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a b s t r a c t

We consider the problem of classification of an object given multiple observations that possibly include

different transformations. The possible transformations of the object generally span a low-dimensional

manifold in the original signal space. We propose to take advantage of this manifold structure for the

effective classification of the object represented by the observation set. In particular, we design a low

complexity solution that is able to exploit the properties of the data manifolds with a graph-based

algorithm. Hence, we formulate the computation of the unknown label matrix as a smoothing process

on the manifold under the constraint that all observations represent an object of one single class. It

results into a discrete optimization problem, which can be solved by an efficient and simple, yet

effective, algorithm. We demonstrate the performance of the proposed graph-based algorithm in the

classification of sets of multiple images. Moreover, we show its high potential in video-based face

recognition, where it outperforms state-of-the-art solutions that fall short of exploiting the manifold

structure of the face image data sets.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have witnessed a dramatic growth of the amount
of digital data that is produced by sensors or computers of all
sorts. That creates the need for efficient processing and analysis
algorithms in order to extract the relevant information contained
in these data sets. In particular, it commonly happens that
multiple observations of an object are captured at different time
instants or under different geometric transformations. For
instance, a moving object may be observed over a time interval
by a surveillance camera (see Fig. 1(a)) or under different viewing
angles by a network of vision sensors (see Fig. 1(b)). This typically
produces a large volume of multimedia content that lends itself
as a valuable source of information for effective knowledge
discovery and content analysis. In this context, classifi-
cation methods should be able to exploit the diversity of the
multiple observations in order to provide increased classification
accuracy [17].

We build on our previous work [8] and we focus here on the
pattern classification problem with multiple observations.
We further assume that observations are produced from the same
object under different transformations, so that they all lie on the
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same low-dimensional manifold. We propose a novel graph-based
algorithm inspired by label propagation [22]. Label propagation
methods typically assume that the data lie on a low dimensional
manifold living in a high dimensional space. They rely upon the
smoothness assumption, which states that if two data samples x1

and x2 are close, then their labels y1 and y2 should be close as well.
The main idea of these methods is to build a graph that captures
the geometry of this manifold as well as the proximity of the data
samples. The labels of the test examples are derived by ‘‘propagat-
ing’’ the labels of the labelled data along the manifold, while
making use of the smoothness property. We exploit the specificity
of our particular classification problem and constrain the unknown
labels to correspond to one single class. This leads to the
formulation of a discrete optimization problem that can be
optimally solved by a simple and low complexity algorithm.

We apply the proposed algorithm to the classification of sets of
multiple images in handwritten digit recognition, multi-view
object recognition or video-based face recognition. In particular,
we show the high potential of our graph-based method for
efficient classification of images that belong to the same data
manifold. For example, the proposed solution, despite its
simplicity, outperforms state-of-the-art subspace or statistical
classification methods in video-based face recognition and object
recognition from multiple image sets. Hence, this paper brings
new insight from the graph-based algorithms into the problems of
multi-view object recognition or video-based face recognition,
which—to the best of our knowledge—has not been offered by
any of the existing approaches that are mainly categorized as
either statistical or subspace ones.
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Fig. 1. A typical scenarios of producing multiple observations of an object.

(a) Video frames of a moving object and (b) network of vision sensors.
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The paper is organized as follows. We first formulate the
problem of classification of multiple observation sets in Section 2.
We introduce our graph-based algorithm inspired by label
propagation in Section 3. Then we demonstrate the performance
of the proposed classification method for handwritten digit
recognition, object recognition and video-based face recognition
in Sections 4.1, 4.2 and 5, respectively.
2. Problem definition

We address the problem of the classification of multiple
observations of the same object, possibly with some transforma-
tions. In particular, the problem is to assign multiple observations
of the test pattern/object s to a single class of objects. We assume
that we have m multiple observations of s of the following form:

xðuÞi ¼ oiðsÞ, i¼ 1, . . . ,m: ð1Þ

In the case of visual objects for example, oi(s) may correspond to a
rotation, scaling, translation, or perspective projection of the
object s, or oi(s) may correspond to an observation of a moving
object s obtained at a certain time step ti. The superscript index
(u) in (1) simply denotes that the different observations are
unlabelled. We assume that each observation xi

(u) is distinct from
its peers (i.e., xðuÞi axðuÞj , for ia j). Notice the common dependence
of the xi

(u) on s, which further implies that the unknown class label
of all xi

(u) is the same as that of s. The problem then is to classify s

in one of the c classes under consideration, using the multiple
observations xi

(u), i¼1,y,m.
In order to address the classification problem, we assume that

we also have a training data set in our disposal. Therefore, one can
organize the whole data set in two parts X ¼ fXðlÞ,XðuÞg, where
XðlÞ ¼ fx1,x2, . . . ,xlg �Rd and XðuÞ ¼ fxlþ1, . . . ,xng �Rd, where n ¼

l + m. Let also L¼ f1, . . . ,cg denote the label set. The l examples in
X(l) are labelled fy1,y2, . . . ,ylg, yiAL, and the m examples in
X(u) are unlabelled. We associate the set of unlabelled data X(u)

with the set of multiple observations introduced in (1), i.e.,
XðuÞ ¼ fxlþ1, . . . ,xng9fx

ðuÞ
1 , . . . ,xðuÞm g. The classification problem can

be formally defined as follows.
Problem 1. Given a set of labelled data X(l), and a set of unlabelled
data XðuÞ9fxðuÞj ¼ ojðsÞ, j¼ 1, . . . ,mg that correspond to multiple
observations of s, the problem is to predict the correct class c* of
the original pattern s.

One may view Problem 1 as a special case of semi-supervised
learning [3], where the unlabelled data X(u) represent the multiple
observations with the extra constraint that all unlabelled data
examples belong to the same (unknown) class. The problem then
resides in estimating the single unknown class, while generic
semi-supervised learning problems attribute the test examples to
different classes. We propose in the next section a novel efficient
algorithm inspired from label propagation in order to solve
Problem 1.
3. Graph-based classification

3.1. Label propagation

We review quickly here the classical label propagation
algorithm and we later present our solution to Problem 1. The
label propagation algorithm [22] is based on a smoothness

assumption, which intuitively states that if x1 and x2 are close-
by, then there is a high chance that they share the same class
label. Denote by M the set of matrices of size n� c with non-
negative entries. Notice that any matrix MAM provides a
labelling of the data set by applying the following rule:
yi ¼maxj ¼ 1,...,cMij. We denote the initial label matrix as YAM
where Yij ¼ 1 if xi belongs to class j and 0 otherwise. The label
propagation algorithm first forms the k nearest neighbor (k-NN)
graph defined as

G¼ ðV,EÞ,

where the vertices V correspond to the data samples X. An edge
eijAE is drawn if and only if xj is among the k nearest neighbors of xi.

It is common practice to assign weights on the edge set of G.
One typical choice is the Gaussian weights

Hij ¼
exp �

Jxi�xjJ
2

2s2

 !
when ði, jÞAE,

0 otherwise:

8><
>: ð2Þ

The normalized Laplacian matrix SARn�n is then defined as

S¼D�1=2HD�1=2, ð3Þ

where D is a diagonal matrix with entries Dii ¼
Pn

j ¼ 1 Hij. The
matrix S is also known as the similarity matrix (see, e.g., [2]), since
the (i,j) entry captures the similarity between xi and xj. See also
Fig. 2 for a schematic illustration of the k-NN graph and related
notation.

Next, the algorithm computes a real valued M�AM based on
which the final classification is performed using the rule
yi ¼maxj ¼ 1,...,cM�ij. This is done via a regularization framework
with a cost function defined as

UðMÞ ¼ 1

2

Xn

i,j ¼ 1

Hij
1ffiffiffiffiffiffi
Dii

p Mi�
1ffiffiffiffiffiffi
Djj

p Mj

�����
�����

2
0
@ þm

Xn

i ¼ 1

JMi�YiJ
2

!
, ð4Þ

where Mi denotes the ith row of M. The computation of M* is done by
solving the quadratic optimization problem M� ¼ argminMAMUðMÞ.

Intuitively, we are seeking an M* that is smooth along the
edges of similar pairs (xi,xj) and at the same time close to Y when
evaluated on the labelled data X(l). The first term in (4) is the
smoothness term and the second is the fitness term.

Notice that when two examples xi and xj are similar (i.e., the
weight Hij is large) minimizing the smoothness term in (4) results
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Fig. 2. A typical structure of the k-NN graph. N i represents the neighborhood of

the sample xi.
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Fig. 3. Structure of the class-conditional label matrix Zp.
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in M being smooth across similar examples. Thus, similar data
examples will likely share the same class label. It can be shown
[22] that the solution to problem (4) is given by

M� ¼ bðI�aSÞ�1Y , ð5Þ

where a¼ 1=ð1þmÞ and b¼ m=ð1þmÞ.
Finally, several other variants of label propagation have been

proposed in the past few years. We mention for instance, the
method of [25] and the variant of label propagation that was
inspired from the Jacobi iteration algorithm [3, Ch. 11]. Finally, it is
interesting to note that there have also been found connections to
Markov random walks [18] and electric networks [26]. Note finally
that label propagation is probably the most representative algorithm
among the graph-based methods for semi-supervised learning.
3.2. Label propagation with multiple observations

We propose now to build on graph-based algorithms to solve
the problem of classification of multiple observation sets. In
general, the classical label propagation framework assumes that
the unlabelled examples come from different classes. As Problem
1 presents the specific constraint that all unlabelled data belong
to the same class, label propagation does not fit exactly the
definition of the problem as it falls short of exploiting its special
structure. Therefore, we propose in the sequel a novel graph-
based algorithm inspired from label propagation, which (i) uses
the smoothness criterion on the manifold in order to predict the
unknown class labels and (ii) at the same time, it is able to exploit
the specificity of Problem 1.

We represent the data labels with a 1-of-c encoding, which
permits to form a binary label matrix of size n� c, whose ith row
encodes the class label of the ith example. The class label is
basically encoded in the position of the nonzero element.

Suppose now that the correct class for the unlabelled data is
the pth one. In this case, we denote by ZpARn�c the corresponding
label matrix. Note that there are c such label matrices; one for
each class hypothesis. Each class-conditional label matrix Zp has the
following form:

ð6Þ

where epARc is the pth canonical basis vector and 1ARm is the
vector of ones. Fig. 3 shows schematically the structure of the
matrix Zp. The upper part corresponds to the labelled examples
and the lower part to the unlabelled ones. Zp holds the labels of all
data samples, assuming that all unlabelled examples belong to the
pth class. Observe that the Zp’s share the first part Yl and differ
only in the second part.

Since all unlabelled examples share the same label, the class
labels have a special structure that reflects the special structure of
Problem 1, as outlined in our previous work [8]. We could then
express the unknown label matrix M as,

M¼
Xc

p ¼ 1

lpZp, ZpARn�c , ð7Þ

where Zp is given in (6), lpAf0,1g and

Xc

p ¼ 1

lp ¼ 1: ð8Þ

In the above, l¼ ½l1, . . . ,lc� is the vector of linear combination
weights, which are discrete and sum up to one. Ideally, l should be
sparse with only one nonzero entry pointing to the correct class.

The classification problem now resides in estimating the
proper value of l. We rely on the smoothness assumption and
we propose the following objective function:

~QðMðlÞÞ ¼ 1

2

Xn

i,j ¼ 1

Hij
1ffiffiffiffiffiffi
Dii

p Mi�
1ffiffiffiffiffiffi
Djj

p Mj

�����
�����

2
0
@

1
A, ð9Þ

where the optimization variable now becomes the l vector.
Notice that the fitting term in the classical label propagation
algorithm (see Eq. (4)) is not needed anymore due to the structure
of the Z matrices. Furthermore, we observe that the optimization
parameter l is implicitly represented in the above equation
through M, defined in Eq. (7).

In the above, Mi (resp. Mj) denotes the ith (resp. jth) row of M.
In the case of normalized similarity matrix, the above criterion
becomes

QðMðlÞÞ ¼ 1

2

Xn

i, j ¼ 1

SijJMi�MjJ
2, ð10Þ

where S is defined as in (3). It can be seen that the objective
function directly relies on the smoothness assumption. When two
examples xi, xj are nearby (i.e., Hij or Sij is large), minimizing ~Q ðlÞ
and Q ðlÞ result in Mi being close to Mj, which in turn results in
similar class labels yi and yj. Therefore, objects in the same class
contribute to a low cost as long as their labels are identical.
Objects that are very dissimilar have a low value Sij, which gives a
small importance on the value of their respective labels. This is
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exactly the goal of the smoothness constraint in our optimization
problem.

The following proposition now shows the explicit dependence
of Q on l.

Proposition 1. Assume the data set is split into l labelled

examples X(l) and m unlabelled examples X(u), i.e., X ¼ [X(l), X(u)].
Then, the objective function (10) can be written in the following

form:

Q ðlÞ ¼ Cþ
1

2

X
ir l,j4 l

SijJYi�lJ2
þ

1

2

X
i4 l,jr l

SijJYj�lJ2, ð11Þ

where C ¼
P

ir l,jr lSijJYi�YjJ
2.

Proof. From Eq. (10) observe that

QðlÞ ¼ 1

2

Xn

i,jr l

SijJMi�MjJ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q1

þ
1

2

Xn

i,j4 l

SijJMi�MjJ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q2

þ
1

2

Xn

ir l,j4 l

SijJMi�MjJ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q3

þ
1

2

Xn

i4 l,jr l

SijJMi�MjJ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q4

:

We consider the following cases:
(i)
 ir l and jr l: both data examples xi and xj are labelled.
Then, Mi ¼ ð

Pc
p ¼ 1 lpÞYi ¼ Yi, due to the special structure of

the Z matrices (see (6)) and also due to the constraint from
Eq. (8). Similarly, Mj¼Yj. This results in Q1 ¼

1
2

P
i,jr l

SijJYi�YjJ
2
¼ C, which is a constant term and does not depend

on l.

(ii)
 i4 l and j4 l: both data samples xi and xj are unlabelled. In

this case, Mi ¼ l and Mj ¼ l, again due to (6). Therefore the
second term Q2 is zero.
(iii)
 ir l and j4 l: xi is labelled and xj is unlabelled. In this case, Mi

¼ Yi and Mj ¼ l. This results in Q3 ¼
1
2

P
ir l,j4 lSijJYi�lJ2.
(iv)
 i4 l and jr l is analogous to the case (iii) above, where the
roles of xi and xj are switched. Thus, Q4 ¼

1
2

P
i4 l,jr lSijJYj�lJ2.
Putting the above facts together yields Eq. (11). &

The above proposition suggests that only the interface
between labelled and unlabelled examples matters in determin-
ing the smoothness value of a candidate label matrix M, or
equivalently the solution vector l. We use this observation in
order to design an efficient graph-based classification algorithm
that is described below.
3.3. The MASC algorithm

We propose in this section a simple, yet effective graph-based
algorithm for the classification of multiple observations from the
same class. Based on Proposition 1 and ignoring the constant
term, we need to solve the following optimization problem:
Optimization problem: OPT

minl
P

ir l,j4 lSijJYi�lJ2
þ
P

i4 l,jr lSijJYj�lJ2

subject to

lpAf0,1g, p ¼ 1,y,c,Pc
p ¼ 1 lp ¼ 1.
Intuitively, we seek the class that corresponds to the smoothest
label assignment between labelled and unlabelled data. Observe
that the above problem is a discrete optimization problem due to
the constraints imposed on l, that can be collected in a set L,
where

L¼ lARc�1 : lpAf0,1g, p¼ 1, . . . ,c,
Xc

p ¼ 1

lp ¼ 1

( )
:

Algorithm 1. The MASC algorithm
1:
 Input:

Xl: labelled data and their labels {y1,y,yl}

X(u): multiple observations

c: number of classes

m: number of observations

l: number of labelled data samples
2:
 Parameters:

k: number of nearest neighbors in the graph construction
3:
 Output:
p̂: estimated unknown class.

4:
 Initialization:

5:
 Form the k-NN graph G¼ ðV,EÞ

6:
 Compute the weight matrix HARn�n as in (2) and the

diagonal matrix D, where Di,i ¼
Pn

j ¼ 1 Hij
7:
 Compute S¼D�1=2HD�1=2.

8:
 for p ¼ 1 : c do

9:
M¼

Yl

1e>p

2
64

3
75
10:
 qðpÞ ¼
P

ir l,j4 lSijJMi�MjJ
2
þ
P

i4 l,jr lSijJMi�MjJ
2

11:
 end for

12:
 p̂ ¼ argminpqðpÞ
Interestingly, the search space L is small. In particular, it consists
of the following c vectors:

½1,0, . . . ,0, . . . ,0�

½0,1, . . . ,0, . . . ,0�
. . .

½0,0, . . . ,1, . . . ,0�
½0,0, . . . ,0, . . . ,1�:

Thus, one may solve OPT by enumerating all above possible
solutions and pick the one l� that minimizes Q ðlÞ. Then, the
position of the nonzero entry in l� yields the estimated unknown
class. Notice here that the specific nature of our problem permits
to avoid the use of relaxation techniques in classical label
propagation [25]. Since all test samples belong to the same class,
the optimal solution can be obtained with a full search, as long as
the number of classes stays reasonable. We call this algorithm
MAnifold-based Smoothing under Constraints (MASC) and we
show its main steps in Algorithm 1.

The MASC algorithm has a computational complexity that is
linear with the number of classes, and quadratic with the number
of samples. The construction of the k-NN graph (Lines 5–7) scales
as O(n2). Once the graph has been constructed, the enumeration of
all possible solutions scales as O(kmc). This is due to the fact that
the matrix S is sparse (i.e., k nonzero entries per row) and the
summands in Line 10 involve only a part of S. We conclude
that the total computational cost of the method is O(n2 + kmc).
One may further assume that the graph among the labelled
samples can be computed in an off-line step. In this case, the
construction of the k-NN graph scales as O(ml), as the Euclidean
distances between each observation and the labelled set have to
be computed. Overall, when the off-line cost is omitted, the total
cost of the algorithm is O(ml + kmc), which is linear with the
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number of classes and the number of multiple observations. This
is to be contrasted, for example, with the cost of classical label
propagation (see Section 3.1) that scales as O(n3), due to the
solution of a linear system of equations, see (5).
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4. Classification of multiple images sets

4.1. Handwritten digit classification

We evaluate the performance of the proposed MASC algorithm
with respect to label propagation, in the context of handwritten
digit classification. Multiple transformed images of the same digit
class form a set of observations, which we want to assign in the
correct class. We use two different data sets for our experimental
evaluation: (i) a handwritten digit image collection1 and (ii) the
USPS handwritten digit image collection. The first collection
contains 20� 16 bit binary images of ‘‘0’’ through ‘‘9’’, where each
class contains 39 examples. The USPS collection contains 16� 16
gray-scale images of digits and each class contains 1100
examples.

Robustness to pattern transformations is a very important
property of the classification of multiple observations. Transfor-
mation invariance can be reinforced into classification algorithms
by augmenting the labelled examples with the so-called virtual

samples, denoted hereby as X(vs) (see [13] for a similar approach).
The virtual samples are essentially data samples that are
generated artificially, by applying transformations to the original
data samples. They are given the class labels of the original
examples that they have been generated from, and are treated
as labelled data. By including the virtual samples in the data
set, any classification algorithm becomes more robust to
transformations of the test examples. We therefore adopt
this strategy in the proposed methods and we include nvs

virtual samples X(vs) in our original data set that is finally written
as X ¼ {X(l), X(vs), X(u)}.

Ideally, in order to obtain a k-NN graph that provides a
sensible graph model of the manifold, one needs to ensure that
the virtual sample set is constructed in a way such that those
virtual samples that correspond to nearby transformations, are
also nearby in the ambient space. However, this raises the
problem of manifold discretization, which is a very challenging
problem on its own and its treatment goes beyond the scope of
the present work. Therefore, in this paper we use uniform
discretization for the construction of the virtual sample set and
assume that it is fine enough to ensure this condition.

We compare the classification performance of the MASC
algorithm with the label propagation (LP) method. In LP, the
estimated class is computed by majority voting on the estimated
class labels computed in Eq. (5). In our experiments, we use the
same k-NN graph in combination with the Gaussian weights from
Eq. (2) in both LP and MASC methods. In order to determine the
value of the parameter s in Eq. (2) we adopt the following
process; we pick randomly 1000 examples, compute their
pairwise distances and then set s equal to half of its median.

We first split the data sets into training and test sets by
including two examples per class in the training set and the
remaining are assigned to the test set. Each training sample is
augmented by four virtual examples generated by successive
rotations of it, where each rotation angle is sampled regularly in
[�401,401]. This interval has been chosen to be sufficiently small
in order to avoid the confusion of digits ’6’ and ’9’. Next, in order
to build the unlabelled set X(u) (i.e., multiple observations) of a
1 http://www.cs.toronto.edu/�roweis/data.html
certain class, we choose randomly a sample from the test set of
this class and then we apply a random rotation on it by a random
(uniformly sampled) angle yA ½�403,403

�.
The number of nearest neighbors was set to k¼5 for both

binary digit collection and the USPS data set, in both methods.
These values of k have been obtained by the best performance of
LP on the test set. We try different sizes of the unlabelled set (i.e.,
multiple observations), namely m ¼ [10:20:150] (in MATLAB
notation). For each value of m, we report the average classification
error rate across 100 random realizations of XðuÞ generated from
each one of the 10 classes. Thus, each point in the plot is an
average over 1000 random experiments.

Figs. 4(a) and (b) show the results over the binary digits and
the USPS digits image collections, respectively. Observe first that
increasing the number of observations gradually improves the
classification error rate of both methods. This is expected since
more observations of a certain pattern give more evidence, which
in turn results in higher confidence in the estimated class label.
Finally, observe that the proposed MASC algorithm unsurprisingly
outperforms LP in both data sets, since it is designed to exploit the
particular structure of Problem 1.
Fig. 4. Classification results measured on two different data sets. (a) Binary digits

and (b) USPS digits.

http://www.cs.toronto.edu/&sim;roweis/data.html
http://www.cs.toronto.edu/&sim;roweis/data.html
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4.2. Object recognition from multi-view image sets

In this section we evaluate our graph-based algorithm in the
context of object recognition from multi-view image sets. In this
case, the different views are considered as multiple observations
of the same object, and the problem is to recognize correctly
this object.

The proposed MASC method implements Gaussian weights (2)
and sets k¼5 in the construction of the k-NN graph. We compare
MASC to well-known methods from the literature, which mostly
gather algorithms based on either subspace analysis or density
estimation (statistical methods):
�
 MSM: The Mutual Subspace Method [4,21], which is the most
well-known representative of the subspace analysis methods.
It represents each image set by a subspace spanned by the
principal components, i.e., eigenvectors of the covariance
matrix. The comparison of a test image set with a training
one is then achieved by computing the principal angles [5]
between the two subspaces. In our experiments, the number of
principal components has been set to nine, which has been
found to provide the best performance.

�
 KMSM: MSM has been extended to its nonlinear version called

the Kernel Mutual Subspace Method (KMSM) [14], in order to
take into account the nonlinearity of typical image sets. The
main difference of KMSM from MSM is that the images are first
nonlinearly mapped into a high dimensional feature space,
before modeling by linear subspaces takes place. In other
words, KMSM uses kernel PCA instead of PCA in order to
capture the nonlinearities in the data. In KMSM, we use the
Gaussian kernel kðx,yÞ ¼ expð�Jx�yJ2=2s2Þ, where s is deter-
mined exactly in the same way as in the Gaussian weights of
our MASC method.

�

Fig. 5. Sample images from the ETH-80 database. (a) ETH-80 and (b) 41 views of a

sample car model.

Table 1
Object recognition rate in the mean (std) format, measured on the ETH-80

database.

MASC MSM KMSM KLD

88.88 (1.71) 74.88 (5.02) 83.2500 (3.4) 52.5 (3.95)
KLD: The KL-divergence algorithm by Shakhnarovich et al. [16]
is the most popular representative of density-based statistical
methods. It formulates the classification from multiple images
as a statistical hypothesis testing problem. Under the i.i.d and
the Gaussian assumptions on the image sets, the classification
problem typically boils down to a computation of the KL
divergence between sets, which can be computed in closed
form in this case. The energy cut-off, which determines the
number of principal components used in the regularization of
the covariance matrices, has been set to 0.96.

Note that the above methods can be understood as local 1-NN
classification methods with different distance measures defined
on image sets. In our evaluation, we use the ETH-80 image set
[11], which contains 80 object classes from eight categories;
apple, car, cow, cup, dog, horse, pear and tomato. Each category
has 10 object classes (see Fig. 5(a)). Each object class then consists
of 41 views of the object spaced evenly over the upper viewing
hemisphere. Fig. 5(b) shows the 41 views from a sample car object
class. We use the cropped-close128 part of the database. All
provided images are of size 128�128 and they are cropped, so
that they contain only the object without any border area. We
downsampled the images to size 32�32 for computational ease.
No further preprocessing is done.

The 41 views from each object class are split randomly into 21
training and 20 test samples. In this case, the 20 different views in
the test set correspond to the multiple observations of the test
object. We perform 10 random experiments where the images are
randomly split into training and test sets. Table 1 presents the
average object recognition rate for each method. We also report
the standard deviation of each method in parentheses. Notice that
the subspace methods are superior to the KLD method which
assumes Gaussian distribution of the data. Notice also that as one
would expect, KMSM outperforms MSM that falls short of
capturing the nonlinearities in the data. Finally, observe that our
graph-based method clearly outperforms its competitors, as it is
able to capture not only the nonlinearity, but also the manifold
structure of the data.
5. Video-based face recognition

5.1. Experimental setup

In this section we evaluate our graph-based algorithm in the
context of face recognition from video sequences. In this case, the
different video frames are considered as multiple observations of
the same person, and the problem consists in the correct
classification of this person. We evaluate in this section the
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behavior of the MASC algorithm in realistic conditions, i.e., under
variations in head pose, facial expression and illumination. We
compare our algorithm to state-of-the-art schemes such as KLD,
MSM and KMSM, which have been described in Section 4.2. Note
in passing that our algorithm does not assume any temporal order
between the frames; hence, it is also applicable to the generic
problem of face recognition from image sets.

We use two publicly available databases: the VidTIMIT [15]
and the first subset of the Honda/UCSD [10] database. The
VidTIMIT database2 contains 43 individuals and there are three
face sequences obtained from three different sessions per subject.
The data set has been recorded in three sessions, with a mean
delay of seven days between session one and two, and six days
between session two and three. In each video sequence each
person performed a head rotation sequence. In particular, the
sequence consists of the person moving his/her head to the
left, right, back to the center, up, then down and finally return
to center.

The Honda/UCSD database3 contains 59 sequences of
20 subjects. In contrast to the previous database, the individuals
move their head freely, in different speed and facial expressions.
In each sequence, the subjects perform free in-plane and out-of-
plane head rotations. Each person has between two and five video
sequences and the number of sequences per subject is variable.

For preprocessing, in both databases, we used first Viola’s face
detector [19] in order to automatically extract the facial region
from each frame. Note that this typically results in misaligned
facial images. Next, we downsampled the facial images to size
32�32 for computational ease. No further preprocessing has
been performed, which brings our experimental setup closer to
real testing conditions.
5.2. Classification results on VidTIMIT

We first study the performance of the MASC algorithm with
the VidTIMIT database. Fig. 6 shows a few representative images
from a sample face manifold in the VidTIMIT database. Observe
the presence of large head pose variations. Fig. 7 shows the 3D
projection of the manifold that is obtained using the ONPP
method [9], which has been shown to be an effective tool for data
visualization. Notice the four clusters corresponding to the four
different head poses, i.e., looking left, right, up and down.
2 http://users.rsise.anu.edu.au/�conrad/vidtimit/
3 http://vision.ucsd.edu/� leekc/HondaUCSDVideoDatabase/HondaUCSD.html
This indicates that a graph-based method should be able to
capture the geometry of the manifold and propagate class labels
based on the manifold structure.

Since there are three sessions, we use the following metric for
evaluating the classification performances:

e ¼
1

6

X3

i ¼ 1

X3

j ¼ 1,ja i

eði,jÞ, ð12Þ

where e(i,j) is the classification error rate when the ith session is
used as training set and the jth session is used as test set. In other
words, e is the average classification error rate calculated over the
following six experiments, namely (1,2), (2,1), (1,3), (3,1), (2,3)
and (3,2).

We evaluate the video face recognition performance of all
methods for diverse sizes of the training and test sets. The
objective is to assess the robustness of the methods with respect
to the size of the training and test set. For this reason, each image
set is re-sampled as

Xi,r ¼ Xið: ,1 : r : nÞ, i¼ 1, . . . ,c:

In the above, the image set Xi is re-sampled with step r, i.e., only
one image for every r images is kept. In our experiments, we use
different values of r ranging from 4 to 16 with step 4. For each
value of r, we measure the average classification error rate
according to the relation (12).

http://users.rsise.anu.edu.au/&sim;conrad/vidtimit/
http://users.rsise.anu.edu.au/&sim;conrad/vidtimit/
http://vision.ucsd.edu/&sim;leekc/HondaUCSDVideoDatabase/HondaUCSD.html
http://vision.ucsd.edu/&sim;leekc/HondaUCSDVideoDatabase/HondaUCSD.html
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Table 2 presents the recognition performance, for r ranging
from 4 to 16 with step 4. Fig. 8 shows graphically the same results.
Observe that the KLD method that relies on density estimation is
sensitive to the number of the available data. Also, notice that
MSM is superior to KLD, which is expected since KLD relies on the
imprecise assumption that data follow a Gaussian distribution.
Furthermore, KMSM, the nonlinear variant of MSM, outperforms
the latter that has trouble in capturing the nonlinear structures in
the data. Finally, we observe that MASC clearly outperforms its
competitors in the vast majority of cases. At the same time, it
stays robust to significant re-sampling of the data, since its
performance remains almost the same for each value of r.
Table 2
Video face recognition results on the VidTIMIT database.

Recognition rate (%) MASC MSM KMSM KLD

r ¼ 4 96.51 91.47 95.74 84.5

r ¼ 8 96.51 87.21 94.19 81.4

r ¼ 12 94.96 85.66 92.64 77.52

r ¼ 16 93.8 81.4 89.15 72.48

Fig. 8. Video face recognition results on the VidTIMIT database.

Fig. 9. Head pose variations in the Honda/UCSD database. (a) pose 1 (b) p
5.3. Classification results on Honda/UCSD

We further study the video-based face recognition perfor-
mance on the Honda/UCSD database. Fig. 9 shows a few
representative images from a sample face manifold in the
Honda/UCSD database. Observe the presence of large head pose
variations along with facial expressions. The projection of the
manifold on the 3D space using ONPP shows again clearly the
manifold structure of the data (see Fig. 10), which implies that a
graph-based method is more suitable for such kind of data.

The Honda/UCSD database comes with a default splitting into
training and test sets, which contains 20 training and 39 test
video sequences. We use this default setup and we report the
classification performance of all methods, under different data
re-sampling rates. Similarly as above, both training and test image
sets are re-sampled with step r, i.e., Xi,r ¼ Xið: ,1 : r : nÞ, i¼ 1, . . . ,c.
Table 3 presents the recognition rates, when r varies from 4 to 12
with step 2. Fig. 11 shows the same results graphically. Recall that
larger values of r imply sparser image sets. Observe again that KLD
is mostly affected by r, by suffering loss in performance. This is
not surprising since it is a density-based method and densities
cannot be accurately estimated (in general) with a few samples.
MSM seems to be more robust, yielding better results than KLD,
but as expected, it is inferior to KMSM in the majority of cases.
Finally, MASC is again the best performer and it exhibits very high
robustness against data re-sampling.
ose 2 (c) pose 3 (d) pose 4 (e) pose 5 (f) pose 6 (g) pose 7 (h) pose 8.
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Fig. 10. A typical face manifold from the Honda/UCSD database.



Table 3
Video face recognition results on the Honda/UCSD database.

Recognition rate (%) MASC MSM KMSM KLD

r ¼ 4 100 84.62 87.18 84.62

r ¼ 6 100 84.62 87.18 79.49

r ¼ 8 97.44 84.62 84.62 61.54

r ¼ 10 97.44 87.18 84.62 66.67

r ¼ 12 97.44 76.92 82.05 61.54

Fig. 11. Video face recognition results on the Honda/UCSD database.
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Regarding the relative performance of MASC and KMSM,
we should finally stress out that KMSM is a kernel technique
that attempts to capture the nonlinear structure of the data
by assuming a linear model after applying a nonlinear mapping
of the data into a high dimensional space. Although this
methodology stays generic and presents certain advantages, it is
still not clear whether it is capable of capturing the individual
(e.g., manifold) structure of diverse data sets. On the other hand,
the MASC method explicitly relies on a graph model that may fit
much better the manifold structure of the data.

If we further assume that the manifold discretization is fine
enough, such that the virtual samples corresponding to close-by
transformations are also close-by in the ambient space, then the
proposed method can provide a way to cope with the curse of
dimensionality, since the intrinsic dimension of the manifolds is
typically very small.
5.4. Video-based face recognition overview

For the sake of completeness, we review briefly in this last
section the state-of-the-art in video-based face recognition.
Typically, one may distinguish between two main families of
methods; those that are based on subspace analysis and those that
are based on density estimation (statistical methods). The most
representative methods for these two families are, respectively, the
MSM [4,21] and KMSM [14] methods and the solution based on
KLD [16], which have been used in the experiments above.

Among the methods based on subspace analysis, we should
mention the extension of principal angles from subspaces, to
nonlinear manifolds. In a recent article [20] it was proposed to
represent the facial manifold by a collection of linear patches,
which are recovered by a non-iterative algorithm that augments
the current patch until the linearity criterion is violated. This
manifold representation allows for defining the distance between
manifolds as integration of distances between linear patches. For
comparing two linear patches, the authors propose a distance
measure that is a mixture between (i) the principal angles and
(ii) exemplar-based distance. However, it is not clearly justified
why such a mixture is needed and what is the relative benefit
over the individual distances. Moreover, their proposed method
requires the computation of both geodesic and Euclidean
distances as well as setting four parameters. On the contrary,
our MASC method needs only one parameter (k) to be set and it
requires the computation of the Euclidean distances only. Note
finally that their method achieves comparable results with MASC
on the Honda/UCSD database, but at a higher computational cost
and at the price of tuning four parameters.

Along the same lines, the authors in [7] propose a similarity
measure between manifolds that is a mixture of similarity
between subspaces and similarity between local linear patches.
Each individual similarity is based on a weighted combination of
principal angles and those weights are learned by AdaBoost for
improved discriminative performance. In contrast to the previous
paper [20], the linear patches are extracted here using mixtures of
Probabilistic PCA (PPCA). PPCA mixture fitting is a highly non-
trivial task, which requires an estimate of the local principal
subspace dimension and it also involves model selection. This
step is quite computationally intensive, as noted in [20].

The main limitation of the statistical methods such as KLD [16]
is the inadequacy of the Gaussianity assumption of face images
sets; face sequences rather have a manifold structure. The test
video frames are moreover not independent, so that the i.i.d
assumption is unrealistic as well. The authors in [1] therefore
extend the work of KL divergence by replacing the Gaussian
densities by Gaussian Mixture Models (GMMs), which provides a
more flexible method for density estimation. However, the KL
divergence in this case cannot be computed in a closed form,
which makes the authors to resort to Monte Carlo simulations
that are quite computationally intensive.

Finally, there have been a few other methods that cannot be
directly categorized in the above families of methods. The authors
in [23] propose ensemble similarity metrics that are based on
probabilistic distance measures, evaluated in reproducing Kernel
Hilbert spaces. All computations are performed under the
Gaussianity assumption, which is unfortunately not realistic for
facial manifolds.

In [24], the authors provide a probabilistic framework for face
recognition from image sets. They model the identity as a discrete
or continuous random variable and they provide a statistical
framework for estimating the identity by marginalizing over face
localization, illumination and head pose. Illumination-invariant
basis vectors are learned for each (discretized) pose and the
resulting subspace is used for representing the low-dimensional
vector that encodes the subject identity. However, the statistical
framework requires the computation of several integrals that
are numerically approximated. Also, the proposed method
assumes that training images are available for every subject
at each possible pose and illumination, which is hard to
satisfy in practice.

Liu and Chen in [12] proposed a methodology based on
adaptive hidden Markov models for video-based face recognition.
The temporal dynamics of each subject are learned during
training and subsequently used for recognition. However, the
proposed approach assumes temporal order of the frames in the
face sequence and unfortunately it is not applicable to the more
generic problem of recognition from image sets. The study in [6]
further investigates how the performance of the above approach
is affected by the face sequence length and the image quality.
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6. Conclusions

In this paper we have addressed the problem of classification
of multiple observations of the same object. We have proposed to
exploit the specific structure of this problem in a graph-based
algorithm inspired by label propagation. The graph-based algo-
rithm relies on the manifold structure in order to estimate the
unknown class, under the constraint that all observations
correspond to the same class. We have formulated this process
as a discrete optimization problem that can be solved efficiently
by a low complexity algorithm.

We provide experimental results that illustrate the performance
of the proposed solution for the classification of handwritten digits,
for object recognition and for video-based face recognition. In the
two latter cases, the graph-based solution outperforms state-of-
the-art methods on three publicly available data sets. If we also
take into account the fact that the method is simple, efficient, and
does not make use of specialized features (at least in its current
form), it clearly suggests that graph methods are certainly very
promising and have a great potential in this field. In our future
work, we plan to extend the method with specialized features that
are tuned to the application at hand.
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