tables show that kMkNN effectively reduces the
distance calculations by 2- to 80-fold and reduces the running time by 2- to 60-fold in 16
datasets, whereas kMkNN show a slight downgrade of performance (less than 5%) in two
datasets (gisette and semeion). Comparing k = 9 and 101, both the reduction of distance
calculations and the speedup of the running time are decreased slowly (k = 101 is less than
2-fold worse than k = 9), which shows that the performance of kMkNN is robust with k
increases.

When the number of objects increases and the number of clusters kc increases, generally the
clusters tend to be more condensed and we can better use the triangle inequality, so we see a
slight increase of the speedup in both criteria. For example, the datasets kddcup99 and
poker, which have 5 × 105 and 106 objects each, show 70-fold and 30-fold speedup in the
running time. When the dimension size increases, generally the clusters tend to be more
expanded, so we see a slight decrease of the speedup in both criteria. But kMkNN still
performs well for datasets with high dimensions. For example, the dataset arcene, which has
104 dimensions, shows over 2-fold speedup in the running time.

For the datasets gisette and semeion, the performance of kMkNN is not as good as the
traditional k-NN algorithm. The main reason is that the objects in both datasets form single
condensed clusters instead of spreading out. For example, the dataset gisette is for
classifying two highly confusable digits ‘4’ and ‘9’ and the objects in the dataset are similar
to each other. Although it has 5000 dimensions, it forms a single condensed cluster due to
the similarity of objects. Although in the buildup stage kMkNN separates the objects into
many clusters, for most of query objects the distances from the query object to the cluster
centers and the distances from the training objects to the cluster centers are close, so the
triangle inequality does not work well and we end up calculating most of the distances. We
also see the similar worst performance in the simulated datasets with uniformly distributed
random objects. Still, as shown in Tables II and III, in the worst case scenario, the
performance of kMkNN is close to the traditional k-NN algorithm due to the small overhead.

In the second experiment, Table IV shows that kMkNN is on average 3-40 times faster than
the kd-tree based algorithm for all 20 datasets. The kd-tree based algorithm is usually used
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for searching low dimensional datasets with small k values. Even when we compare to the
traditional k-NN algorithm, for the 20 datasets we used, the kd-tree based algorithm shows
better performance in only a few datasets but shows 4-5 times worse performance in about
half of the datasets. It may suggest that the kd-tree based algorithm is not suitable for
searching nearest neighbors in high dimensional space and kMkNN or other spatial
searching methods should be used instead.

In the third experiment, Table V shows that kMkNN performs better than the ball-tree based
algorithm for most of datasets. The ball-tree algorithm [18] is one of the spatial searching
methods that improves the kd-tree based algorithm and is efficient for searching nearest
neighbors in high dimensional space. Although we could not obtain the source code for the
ball-tree algorithm and can compare only the total running time, we can still see from the
Table V that kMkNN has a better overall performance when combing the buildup and
searching time. It shows that kMkNN can be considered as an alternative for these spatial
searching methods in the nearest neighbors searching.

There are two advantages of the kMkNN algorithm over the tree-based spatial searching
algorithms. The first advantage is that kMkNN has a small overhead in searching nearest
neighbors. Given a dataset of n training objects, generally a tree-based algorithm has O(lgn)
levels and O(n) nodes, where each node has some extra costs for boundary checking. If a
search for nearest neighbors involves only a few nodes at each level, then a total of O(lgn)
nodes will be visited and the algorithm can be much better than kMkNN. But if a search
involves most of nodes in each level, then a total of O(n) nodes will be visited and the
algorithm can be much worse than kMkNN. Even when the k nearest objects are eventually
from a few nodes, too much extra time may be wasted on walking through the internal/leaf
nodes, so the algorithm can perform badly due to the extra costs for each node. kMkNN is
like a tree with two levels, one root node and kc leaf nodes. There are more operations inside
each leaf node, but the whole data structure is flat so there is no extra cost for walking
through the internal nodes.

Furthermore, the implementation of the kMkNN algorithm uses arrays instead of pointers,
which are used in the tree-based algorithms, so the constant associated with the time
complexity of kMkNN is small. When both kMkNN and a spatial searching algorithm have
the same number of steps for a searching, the kMkNN will run faster in practice because of
the small constant associated with each step.

The second advantage is kMkNN has a better way of organizing objects. The tree-based
algorithms use various criteria such as individual dimensions to separate the objects. There
are two potential problems. One is that these criteria may not match the way the objects are
distributed or queried, so the objects may not separate or be queried well. For example, one
reason why the kd-tree method is worse than some other tree-based methods in high
dimensions is that the kd-tree method uses the dimensions to separate objects, but the actual
objects are usually organized by their relative distances but not by their dimensions. The
other problem is that these algorithms always do binary separation each time, but maybe the
objects are better separated in three or more groups directly. kMkNN overcomes the first
problem by using the criterion of object distances, to separate the objects and overcomes the
second problem by separating the objects into multiple clusters directly. It may be possible
to build a new tree-based algorithm that uses the distance criteria and allows multiple
children per parent node. If a dataset contains many small clusters and we can organize the
clusters in a hierarchical manner, then a multiple level k-means clustering algorithm may be
able to further improve the performance of kMkNN.
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IV. CONCLUSION
We present a new algorithm kMkNN for the nearest neighbors searching problem. The
algorithm implements two simple methods: the k-means clustering and the triangle
inequality, into the nearest neighbors searching and the experiments show that the algorithm
performs well and can be considered as alternative choice for searching nearest neighbors in
high dimensional spaces.

One interesting future work is to integrate better k-means clustering algorithms to kMkNN
that generate better clusters than Lloyd’s algorithm and see if the performance of kMkNN
can be improved further. Another work is to see if we can determine an optimal number of
clusters based on the number of training objects, the number of dimensions, and the
distribution of the training objects. One further future work is that, since kMkNN and the
spatial searching methods may work well on different datasets, it will be interesting to
analyze these datasets and try to find correlation between the distribution of the objects in
the datasets and the performance of various algorithms.
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Fig. 1.
A scenario of the kMkNN algorithm. The plus and triangle signs denote two classes of
objects and the black dot denotes the query object. The kMkNN algorithm first classifies
objects into clusters and then finds the k-nearest neighbors for a query object starting from
the nearest cluster.
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TABLE I

The 20 Datasets

Dataset #Objects #Dimensions

abalone 4177 8

arcene 900 10000

car 1728 6

chess 28056 6

dorothea 1950 770

ds1.10pca 26733 10

ds1.100pca 26733 100

gisette 13500 5000

image 2310 19

ipums 70187 60

isolet 7797 617

kddcup99 494021 41

letter 20000 16

multiple feat. 2000 659

musk clean1 476 166

musk clean2 6598 166

poker 1000123 10

satalog 6435 36

semeion 1593 256

spambase 4601 57
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TABLE II

The Number of Distance Calculations of the KMKNN and the Traditional K-NN Algorithms.

Dataset
Distance Calculations

kMkNN reduction

k-NN* k = 9 k = 101

abalone 1.6 × 107 16.3 11.0

arcene 7.3 × 105 2.6 2.3

car 2.7 × 106 5.4 2.0

chess 7.1 × 108 25.8 13.7

dorothea 3.4 × 106 6.7 4.5

ds1.10pca 6.4 × 108 19.1 7.7

ds1.100pca 6.4 × 108 2.7 1.4

gisette 2.3 × 107 1.0 1.0

image 4.8 × 106 13.2 6.2

ipums 4.4 × 109 85.1 63.9

isolet 5.5 × 107 1.4 1.2

kddcup99 2.2 × 1011 80.4 72.2

letter 3.6 × 108 14.8 6.0

multiple feat. 3.6 × 106 7.0 4.2

musk clean1 2.0 × 105 1.8 1.3

musk clean2 3.9 × 107 5.3 2.9

poker 9.0 × 1011 53.5 28.3

satalog 3.7 × 107 8.0 5.5

semeion 2.3 × 106 1.0 1.0

spambase 1.9 × 107 15.2 9.6

*
For the traditional k-NN algorithm, the number of distance calculations is the same for different k.

Proc Int Jt Conf Neural Netw. Author manuscript; available in PMC 2012 February 8.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang Page 14

TABLE III

The Running Time of the KMKNN and the Traditional K-NN Algorithms

Running Time

Dataset Traditional k-NN (s) kMkNN Speedup

k = 9 k = 101 k = 9 k = 101

abalone 1.8 1.8 22.6 12.2

arcene 10.7 10.7 2.7 2.3

car 0.2 0.3 4.4 2.6

chess 77.3 76.0 30.9 22.5

dorothea 3.4 3.4 7.3 4.9

ds1.10pca 91.3 91.3 33.3 20.0

ds1.100pca 182.4 175.4 4.5 2.2

gisette 158.2 157.9 1.0 1.0

image 0.6 0.6 17.7 6.8

ipums 977.9 981.6 61.3 53.5

isolet 52.8 52.9 1.5 1.3

kddcup99 38200.0 38239.1 59.1 55.0

letter 50.2 50.2 24.8 14.0

multiple feat. 3.5 3.5 7.9 4.6

musk clean1 0.1 0.1 1.7 1.3

musk clean2 13.2 13.2 7.3 3.9

poker 130220.3 130357.9 60.1 49.9

satalog 5.9 6.0 13.7 9.6

semeion 0.9 0.9 1.2 1.1

spambase 3.5 3.5 18.6 12.2
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TABLE IV

The Speedup of the Running Time Over The Traditional K-NN Algorithm for the KMKNN and the Kd-Tree
Algorithms

Dataset
k = 9 k = 101

kMkNN kd-Tree kMkNN kd-Tree

abalone 18.5 3.53 13.5 2.15

arcene 2.7 0.23 2.6 0.24

car 4.6 1.51 3.4 1.20

chess 27.9 7.74 20.6 4.01

dorothea 7.0 0.30 4.7 0.26

ds1.10pca 28.6 2.93 14.8 1.17

ds1.100pca 3.6 0.30 1.9 0.23

gisette 1.0 0.23 1.0 0.23

image 14.6 0.90 7.3 0.60

ipums 42.8 11.63 39.0 6.42

isolet 1.4 0.22 1.2 0.22

kddcup99 10% 44.8 1.07 46.3 1.05

letter 22.5 0.95 10.8 0.48

multiple feat. 7.4 0.22 4.4 0.22

musk v2 clean1 2.3 0.23 1.3 0.26

musk v2 clean2 6.1 0.22 3.3 0.21

poker 37.6 18.48 33.7 7.36

satalog 12.0 0.48 7.9 0.40

semeion 1.0 0.21 1.0 0.22

spambase 17.9 0.78 11.5 0.70
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TABLE V

The Overall Running Time of the KMKNN and the Ball-Tree Algorithms

Dataset
k = 9 (s) k = 101 (s)

kMkNN Ball-Tree kMkNN Ball-Tree

abalone 6.3 3.2 4.6 4.8

arcene 183.2 1865.3 202.4 2320.6

car 0.9 1.3 0.8 2.5

chess 166.1 40.7 180.0 78.5

dorothea 41.3 136.4 49.1 197.7

ds1.10pca 131.9 121.6 150.8 236.0

ds1.100pca 927.0 5913.6 912.9 8225.9

gisette 1965.5 47435.9 1992.5 48432.2

image 2.3 4.0 2.3 7.0

ipums 2790.1 823.1 2887.6 1375.7

isolet 694.6 8548.3 646.2 8665.7

kddcup99 10% 2435.1 >86400 6162.4 >86400

letter 125.4 129.1 120.5 249.6

multiple feat. 54.5 139.4 53.0 215.9

musk v2 clean1 0.8 6.7 0.8 8.7

musk v2 clean2 92.7 286.7 82.9 465.2

poker 124089.9 44437.1 127338.6 83055.0

satalog 31.0 41.9 30.0 62.6

semeion 11.4 121.1 11.3 129.3

spambase 8.5 22.3 7.3 31.6
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