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Abstract

Edges provide semantically important image features. In this pa-
per a lossy compression method for cartoon-like images is presented,
which is based on edge information. Edges together with some ad-
jacent grey/colour values are extracted and encoded using a classical
edge detector, binary compression standards such as JBIG and state-
of-the-art encoders such as PAQ. When decoding, information outside
these encoded data is recovered by solving the Laplace equation, i.e. we
inpaint with the steady state of a homogeneous diffusion process. For
the discrete reconstruction problem, we prove existence and unique-
ness and establish a maximum-minimum principle. Furthermore, we
describe an efficient multigrid algorithm. The result is a simple codec
that is able to encode and decode in real time. We show that for
cartoon-like images this codec can outperform the JPEG standard
and even its more advanced successor JPEG2000.

1 Introduction

Edges play an important role not only in human visual perception. Also
in image processing and computer vision their importance is indisputable.
Edges build the basis of various algorithms and can be understood as an
intermediate step from a pixel-based to a semantic image representation.
The aim of so-called second-generation image coding methods [28, 42] is to
incorporate properties of the human visual system into image coding. They
try to extract visually significant areas of the image and neglect of visually
insignificant data. Thus, those methods are in general lossy. In contrast
to well-established methods such as JPEG [40] or state-of-the-art codecs as
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JPEG2000 [48], second-generation coding methods usually do not rely on
basis transforms.
The fact that human beings are able to understand cartoons and line-draw-
ings indicate that edges provide meaningful data in the sense of second-
generation image coding. Since it is more compact to describe an image by
a few contours than by many pixels, it seems natural that edge information
can be exploited for image compression.
There have been numerous theoretical and experimental papers [31, 54, 9,
55, 8, 7, 21, 17, 34, 10, 45, 11] which have shown that reconstructions from
edge data is in general possible. It has been experienced that the locations
of edges do not suffice to reconstruct an image. The mentioned papers make
different suggestions about which data should additionally be added in order
to obtain “complete” reconstructions. Some suggest to incorporate gradient
information, others the grey values adjacent to the edges. It is also possible
to consider subsampled image data that lies not directly at the edge or to
include some scale information. Not all the mentioned papers used their
reconstruction approaches for image compression. However, those who did
were not able to come up with competitive results to compression standards
such as JPEG.
Moreover, the world wide web contains plenty of cartoon-like images that
most often are compressed by JPEG. None of the standard codecs offers a
specialised method for the lossy compression of such images.

Our Contribution The goal of the present paper is to address this prob-
lem. We show that it is possible to obtain high quality reconstructions
for cartoon-like images when edges are stored in combination with adja-
cent grey/colour values. Missing information is obtained by computing the
steady state of a homogeneous diffusion process, i.e. by solving the Laplace
equation. In the literature, the last step is often referred to as PDE-based
inpainting or PDE-based interpolation.
Furthermore, we compare different state-of-the art techniques for encoding
the edge locations and the adjacent grey/colour values. Thereby our method
can even outperform the quality of leading compression standards such as
JPEG2000 in terms of compression rate.
We provide a proof of existence and uniqueness for the solution of the under-
lying interpolation scheme and show that it satisfies a maximum-minimum
principle. Moreover, we develop an efficient solver for computing the steady
state of the corresponding diffusion process. This allows us to encode and
decode images in real-time.
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Organisation of the Paper Our paper is structured as follows: Section
2 describes the encoding method, including edge detection, edge location
encoding, and pixel value encoding. In Section 3 we explain how the en-
coded image can be decoded. The most essential part in this section is the
reconstruction of missing pixels between edges with the Laplace equation.
In Section 4 we derive the linear system of equations which arises from the
discretised Laplace equation. We prove that the solution of this linear sys-
tem exists, is unique and satisfies a maximum-minimum principle. Section 5
gives a detailed explanation how the steady state of the corresponding diffu-
sion process can be computed efficiently with a suitable multigrid algorithm.
After an experimental evaluation in Section 6 we conclude our paper with a
summary in Section 7.

Related Work Let us now briefly mention some related work which has
not been discussed so far.
Since our method can be seen as a representative of second-generation coding
[28, 42], it is related to compression methods that exploit perceptually rele-
vant features. Of course, such features often incorporate edge information.
A good survey of different second-generation image coding methods is given
in [42].
The idea to use inpainting for image compression has been also exploited
in [29, 41, 52] where so-called structure and texture inpainting ideas are
integrated in standard codecs such as JPEG.
More closely related are papers as [15, 16, 46] which use PDE-based inter-
polation for compression. In contrast to our approach, they do not rely on
edges but use a sparse point mask. For efficiency reasons this point mask is
restricted by a binary tree structure such that the position of the interpola-
tion points cannot be chosen optimally. Hence, such methods require more
sophisticated interpolation functions based on nonlinear anisotropic diffusion
processes.
Recently Köstler et al. [26] developed multigrid methods for the approach
proposed in [15]. They could show that it is possible to use these to encode
videos in real-time on a Playstation 3 with a CELL multicore processor. By
using homogeneous diffusion, our method is considerably simpler and faster
than these ones that are based on nonlinear anisotropic diffusion processes.
We will see that it provides real-time performance already on a singlecore
CPU.
Our semantic image compression approach can be regarded as a specific im-
plementation of a recent result on optimal point selection for compression
with homogeneous diffusion: In [1] it is proven that for interpolation with
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homogeneous diffusion one should select the interpolation data in proportion
to the modulus of the Laplacian. Thus, the modulus of the Laplacian de-
scribes how important a certain pixel is. For a piecewise smooth image, as
it is the case for cartoon-like images, those pixels are given by the pixels on
both sides of an edge. Moreover, since individual points may create unpleas-
ant singularities in the solution of the Laplace equation, it is reasonable to
prefer whole edges. Furthermore, edges can be encoded more efficiently than
the same number of individual pixels.
This manuscript is an extension of a conference publication [33]. Differences
are the evaluation of different bi-tonal encoders and entropy coders. Fur-
thermore, we have improved the strategy to collect the pixel values along the
edges and have introduced a step for presmoothing these. We complement
this paper by a detailed chapter on the discrete theory for the inpainting
problem with homogeneous diffusion and present an efficient way how to
solve the arising Laplace equation. Eventually, we give a detailed evaluation
of the compression and the run time capabilities of our codec.

2 Encoding

In this section we explain the encoding phase, which essentially consists of
three steps. First of all, edges are extracted which encode the location of
adjacent grey/colour values. The second step is to encode these locations
efficiently. The last step addresses the encoding of the grey/colour values.

2.1 Edge Detection

The encoding of an image starts with the detection of edge information.
Until today many edge detectors have been developed. In this paper we
focus on one of the most classical edge detectors, namely the Marr-Hildreth
edge detector [35]. Edges are defined as zero-crossings of the Laplacian of a
Gaussian presmoothed image. For a multichannel image u = (u1, . . . , uM)⊤

we define the Laplacian as the sum of the Laplacians over all M channels:

∆u =
M∑

m=0

∆um = ∆

(
M∑

m=0

um

)

. (1)

In order to remove zero-crossings that have no obvious perceptual significance
we combine the Marr-Hildreth edge detector with hysteresis thresholding as
suggested by Canny [6]. That means we first define the edge magnitude as the
length of the vector (|∇u1|, . . . , |∇uM |)⊤, i.e. as

√

|∇u1|2 + · · ·+ |∇uM |2,
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Figure 1: The static template as used by JBIG in our codec. The X marks
the pixels which is encoded next.

where the gradient ∇um in channel m is computed using Sobel operators.
Then we identify edge candidates as pixels where the edge magnitude exceeds
a given threshold T1. All edge candidates with an edge magnitude that is
larger than a threshold T2 > T1 become seed points for relevant edges and
are considered to be final edge pixels. In order to keep edge pixels connected
as much as possible, we recursively add all edge candidates that are adjacent
to final edge pixels.
We are not necessarily bound to a this specific edge detector. However,
comparisons with the Canny edge detector [6] and an edge detection method
based on the Tobbogan watershed segmentation [13] have shown that for
cartoon-like images most often the zero-crossings-based edge detector gives
the best results.

2.2 Encoding the Contour Location

In the previous section we have seen how to detect edges. The edges tell us
where the pixel values lie that will later on be encoded. We explain now how
to encode these locations efficiently.
The edges of an image can be visualised as a bi-level image using black
colour for edge pixels and white for background pixels. In the following we
denote such an image as edge image. For the compression of bi-level images
several methods exists. We will consider the JBIG (Joint Bi-level Image
Experts Group) standard [23], the JBIG2 standard [19, 24] and the DjVu file
format [2]. Let us now briefly sketch these methods.

JBIG The JBIG standard has been developed as a specialised method for
the compression of bi-level images, mainly with respect to fax transmission
images which contain textual and line drawing information. Our edge image
actually provides quite similar data.
In this paper we use the JBIG-KIT 1 [27], which is a free C implementation of
the JBIG coder. To get optimal compression results for our data, we apply

1available at: http://www.cl.cam.ac.uk/~mgk25/jbigkit/
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Figure 2: Test set of edge images: (a) comic (512× 512); (b) coppit (256×
256); (c) boats (512× 512); (d) svalbard (380× 431); (e) trui (256× 256).

the method in its non-progressive mode that also automatically excludes
the so-called deterministic prediction. Furthermore, we disable the typical
prediction step of JBIG. Usually the JBIG standard allows to subdivide
an image into stripes and encodes these stripes separately. We prevented
the routine from doing this such that the image is encoded in its entirety.
Finally we set the maximum adaptive template pixel offset to 0. With these
settings, the routine essentially becomes a context-based arithmetic coder
using a static template for prediction as it is depicted in Figure 1.

JBIG2 JBIG2 is the successor of JBIG and can for example be used in
PDF files versions 1.4 and above.
In this paper we use the open source encoder jbig2enc2 (Version 0.27) as
well as the open source decoder jbig2dec3 (Version 0.10).
JBIG2 offers a so-called symbol mode. In this mode it tries to group the
(textual) data into symbols that are stored in a dictionary. This dictionary
is encoded using context-dependent arithmetic coding. The image itself is
coded by describing which symbols appear at which position. Note that for
the open source coder jbig2enc this mode is lossy, since similar looking
symbols are represented by a single bitmap only. jbig2enc allows also to
disable the symbol mode so that the coder is applied in its generic form.
Then it typically just relies on a context-based arithmetic coding algorithm
as JBIG does, and is lossless.

DjVu DjVu is a computer file format [2]. It was designed to store scanned
documents. This comprises a combination of text and line drawings, but
also photographs. For pure bi-tonal images the open source DjVu-library
DjVuLibre4 offers an encoder that is called cjb2. For decoding we use ddjvu
which is also included in DjVuLibre.

2available at: http://github.com/agl/jbig2enc
3available at: http://jbig2dec.sourceforge.net/
4available at: http://djvu.sourceforge.net/
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Table 1: Comparison of different bi-tonal coders regarding their compression
ratio and time when encoding the edge images from Figure 2. Coders from
left to right : JBIG, JBIG2 with generic coder (JBIG2), JBIG2 with symbol-
mode (JBIG2S), DjVu lossless (DjVu) and DjVu losslevel 200 (DjVuL). Un-
derlying CPU: Intel Core 2 Duo T7500 @ 2.20Ghz. The best result in each
line is in bold face letters.

image JBIG JBIG2 JBIG2S DjVu DjVuL

compression ratio in bits per pixel (bpp):

comic 0.099 0.109 0.113 0.105 0.104

coppit 0.124 0.137 0.158 0.160 0.143

boats 0.256 0.273 0.304 0.298 0.295

svalbard 0.044 0.053 0.057 0.054 0.053

trui 0.173 0.198 0.217 0.199 0.198

encoding / decoding time in ms:

comic 3/ 3 4/ 4 8/ 2 21/13 28/ 10

coppit 1/<1 1/ 1 7/ 3 16/16 15/ 18

boats 4/ 2 5/ 5 19/ 6 29/22 45/ 18

svalbard 3/ 3 5/ 1 5/ 4 13/16 17/ 21

trui <1/ 1 2/ <1 5/ 1 14/21 23/ 14

The method used by cjb2 is called JB2 and is similar to the symbol mode
of JBIG2. cjb2 provides a lossless and a lossy mode which allows small
changes on the input image in order to improve the compression ratio. We
tested cjb2 in its lossless mode as well as its highest possible lossy setting
(i.e. losslevel=200).

Table 1 gives a comparison of the methods, using a test set of five different
edge images (see Figure 2). The results suggest to favour JBIG for the en-
coding of our data. Even the lossy mode of DjVu cannot beat its compression
rates. In addition, JBIG is most often the fastest of all presented methods.
For the results shown in Section 6 we restrict ourselves to the JBIG coder.
In general our codec allows to choose any of the presented edge coders by
setting a flag in the file header.

2.3 Encoding the Contour Pixel Values

In this section we consider the grey/colour values we want to store. The
locations of these pixel values are encoded by the edge location. Edges usually
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split areas of different brightness or colour. Thus, it is obvious that we should
not store the pixel values that lie directly on the edge. Instead we store
the values from both sides. In addition, we store all pixel values from the
border of the image domain. This has proven to give better results when
reconstructing missing pixels during decoding.

Ordering of the pixel values Pixel values along one side of a contour
usually change only gradually. In contrast pixel values of opposite sides
differ by a considerable amount. This suggest to collect the pixel values by
the order of their occurrence along the edges instead of row by row or column
by column.
To this end, we suggest the following strategy yielding a 1-D signal f that
contains the desired pixel values: We create a map M with all pixels adjacent
to edges and the border pixels of the image. Then we visit all pixels row by
row until the end of the image is reached and apply the following algorithm
in each pixel x:

1. If x is in M, put it on a queue Q1.

2. While Q1 is not empty do:

(a) Get pixel as x from Q1 and remove it from Q1.

(b) If x is not in M goto 2.

(c) Put x on Q2,

remove x from M,

add the pixel value of x to f,

and set xlast to x.

(d) While Q2 is not empty do:

i. Get pixel as x from Q2 and remove it from Q2.

ii. For each pixel xN

that is in the 4-neighbourhood of x
and that is in M do:

If spatial distance between xN and xlast

is larger than dtr
Put xN on Q1

else

Put xN on Q2,

remove it from M,

add the pixel value of xN to f,

and set xlast to x.
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Queue Q1 contains pixels that have been detected but for which the pixel
value has not yet been added to the 1-D signal f . In contrast, Queue Q2

contains pixels for which the pixel value has already been added to f but
for which the neighbours still have to be explored. The row-by-row iteration
over all pixels ensures that we will not miss any pixel. By removing pixels
that are added to f from M the algorithm is guaranteed to terminate.
In contrast to a pure depth-first search this strategy collects not only the
direct pixel values along an edge. Depending on dtr also reachable pixel
values which lie up to a certain distance close to the edge can be found. This
is advantageous if two edges lie so close to each other that they share pixel
values.

Subsampling In order to compress the obtained pixel values, first we per-
form data reduction by subsampling and requantisation. Thus, the pixel
values along the edges are stored in a lossy manner, since we explicitly spar-
sify data along the edges and reduce the resolution of the co-domain.
For subsampling we consider the 1-D pixel value signal as found in the pre-
vious section. On this 1-D signal, we perform uniform subsampling. That
means we introduce sampling parameters dm ∈ {1, . . . , 255}, where m de-
notes the m-th channel, and store only every dm-th value. As already men-
tioned in the previous section, the pixel values along an edge change only
marginally and so they do in our 1-D signal. Thus, missing pixels can be
reconstructed in a reasonable way by using linear interpolation. However,
this reconstruction fails, as soon as linear interpolation is performed between
pixels of distinct edges. Those pixel values can differ by a significant amount.
It is indispensable to subsample the pixel values of distinct edges separately.
To this end, we consider how the pixel values along edges have been collected
(see previous section). Whenever the recursive search is started (that means
whenever a pixel is found by searching row by row for unvisited pixels or a
pixel is retrieved from the queue), we assume the previously collected pixels
to belong to the same edge segment. Thus, we get for each edge segment a
separate 1-D signal. Note that this approach does not demand to store any
additional information since it fully relies on the stored edge image.
According to the sampling theorem the quality of a reconstructed signal
can be improved by presmoothing the original signal. In our method we
suggest to smooth the separated 1-D signals by a Gaussian convolution with
standard deviation 1, assuming pixels to have size 1× 1. This removes small
variations, which also improves the compression rate of the entropy coder
later on. Furthermore, smoothing includes some neighbourhood information
into the sampled pixels.
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Requantisation The second data reduction step is a requantisation of the
pixel values. Originally our image consist of 256 different pixel values per
channel. By requantising we reduce the co-domain to q different pixel values.
One of the simplest approaches is the so-called midtread quantisation. This is
a uniform quantisation that allows to reconstruct the minimal and maximal
value of the original range.
Let fi ∈ {0, . . . , 255} be a given pixel value of the original signal, and let
a := 255

q−1
. Then the quantised value is given by

gi =

⌊
x

a
+

1

2

⌋

, (2)

where gi ∈ {0, . . . , q − 1} and ⌊.⌋ denotes the floor function, i.e. ⌊x⌋ is the
largest integer that does not exceed x. In order to reconstruct the value we
compute

fi ≈ a · gi . (3)

Note that this means we subdivide our original range in q intervals. All
intervals have the width a, except the last and first one which have width a

2
.

After reconstruction, all pixel values of the first interval have been mapped to
0, whereas the pixels of the last interval have been mapped to 255. The pixel
values of the other intervals have been mapped to the central pixel value of
the interval. For colour images our method allows to requantise each channel
separately, i.e. we have qm with m denoting the m-th channel.
Instead of using a uniform quantisation method, it can pay off to use a
non-uniform method as for example the Max-Lloyd quantiser [37, 30]. The
goal is to adapt the width of the intervals to the probability with which the
pixel values occur in the original signal: We start with uniform quantisation.
Instead of mapping the values of an interval to the central value we map it
to the centre of mass within this interval. We will refer to these points as
reconstruction points. Then the interval boundaries are adapted such that
they lie again exactly between two reconstruction points.
Starting from this setting we repeat the whole procedure until the inter-
val boundaries do not change anymore. Using the obtained reconstruction
points, we achieve better reconstructions. However, for this quantiser we
have to store the reconstruction points additionally to reconstruct the pixel
values when decoding.
In our case Max-Lloyd quantisation did not pay off, unless for very few
quantisation levels. Thus, our codec uses uniform quantisation in channel m
if qm > 8 and Max-Lloyd quantisation otherwise.
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Table 2: Comparison of different entropy coders regarding their compression
ratio and time. Considered are six randomly chosen pixel value data files,
created by our codec. From left to right : Original file (orig), Huffman cod-
ing (HC), Huffman coding using canonical codes (HCc), arithmetic coding
with static model (ACs), arithmetic coding with adaptive model (ACa), gzip
(Version 1.3.12), bzip2 (Version 1.0.5), LPAQ2, and PAQ6o8. Underlying
CPU: Intel Core 2 Duo T7500 @ 2.20Ghz. The best result for each file is in
bold face letters.

orig HC HCc ACs ACa gzip bzip LPAQ2 PAQ8o6

file size in bytes:
12606 7058 7160 6944 7066 4300 4016 3112 2842
9006 4164 4336 4087 4241 2222 2095 1658 1495
29298 27398 26380 26714 25972 21655 24163 17974 14766
96063 48808 48900 48243 42168 8093 7281 5504 4967
13128 2178 2420 1491 1710 697 746 467 468
5514 6342 5439 5800 5253 5223 4981 4300 3949

encoding / decoding time in ms:
3/<1 3/ 4 3/ 2 11/10 <1/3 4/<1 42/ 37 1411/1200
1/ 3 2/ 4 2/ 3 3/ 4 2/ 2 2/ 1 31/ 34 686/ 694
4/ 5 4/ 19 9/ 9 16/16 3/3 7/ 4 86/ 89 2470/2438
5/ 5 6/ 26 19/18 57/51 11/9 68/ 5 168/190 9041/8377
1/<1 <1/<1 <1/ 1 6/ 5 5/ 2 1/<1 29/ 29 941/ 825
1/ 2 1/ 4 1/ 3 4/ 2 <1/1 3/<1 39/ 34 693/ 711

Entropy Coding Now that we have the subsampled and requantised the
pixel values, we want to apply an entropy coder. The most classical entropy
coders are Huffman coding5 [20] and arithmetic coding5 [43]. However, mean-
while there are much more sophisticated compression methods available that
often rely on Huffman or arithmetic coding as part of their coding chain.
Such compression methods are for example given by gzip6(Version 1.3.12) or
bzip2 7(Version 1.0.5).
One of the best compressors available so far are given by the PAQ data com-
pressors8 [32]. PAQ describes a whole family of lossless, GPL-licensed data
compression archivers. They are based on a context mixing algorithm, which
is related to prediction by partial matching (PPM) [39]. More precisely, PAQ
uses a predictor that is provided with a large number of models conditioned

5sources from: http://michael.dipperstein.com
6see also: http://www.gzip.org
7see also: http://www.bzip.org
8see also: http://mattmahoney.net/dc/
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on different contexts, often even tuned to special file formats. This predic-
tor is applied in combination with arithmetic coding. As in our conference
paper [33], we consider the PAQ8o6 release.
Unfortunately, the PAQ8o6 compressor is rather slow. This suggest to use
the single file compressor LPAQ instead, more precisely the LPAQ2 release.
LPAQ is a modified version of PAQ, which is faster at the expense of com-
pression.
Our codec allows to choose between all mentioned compressors. A compari-
son of their compression capabilities regarding our data is depicted in Table
2. For almost all examples PAQ outperforms the other methods regarding
the compression rate. However, it is also by far the slowest method. Huffman
and arithmetic coding as well as gzip and bzip2 are up to small differences
the fastest methods. Depending on the application it is up to the user which
entropy coder should be chosen. For highest compression, PAQ is recom-
mended. For fastest compression, bzip2 or gzip should be used. LPAQ is a
reasonable trade-off between high quality compression and run time. Thus,
we decided to set LPAQ as default pixel value encoder in our codec.

2.4 File Format

After this last step we have two encoded data parts, namely the encoded
edge image and the encoded grey/colour values. Including header data, our
encoded image consists of the following parts:

• size of edge data, needed to split the encoded edge image from the
encoded grey/colour values, (requires 4 bytes).

• edge image coder, indicating how the edge image has been encoded;
default: JBIG, (3 bit).

• colour bit, indicating if a greyscale or colour image has been encoded,
(1 bit).

• entropy coder, indicating which entropy coder has been used; default:
LPAQ2, (3 bit).

• parameter dtr for recursive search of grey/colour values; default: 1, (1
byte).

• numbers of quantisation intervals qm; default: 25, (1 or 3 bytes).

• sampling distances dm; default: 10, (1 or 3 bytes).

• encoded edge image, (variable length, given in first 4 bytes of header).

• encoded pixel values, (variable length).
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Figure 3: (a) Zoom into reconstructed colour pixels adjacent to the edges
of the test image comic. (b) Zoom into corresponding reconstruction with
homogeneous diffusion inpainting.

3 Decoding

To decode an encoded image, we reverse all steps done in the encoding chain.
However, the last step of the decoding chain differs from encoding: To get
the final image, missing pixels are reconstructed by the steady-state of a
homogeneous diffusion process.

3.1 Decoding the Contour Location and Pixel Values

We start our decoding approach by reading the header information. We split
the encoded edge image from the encoded grey/colour values and decode
them with the corresponding decoders. On the one hand we obtain a binary
edge image giving us explicitly the final image size. On the other hand we get
grey/colour values that are quantised and have to be reconstructed (see also
Section 2.3). To this end, we perform the recursive search on the edge image
as done during encoding in Section 2.3 and distribute the grey/colour values.
Missing pixels along the edge segments are filled in by linear interpolation.
The outcome is an image which contains the decoded colours on both sides
of each edge (see Figure 3(a)). The grey/colour values of all the other pixels
are still unknown and their recovery is the goal of the next section.

3.2 Reconstruction by Homogeneous Diffusion

In order to reconstruct missing pixels between the edges we use homogeneous
diffusion for interpolation. This is the simplest and computationally most
favourable inpainting approach based on partial differential equations (PDEs)
[36]. We prefer this simple approach for several reasons:
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Figure 4: (a)Modulus of the Laplacian for the test image svalbard normalised
to [0,255]. The darker the colour, the larger the modulus of the Laplacian.
(b) Detail of (a).

First of all it is one of the analytically best understood inpainting approaches.
Recently, Belhachmi et al. [1] have proven that one should choose the inter-
polation data proportional to the modulus of the Laplacian of the image.
Thus, the modulus of the Laplacian indicates which pixels should preferently
be stored for the interpolation with homogeneous diffusion. For cartoon-like
images, i.e. piecewise smooth images, this comes down to the pixels left and
right of an edge contour (see Figure 4). Hence, by choosing homogeneous
diffusion for inpainting and the pixels adjacent to edges, we meet this theory
to a certain extent.
Furthermore, filling-in from image edges resembles a classical finding in bio-
logical vision: Already in 1935 Werner made the hypothesis that a contour-
based filling-in process is responsible for the human perception of surface
brightness and colour [50].
Finally, for inpainting with homogeneous diffusion an efficient implementa-
tion is possible. Section 5 provides such an algorithm for this crucial decoding
step.
To reconstruct the missing values between the edges by homogeneous diffu-
sion, we consider given pixel values to form Dirichlet boundaries. Then we
compute the steady state (t → ∞) of the following diffusion process (also
known as heat equation) [22]:

∂tu = ∆u . (4)

Already given data are preserved whereas reconstructed data satisfy the
Laplace equation ∆u = 0 (see also [7]). Figure 3(b) shows an exemplary
result for the image comic. The discrete theory behind this inpainting pro-
cess is discussed in detail in the next section.
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4 Discrete Theory

In this section we derive a suitable discretisation of the homogeneous diffusion
process and discuss important discrete properties such as the existence of
a unique solution and the maximum-minimum principle. To this end, we
consider two formulations that describe the steady state of the inpainting
process with homogeneous diffusion: A reduced formulation and an extended
formulation. The latter is used for the development of a fast hierarchical
algorithm in Section 5.

4.1 Reduced vs. Extended Formulation

Let us start by discussing the reduced formulation of the inpainting problem.
To this end we consider a grey value image f(x), where x = (x, y)⊤ denotes
the location within a rectangular image domain Ω. Furthermore we assume
that the grey values of this image are only known in a subset ΩK ⊂ Ω of the
image domain. Using homogeneous diffusion, the inpainted image u(x) can
then be computed as solution of the Laplace equation

∆u(x) = 0 for x ∈ Ω \ ΩK , (5)

with homogeneous (reflecting) Neumann boundary conditions across image
boundaries, i.e.

∂nu = 0 on ∂Ω . (6)

All stored points are removed from the set of unknowns and used as Dirichlet
boundary conditions:

u(x) = f(x) for x ∈ ΩK . (7)

As a consequence, the solution is only computed in the inpainting domain
Ω \ ΩK . Evidently, this domain is no longer rectangular. From a numerical
viewpoint, however, it can be desirable to have a domain of the solution
that has a regular shape. This issue becomes particularly important, since
we will develop a hierarchical solver that considers the original problem at
different scales. Thus, we propose an extended formulation of the inpainting
problem, where the solution is computed on the entire image domain Ω. This
formulation is given by

c(x) (u− f) − (1− c(x)) ∆u = 0 (8)

with homogeneous Neumann boundary conditions across the image bound-
aries:

∂nu = 0 on ∂Ω . (9)
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The function c(x) serves as binary mask that specifies whether a grey value
has been stored at a certain location or not, i.e.

c(x) =

{
1 for x ∈ ΩK ,
0 for x ∈ Ω \ ΩK .

(10)

By evaluating equation (8) for the two possible values of c(x) one can easily
verify that its solution is equivalent to the one of the reduced formulation
in (5)-(7). The main difference is that stored pixels are now “recomputed”
instead of being used as Dirichlet boundary conditions.

4.2 Discretisation

In order to compute the solution of the reduced problem (5)-(7) or the ex-
tended problem (8)-(10) numerically, we discretise all occurring expressions
by means of finite differences [38, 12]. To this end, we consider the problem
on a rectangular grid with Nh = Nh

x ×Nh

y pixels, where Nh

x and Nh

y denote
the number of pixels in x- and y-direction, respectively, and h = (hx, hy)

⊤

is a joint index that describes the corresponding grid spacing in both direc-
tions. Furthermore, we index all pixels consecutively, and we denote by Ωh

and Kh the set of indices of all pixels and known pixels, respectively. Then
we obtain the following two linear systems of equations: While the system
for the reduced formulation reads

∑

l∈{x,y}

∑

j∈Nl(i)

uh

i − (1−chj )u
h

j

h2
l

=
∑

l∈{x,y}

∑

j∈Nl(i)

chj fh

j

h2
l

(11)

for i ∈ Ωh \Kh, the system for the extended formulation is given by

chi uh

i − (1−chi )
∑

l∈{x,y}

∑

j∈Nl(i)

uh

j − uh

i

h2
l

= chi fh

i

(12)

for i ∈ Ωh, i.e. i = 1, ..., Nh. Here, uh

i , f
h

i , and chi are the approximations
of the corresponding functions at location i, and Nl(i) denotes the set of
neighbours of pixel i in direction of axis l (which contains up to two elements
per direction).

4.3 Structure of the Linear Systems

Let us now formulate both equation systems in traditional matrix-vector
notation Ahuh = bh, where Ah denotes the system matrix, uh is a vector
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that contains all unknowns, and bh stands for the right hand side. To make
things more transparent, we illustrate the structure of the resulting system
by the example of a 3× 2 image, where fh

2 and fh

4 are known, and the grid
spacing has been chosen to be hx = hy = 1 (see Figure 5). While the linear
system of the extended formulation is given by












2−1 0 −1 0 0
0 1 0 0 0 0
0−1 2 0 0−1

0 0 0 1 0 0
0−1 0 −1 3−1
0 0−1 0−1 2












︸ ︷︷ ︸

Ah

ext











uh

1

uh

2

uh

3

uh

4

uh

5

uh

6











︸ ︷︷ ︸

uh

ext

=











0
fh

2

0
fh

4

0
0











︸ ︷︷ ︸

bhext

,

the linear system for the reduced formulation reads







2 0 0 0
0 2 0−1

0 0 3−1
0−1 −1 2








︸ ︷︷ ︸

Ah

red







uh

1

uh

3

uh

5

uh

6







︸ ︷︷ ︸

uh

red

=







fh

2 + fh

4

fh

2

fh

2 + fh

4

0







︸ ︷︷ ︸

bhred

.

At first glance the matrices Ah

ext and Ah

red may look quite similar, since they
consist mainly of the linear operator that discretises the negative Laplacian.
However, a closer look shows that the treatment of the known pixels is dif-
ferent: While they are still present in the extended system and are hence
“recomputed”, they have been eliminated completely in the reduced system.
As a consequence, the corresponding grey values fi are shifted from the right
hand side of the known pixels to the right hand side of their neighbours.
Despite of these differences, both equation systems have two things in com-
mon: (i) They have the same solution in the unknown pixels. Thus, proofs
for existence, uniqueness and a maximum-minimum principle carry over. (ii)
For a given grid spacing h, they are fully described by the binary mask
ch = (ch1 , ..., c

h

N)
⊤ and the values of fh = (fh

1 , ..., f
h

N)
⊤. This is important

for Section 5, where we consider the systems at different scales.

4.4 Discrete Well-Posedness

Now that we have established discrete formulations of our reduced and ex-
tended interpolation problems, let us show that these problems have a unique
solution that remains within the convex hull of the specified pixel data:
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Figure 5: Inpainting example of size 3× 2 with two known pixels.

Theorem 1 (Discrete Well-Posedness)

Let Kh be nonempty. Then the linear systems (11) and (12) have a unique
solution. In the unknown pixels i ∈ Ωh \ Kh it satisfies the maximum-
minimum principle

min
j∈Kh

fh

j ≤ uh

i ≤ max
j∈Kh

fh

j . (13)

Proof.

It is sufficient to prove existence and uniqueness for the reduced problem
(11), since both formulations are equivalent. Thus, let us show that the
system matrix Ah

red is invertible. Since Ah

red is symmetric, its eigenvalues are
real. Moreover, by inspecting the Gerschgorin disks of Ah

red, it follows that
all eigenvalues are nonnegative. However, we have to exclude that 0, which
can lie on the boundary of some Gerschgorin disks, is an eigenvalue. To this
end, we apply a result by Feingold and Varga [14, Theorem 3]: If A is block
irreducible and λ is an eigenvalue of A that lies on the boundary of the union
of all Gerschgorin disks, then it must lie in all Gerschgorin disks. It is easy
to verify that our matrix Ah

red is block irreducible. Let us now consider some
pixel i ∈ Ωh \Kh that has at least one pixel j ∈ Kh in its 4-neighbourhood.
Then its Gerschgorin disk Gi does not contain 0. Thus, it follows that 0
cannot be an eigenvalue of Ah

red and the inverse of Ah

red exists.
To prove the maximum-minimum principle, it is more convenient to consider
the extended discrete model (12). Since Ah

red is invertible, we know from the
equivalence of both models that also the inverse of Ah

ext exists.
First we show that the inverse of Ah

ext is nonnegative. To this end we note
that Ah

ext has nonpositive off-diagonal entries, positive diagonal entries, non-
negative row sums, and at least one positive row sum. Hence, Ah

ext is an
M-matrix. It is well-known that the inverse of a nonsingular M-matrix is a
nonnegative matrix.
Secondly we prove that each inpainted value uh

i ∈ Ωh \ Kh can be written
as a convex combination of the specified grey values {fh

j | j ∈ Kh}. Let us
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consider the vectors e, g ∈ R
N with ei = 1 for all i ∈ Ωh, and

gi =

{
1 for i ∈ Kh ,
0 else.

(14)

If i ∈ Kh, then the i-th row sum of Ah

ext is 1, while for i ∈ Ωh \ Kh the
corresponding row sum is 0. Thus, we have

Ah

exte = g. (15)

With D := (Ah

ext)
−1 this gives

e = D g (16)

and therefore ∑

j∈Kh

di,j = 1 (17)

for all i ∈ Ωh. Since
uh

i =
∑

j∈Kh

di,jf
h

j (18)

for all i ∈ Ωh, and D is nonnegative, we know that uh

i is in the convex hull
of {fh

j | j ∈ Kh}. Thus, our maximum-minimum principle is satisfied. This
concludes the proof.

5 Efficient Numerical Solvers

After we have shown existence and uniqueness as well as a the maximum-
minimum principle for our solution, let us consider the extended formulation
only and show how the corresponding linear system Ah

extu
h

ext = bhext can be
solved efficiently. To this end we develop a so-called full multigrid method –
a hierarchical iterative technique, which belongs to the fastest methods for
solving the Laplace equation [3, 18]. This is done in four steps. First, we
select a simple non-hierarchical solver that forms the basis of our multigrid
implementation. Secondly, we show how this solver can be embedded in a
two-grid cycle that performs useful correction steps at a coarser resolution.
Thirdly, we focus on advanced multigrid strategies that extend this hierarchi-
cal concept to more than two grid levels. Finally, we discuss specific details
of our implementation that are related to the use of sparse data. For simpli-
fying the notation, we skip the ext-index from now on. Furthermore, as in
the previous section we restrict our explanations to grey value images. The
extension to colour images is straightforward and comes down to applying
the algorithm to each channel separately.
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uh,k+1
i =

chi fh

i + (1− chi )
∑

l∈{x,y}

1
hl

(

∑

j∈N−
l
(i)

uh,k+1
j +

∑

j∈N+
l
(i)

uh,k
j

)

chi + (1− chi )
∑

l∈{x,y}

1
hl

∑

j∈Nl(i)

|Nl|(i)

=







fh

i for chi = 1
∑

l∈{x,y}

∑

j∈N−
l

(i)

1
hl

u
h,k+1
j +

∑

l∈{x,y}

∑

j∈N+
l

(i)

1
hl

u
h,k
j

∑

l∈{x,y}

1
hl

∑

j∈Nl(i)

|Nl(i)|
for chi = 0

(19)

5.1 Basic Solver

A common solver in the context of linear systems as given by the extended for-
mulation (12) is the classical Gauß-Seidel method [53, 44]. The corresponding
iteration step is given by equation (19), where |Nl(i)| denotes the number of
neighbours of pixel i in direction of the axis l, N−

l (i) := {Nl(i) | j < i} is the
set of neighbouring pixels in this direction that have already been processed,
while N+

l (i) := {Nl(i) | i < j} stands for the pixels that yet have to be
updated.

5.2 Bidirectional Multigrid

Unfortunately, iterative solvers such as the presented Gauß-Seidel method
have one decisive drawback: Due to the local coupling of neighbours in the
iteration scheme, it may take thousands of iterations to spread information
over large distances. As a consequence, only high frequencies of the error
are reduced, while low frequencies remain almost undamped. This leads
to a convergence rate that is very fast at the beginning, but slows down
significantly after a few iterations already.
In order to overcome this problem, bidirectional multigrid methods [3, 4, 18,
49, 51] make use of coarser levels where they obtain useful correction steps.
How this works exactly will be described in detail by the example of the
following two-grid cycle that forms the basis of our implementation.

(1) Presmoothing Relaxation First, we perform a few iterations with
the Gauß-Seidel method given by equation (19). This allows us to reduce
the high frequency components of the estimation error.
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(2) Coarse Grid Computation Since the first step only gives us an
approximation ũh of the correct solution uh, we are interested in computing
the error eh = uh − ũh to correct our result. Unfortunately, this error
cannot be determined directly. However, it is possible to compute the residual
rh = bh − Ahũh that is related to the error via the following equation:

Aheh = Ahuh + Ahũh = bh − Ahũh = rh. (20)

The basic idea of bidirectional multigrid methods is now to transfer this
so-called residual equation Aheh = rh to a coarser grid with grid spacing
H > h by restricting the entries of Ah and rh. Apart from the reduced
computational effort on the coarse grid, this strategy offers the advantage
that low frequencies on the fine grid reappear as higher ones on the coarse
grid. Hence, they can be efficiently attenuated by applying the same iterative
solver that was already used in the presmoothing relaxation step. Transfer-
ring the residual equation to the coarse grid yields the following system of
equations:

cHi eHi − (1−cHi )
∑

l∈{x,y}

∑

j∈Nl(i)

eHj − eHi
Hl

= cHi rHi

(21)

for i = 1, ..., NH . As one can see, this system has the same structure as
the original one from the fine grid given by equation (11). Moreover, we
observe that it is sufficient to restrict the entries of ch and rh to set up the
coarse grid equation systems, since the discretisation of the Laplacian follows
directly from the new grid spacing H . In order to solve this system we may
use the Gauß-Seidel method from (19) or, if the number of pixels is small
enough, a direct solver such as Gaussian elimination [47].

(3) Coarse Grid Correction After we have solved the residual equation
system on the coarse grid, we have to transfer the computed error back on
the fine grid to correct our previous approximation. This correction step is
given by ũh

new = ũh + eh.

(4) Postsmoothing Relaxation Finally, we perform again a few itera-
tions with the original Gauß-Seidel method from (19). This step allows us to
remove high frequency errors that have been introduced by the interpolation
of the coarse grid error.
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5.3 Advanced Multigrid Strategies

Instead of solving the residual equation system at the coarse grid directly,
it is much more efficient to use a third, even coarser grid that provides a
correction step for the second one. Such a hierarchical application of the
two-grid cycle is called V–cycle. Visiting each coarse grid twice per level
level yields the so called W–cycle, which offers better convergence rates at
the expense of slightly increased computational costs.
Additionally, one can speed up the computation by starting with a reasonably
good initialisation. To this end, we embed the W–cycle in a coarse-to-fine
estimation framework: Starting from a very coarse grid, we successively re-
fine the problem, where solutions from coarser levels serve as initialisation
for finer ones. At each level, the previously explained W–cycle is used to
solve the resulting linear system. This combination of error correction steps
and hierarchical initialisation yields the multigrid method with the best per-
formance: Full Multigrid. A sketch that illustrates how the different grids
are successively traversed is shown in Figure 6.

Fine

h

H

H ′

H ′′

Coarse

Figure 6: Full multigrid scheme for four levels with increasing resolution from
H ′′ to h (decreasing grid size). At each level one W–cycle is used to solve
the resulting system.

5.4 Implementation Details

In our implementation, we use a full multigrid scheme with one W–cycle per
level, where the number of pre- and postmoothing iterations is set to 2. The
transfer between the different grids is realised by non-dyadic versions of area-
based averaging and area-based interpolation as proposed in [5]. However,
since these operators are not designed to deal with sparse data filled up
with zeros, we have to normalise the result after restriction such that values
averaged with zeros still make sense. To this end, we propose a strategy
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Figure 7: Different test images: (a) coppit (256 × 256, real world); (b)
svalbard (380× 431, real world); (c) comic (512× 512, synthetic).

similar to normalised convolution known from scattered data interpolation
[25].
The key idea in this context is to exploit the fact that all averaging effects
become explicit in the restricted version c̃H of the binary mask ch. In par-
ticular, this restricted version may contain values in the complete range from
0 to 1. Assuming that we have obtained the coarse grid result ṽH by restric-
tion of the corresponding fine grid data vh, we thus propose the following
subsequent normalisation:

vHi =







ṽHi /c̃Hi for c̃Hi 6= 0

0 for c̃Hi = 0
. (22)

This normalisation is applied to all sparse data after restriction, i.e. to the
image fh, the residual rh, and the mask ch itself (which makes it binary
again).
When interpolating the solution uH or the error eH from coarser to finer
grids, we can exploit the fact that the result is known at certain positions,
i.e. where chi = 1. At those locations, we simply set back the data to the
known values.

6 Experiments

Let us now investigate the capabilities of the suggested codec. To this end
we first compare the codec presented in [33] with our new, improved ver-
sion. Then we give a comparison to well-established and state-of-the-art
compression methods, namely JPEG and JPEG2000. Finally we identify
the limitations of our method.
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Figure 8: Edge images obtained by zero-crossings-based edge detection such
that visually pleasant reconstructions are obtained. Edge detector parame-
ters are chosen such that false edges are avoided. Edge image for (a) coppit
(T1 = 4.3, T2 = 23, σ = 0.5), (b) svalbard (T1 = 3.5, T2 = 20, σ = 0.6) and
(c) comic (T1 = 20, T2 = 20, σ = 0.47)

For quantitative comparison, we use the peak-signal-to-noise ratio (PSNR), a
common error measure for the comparison between compressed images: Let
max be the maximal possible pixel value, which is 255 in our case. Further-
more, let N be the number of image pixels, M be the number of channels and
(fm,i)i=1..N and (um,i)i=1..N the pixel values of the original image in channel
m and its reconstructed/decompressed version, respectively. The PSNR is
defined via the mean squared error (MSE):

PSNR := 10 · log10

(
max2

MSE

)

[dB] , (23)

with

MSE :=
1

M ·N

M∑

m=1

N∑

i=1

(fm,i − um,i)
2 . (24)

For runtime measurements we use only one core of an Intel Core 2 Duo T7500
@ 2.20Ghz CPU and measure the elapsed time.
The underlying test images are shown in Figure 7. Whereas coppit and
svalbard are cartoon-like real world images, comic is a pure synthetic image.

6.1 Comparison with the Old Version of the Codec

Let us first briefly compare our new codec with the previously suggested
codec of our conference paper [33]. To this end we use the same test images
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Table 3: Comparison of the improved codec with the old one given in our
conference paper [33]. Sampling distances are dm = 5 for all test images
(m ∈ {1, 2, 3}). The quantisation parameters are qm = 16 for coppit and
qm = 32 for the others. The additional parameters of the new method are
set to their default values. The best results are in bold face letters.

image coppit svalbard comic
approach old new old new old new

compression rate (bpp) 0.34 0.34 0.23 0.22 0.21 0.21
PSNR (dB) 30.16 30.47 30.21 30.37 30.31 30.37

encoding time (s) 0.90 0.08 1.10 0.12 3.01 0.16
decoding time (s) 18.60 0.15 148.81 0.33 495.93 0.47

(see Figure 7) and same underlying edge images as in [33] (see Figure 8). The
edge images were created by choosing the thresholds for hysteresis threshold-
ing and the standard deviation for presmoothing such that we obtain visually
pleasant reconstructions. Moreover, we demand that the edge images look
reasonable, that means we avoid false edges by choosing appropriate thresh-
olds. Parameters available in both methods are chosen as in [33]. Our new
codec provides additional parameters which are set to their default values.
That means the parameter dtr for the recursive search of the pixel values is
set to 1, and the standard deviation for Gaussian presmoothing of the pixel
value signals is set to 1 as well. The edge images are encoded by JBIG again.
However, as entropy coder we use LPAQ2 instead of PAQ8o6. Table 3 shows
the PSNR and compression in bits per pixel for both versions of the codec.
Furthermore, the encoding and decoding time is depicted.
Regarding the compression rate the new codec is at least as good as the
old one, even though the faster LPAQ2 method is used instead of PAQ8o6.
Moreover, all reconstructions are better than the old ones. These improve-
ments are a result of both the new strategy for finding the pixels along edges
as well as the Gaussian presmoothing of the collected pixel values before
subsampling. By these changes, the new 1-D grey/colour data contain less
fluctuations. Thus, it can be compressed in a more efficient manner by the
entropy coder. Furthermore, is allows better reconstructions when subsam-
pled pixel values are recovered by linear interpolation.
Table 3 also proves that our new codec has real time capabilities, not only
due to LPAQ2, but in particular due to the fast multigrid implementation,
which was presented in Section 5.
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Table 4: Comparison of the PSNR and elapsed encoding/decoding time for
the different test images (see Figure 9) and different compression methods.
The best results are in bold face letters.

image coppit svalbard comic
compression rate (bpp) 0.37 0.16 0.19

error measure (PSNR in dB):
JPEG 26.61 23.38 24.25

JPEG2000 28.13 27.68 26.77
our method 30.31 30.14 30.20

encoding / decoding time in ms:
JPEG 8.66/ 7.14 13.80/ 13.35 19.34/ 24.20

JPEG2000 57.51/ 28.50 93.47/ 49.39 164.42/ 74.20
our method 117.08/172.78 146.79/316.94 212.55/458.40

6.2 Comparison with JPEG and JPEG2000

Next we compare our codec with the well-established JPEG standard and
with the more advanced JPEG2000 codec. To this end, we use the encoders
provided by the image processing tool imagemagick 9. We fix all parameters
of our codec to their default values. As edge images we use again the results
that are depicted in Figure 8.
Figure 9 shows the different test images and their compressed versions using
JPEG, JPEG2000 and our codec. A cropped detail for each image is depicted
in Figure 10. The compression rates for all images lie between 0.16 and 0.37
bits per pixel (bpp). This corresponds to compression ratios between roughly
145:1 and 65:1, provided the original colour images use 3 bytes per pixel.
Beside this visual comparison, Table 4 gives the corresponding quantitative
comparison. It allows an evaluation of the compression capabilities for dif-
ferent methods by means of the PSNR. Furthermore is depicts the encoding
and decoding times for all images.
The quantitative and the visual analysis illustrate that our approach can
be better than JPEG and even JPEG2000. For the test image comic we
observe a remarkable difference of more than 3 dB between JPEG2000 and
our approach. Also visually, crucial differences become apparent (see Fig-
ure 10). JPEG as well as JPEG2000 suffer from severe ringing artifacts.
These are a consequence of their quantisation step in the corresponding fre-

9see http://www.imagemagick.org
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Figure 9: Comparison of compression methods for different test images at
0.37, 0.16 and 0.19 bits per pixel (bpp) (from left to right). Columns from
left to right: coppit (256 × 256), svalbard (380 × 431), comic (512 × 512),
Rows from top to bottom: original image, JPEG, JPEG2000, and our codec
with default parameters and edge images as depicted in Figure 8.
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Figure 10: Cropped detail (64× 64) for each image depicted in Figure 9.
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original JPEG JPEG2000 our codec
200:1 340:1 340:1

Figure 11: Compression methods driven to the extreme; (a) Original image;
(b) JPEG with minimal quality parameter at 0.12 bpp (i.e. approx. 200:1)
with PSNR 21.68 dB, (c) JPEG2000 at 0.07 bpp (i.e. approx. 340:1) with
PSNR 22.83 dB (d) Our codec with zero-crossings based edge detector (T1 =
15, T2 = 20, σ = 0.6) and default settings except for qm = 6, dm = 40
(m = 1 . . . 3) and dtr = 10 gives 0.07 bpp (i.e. approx. 340:1) with PSNR
27.37 dB.

quency/wavelet domains and the following inverse transforms. Moreover,
JPEG applies the cosine transform in 8 × 8 blocks and thus suffers from
unpleasant block artifacts. Especially edges are highly distorted. In con-
trast, our method stores edges explicitly and gives clean reconstructions. In
addition, JPEG is not able to preserve the smooth gradient in the back-
ground of svalbard or comic. Our codec interpolates between the quantised
colours so that the smooth gradient can be reconstructed almost perfectly.
Thereby also for a greatly reduced grey/colour range, quantisation artifacts
are hardly visible. Another drawback of the transform-based approaches can
be discovered in the cropped detail image of svalbard. The screw in the bear
completely vanishes for both JPEG as well as JPEG2000. Our approach
stores the edges of such details so that they are well preserved.
The previous results have been obtained with the default settings of our
codec. By changing the parameters, we can influence the compression rate
and quality of an image. Most obviously, we can get higher compression
rates when larger sampling distances or less quantisation intervals are chosen.
Figure 11 demonstrates what is possible if this is carried to the extreme: We
reduce the number of edge pixels by choosing T1 = 15 instead of 3.5. For
each channel only 6 different values are used. The sampling distance along
the edges is set to 40 and for the recursive search along edges dtr = 10.
Using the lowest quality parameter provided by imagemagick, JPEG reaches
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Figure 12: (a) Test image trui (256 × 256) (b) Edge image, obtained by
zero-crossings-based edge detector (T1 = 1.1, T2 = 2.6, σ = 1.2). (c) Recon-
structed colours adjacent to the edges. (d) Inpainting result (PSNR of 30.16
dB); Compression rate of encoded image: 0.54 bpp.

only a compression ratio of 200:1. Its visual and quantitative quality is
already far below the PDE-based result. Moreover, our codec exhibits a
compression ratio of 340:1. For JPEG2000 imagemagick is able to provide
a compression ratio of 340:1. Showing a PSNR of 22.83 dB, the quality
of this image is comparable to the JPEG result. Considering the extreme
compression rate, the PSNR of the PDE-based result (27.25 dB) is quite
abundantly.
As we have seen, the compression rate can also be influenced by the under-
lying edge image. By choosing T1 = 15 instead of T1 = 3.5 we removed some
edge pixels enabling a higher compression rate. Note that these edge pixels
should usually not be removed in order to guarantee quality. For cartoon-like
images the corresponding edge image is up to small variations more or less
unique.
Finally the compression rate can be increased by using PAQ6o8 instead of
LPAQ2 at the expense of run time. Vice versa, a faster compression with
less compression is obtained when LPAQ2 is replaced for example by bzip2.

6.3 Limitations

At the end of this section we briefly mention the limitations of our codec.
Obviously, our method is not well suited for images that contain textured
areas. Figure 12 gives an example where our method is not competitive
to conventional compression methods anymore. We detect so many texture
edges that our method requires too much storage to get results of reasonable
quality. For this example and default settings our codec gives a compression
rate of 0.54 bpp and a PSNR of 30.16 dB. At the same compression rate
JPEG leads to a PSNR of 36.02 dB and JPEG2000 to a PSNR of 37.24 dB.
In this sense, our codec has been optimised for cartoon-like images. Those,
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however, can be compressed in good quality and with high compression ratios.
Another limitation is the low robustness of our decompression algorithm
against corrupted files which typically result from transmission channels be-
ing exposed to noise. Since pixel locations and colours are encoded separately,
errors in either part might result in a wrong assignment of colours to mask
points, or to pixels being reconstructed at arbitrary locations in the image.
However, such problems can already be handled in the transmission of the
file: Modern digital communication channels are typically equipped with fast
error correction algorithms and retransmission mechanisms that assure file
integrity.

7 Conclusion

In this article we have presented a conceptually simple, but highly efficient
way to compress cartoon-like images. By extracting edges and adjacent pixel
values, encoding them efficiently and using homogeneous diffusion for recon-
struction, we have created a new codec, which can even beat JPEG2000.
This was out of reach for the previous methods, even after almost three
decades of intensive research on image reconstruction from zero-crossings of
the Laplacian.
Our results clearly indicate that cartoon-like images need a specialised treat-
ment as offered by our codec. By storing edges explicitly, small details and
sharp discontinuities are well preserved.
Moreover, we have analysed the discrete theory behind inpainting with ho-
mogeneous diffusion and have provided a fast multigrid algorithm for solving
the inpainting problem. Thereby our codec is not only able to encode but
also to decode images in real time.
In our ongoing research we are interested in implementations for distributed
architectures. Furthermore, we are investigating extension that allow real-
time video compression for animated cartoon movies.

Acknowledgements We thank Anna Mainberger for providing the test im-
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compression in real time. Technical Report 07-11, Lehrstuhl für Infor-
matik 10, Univ. Erlangen–Nürnberg, Germany, 2007.

[27] M. Kuhn. Effiziente Kompression von bi-level Bilddaten durch kon-
textsensitive arithmetische Codierung. Studienarbeit, Institut für Math-
ematische Maschinen und Datenverarbeitung der Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany, July 1995.

[28] M. Kunt, A. Ikonomopoulos, and M. Kocher. Second-generation image-
coding techniques. Proceedings of the IEEE, 73(4):549–574, April 1985.

[29] D. Liu, X. Sun, F. Wu, S. Li, and Y.-Q. Zhang. Image compression
with edge-based inpainting. IEEE Transactions on Circuits, Systems
and Video Technology, 17(10):1273–1286, October 2007.

[30] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28:129–137, 1982.

[31] B. F. Logan, Jr. Information in the zero crossings of bandpass signals.
Bell System Technical Journal, 56:487–510, April 1977.

[32] M. Mahoney. Adaptive weighing of context models for lossless data com-
pression. Technical Report CS-2005-16, Florida Institute of Technology,
Melbourne, Florida, December 2005.

[33] M. Mainberger and J. Weickert. Edge-based image compression with
homogeneous diffusion. In Xiaoyi Jiang and Nicolai Petkov, editors,
Proc. 13th International Conference on Computer Analysis of Images
and Patterns, volume 5702 of Lecture Notes in Computer Science, pages
476–483. Springer, Berlin, September 2009.

[34] S. Mallat and S. Zhong. Characterisation of signals from multiscale
edges. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14:720–732, 1992.

34



[35] D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the
Royal Society of London, Series B, 207:187–217, 1980.

[36] S. Masnou and J.-M. Morel. Level lines based disocclusion. In Proc. 1998
IEEE International Conference on Image Processing, volume 3, pages
259–263, Chicago, IL, October 1998.

[37] J. Max. Quantisation for minimum distortion. IEEE Transactions on
Information Theory, 6:7–12, 1960.

[38] A. R. Mitchell and D. F. Griffiths. The Finite Difference Method in
Partial Differential Equations. Wiley, Chichester, 1980.

[39] A. Moffat. Implementing the PPM data compression scheme. IEEE
Transactions on Communications, 38(11):1917–1921, November 1990.

[40] W. B. Pennebaker and J. L. Mitchell. JPEG: Still Image Data Com-
pression Standard. Springer, New York, 1992.

[41] S. D. Rane, G. Sapiro, and M. Bertalmio. Structure and texture filling-
in of missing image blocks in wireless transmission and compression
applications. IEEE Transactions on Image Processing, 12(3):296–302,
March 2003.

[42] M. M. Reid, R. J. Millar, and N. D. Black. Second-generation image
coding: An overview. ACM Comput. Surv., 29(1):3–29, 1997.

[43] Jorma J. Rissanen. Generalized Kraft inequality and arithmetic coding.
IBM Journal of Research and Development, 20(3):198–203, 197.

[44] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadel-
phia, second edition, 2003.

[45] C. Saloma and P. Haeberli. Two-dimensional image reconstruction from
Fourier coefficients computed directly from zero crossings. Applied Op-
tics, 32(17):3092–3093, April 1993.

[46] C. Schmaltz, J. Weickert, and A. Bruhn. Beating the quality of JPEG
2000 with anisotropic diffusion. In J. Denzler, G. Notni, and H. Süße,
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