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a b s t r a c t

Wavelet analysis has found widespread use in signal processing and many classification tasks.

Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of

wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov

models which observe structured data in the wavelet domain were proposed to deal with this kind of

sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution

framework, while standard hidden Markov models capture longer correlations in time. Despite these

models have shown promising results in simple applications, only generative approaches have been

used so far for parameter estimation. The goal of this work is to take a step forward in the development

of dynamic pattern recognizers using wavelet features by introducing a new discriminative training

method for this Markov models. The learning strategy relies on the minimum classification error

approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on

phoneme recognition show important improvement over the recognition rate achieved by the same

models trained using maximum likelihood estimation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Multiscale analysis using wavelets is a well-established tool for
signal and image representation. The multiresolution property of the
wavelet transform and its flexibility to deal with local features
simultaneously in time/space and frequency provide a suitable
scenario for many signal processing and pattern recognition tasks.
Initial interest in these representations was largely driven by
powerful non-linear methods which relied on simple scalar
transformations of coefficients. Many posterior developments kept
in mind the idea of some decorrelation property of the wavelet
transform or assumed very simple statistical models for the
coefficients. Nevertheless, in practical applications signals and
images usually show sparse representations and some dependence
structure between coefficients which cannot be described with such
models. Simply speaking, coefficients typically are not normally
distributed and large ones tend to form clusters along scales and to
propagate across scales.

As both coefficients magnitude and statistical dependencies
between them carry relevant information about signals and their
underlying distribution, an ideal approach to exploit these features
for pattern recognition would be to know the joint distribution
of the coefficients. Nevertheless, complete knowledge of this
probability is infeasible, so that we should replace it with some
suitable model. A nice example of such model was introduced by
Crouse et al. [1]. It aims at providing a concise statistical description
of the wavelet transform and its main properties. In their frame-
work, the marginal probability of each coefficient is modeled as a
Gaussian mixture driven by a hidden state variable in order to
account for sparseness. Then, markovian dependencies between
hidden states allow to account for the dependencies between
coefficients; they give rise to a probabilistic graph which takes
advantage of the natural tree structure of the wavelet transform. The
resulting structure is a hidden Markov model (HMM) on the wavelet
domain which is usually referred to as hidden Markov tree (HMT). In
the last years this model has received considerable attention for
several applications, including signal processing [2–4], image
processing [5–8], texture classification [9,10], computer vision
[11,12] and writer identification [13]. For classification tasks,
however, it can deal only with static patterns. This limitation arises
from the use of the discrete wavelet transform (DWT), which makes
the structure of representations depend on the size of signals or
images. To overcome this we could think of tying parameters along
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scales, but it would come at the price of reducing modeling power.
In a typical scenario we have multiple observations available and we
would want to use the whole information in order to train a full
model. In these cases, the HMT should be trained and used only with
signals or images with the same size; otherwise, a warping
preprocessing would be required to match different sizes and that
would be difficult to achieve on-line.

A different approach to deal with variable length signals in the
wavelet domain was introduced by Milone et al. [14]. They exploit
the probabilistic nature of the HMT to embed it as the observation
model for a standard HMM. An adapted version of the expecta-
tion-maximization (EM) algorithm1 was derived to drive the
parameter estimation of fully coupled models. The resulting
structure is a composite hidden Markov model in which the HMT
accounts for local features in a multiresolution framework while
the external HMM handles dependencies in a larger time scale
and adds flexibility to deal with sequential data. The HMM–HMT
model was shown to achieve promising results both for pattern
recognition and for denoising tasks [14,16]. Nevertheless, it is
worth noting that training algorithms used so far provide
maximum likelihood (ML) estimates of model parameters. For
classifier design, it is well-known that this learning approach
minimizes the expected classification error only when models can
accurately describe true class distributions and when the training
set is large enough to achieve asymptotic optimality of the
estimators. However, these assumptions hardly ever hold in many
pattern classification applications. Models posteriors usually
cannot be expected to match the true class posteriors and sample
availability for parameter estimation often is too small to account
for large variability in data. Thus, this approach to classifier design
becomes suboptimal and minimization of expected classification
error cannot be guaranteed.

These limitations are common to all classifiers based on
HMMs. To overcome them, in recent years there has been a
growing interest in discriminative training of hidden Markov
models [17]. Unlike the previous approach that focused on the
generative power of the model for each class considered
independently, these methods aim to exploit the dissimilarity
between models using training samples from all classes simulta-
neously. Several criteria have been proposed under this frame-
work to drive the learning process, giving rise to different
methods. As examples, Maximum mutual information [18] seeks
to maximize the mutual information between the observations
and their labels. This criterion inherits several properties from
information theory, but cannot guarantee, a priori, to achieve the
least error rate. On the other hand, Minimum classification error
(MCE) [19] sets minimization of the error rate explicitly as the
optimization task, allowing for a more direct link between the
design stage of the classifier and its expected performance.
Minimum phone error (MPE) [20] is another criterion widely
known in the speech recognition community. It is conceptually
similar to MCE, but when the data is structured at several
hierarchical levels it allows to consider smaller units of the
sequences to account for the classification error. For example,
sentences in speech contain words and words contain phonemes.
MCE would account for errors at the sentence level regardless of
how many errors occurred within the sentence, whereas MPE
would account for errors at the phoneme level.

In this paper we will focus in MCE training. It is a discriminant
analysis approach that relies in a soft approximation of the
decision risk of the classifier. The learning problem becomes an
optimization problem which aims to find the parameter estimates

for the set of HMMs that minimize that risk, and it is frequently
solved using a gradient-based method known as generalized
probabilistic descent (GPD) [21]. MCE training has shown to
outperform the conventional maximum likelihood approach in
many applications. This success has also triggered several efforts
both to ground the method on a more principled basis [22,23] and
to improve its efficiency in large-scale applications [24]. Never-
theless, most of these works deal only with standard hidden
Markov models and are not suitable for wavelet representations.

The goal of this paper is to take a step forward in the
development of sequential pattern recognizers in the wavelet
domain by extending the MCE/GPD discriminative learning
approach to this different scenario in which data is observed in
the transformed domain. Direct application of standard proce-
dures used with Gaussian mixture-HMMs is shown not to be
effective for the HMM–HMT model, requiring a modification of
the way rival candidates are weighted during the classification
process. To deal with this, we propose a new approximation to the
misclassification loss that penalizes differences in the order of
magnitude of model likelihoods rather than in their values. The
advantage of the proposed learning approach over the fully
generative one is assessed in a phoneme recognition experiment
with highly confusable phonemes from the TIMIT speech corpus
[25]. Recognition rates show important improvements on perfor-
mance compared to the same models trained using the traditional
maximum likelihood approach.

Related work: Many multiresolution Markov models are
reviewed in [26], with special emphasis on signal and image
processing. The HMT model [1], used as a building block for the
model in this work, has been further improved in several ways
since its introduction, for example, enlarging the state space [27],
considering more general multiscale transforms [28,29], and
developing more efficient algorithms for initialization and train-
ing [30]. A nice discussion of the HMT model in context with other
wavelet methods for the analysis of time series is given in [31].
Hidden Markov models are widely used to model sequential data,
due to their capability to handle both correlations in time and
data with different sizes. The most common observation densities
used with HMM are Gaussian mixtures, but many other models
have been proposed as well [32]. In [33], an EM algorithm was
derived for fully coupled Markov models whose observation
densities are Gaussian mixtures-HMMs. A dual Markov model for
wavelet-domain data was also proposed by Dasgupta et al. [34].
Nevertheless, the learning algorithm proposed by the authors
considers the external HMM independently of the HMMs that
serve as observation models. In contrast, the learning algorithm
developed in [14] takes the external HMM and the conditional
HMTs in a truly coupled way. We use this composite model as the
starting point for this work and contribute here a new
discriminative learning strategy for parameter estimation based
on the minimum classification error approach.

The paper is organized as follows. We start by reviewing the
basics of the MCE approach for classifier design in Section 2 and
the definition of the composite HMM–HMT model in Section 3.
We then introduce the proposed algorithm and give re-estimation
formulas for all the parameters in Section 4. Experimental results
for phoneme recognition are shown in Section 5 and main
conclusions and future works are outlined in Section 6.

2. MCE approach for classifier design

Pattern recognition usually involves a feature extraction stage
to give a suitable representation for data and a classification stage
to decide the class where an unlabeled observation comes from.
Such decision depends on a parameterized set of functions or

1 The specific formulation of the EM algorithm to deal with hidden Markov

models is also known as the Baum–Welch algorithm [15].
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models, one for each class, to measure the degree of membership
of an observation to that class. Let fgjðW;YÞgMj ¼ 1 be that
parameterized set of functions for a classification task comprising
M classes c1,c2, . . . ,cM, W be an observation, and Y¼ fWjg

M
j ¼ 1 be

the whole parameter set. An unlabeled observation W will be said
to belong to class ci when the decision of the classifier is

CðW;YÞ9arg max
j
fgjðW;YÞg ¼ i: ð1Þ

The classifier design involves the estimation of an optimum
parameter set Y� that minimizes the expected classification error
over all the observation space. In traditional generative learning,
the model for each class is trained independently of the others,
using training samples for that class only in order to maximize
the likelihood of the observations. Unlike this approach, in a
framework of discriminative learning all models are updated
simultaneously in a competitive way. This process aims to exploit
differences between classes that can lead to a reduction in the
error rate of the classifier. In MCE training in particular,
minimization of the classification error is set formally as a goal.
We now summarize the main topics of the method and provide
simulation examples with a simple Gaussian model in order to
motivate our developments.

2.1. Derivation of the MCE criterion

The main ingredient of the MCE approach for classifier design
is a soft approximation of the misclassification risk over the set of
samples available for training. Although in advance we would not
guarantee minimum expected error over all possible observations
working just on a finite (possibly small) training set, the method
has shown to generalize well over validation sets [35,36]. Recent
works have also explained the generalization property of MCE
methods by linking them with large margin estimation [23,37].
For an observation W, the conditional risk of misclassification is
given by

RðYjWÞ ¼
XM
j ¼ 1

‘ðCðW;YÞ,cjÞPðcjjWÞ,

where ‘ðCðW;YÞ,cjÞ is a loss function which penalizes a wrong
decision when classifying an observation Wt from class cj. The
usual choice for the loss function is the zero-one loss which
assigns ‘ðCðWÞ,cj;YÞ ¼ 1 for CðWÞacj and zero for correct
classification [38]. In the training process, we look for a parameter
set Y� that minimizes the risk

RðYÞ ¼
Z XM

j ¼ 1

‘ðCðW;YÞ,cjÞPðcjjWÞdPðWÞ,

where the integral extends over the entire signal space. Never-
theless, when designing a classifier we only have the labeled
observations in the training set. Let Oj stand for the subset of
observations in this set which belong to class cj. The expectation
above can be replaced with an average of the loss with all the
observations given equal probability mass

~RðYÞ ¼ 1

T

XT

t ¼ 1

XM
j ¼ 1

‘ðCðWt;YÞ,cjÞI ðWtAOjÞ:

In the equation above I ð�Þ is the indicator function and T is the
size of the training set.

The MCE approach minimizes a smoothed version of this
empirical risk which is differentiable respect to model parameters
[19]. Let us write this approximation ‘ðCðW;YÞ,cjÞ ¼ ‘ðdjðW;YÞÞ,
where function djðW;YÞ simulates the decision of the classifier.
Consider the current training observation comes from class ci.

A common choice for ‘ðdiðW;YÞÞ is the sigmoid [19,39]

‘ðdiðW;YÞÞ ¼ ‘iðW;YÞ ¼ f1þexpð�gdiðW;YÞþbÞg�1: ð2Þ

Parameter g controls the sharpness of the sigmoid and the bias b
is usually set to zero. To complete the picture we must specify
function diðW;YÞ, which is often referred to as the misclassifica-
tion function [19,21,39]. In order to allow ‘ðdiðW;YÞÞ to behave
close to the zero-one loss, it must give a large enough positive
value for strongly misclassified observations and a small negative
value when the decision is right. In addition, very confusing
samples should give a value close to zero so that their related loss
fall in the raising segment of the sigmoid. Remembering (1), an
obvious candidate for diðW;YÞ is

diðW;YÞ ¼max
ja i
fgjðW;YÞg�giðW;YÞ:

However, the maximum operation is not differentiable. As we are
looking for a smoothed version of the risk, what is used in practice
is a soft approximation like an ‘p�norm with p large. However,
different selections of the misclassification function are possible
(see, for example, [21]) and they can have important effects on the
performance of the algorithm as we will see below.

2.2. GPD optimization

In the preceding section we have described the approximation
of the empirical risk which serves as the optimization criterion for
MCE learning. The simplest approach to find the parameter
estimates is a gradient-based optimization technique often
known as generalized probabilistic descent (GPD), which is a
special case of stochastic approximation [21,39,40]. This is simply
an on-line scheme which aims at minimizing the smoothed
approximation of the classification risk by updating the whole set
of parameters Y in the steepest-descent direction of the loss.
Starting from an initial estimate Ŷ0, the t�th iteration of the
algorithm can be summarized as

Ŷ’Ŷ�atrY‘ðWt;YÞjY ¼ Ŷt
, ð3Þ

where at is the learning rate which decreases gradually as
iterations proceed in order to assure convergence [21]. Usually,
Ŷ0 is chosen to be the maximum likelihood estimate of Y and the
updating process is carried out for each training signal [39]. Batch
implementations can also be used to exploit parallelization
[35,37]. It is important to see that the strength of the update
depends on how confusing the training observation is to the
classifier and not on the correctness of the decision. This way,
patterns that are similarly likely to belong to different classes
induce the update of the parameter set, even if they are well
classified.

2.3. An example with Gaussian models

In order to show the potential of discriminative learning over
traditional maximum likelihood estimation of model parameters,
let us consider a simulation example for a binary classification
problem. We assume Gaussian models for both classes, but allow
data from one of them, say class A, to be drawn actually from a
two-component Gaussian mixture with weights 0.9 and 0.1,
respectively. This is a simple example of a model not fitting the
real distribution of observed data. To make the decision task more
difficult, suppose also that the real distribution of class B data is a
Gaussian with mean and variance very close to the global mean
and variance for class A. Fig. 1 illustrates the proposed situation. It
is clear that this is a very demanding task for a quadratic classifier
based on maximum likelihood estimation. In fact, we expect it to

D. Tomassi et al. / Pattern Recognition 43 (2010) 3998–40104000



Author's personal copy

discriminate very poorly and we are interested in seeing how
much improvement can the MCE approach achieve.

Obtained results varying the number of MCE iterations are
shown in Fig. 2. Ten runs were carried out for each tested
condition. For every run, data was generated randomly for class A

first and its sample estimates for mean and variance were used to
generate data from class B. A thousand samples from each class

were used in both the training set and a separate testing set.
Maximum likelihood estimates were used as initial guesses for
the discriminative training, and standard settings were used for
the MCE criterion [22]. Figure shows important improvement in
recognition rate with only a few iterations of the algorithm. After
five iterations, the discriminative approach reduces the error rate
from 38% to 31%. Further iterations do not seem to provide
significant improvements for this case.

Fig. 3 compares the trained models obtained with maximum
likelihood only against those estimated discriminatingly. The
competitive updating process modifies initial model parameters
so that the Gaussian for class A concentrates around the mean for
the most likely component in the original mixture. On the other
hand, the model for class B widens a lot to account for all other
values in data. The final models used for classification are very
different from the real data distributions. Thus, unlike with the
maximum likelihood approach, obtained parameter estimates do
not try to explain the data but only to improve the classifier
performance emphasizing differences between distributions.

3. The HMM–HMT model

The HMM–HMT is a composite hidden Markov model
proposed to allow modeling wavelet representations of signals
with different lengths [14,41]. In this model, signals are seen as
realizations of a random process which emits wavelet coefficients
in a short-term basis driven by a hidden Markov chain. The
emitted coefficients are not independent, but obey probabilistic
dependencies structured as a tree. To make following sections
more clear, we review the definition of the model along with
notation and its likelihood next.

3.1. Model definition and notation

Let wt ARN be the set of coefficients emitted at time t and
W¼{w1,y,wT} be the entire wavelet sequence. The observation is
modeled by a continuous HMM defined with the structure
W¼/Q,A,p,BS. Q is the set of states, which takes values
qAf1,2, . . . ,NQ g; A¼ faij ¼ Pðqt ¼ ijqt�1 ¼ jÞg is the matrix of transi-
tion probabilities from some state j to state i; p is the initial state
probability vector; and B¼ fbkðw

tÞ ¼ Pðwtjq¼ kÞg is the set of
observation (or emission) densities.

In the assumed model, for every state k of the chain, observed
coefficients are drawn from a hidden Markov tree, so that bk (wt)
is itself a hidden Markov structure. Fig. 4 shows a sketch of the full
model. We regard hidden variables in this observation model as
nodes and denote with U the set of nodes in the tree. For future
references, the set of states in all the nodes of the tree will be
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Fig. 1. Distribution of the data for the proposed experiment. The solid line shows

the distribution of class A while the dotted line shows the one of class B.
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Fig. 2. Recognition rates over the testing set as a function of the number of MCE

iterations. Shown scores are averages over 10 runs for each tested condition.
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Fig. 3. Comparison of the trained classifiers, showing the models they use for classification. (a) Models obtained with maximum likelihood estimation. (b) Models obtained

with MCE training after five iterations over the whole training set. Solid lines show the model for class A and dotted lines show the one for class B.
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denoted withR, andRu will denote the set of states in the node u,
taking values ruAf1,2, . . . ,Mg. A main assumption in the HMT is
that the state in a given node depends strongly on the state in its
parent node in the tree. We will denote eu,mn ¼ Pðru ¼mjrðuÞ ¼ nÞ

the conditional probability of node u being in state m given that
the state in its parent node rðuÞ is n. The whole set of these
probabilities will be denoted by e and j will denote the initial
state probabilities in the root node. We recall that the observed
coefficients wu are drawn from an observation model fu,m(wu)
conditioned on the state m of the node. We assume scalar
Gaussian models N ðwt

u;mu,m,su,mÞ for all of them and denote the
set of all observation densities with F . Finally, we will use
superscript k to sign parameters of bk (wt), so that it is completely
defined with the structure yk

¼/Uk,Rk,jk,ek,F kS.

3.2. Likelihood of the observations

The likelihood of the first order HMM for conditionally
independent observations is given by [42]

LWðWÞ ¼
X
8q

Y
t

aqt�1qt bqt ðwtÞ: ð4Þ

Similarly, for the HMT is usual to assume first order dependencies
on the states of the nodes and conditionally independent
observations for all of them too, so that the observation density
for each HMM state reads (see [1])

bqt ðwtÞ ¼
X
8r

Y
8u

eqt

u,rurrðuÞ
f qt

u,ru
ðwt

uÞ, ð5Þ

with r¼[r1,r2,y,rN] a combination of hidden states in the HMT
nodes. At a first glance, this expression for the likelihood of the
HMT may resemble that for the standard HMM. Nevertheless, we
must keep in mind that transition probabilities in the time-
domain HMM have very different meaning than time-scale
transitions in the HMT which are either supposed to be the same
across the tree. Thus, any analogy between wavelet nodes and
time instants fall short despite the similar expressions. Replacing
(5) in (4), the complete likelihood for the joint HMM–HMT model
is

LWðWÞ ¼
X
8q

Y
t

aqt�1qt bqt ðwtÞ,

¼
X
8q

Y
t

aqt�1qt

X
8r

Y
8u

eqt

u,rt
urt

rðuÞ
f qt

u,rt
u
ðwt

uÞ

¼
X
8q

X
8R

Y
t

aqt�1qt

Y
8u

eqt

u,rt
urt

rðuÞ
f qt

u,rt
u
ðwt

uÞ

9
X
8q

X
8R

LWðW,q,RÞ, ð6Þ

where a01 ¼ p1 ¼ 1. In these expressions, 8q denotes that the sum
is over all possible state sequences q¼q1,q2,y,qT and 8R accounts
for all possible sequences of all possible combinations of hidden
states r1,r2,y,rT in the nodes of each tree. See [14] for further
details about the HMM–HMT model. In the following we will refer

to LWðW,q,RÞ as the joint likelihood of the observations and the
states of the model.

4. Algorithm formulation

It is clear from our discussion of the general aspects of
the MCE/GPD approach in Section 2 that the key points to be
defined when designing a classifier under this framework are:
(i) the parametrized form for the discriminant functions;
(ii) suitable transformations of the parameters in order to account
for constraints; and (iii) the misclassification function diðW;YÞ.
We will follow rather conventional choices for (i) and (ii) in
Section 4.1, but we will go apart from the mainstream when
considering (iii) in Section 4.2. Updating formulas are outlined in
Section 4.3, while details about their derivation are left to the
appendix.

4.1. Discriminant functions and parameter transformations

For a HMM-based discriminant function approach to pattern
recognition, it is a usual practice to define gjðW;YÞ as a function of
the joint likelihood LWj

ðW,q,RÞ [39]. In particular, due to the
efficiency of Viterbi’s decoding algorithm for both HMM and HMT
[30], it is attractive to define

gjðW;YÞ ¼ log max
q,R
fLWj
ðW,q,RÞg

� �����
����

¼�
X

t

logaq t�1 qt
�
X

t

X
8u

logeq
t

u,r
t
ur

t
rðuÞ
�
X

t

X
8u

logf
q

t
ðwt

uÞ,

u,r
t
u

ð7Þ

where, qt and rt refer to states in the external HMM and the
corresponding HMT model, respectively, that achieve maximum
joint likelihood. It should be noticed that this definition involves a
little change in what we have said about the decision of the
classifier in (1). Now this decision is ruled by the minimum
(rather than the maximum) of the discriminant functions, valued
at the unlabeled observation.

Despite of discriminant functions using standard model
parameters, we must introduce some parameter transformations
to account for restrictions if we are to use a gradient-based
optimization technique such as GPD [19,39]. To constrain aij to be
a probability, we define ~a ij so that

asj ¼
exp ~asjP
mexp ~asm

: ð8Þ

Exponentiation assures aij is non-negative and normalization
makes it less or equal to one. A similar transformation is needed
for the transition probabilities in the internal HMTs. With
analogous arguments, we define ~ek

u,mn so that

ek
u,mn ¼

exp ~ek
u,mnP

pexp ~ek
u,pn

: ð9Þ

D
W

T

D
W

T

D
W

T

D
W

T

D
W

T t u

k
ajk

j

�u,mn �(u)

Fig. 4. The HMM–HMT model. A left-to-right hidden Markov model uses hidden Markov trees as models for the observed data in the wavelet domain.
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We also need to constrain the Gaussian variances to be positive-
valued. To do so, we define ~sk

u,m so that ~sk
u,m ¼ logsk

u,m. In addition,
we scale the means of the Gaussian distributions as ~mk

u,m ¼ mk
u,m=

sk
u,m. Note that these transformations are rather standard in the

literature [19,39].

4.2. Misclassification function

For HMMs with Gaussian mixture observations and discrimi-
nant functions defined as the negative of those stated above, the
frequent choice for MCE training has been simulating the decision
of the classifier with the function [39]

~diðW;YÞ ¼� ~giðW;YÞþ log
1

M�1

X
ja i

e ~g jðW;YÞZ

2
4

3
5

1=Z

: ð10Þ

As Z becomes arbitrarily large the term in brackets approximates,
up to a constant, the supremum of f ~gjðW;YÞg for all j different
than i. This definition of the misclassification function, composed
with a zero-bias approximation to the zero-one loss, penalizes
confusing patterns rather than a wrong classification. Thus, a
strong decision of the classifier implies no update of the parameter
set, whether this decision is right or not. Despite it can look
counterintuitive at first, it is in fact a conservative statement
which avoids modifying parameter estimates due to bad data.

Nevertheless, likelihoods for the HMT model are typically
much smaller than those found for Gaussian mixtures in standard
feature spaces. We can expect this noting that the joint likelihood
for the HMM–HMT model involves many products which are
probabilities often being very small. As a result, gjðW;YÞ takes
extremely low values for W=2Oj and the exponentiation leads to
numerical underflow. A natural option to look for a similar
behaviour of the misclassification function but avoiding those
numerical issues is to define it as

diðW;YÞ ¼ giðW;YÞ�
1

M�1

X
ja i

gjðW;YÞ�Z
2
4

3
5
�1=Z

: ð11Þ

Roughly speaking, both of these functions account for the decision
margin between the true model and the best competing ones.
They weight rival candidates, but do not introduce any special
corrective penalty in case of a wrong classification. Because
of this, we will refer to them as symmetric misclassification
functions and will use the acronym SMF to refer to (11) in
what follows. Due to the behaviour of the likelihoods for the
HMM–HMT model discussed above, also their dispersion is much
larger than in the Gaussian mixture-HMM case. In this situation,
similarity could be better measured comparing the order of
magnitude between discriminant functions rather than their
difference. To do so, we define an alternative form for discrimi-
nant functions as

diðW;YÞ ¼ 1�

1

M�1

P
ja igjðW;YÞ�Z

� ��1=Z

giðW;YÞ
: ð12Þ

As above, Z is supposed to be a large positive scalar so that the
sum in the numerator approaches the minimum of the terms as Z
grows. When the classifier takes a right decision, this minimum
will be larger than giðW;YÞ and diðW;YÞwill take a negative value
as required. If the observation makes decision hard for the
classifier, diðW;YÞ will be close to zero. However, it must be
noticed that diðW;YÞ will take no value larger than one. This
implies that all misclassified observations will fall in the raising
segment of the approximation to the zero-one loss if it is not too
sharp. This simple fact has a very important effect in practice
because it determines that every misclassified observation in the

training set induces an update of the parameter set. To stress this
lack of symmetry in dealing with correct and wrong classifica-
tions, we will refer to (12) as a no-symmetric misclassification
function and will use the acronym nSMF to denote it in the
following.

Now, we can go back to the simple Gaussian model to explore
whether this always-updating feature of diðW;YÞ for misclassified
sequences could affect convergence of the algorithm. We repeated
the simulation experiment in Section 2.3, just replacing the
standard definition for the misclassification function with nSMF.

In this experiment, the recognition rate improves a bit more
slowly than in the previous case. Nevertheless, after five iterations
of the whole training set performance for both choices of the
misclassification function does not show significant differences.
Thus, convergence is not hammered by the proposed alternative
for the misclassification function. Furthermore, the variance of the
error rates remains fairly the same with both methods. Therefore,
at least as far as this simple experiment concerns, there is no
evidence against using nSMF in the MCE formulation. Though it
would be meaningless in the Gaussian example, we will find it
very important for the models we are interested in.

4.3. Updating formulas

In the following, let assume that the t�th training sequence
Wt belongs to Oi. To simplify notation, allow ‘i, dj and gj stand for
‘iðW;YÞ, djðW;YÞ and gjðW;YÞ, respectively. For convenience,
define also

zii9
d‘iðW;YÞ
ddiðW;YÞ

@diðW;YÞ
@giðW;YÞ

,

and

zij9
d‘iðW;YÞ
ddiðW;YÞ

@diðW;YÞ
@gjðW;YÞ

,

where in the last expression we assume ia j. For the misclassi-
fication function SMF, these quantities take values

zii ¼ g‘ið1�‘iÞ ð13Þ

zij ¼ g‘ið1�‘iÞðdi�giÞ
g�Z�1

jP
ka ig

�Z
k

: ð14Þ

Note that zij ¼�zii for a binary classification problem. For the
misclassification function nSMF, we have

zii ¼ g‘ið1�‘iÞ
di�1

gi
ð15Þ

zij ¼ g‘ið1�‘iÞð1�diÞ
g�Z�1

jP
ka ig

�Z
k

: ð16Þ

Again, zii and zij always have opposite sign, but their absolute
value it is not the same even for a two-classes only task.

The updating process works upon the transformed parameters
to assure the original ones remain in their feasibility range. For
the Gaussian mean associated to the state m in the node u of the
HMT linked to the state k of the HMM for class cj, the updating
step is given by

~mðjÞku,m’ ~mðjÞku,m�at
@‘iðWt;YÞ
@ ~mðjÞku,m

�����
Y ¼ Ŷt

, ð17Þ

where Ŷt refers to the estimates of parameters obtained in the
previous iteration. Applying the chain rule of differentiation
and using the variables defined above, we get (see details in
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Appendix A):

~mðjÞku,m’ ~mðjÞku,m�atz
X

t

dðqt
�k,rt

u�mÞ
wt

u�m̂
ðjÞk
u,m

ŝðjÞku,m

" #
, ð18Þ

where z takes the value zii or zij depending on whether we are
dealing with a training pattern from the same class as the model
or not. The delta function dð�,�Þ is typical of Viterbi decoding. As
the factor in brackets depends on the time frame through wt

u, this
function states that we only consider for the updating process the
standardized observed coefficient for the node in those frames
when the most likely state in the external model is k and the most
likely state in the node is m. Then, to restore the original
parameters we just compute mðjÞku,mðtþ1Þ ¼ sðjÞku,mðtÞ ~mðjÞku,mðtþ1Þ. The
updating process for Gaussian variances is completely analogous
to the one shown above for the means. The working expression for
training reads

~sðjÞku,m’ ~sðjÞku,m�atz
X

t

dðqt
�k,rt

u�mÞ
wt

u�m̂
ðjÞk
u,m

ŝðjÞku,m

 !2

�1

2
4

3
5, ð19Þ

where z and dð�,�Þ have the same meaning as above. Once again,
Viterbi decoding acting on the Markovian dependencies decou-
ples all the nodes and the final formula resembles just the
derivative of a log-normal on its standard deviation. Then, original
variances are restored doing sðjÞku,mðtþ1Þ ¼ expð ~sðjÞku,mðtþ1ÞÞ.

The above strategy works for updating the transition prob-
abilities too. It is shown in the Appendix B that the updating
formula for the transformed probability ~eðjÞku,mn reads

~eðjÞku,mn’~eðjÞku,mn�atz
X

t

dðqt
�k,rt

u�m,rt
rðuÞ�nÞ:

(

�
X

t

X
p

dðqt
�k,rt

u�p,rt
rðuÞ�nÞêðjÞku,mn

)
: ð20Þ

The first sum in brackets counts how many times the most likely
state in the node is m given that the most likely state in its parent
node is n and the state in the HMM is most likely to be k. For the
double sum, note that êðiÞku,mn is a common factor and the sum
actually counts all the frames when the most likely state in the
parent of the given node is n and the most likely state in the
external HMM is that related to the corresponding HMT, k in this
case. Restoration of the original parameters is straightforward
from the definition of ~eðjÞku,mn.

Finally, following identical procedures we find the updating
formulas for the transformed state transition probabilities ~aðjÞsj

given by

~aðiÞsj ’ ~aðiÞsj �atz
XT

t ¼ 1

dðqt�1�s,qt�jÞ�
XT

t ¼ 1

dðqt�1�sÞâ
ðiÞ
sj

( )
: ð21Þ

Once again, we can interprets the summations in the above
formula as counters acting on the sequence of most likely states in
the external HMM, as given by Viterbi decoding. Original
parameters aðjÞsj ðtþ1Þ are easily restored using the definition of ~aðjÞsj .

5. Experimental results

In order to assess the proposed training method, we carry out
automatic speech recognition tests using phonemes from the
TIMIT database [25]. This is a well known corpus in the field and it
has already been used in previous works dealing with similar
schemes [14,41]. In particular, we use samples of phonemes /b/,
/d/, /eh/, /ih/ and /jh/. The voiced stops /b/ and /d/ have a very
similar articulation and different phonetic variants according to
the context. Vowels /eh/ and /ih/ were selected because their

formants are very close. Thus, these pairs of phonemes are very
confusable. The affricate phoneme /jh/ was added as representa-
tive of the voiceless group to complete the set. It must be
remarked that this signals are not spoken isolatedly but extracted
from continuous speech. As a result, there is a large variability in
both acoustic features and duration in the dataset. All of these
contribute to a very demanding task for a classifier.

As a measure of performance, we compare recognition rates
achieved with the proposed method against those for the same
models trained only using the EM algorithm. In all the experi-
ments we model each phoneme with a left-to-right hidden
Markov model with three states (NQ¼3). The observation density
for each state is given by an HMT with two states per node. This is
the standard setting for the state space in most HMT applications
[1]. The sequence analysis is performed on a short-term basis
using Hamming windows 256-samples long, with 50% overlap
between consecutive frames. On each frame, a full dyadic discrete
wavelet decomposition is carried out using Daubechies wavelets
with four vanishing moments [14,43].

In a first set of experiments, we show numerically that the
recognition rate achieved with the EM algorithm attains an upper
bound for the given models and dataset. This bound is shown not
to be surpassed neither increasing the number of re-estimations
of the algorithm nor enlarging the training set. We next carry out
a two-phoneme recognition task using the approach developed in
Section 4. The re-estimation formulas are reduced to much
simpler expressions in this case, allowing to get further insight
into the discriminative training process. It also serves us to
compare the misclassification functions proposed in Section 4.2.
Finally, we carry out a multiclass speech recognition experiment
to assess the error rate reduction after adding a discriminative
stage to the training process.

5.1. Limits on performance for ML estimators

Discriminative training methods usually use maximum-like-
lihood estimates computed via the EM algorithm as initial values
for model parameters [37,39]. Thus, it is fair to ask if better
performance could be achieved just using more training se-
quences in the pure ML approach or increasing the number of re-
estimations in the EM algorithm, without adding a discriminative
stage. To answer this question empirically for our data and our
particular model, we first perform a two-phoneme recognition
task using models trained with the EM algorithm proposed in
[14,41]. We ran the experiment using training sets of increasing
sizes, from 25 sequences to 200. Each training set was picked at
random from the whole training partition of the dataset.
A separate testing set with 200 sequences remained fixed for all
trials. Each tested condition was run 10 times and the number of
re-estimations used for the EM algorithm was fixed at six in all of
them. Obtained results for the {/b/,/d/} pair are given in Fig. 5(a). It
is clear from the figure that increasing the number of training
samples does not lead to a significant improvement in the
recognition rate when only the EM algorithm is used for
training. In fact, analysis of results shows that the p-value for
the {/b/,/d/} pair is 0.4476, which is far from the critical value to
reject the null hypothesis of all means being statistically the same.
Similar comments apply for the {/eh/,/ih/} pair.

On the other hand, the effect of fixing the size of the training
set and increasing the number of re-estimations used in the EM
algorithm is shown in Fig. 5(b). Given values correspond to
training sets with 200 sequences. It can be seen that recognition
rates remain fairly the same with the increase in the number of
re-estimations. For the {/b/,/d/} pair and the specific set of
sequences used in the experiment, there is a slowly improvement
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in performance up to 10 re-estimations. Beyond that there is no
benefit in adding re-estimations steps in the EM algorithm. For
the {/eh/,/ih/} pair of phonemes there is a little improvement up
to five re-estimations but no further improvement is seen either
adding more re-estimations.

Observed results in this experiment reproduce a typical
scenario when working with ‘‘real’’ data. Always the proposed
model it is obviously not the true model for the data in that case.
Increasing the training set or adding re-estimations to the EM
algorithm can only contribute to find better estimates for the
parameters in those models. If models were the true ones, this
would help for classification. But as models do not give the true
distribution of data, we cannot expect this to translate into better
discrimination. Note that this is not a statement on the goodness
of fit of the model itself. For complex real data (like speech, in this
case), hardly any model we propose would suffer from this. Here
is when discriminative training becomes so important.

5.2. MCE training for two-class phoneme recognition

In order to get some insight into the learning process, we first
consider a classification task comprising only two phonemes. In
this case, for a training sequence WAO1, the misclassification
function SMF reduces to

d1ðW;YÞ ¼ g1ðW;YÞ�g2ðW;YÞ:

Aside from the change in sign to account for the different
definition of the discriminant functions we made in (7), this is the
same as the frequently used function (10) for a binary classifica-
tion problem [22]. When the classifier decision is right,
g1ðW;YÞog2ðW;YÞ and the misclassification function takes a
negative value. As this decision is stronger, d1ðW;YÞ becomes
more negative and the resulting loss (2) goes to zero. We then see
from the updating formulas in Section 4.3 that no updating is
performed in such a case. So, the algorithm preserves model
parameters that do well when classifying the current training
signal. Furthermore, for strongly confused patterns d1ðW;YÞ
becomes a large positive value and no update is introduced either.

On the other hand, the misclassification function nSMF reduces
to

d1ðW;YÞ ¼ 1�
g2ðW;YÞ
g1ðW;YÞ

:

When the classifier decision is right, it behaves closely to
d1ðW;YÞ. Nevertheless, if the current training sequence is
strongly misclassified, d1ðW;YÞwill tend to 1. Unlike the previous
case, parameters will be updated unless g is too large. Therefore,
this definition of the misclassification function adds a corrective
feature to the learning process. In both cases, parameter update

takes place when models are confusable and it is the strongest
when the current training sequence is equally likely for both of
them. With the second definition, however, we can also expect an
updating step even for strongly misclassified patterns.

We can get an idea of the strength of the updating steps
looking at the distribution of g‘ið1�‘iÞ. For a given pattern, this
factor scales the gradients in the re-estimation formulas accord-
ing to how confusable the pattern is for the classifier, as told by
the misclassification function. Fig. 6 compares the distribution of
this factor at the beginning of the iterative process, obtained for
the same training set but choosing a different training method in
each case. Fig. 6(a) corresponds to standard MCE training for
HMMs with Gaussian mixtures as observation densities on a
cepstral-based feature space. Fig. 6(b) comes from a classifier
based on HMM–HMTs, using the misclassification function SMF to
derive the MCE criterion; and Fig. 6(c) comes from a classifier
based on HMM–HMTs, but using nSMF as the misclassification
function. In these later histograms, the bin that includes the value
g‘ið1�‘iÞ ¼ 0 was removed to keep figures at a similar scale. It is
interesting to see that despite of (10) and SMF sharing the same
misclassification function for a binary problem like this, it is the
criterion based on the misclassification function nSMF which
generates the distribution of factors more similar to the standard
case shown in plot (a) when using the HMM–HMT. This finding
remains valid for a wide range of useful values of g chosen to
adapt the sigmoid to each case. Therefore, changing the feature
space used to represent the data can induce important
modifications in the way the updating process is driven by a
given approximation of the loss.

To compare the performance achieved by the proposed
misclassification functions, we carried out numerical experiments
with phonemes {/b/,/d/} and {/eh/,/ih/}, which are the most
confused pairs in the set. Two hundred sequences from each class
were used for training and another set of two hundred sequences
from each class were used for testing. Five re-estimation steps
were used in the EM algorithm, along with Viterbi flat start [42].
Parameters for the MCE learning stage were set following
informal tests on a validation test, aimed to find the values that
give better performance for each pair of phonemes and for each
choice of misclassification function. When using SMF we set
a0 ¼ 2:5 and g¼ 0:01, while we set a0 ¼ 0:5 and g¼ 1 for the
algorithm derived using nSMF. In all cases, the learning rate was
decreased from at ¼ a0 at the beginning of the run to at ¼ 0 at its
end. The number of iterations of the MCE algorithm through the
whole training set was varied as 5, 15, 25 and 35. Ten runs were
performed for each tested condition, varying the training set in
each one but keeping fixed the set for testing.

Obtained results for each pair of phonemes and each choice of
the misclassification function are shown in Figs. 7 and 8. Fig. 7
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Fig. 5. Recognition rates for EM training. (a) Increasing the size of the training set. Shown results are the median over 10 runs for each tested condition. Error-bars are given

by the first and third quartiles of the obtained scores. (b) Increasing the number of re-estimations. The {/b/,/d/} pair was used in both experiments.

D. Tomassi et al. / Pattern Recognition 43 (2010) 3998–4010 4005



Author's personal copy

shows the achieved recognition rates for the pair {/b/,/d/}.
Performance for zero iterations of the MCE algorithm refers to
the case when the classifier is trained using ML estimation and
serves as the baseline for comparison. It can be seen that the
scores using discriminative steps are significantly higher than the
baseline with both MCE criteria for all tested conditions with

more than five iterations. For five MCE iterations there is no
significant improvement on the average. Figure also shows that
the training method using the misclassification function nSMF
outperforms that based on SMF. With 35 iterations of the
algorithm, the former achieves an average reduction of about
30% in the error rate, whereas the later does a 14%. In addition,
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Fig. 6. Distribution of the loss and the factor g‘ið1�‘iÞ at the beginning of different settings of the MCE training. Upper figures show the location of the loss for each

sequence in the training set, while figures at the bottom show the resulting histogram for the factor g‘ið1�‘iÞ. (a) and (d) using cepstral features and Gaussian mixture-

HMMs along with a standard misclassification function as in (10); (b) and (d) using the HMM–HMT and the misclassification function SMF; (c) and (e) using the

HMM–HMT and the misclassification function nSMF.
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Fig. 7. Recognition rates for phonemes /b/ and /d/: (a) using SMF; (b) using nSMF. Shown results are the median over 10 runs for each tested condition. Error-bars are given

by the first and third quartiles of the obtained scores.
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Fig. 8. Recognition rates for phonemes /eh/ and /ih/: (a) using the misclassification function SMF; (b) using nSMF. Shown results are the median over 10 runs for each

tested condition. Error-bars are given by the first and third quartiles of the obtained scores.
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there seems to be a trend to continue rising the recognition rate in
Fig. 7(b), while in Fig. 7(a) improvements appear to have reached
a bound. Furthermore, the variance of the obtained scores remain
very similar as they go better for the method using the misclassi-
fication function nSMF, while it increases significantly for the
method using SMF.

The difference in performance achieved with a different choice
of the misclassification function is stressed in the results for
phonemes {/eh/,/ih/} shown in Fig. 8. Scores obtained here with
the method based on nSMF are markedly better than those
achieved using SMF. For the former the average improvement in
the error rate is around 45%, whereas for the latter it is about 20%.
A possible explanation of these results relies on the wide
dispersion of discriminant function values. As SMF is based just
on a difference between these values, it also has a large variability
that makes it very difficult to choose a suitable sigmoid to capture
many confusable samples to drive the competitive update with-
out picking too much of them. The selected value for g becomes
conservative and then only a small subset of confusable
samples are used to trigger the updates, which results in a poorer
performance. It must be noticed that this effect is expected
to be emphasized as the duration of sequences increases, so
that is natural to have better results for the shorter samples from
{/b/,/d/}. On the other hand, the misclassification function nSMF
introduces a scaling that avoids it to have so much variation in its
values, which makes it easier to find a suitable sigmoid to drive
the selection of confusable patterns.

5.3. Sensitivity to parameters of the algorithm

It is interesting to see the effect on the recognition rate when
changing the parameters of the MCE/GPD algorithm. Consider the
problem of classifying phonemes {/eh/,/ih/}. We first carried out a
simple experiment setting Z¼ 4 and g¼ 1 as in previous tests, and
changed a0 to take values {0.25, 0.50, 1.0, 2.0}. Obtained results
are shown in Fig. 9(a). It can be seen that for this dataset

recognition rates attain a bound at 67.5% for all conditions, but
they differ in the speed they do it with. The smaller learning rate
shows the lowest increase in recognition rate when increasing the
number of iterations of the learning algorithm. Increasing a0

speeds up the process, but it can be seen also that it can lead to
overfitting. This situation is common to all gradient-based
techniques as the one proposed here. The optimal value of a0

depends on the data and the size of the training sample. Some
rough guidelines to choose this parameter are stated in [35],
taking into account the variability of the sample.

A similar effect can be seen in Fig. 9(b), but varying g and
letting a0 and Z fixed. Nevertheless, the reason is quite different.
Parameter g determines the rate of change of the loss approxima-
tion. For small values of g, the signoid grows slowly from ‘¼ 0 to 1
and much of the training samples result in values of the
misclassification function that fall in the raising segment of the
sigmoid. In this case, even well classified sequences trigger strong
updates. As g becomes large, the raising segment of the sigmoid
gets sharper and less cases fall in this region. Thus, well classified
observations introduce a much weaker change on the parameters.
At the same time, when nSMF is used as the misclassification
function, small values of g make misclassified cases fall in a
narrow segment of the sigmoid, as seen in Fig. 10. They give rise
to updates with similar strength regardless the confusability of
the training sequence. As g becomes larger, misclassified cases
occupy a broader region of the sigmoid, triggering updates that
depend more on confusability.

5.4. Multiclass phoneme recognition

To further assess the proposed discriminative training method
for the HMM–HMT model, a new speech recognition task
including the whole set of phonemes was carried out. In this
experiment, only the MCE approach based on the misclassification
function nSMF was taken into account, as consistently better
results were found for this choice in the previous task. Ten
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Fig. 9. Sensitivity of recognition rate to changes on the parameters of the MCE/GPD algorithm. (a) Varying a0, with g and Z fixed. (b) Varying g, with a0 and Z fixed.
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training sets picked at random were considered and a replicate of
the experiment was run for each of them. The testing set
remained fixed for all runs. Both the training sets and the testing
set were build randomly taking 200 sequences from each class.
The same learning rate was used for all the parameters in the
models. The initial rate a0 was chosen to be the largest value that
gave a monotonic improvement in recognition rate as a function
of the number of iterations of the MCE algorithm, when using a
separate set of sequences both for training and testing. This was
checked in preliminary runs. During the experiments, this
learning rate was linearly decreased from at ¼ a0 at the first
iteration to at ¼ 0 at the end of the training process.

Obtained results are shown in Fig. 11. A monotonic
improvement in the error rate is achieved as more iterations
over the whole training set are added to the discriminative
training process. After 35 iterations, the average error rate
reduction is about 18%. Most of the improvement, however,
occurs up to 25 iterations of the MCE algorithm, reducing
the error rate around a 17.25% at this level. The variance in the
obtained rates remains fairly the same with the increased number
of iterations. Analysis of individual runs reveals that for some
training sets performance degrades with the first iterations of the
algorithm and then starts to improve as more iterations
are carried out. Furthermore, three of the 10 runs show that the
achieved score starts to decrease slowly at 35 iterations,
suggesting that overfitting could be taking place after this point.

This difficult classification task show a consistent improve-
ment in recognition rate using discriminative parameter estima-
tion for the HMM–HMT model.

6. Conclusions

This paper introduces a new method for discriminative
training of hidden Markov models whose observations are
sequences in the wavelet domain. The algorithm is based on the
MCE/GPD approach and it allows for training fully non-tied
HMM–HMT models. This observation model and feature space
required special considerations. It was shown that standard
procedures were numerically unfeasible in this scenario, and
alternative choices were needed to simulate the classifier decision

when the MCE criterion was derived. Assessment of proposed
misclassification functions in a simple phoneme recognition
task showed that comparing the order of magnitude of the log-
likelihoods for competing models was more appealing to this
context than simple comparison of their value. This important
modification results in a stronger penalty for misclassified
patterns, giving rise to a corrective characteristic that works well
in this context. Speech recognition experiments show that the
proposed method achieves consistent improvements on recogni-
tion rates over training with the standard EM algorithm only. The
average error rate reduction for this task was found to be around
18% using 35 iterations of the algorithm.

Obtained results are promising and there is plenty of room for
further improvements. In particular, only plain HMM–HMTs were
used in this work. Strategies to account for shift invariance has
shown to be effective when working with HMTs and could also be
introduced in this context. Future works will address this issue
along with more efficient optimization approaches in order to
speed up convergence.
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Appendix A. Updating of Gaussian observations

In this section, we review the main steps for deriving the
updating formulas for the Gaussian distributions in the observa-
tion model for each HMT of the composite HMM–HMT. Let us
consider the training formulas for the Gaussian means first. We
begin noting that the discriminant functions read:
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where, qt and rt refer to states in the external HMM and the
corresponding HMT model, respectively, that achieve the max-
imum joint likelihood. To find (18), we know from (20) that we
need
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:

In the expression above, we used z defined in Section 4.3.
As observations in a node depends only on the state of that node,
we have
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:

As the sum takes into account only the most likely states in the
node of the HMT related to the most likely state of the HMM in a
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Fig. 11. Error rate improvement over standard ML training using the proposed

MCE approach to train the classifier for the set of five phonemes. The

misclassification function nSMF was used in this experiment. Initial recognition

rates using maximum likelihood estimates are around 37% for the considered

phoneme set.
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given frame, we write
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Noting that @mðjÞku,m=@ ~mðjÞku,m ¼ s
ðjÞk
u,m and that we are using an univariate

Gaussian distribution for f
q

t
ðwt
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u,r
t
u

, we get (18).

The steps to derive the updating formulas for the Gaussian
variances are completely analogous.

Appendix B. Updating of transition probabilities

The procedure applied above also works well for transition
probabilities, both in each HMT and in the external HMM of the
whole HMM–HMT. Let us consider the estimation of the
transition probabilities in the internal HMT. Reasoning as above,
we just need
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Remembering of the transformation for this transition probabil-
ities and proceeding as before to account for the most likely states
in each frame, we get
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We now see that for pam, we have @eðiÞku,pn=@~eðiÞku,mn ¼�e
ðiÞk
u,pneðiÞku,mn and

for p¼m we have @eðiÞku,pn=@~eðiÞku,mn ¼ e
ðiÞk
u,mnð1�eðiÞku,mnÞ. Replacing these

results in the formula for the gradient and reordering, we get (20).
An analogous procedure applies to derive the updating formulas
for transition probabilities in the external HMM.
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