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Abstract

Typical stereo and laser scan based 3D acquisition approaches are essentially limited
to 2.5D capture. The resulting 3D completion problem, to derive missing information
in 2.5D scenes from limited contextual information, has received increasing attention
in literature. Here we propose a hierarchical extension to our recent nonparametric
approach for the 3D completion of surface relief detail to allow the resolution of
inconsistencies arising in the global structure of an area completed with this tech-
nique. We test our approach over a range of surface types and contrast the presence of
global discontinuities in the resulting completion with those of the earlier approach.

1 3D Surface Completion

Over recent years the problem of visual completion has become of increasing
interest in both 2D and 3D imaging. A large proportion of work in this area
can be set in the context of human abilities within the domain of perceptual
psychology [6]. Specific to the completion problem faced in 3D computer vision
is the 2.5D limitation of current 3D sensing approaches. With a single laser
scan or stereo capture it is not possible to capture all faces of a 3D scene.
Essentially, from this uni-directional viewpoint we have a 2.5D scene capture -
3D information but in one single direction. The result is 3D surface models that
are inherently 2.5D in nature or 3D models which require construction from a
combination of multiple uni-directional captures. In this latter case, additional
capture and viewpoint combination incur significant additional work [3].

Following on from our work in [7] we propose a hierarchical approach that
builds up the missing information within unknown scene portions as an it-
erative process from global structure to localised surface detail. This in turn
follows the paradigm of visual propagation as the basis for the completion of
3D scenes via the propagation of knowledge from known to unknown scene
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portions [6]. Specifically we propose a multi-level hierarchical approach for the
nonparametric synthesis of 3D surface relief from an original sample surface
region to a co-joined target region. This approach uses a 3D extension of non-
parametric texture synthesis [13] in conjunction with knowledge derived about
the underlying shape continuity of the surface [28,8,11]. Whilst the latter can
be achieved via a variety of approaches [28,8,11,10,21,33,17,31] we rely on a
simple geometric fitting approach to provide the required surface knowledge
to illustrate our technique. As shown by our results, the resulting approach
overcomes the limitations in global surface structure continuity (e.g. Figure 3)
found in earlier work [7].

Prior work in this area can be divided into two areas - completion via good
continuation, and completion via structure propagation. Work within the area
of good continuation concentrates on the smooth completion of underlying
surface. Several approaches have been proposed within this context includ-
ing localised geometric and algebraic surface fitting [28,8,11,9,18], volumetric
distance-field based techniques [10,32,23,15], cross-triangulation patching and
refinement [21,33,31] and spatial occupancy based approaches [24,17]. Whilst
these techniques concentrate on the completion of the global underlying sur-
face shape more limited attention has been paid to the additional topic of
propagating surface detail - thus limiting them in application with real-world
surfaces [6]. By contrast work in the area of structure propagation concentrates
on the concept of “completion by example”.

Structural propagation techniques, by the nature of the problem, frequently
draw upon the success of 2D work in the analogue problem of 2D texture syn-
thesis. The approach proposed here is no different. Notably the prior work of
[27] pursues a patch-based “copy and paste” completion approach akin to [12]
that, whilst well suited to smooth surface or irregular/anisotropic relief com-
pletion, relies on non-rigid alignment (warping) that limits its application to
structured relief (as found in architecture, e.g. Fig. 2D). The brittleness of the
patch-wise “copy and paste” approach can also lead to uncharacteristic ‘tiling’
artifacts over large areas and an inability to adaptively complete in scenarios
where no suitable propagate patch exists [27]. By contrast the “example-based”
completion work of [25] is performed with reference to a database of similar
a priori complete 3D objects from which similar surfaces are selected and
blended to perform completion on the partial 21

2
D surface. This is clearly lim-

ited by suitable a priori knowledge and, by its use of similarity matching,
relates more to the concept of completion via recognition than the completion
via generalisation we aim for here.

The related works of [2] and [19] are similar respectively to [25] and [27] but
vary primarily in underlying surface representation, and the graphics work
on geometric texturing [4,20] covers a related but not explicitly completion-
orientated problem domain. Both [4] and [20] are so far limited to arbitrary
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geometric texturing rather than explicit relief completion where the issues of
plausibility and good continuation must additionally be considered. A body of
graphics driven relief texturing work (e.g. [26]) facilitates the illusive texturing
of such 3D surfaces through the use of artificial bump mapping techniques - the
underlying 3D surface remains unchanged. However, recent work [36], using
colour as an additional constraint and 2D texture synthesis as primary driver
does explicitly consider completion but fails to offer an approach suitable for
regular surface relief with additional global completion constraints. Related
work, in a similar vein to our earlier non-parametric work of [7], has also
recently been performed by [37] also primarily targets geometric texturing but
using texture patches rather than point samples. Prior work in 3D texturing
[27] has shown similar limitations to such patch based approaches [37] as
found in [7]. In this work we propose an extension to our own non-parametric
approach in this area [7], itself driven by the paradigm of the 2D synthesis
work of [13], to aid to overcome similar limitations found with this approach -
namely a shortcoming in the maintenance of such global structures over large
completion areas.

A full overview of computer vision work in 3D completion and related theories
from perceptual psychology is given in [6].

2 Non-parametric Surface Completion - a brief overview

The main contribution of this paper is a multi-stage, multi-pass extension
to our previous work using non-parametric completion as an approach for
realistic surface relief completion [7]. We initially present an overview of this
base technique (with direction to further reading more detail), examples of the
results it achieves (Section 2.2) and its limitations (Section 2.3) before moving
forward to examine a viable hierarchical Level-of-Detail (LoD) extension to
overcome these limitations (Section 3).

As originally presented in [7] our proposed non-parametric surface completion
approach comprised of 2 stages:- 1) the completion of the underlying surface
geometry (“smooth” completion), 2) the completion of surface relief over the
underlying surface geometry completed in stage 1. An example of this two
stage process is shown in Figure 2D where we see the completion of the ar-
chitectural surface detail over the underlying geometric surface completion of
the 2.5D Pisa Tower surface.

The first stage of our approach essentially forms a requirement for the under-
lying “good continuation” of the surface. This can be achieved via a number
of approaches outlined in the literature (e.g. [10,21,33,17,31]). Specifically, we
utilise a simplistic geometric completion approach based on the prior work of
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[28,11,8]. This facilitates the automatic best-fit model selection to the original
2.5D surface data and provides an accurate surface parametrisation for comple-
tion via good geometric continuation [28,11,8] (e.g. Figure 2A). More complex
surface structures can thus be processed via a route of prior segmentation into
simple geometric sub-parts or an alternative approach [10,21,33,17,31] without
loss of generality for the secondary application of the surface relief completion.

Non-parametric surface relief completion essentially mimics its 2D counterpart
in texture synthesis [13] but with specific consideration for in-place synthesis
directly on a 3D surface mesh itself. In this way it differs significantly from re-
lated work in geometric texturing [4,20] where alternative interim non-surface
based representations are used for the key processing steps. The original ap-
proach in 2D is in essence very simple:- successively grow a 2D texture outward
from an initial seed (the target), one pixel at a time, by comparing the neigh-
bourhood of the pixel being synthesised to each and every such neighbourhood
in a given sample texture. Select a neighbourhood that matches well from the
sample and directly copy the corresponding pixel value from the chosen sam-
ple area to the target position. In 2D image textures these neighbourhoods
are simply defined as w × w square image neighbourhoods around each pixel
where w, the window size, is a parameter perceptually linked to the scale of
the largest regular feature present in the texture [13]. Matching is based upon
the traditional correlation approach of the normalised sum of squared differ-
ence metric (SSD) between two pixel neighbourhoods (i.e. the textured pixels
surrounding the target and those surrounding each sample pixel). From the
set of matches found, a random selection is then made from the top η% of
matches as to which value to copy to the target. The result is an effective
technique, surpassing the abilities of other parametric approaches, using a a
statistical non-parametric model akin to the robotics paradigm “the world is
its own best model”.

2.1 3D Nonparametric Completion

In essence basic aspects of non-parametric sampling map well from 2D to 3D
: the 2D image becomes a 3D surface, the individual pixel becomes a point on
that surface, a pixel neighbourhood becomes the set of nearest neighbours to
a surface point and the actual pixel values being synthesised become displace-
ment vectors mapping discrete points on a textured surface (i.e. the relief) to
the geometric surface derived from prior fitting (Figure 1).

The main input to our non-parametric completion process is thus the geomet-
rically completed version of the 3D surface. The original textured points (with
relief), are the sample points, s ∈ samples, whilst those forming the geomet-
rically completed “smooth” portion form the target points, t ∈ targets, (Fig.
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Figure 1. 3D vertex neighbourhoods, N(i) and displacement vector, D(s), within
context

1). Each point has an associated surface normal, n, and an associated relief
displacement vector, −→D(s), derived from earlier geometric surface fitting (Fig.
1).

2.1.0.1 Algorithm Outline Our non-parametric algorithm adapts to 3D
by considering vertex neighbourhoods on the 3D surface in place of the pixel
neighbourhoods of [13]. Each vertex neighbourhood, N(i), is the set of ver-
tices lying within a radius of w edge connections from the target vertex being
textured (Fig. 1) where w forms the window size parameter synonymous to
that of the earlier 2D approach. The algorithm now proceeds by finding the
best sample region matching the textured portion of a target vertex’s neigh-
bourhood.

Firstly, the set of target vertices currently lying on the textured/un-textured
surface boundary are identified as the current target list, L. The first tar-
get vertex, t ∈ L, is then matched, using neighbourhood based matching,
against every available vertex s ∈ samples. Following the traditional route of
Efros/Leung [13], a match is then randomly selected from the best η% of this
set, based upon matching score (here η = 10). Provided the matching score
for the selection is below the specified acceptable error threshold parameter, e,
this choice is accepted and the current target vertex, t, is textured by mapping
the displacement vector, −→D(s), from the selected sample vertex, s, to t. The
current target, t, is now labelled as textured and the algorithm proceeds to
the next vertex in L. If the match is not accepted (or no match was possible)
the vertex is simply skipped and returned to the pool of target vertices for
future synthesis. Once L is exhausted, the next set of target vertices on the
textured/untextured boundary are identified, based on the updated vertex
labelling, and the process is continued until all t ∈ targets are labelled as
textured. To ensure target vertices are processed in the order of most to least
constrained, L is always sorted by decreasing number of textured neighbours
prior to processing [13].

Throughout the process, progress is monitored over each target list, L, con-
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structed. If no match selections are accepted over an entire iteration of L the
algorithm would reach an impasse due to the constraining value of e. To avoid
this problem the acceptable error threshold e is raised slightly (10%), in this
occurrence, to relax the acceptable error constraint (as per [13]) and thus al-
low relief synthesis to hopefully progress over the next iteration of L. Further
discussion relating to parameters e,w and η is presented in [7].

2.1.0.2 Orientated Neighbourhood Matching From our outline dis-
cussion of the nonparametric surface relief completion one key element remains
- the orientationally consistent matching of target neighbourhood, Nt(t), and
to sample vertex neighbourhoods, Nt(s). Matching is performed using an
adaptation of the pixel-wise Sum of Squared Difference metric (SSD, [13])
based on the projection of neighbourhood vertices onto the surface at each
sample point as follows:

SSDshape =
Nt(t)′∑

vt

gvt min
4j∈triangles(v2)

(dist(vt,4j)
2) (1)

where Nt(t)′ is the textured target neighbourhood,Nt(t), rigidly transformed
to the surface position s and thus vertex vt ∈ Nt(t)′. To ensure consistent
vertex matching, independent of relative vertex density, we match vertices,
v1 → v2, v1 ∈ Nt(t) v2 ∈ Nt(s), based on their relative projected positions
on the common geometric surface model, embodied in the displacement vector
associated with every vertex, v′i = vi−

−→
D(vi) [7]. The SSD is calculated based

on the distance of each target vertex, vt ∈ Nt(t)′, directly to the triangulated
surface at s (not just the closest vertex) - i.e. the minimum squared distance
to any surface triangle, 4j, that has v2 as a vertex, 4j ∈ triangles(v2) [7]. A
2D Gaussian kernel weight, gvi

is additionally used in Equation 1 to weight
the SSD vertex matches, v1 → v2, relative to the distance t → vt , vt ∈ N(t)
(i.e. spatial proximity to t) [13,7]. A Gaussian kernel (size σ = 1) is normalised
over the spatial dimension of Nt(t) defined by parameter w.

The use of this form of projective matching (Equation 1) requires the ability to
rigidly transform a given target neighbourhood Nt(t), to an arbitrary surface
position (i.e. sample position s) whilst maintaining a consistent orientation of
the relief (i.e. Nt(t) is matched to Nt(s) such that both texture neighbour-
hoods are commonly orientated in a consistent frame of reference). In order
to achieve this a local frame of reference, RVi

= [n, u, v] (Fig. 1), is derived
for each and every surface vertex, vi, by either deterministically finding mu-
tually perpendicular vectors, −→u −→v , to the known surface normal, −→n , [7] or
an iterative localised neighbour-to-neighbour sweep approach based on [35].
Rigid transformation of any target vertex neighbourhood, Nt(t), to any sam-
ple neighbourhood, Nt(s) is thus facilitated by transformation of RsR

−1
t . As t
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is itself un-textured whilst s is textured, the natural misalignment (owning to
the presence/absence of texture) is additionally avoided by further transform-
ing Nt(t)’ to the corresponding un-textured position of s on the underlying
surface - s′, calculated using the known displacement vector at s, −→D(s), as
s′ = s−−→D(s) [7].

Overall, it is this use of exhaustive neighbourhood-base for each target, t ∈
targets, at each position on the sample surface region, s ∈ samples, results
in a completion algorithm that is ©(stw2) for neighbourhood window size w
[5].

2.1.0.3 Summary As we have outlined, we now have a viable 3D relief
completion approach based on the adaptation of [13] to the consideration of
vertex neighbourhoods upon surfaces in place of pixels within an image [7].
As we present in Section 2.2 (Figure 2), this approach can be successfully em-
ployed for relief completion over a wide variety of example surfaces. However,
from our discussion here a key point to note is the localised view of the surface
this approach follows using only localised surface knowledge (i.e. w × w ver-
tex neighbourhoods). In Section 2.3 we will explicitly see the limitations this
incurs upon this overall localised approach and, in presenting our main con-
tribution of this work, outline a further hierarchical completion approach to
overcome such limitations. A full overview of the single-pass non-parametric
discussed here is presented by the authors in [7]. It is re-presented here as a
baseline to the contribution of Section 3.

2.2 Exemplar Surface Completion Results

From the non-parametric surface completion technique outlined thus far we
present a number of completion results in Figure 2A-E. In Figures 2A &
B show the successful completion synthetic relief patterns over cylindrical
surfaces whilst Fig. 2C shows 3D relief completed over a planar surface. Each
case shows the completion of an initial surface patch (light) over a geometric
completion (dark) of the underlying surface model. Surface completions based
on real 21

2
D surface captures are presented in Figures 2D-E. In Figure 2D we

see the completion of regular, anisotropic architectural features of Pisa Tower
including the successful completion of regular windows, doors, struts (bottom)
and building specific architectural features (top) from an initial 21

2
D scan of

this scale model. Figure 2E shows the completion of anisotropic, irregular
tree bark 1 texture over a geometrically completed cylinder. Here, we see the

1 N.B. Linear bark structure running parallel to cylindrical surface axis.
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successful completion of the bark structure despite the highly stochastic nature
of the initial sample relief over the bark “structure” itself.

Based on this single-pass approach [7] successful completion results can be
achieved over a wide range of surface relief types. These examples (Figure 2)
are reproduced from [7] (where a full quantitative evaluation of this single-
pass approach is performed) for comparison with the proposed enhancements
presented here (Section 4) .

2.3 Limitations of a single-pass non-parametric approach

However, a key limitation of this single-pass approach is the inherent localness
of a single-pass non-parametric technique. This reliance solely upon a mea-
sure of local consistency means that the global consistency of the surface relief
completion can be compromised due to the accumulation of errors introduced
over the iterative relief propagation process (Section 2). As a result, various
artifacts are apparent in portions of surface relief completion. This limita-
tion was highlighted in the original work [7] and is generally limited to relief
completions over larger surface areas (as the error accumulates substantially)
rather than use for isolated hole filling. Here we examine these limitations
using a range of examples (Figure 2).

For example, whilst the Pisa Tower example (Figure 2D) shows no obvious
visual difference between the completion and original in Figure 3 A/B, we see
that on closer examination subtle anomalies exist with the completed surface
portion - repeated structure and mis-matches on highly constrained surface
joins. These are attributable to the effects of noise on the process that originate
from the original surface capture and the quality of the underlying geometric
surface fit. Both of these issues lead to accumulated error problems (Fig. 3
A/B) similar to the problem originally encountered in [13] with the loss of
high-order information.

We additionally show the example of Figure 3C (completion of a plinth type
surface) that has both cylindrical and right-angled components in its overall
shape. In this simple case we can fit a cylindrical geometric completion to the
available 21

2
D surface data despite its non-conformance to a general geometric

cylinder. Generally we see the successful completion of this underlying shape
geometry (Figure 3C, top down views) but a closer examination reveals some
anomalies similar to those suffered earlier with the Pisa Tower (Figure 3A/B).
Figure 3C shows a similar rear-side joining anomaly, due to accumulated error,
as to that found in the Pisa Tower completion. This is similarly attributable
to the accumulated noise issues but additionally suffers from the added po-
tential for poor initial geometric fitting due to the non-conformance of the
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Figure 2. Examples of 3D relief completion using non-parametric surface completion
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Figure 3. Limitations of 3D relief completion using non-parametric surface comple-
tion

original surface data. Finally, we also see that in the relatively simple (i.e.
low frequency) surface geometry completion of example of Figure 3D similar
global consistency artifacts are suffered.
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These examples, and the successful correction of these artifacts in the pres-
ence of 3D surface completion, will form the basis for evaluation of the novel
hierarchical extension to the core technique of Section 2 which is the main
contribution of this paper.

3 A Hierarchical Extension to Non-parametric Surface Completion

We can additionally extend our mono-scale technique (presented thus far) to
consider relief completion using a hierarchical level of detail (LoD) surface
model. As in prior 2D texture synthesis extensions (e.g. [34]) we see the use of
multi-scale techniques both as a mean of facilitating synthesis on a global to
local scale and as a means of improving computational performance. We are
primarily interested in two areas of improvement over the previous mono-scale
approach:

• Structural Accuracy: Hierarchical completion allows the completion of
successive levels of surface detail from coarse to fine (i.e. from global relief
structures to local relief detail). Here we aim to use this separation of struc-
ture and detail to overcome the accumulated error problems associated with
the mono-scale technique (e.g. Figure 3).
• Efficiency: A hierarchical completion technique will require vertex match-

ing at multiple levels in the hierarchy. As a result the best match found at
level i− 1 in the hierarchy can be used to “guide” the set of possible match
candidates at successive level i. Reducing the possible set of match candi-
dates in this way reduces the search space for non-parametric completion
at a given level. Overall, a coarse match at the lowest hierarchical level will
allow successive search space reduction and refinement at all subsequent
levels leading to potential gains in efficiency.

Here we adopt the progressive mesh representation of Hoppe [14], a contin-
uous LoD mesh representation, to our purposes and adapt it to allow us to
construct an increasing LoD surface hierarchy of m discrete levels of detail.
Specifically we design a surface hierarchy that maintains approximately uni-
form vertex density over the surface, respecting any oversampling performing
on the original portion, and contains k n

m
vertices for k = {1...m} levels,Mk. In

summary this provides us with Mm discrete LoD for a surface and known ver-
tex mappings, in terms of vertex addition/subtraction relationships, between
adjacent levels, Mk−1 →Mk. A general overview of LoD surfaces is presented
in [22] with further details of its adaptation to the discrete LoD model used
here.
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Figure 4. Calculation of displacement vectors from surface hierarchy

3.1 Hierarchical Surface Relief Propagation

Based on our hierarchical surface model we can outline an extension of the ear-
lier non-parametric completion to hierarchical surfaces. In essence this adapta-
tion of our non-parametric completion approach can be described very simply
:- at each level in a given surface hierarchy perform non-parametric completion
using the completion of the previous level to guide the process.

At each level in this discrete hierarchical model, Mk, we set the displacement
vectors, −→D(vj), for the each sample (i.e. original) vertex sj ∈ Mk based upon
the projected displacement onto the Mk−1 surface in the hierarchy (see Figure
4). This represents the current successive level of detail added to the original
surface portion in the hierarchical transition from levelMk−1 toMk and forms
the set of relative displacement vectors from LoD Mk−1 to Mk. It is this
additional difference in detail, relating to the current level in the hierarchy,
that we wish to propagate from the original sample vertices to the set of target
vertices (i.e. 3D geometric completion) with non-parametric completion at the
current level. In order to achieve this we must maintain distinct sets of samples
and targets at each LoD by vertices in lower LoD inheriting their label from
parent vertices present at higher LoD [14]. This gives a distinct sample and
target set for each LoDMk upon which to propagate the displacement vectors
for that specific LoD in the hierarchy.

For the first level in the hierarchy, M1, where no prior surface exists the dis-
placement vectors are calculated based on projection to the underlying geo-
metric surface model for the surface as per the mono-scale approach discussed
earlier. In this formulation, the geometric surface fit can be considered as level
M0 within the surface hierarchy forming the base case for the propagation of
successive layers of surface detail in the form of displacement vectors.

Overall, based on this successive propagation of relative displacement vectors
between levels in the surface hierarchy we are able to outline the hierarchical
algorithm as follows:
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• surface = original triangulated surface with vertices labelled as target/sample.
• targets = list of target vertices of surface.
• samples = list of sample vertices of surface.
• m = number of discrete levels in surface hierarchy
• G= geometric surface fit

hierarchicalGrowSurface(surface, targets, samples, m)

construct m level hierarchy H

for each level Mk in H

if Mk is lowest level of H then

set displacement vectors of Mk from G

else

set displacement vectors of Mk from Mk−1

end

targets’ = target vertices of Mk

samples’ = sample vertices of Mk

non-parametric completion(surface Mk targets’, samples’)

end for

Here “non-parametric completion()” explicitly refers to the mono-scale com-
pletion algorithm discussed earlier (i.e. non-hierarchical). Here this is per-
formed on subsequent levels, Mk, in the hierarchy with the corresponding
target/sample sets at that LoD.

3.2 Improving Efficiency

As identified earlier, the computation associated with mono-scale non-parametric
completion is bound by©(stw2) for s sample vertices and t targets with win-
dow radius w. A similar bound exists for the generic hierarchical approach
proposed previously where we find an overall bound of ©(stw2m) for m lev-
els in the surface hierarchy 2 (further analysis in [5]). Overall, as previously

2 Assuming, as is plausible from [14], that the transition between levels in the surface
hierarchy require only minimal computation and can be done in linear time., i.e.
©(m(s + t)).
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discussed the exhaustive search in the space of all sample vertices for every
target match can be seen to be prominent in this computational cost.

Here we attempt to reduce the required computation for a given hierarchi-
cal non-parametric completion based upon the following principle: By using
matching knowledge obtained at the Mk−1 level as a prior, the search space for
potential matches at the Mk level can be reduced.

Although there are several architectures for the implementation of this prin-
ciple, here we implement a scheme based on restricting the set of samples
considered for matching, against a given target at level Mk, to those within
the spatial vicinity of the match chosen at the Mk−1. The justification be-
hind this method is that matching in higher levels in the hierarchy, Mk, will
be based upon the correlation of relief features previously propagated at the
lower levels, i.e. Mk−1 and below. As we already know the general area of the
potential best correlation from matching, and subsequent relief propagation,
performed at the previous level Mk−1 in the hierarchy this seems a natural
location to find an appropriate match for the successive level of relief detail
at the current level, Mk. With this concept in mind we restrict matching for
a given target vertex at level Mk to the spatial vicinity of the sample surface
from which the chosen match for that target was found at the previous level,
Mk−1 (or its expanded parent vertices in the hierarchical surface model [14]).
It should be noted that this is not a hard restriction as it is a) only limited
to a region, not a precise vertex location and b) can be ignored if no suitable
match is available in that constrained sample area (i.e. within match tolerance
e). Additionally, as the surface LoD changes, as we progress from level to level,
the spatial restriction of matching similarly adjusts based both on the surface
locale of the match found in the previous Mk−1 LoD and in relation to vertex
density as we effectively reduce the physical size of the restricted window in
step with the increased LoD (i.e. vertex density) - i.e. for greater LoD and thus
higher relief detail the physical area covered for a constant matching window
w is reduced. This concept is termed sample pyramids (discussed in Section
3.3).

It should be noted that these restrictions are maintained, level-to-level, on
a per-vertex basis and no region based restrictions based on adjacent target
vertices matching to the same sample area are enforced. This latter concept,
restricting the neighbours of a particular target vertex, N(t), to match to
neighbours N(s) of the sample vertex s that matches target vertex t is not
desirable as it amounts to verbatim “copying” of 3D surface relief (akin to
[27,19,25]) rather than completion by a more generalised form of relief deriva-
tion.
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Figure 5. Sample pyramids for restricted matching

3.3 Sample Pyramid Approach

Our approach for implementing this restrictive sample matching is based on
the concept of sample pyramids (Figure 5) whereby we successively restrict
matching for targets at a given surface position, relative in each hierarchical
level, to a specific region of the sample surface.

At the lowest level in the hierarchy, with a total of s+t
m

vertices present, unre-
stricted matching is performed between this reduced set of target and sample
vertices. Based on the matches identified, a spatial bounding box identifying
a portion of the sample surface is assigned to every target vertex completed at
this level, M1. These bounding boxes are subsequently mapped, in the same
manner as surface relief, to the target vertices at next level in the hierarchy,
M2, by simple augmentation of the hierarchical surface model [14]. The result
is that at level M2 every target vertex has an associated spatial bounding box
representing a region of the sample surface to which matching for this target
can be suitably restricted. As, in general, the bounding box region can be
assumed to be a subset of the whole sample surface the matching space for
each target vertex at level M2 is subsequently reduced.

This can now be repeated for successive levels in the hierarchy such that in
all cases a target vertex at level Mk has an associated bounding box, derived
from the match found at level Mk−1, that reduces the potential search space
for a suitable matching sample vertex. For higher levels in the hierarchy, the
spatial bounding box derived at level Mk−1 will itself be based upon a match
found using the restricted set of samples within a bounding box derived from
matching at the Mk−2 level in the surface hierarchy and so forth down to the
base level, M1. This introduces the concept of sample pyramids - from an
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Figure 6. Restricted neighbourhood based matching

initial exhaustive matching search at M1 the matching region for vertices in
a particular spatial area are refined further and further to a smaller spatial
surface area - a bounding box at level Mm. This pyramid analogy comes from
the successive reduction from a wide base (i.e. exhaustive matching at M1) to
a narrow spatial set of matching candidates for a given target (i.e. bounding
box at Mm). However, unlike traditional pyramid models in image processing,
at each level within the hierarchy the medial axis of the pyramid is “adjusted”
slightly depending on the new spatial position of the chosen match at every
successive level (see Figure 5).

Additionally, by specifying the size of the bounding box in terms of our ear-
lier neighbourhood size parameter, w, we allow for successive refinement of
matching in terms of spatial proximity as well as spatial position to the match
at Mk−1. This is facilitated by a constant neighbourhood size, w, that mea-
sures proximity in terms of edge connections meaning that the bounding box
volume will reduce in real-terms (i.e. spatially) as the level in the hierarchy,
and hence the vertex density, increases. Specifying the bound box in this way
re-enforces our concept of sample pyramid as the spatial proximity of a match
at level Mk to that of Mk−1 reduces (i.e. narrows) as k → m. Based on the
fixed vertex neighbourhood size w, the number of sample vertices considered
for matching to each target vertex remains roughly constant, albeit over a
smaller spatial area as density increases, for level Mk k ≥ 2 (see Figure 5).

An important point to clarify here is that although we are now matching a
given target vertex, t, to a subset of the set of sample vertices we are still
not performing purely neighbourhood (closed set) to neighbourhood matching.
Whilst t itself will only be matched against the restricted set of samples (from
the bounding box) the vertices of transformed neighbourhood of t, N ′(t), will
still be free to match against vertices outside of this set (that naturally lie
within the same region of the sample set to this position). This is illustrated
in Figure 6.
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Figure 7. Hierarchical completion with and without post-completion smoothing

3.4 Implementation

In terms of implementing this scheme, the bounding boxes are simply derived
as the 3D axis-aligned bounds of the set of neighbouring sample vertices (i.e.
those originally with relief) that surround a given sample chosen for matching
within a distance of w edge connections at level Mi−1. At level Mk, a k-
d tree data structure [1] representing the sample surface portion is simply
queried with the bounding box, associated to the current target vertex t,
in order to efficiently return the restricted set of sample vertices that exist
within this specified volume at this level. These are then used for matching
against the current target vertex where a successful match produces both a
refinement to the surface relief at t and a subsequent bounding box restriction
for propagation and use at level Mi+1.

However, this scheme produces two additional cases that have to be handled
: a) when no suitable match can be found in the restricted sample set and b)
when a specified bounding box volume contains no sample vertices at levelMi.
The former arises from the outline of our non-parametric completion algorithm
where we use our restrictive upper threshold on matching error, e, to reject
poor quality vertex matches. Based on this formulation it is possible that
no suitable match will be found in the restricted set of samples. Similarly,
it is possible, although unlikely that the hierarchical surface expansion from
Mi−1 to Mi may result in a scenario where no sample vertices lie within the
volume, specified from Mi−1, at the expanded version of the surface Mi. In
both cases we simply remove the spatial restriction on the set of samples to
be used for matching to this particular target vertex and perform exhaustive
matching against the full set of sample vertices for this level. When a match is
found a new, updated bounding box restriction is derived based on the match
identified for use in subsequent levels.
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3.5 Smoothing

A problem stemming from this algorithm as outlined is the propagation of
surface noise in conjunction with the surface relief features. As was seen in
the earlier examples, in relation to mono-scale completion, noise present in
the original surface portion can also be expected to be propagated in addition
to completed relief.

Whilst the effects of these noise elements have been shown to be generally
minimal in the mono-scale case, apart from the effects of accumulated error,
the effect over multi-scale is somewhat different. In the mono-scale case the
noise is propagated at a single level and is generally only marginally greater
than that present in the original surface portion. However, the multi-scale hi-
erarchical approach performs relief propagation, and hence noise propagation
as a by-product, at m levels within the algorithm. Although, the natural noise
will be reduced in the lower levels of the surface hierarchy, in a similar man-
ner to surface relief detail, its presence is still apparent due to the increased
presence of surface aliasing at these levels which is in itself inherent in the
use of a reduced resolution (i.e. multi-scale) surface model. Additionally the
propagation of even the slightest aspects of noise in lower hierarchical levels
can affect matching at that level and at all subsequent levels that depend on
it. In both cases we get accumulated error - either over the surface at a given
level (as before) or through the hierarchy at multiple levels. The combination
of both, unchecked can lead to high levels of noise that lead to poor completion
results.

In order to overcome the potential effects of this noise propagation we im-
plement post-completion smoothing at levels M1 to Mm−1 in our m level
surface model. Surface smoothing provides a fairly robust, and generally ac-
cepted, manner of removing noise from a surface within a signal processing
type framework [29,30]. By employing a smoothing technique after the appli-
cation of non-parametric completion at each level the aspects of noise in the
completed relief can be reduced, prior to relief propagation, and their over-
all effect isolated. In addition to smoothing the target vertices, over which
non-parametric completion has been performed, we must also equally smooth
the sample vertices. This is carried out so that displacement vectors for the
samples at level Mi, computed from smoothed level Mi−1, are representative
of the actual relative difference in surface relief as it will be present on the
completed targets at level Mi−1 (i.e. with smoothing applied).

Overall, all the vertices at a given level M1 to Mm−1 are smoothed post non-
parametric completion using a Gaussian weighted smoothing operator over
the field of vertex displacement vectors. Each displacement vector, −→D(vi),
is smoothed based on a weighted mean of its neighbourhood, N(vi). This is
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effectively traditional Gaussian smoothing applied to the fixed spatial position
vector field to achieve similar local surface smoothing results to [29]. At the
final level of hierarchical completion, Mm, smoothing is not performed as any
noise propagated at this level is synonymous both to that present inherently in
the original surface portion and that present in a completion performed using
the mono-scale technique. We illustrate the benefits of this post-completion
smoothing over the potential ill effects of noise propagation in the comparison
of Figure 7A/B where we see the clarity of surface structure clearly improved
with the use of post-completion smoothing.

3.6 Complexity Analysis

In the ideal case 3 this hierarchical approach reduces the computational com-
plexity bound of completion to©( stw2

m2 ) based on the unrestricted, exhaustive
matching performed at level M1 and matching at all subsequent levels, m− 1,
being suitably reduced by the matching restrictions introduced. However, for
cases in subsequent levels where no suitable match can be found within the
restricted set (cases a) and b) discussed earlier) the target vertex in ques-
tion must be matched to all possible samples resulting in ©((i s

m
)kw2) where

this occurs for k targets at level Mi. However, in the worse case scenario
where this occurs for all targets at the top level, Mm (i.e. k = t, i = m),
we have no asymptotic performance gain compared to our generic technique,
i.e. ©(stw2m) (in fact lesser performance in practice due to the overheads of
hierarchy). The hope is, however, that the average case run-time will be closer
to the ideal case, with limited exhaustive cases, and will thus be a significant
improvement over the mono-scale technique.

In general the spatial separation of given any n target vertex locations on
the surface could lead to cases where explicit parallel completion could be
performed by first spatially limiting any concurrent completion of target loca-
tions in the same surface locale (that hence “interact” in terms of our surface
completion approach). This is left as an area for future work.

4 Evaluation

For consistency we adopt the evaluation framework of [7] using both visual
comparison of the original and completed surface portions together with the
statistical comparison of the Mean Surface Integral (MSI) between the relief

3 i.e. with no cases of restricted matching failure that cause the use of unrestricted
matching for a given target vertex.
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Figure 8. Hierarchical completion of synthetic surface

surface and the underlying geometric surface fit on the original/completed
surface portions (Eqn. 2).

MSI =
1

n

n∑
i=0

−→
D(i).−→n (i) (2)

The MSI (Eqn. 2) is defined for n vertices where −→D(i) is the surface relief dis-
placement vector (original or propagated/completed) and −→n (i) is the surface
normal at vertex i (Fig. 1). The primary means of comparison is the percent-
age difference between this measure for the original and completed surface
portions for the use of both the single-pass and hierarchical extension of 3D
nonparametric completion.

Our evaluation of the hierarchical technique is based on the visual and statis-
tical comparators outlined previously together with an additional CPU run-
time comparison. The uniform test environment for this run-time comparison
is a Linux (2.6) workstation with an Intel Pentium4 1.8Ghz CPU and 1Gb of
RAM. We evaluate both the plausibility of the hierarchical completion results
and the relative performance of the proposed techniques.

A statistical comparison of the hierarchical algorithm and the original mono-
scale approach is given in Table 1. Additional we present a number of visual
comparisons in Figures 8 - 16.

Firstly we return to our set of synthetic surfaces originally considered in Figure
2A/B/C to examine the hierarchical completion of three examples from this
set (Figure 8 A-C) in comparison to the earlier mono-scale results. In Figure 8
we see three exemplar surfaces completed using two levels of surface hierarchy
(m = 2). Here the number of levels is limited by the size of these surfaces,
specifically the level to which the (limited) number of vertices can be effectively
reduced.

In the case of cylindrical completion (Figure 8 A & C) we find the result-
ing hierarchical completion gives similar results to the mono-scale approach in
terms of statistical difference (~0-2% difference, Table 1). In terms of run-time
performance, the hierarchical technique provided a significant computational
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Figure 9. Accumulated error correction: simple example

saving (~25 seconds less ≈ 60%, Table 1). Over the entire set of example cylin-
ders (720 sample vertices on average, 561 targets) the hierarchical approach
achieved an average run-time of 14.9 seconds.

In contrast the hierarchical completion of our example synthetic planar sur-
face (Figure 8B) fared less well. In the completion of Figure 8B we can see
clear aliasing artifacts in the completion of an otherwise smooth surface. The
presence of these artifacts is echoed in the difference in the statistical relief
difference (~5%, Table 1) when compared to the mono-scale approach (<1%,
Table 1). This is attributable to combination of limited original sampling for
this surface example, itself with higher frequency relief than the cylinder exam-
ples (i.e. Figure 8 A & C), and the higher error threshold required to facilitate
effective matching at level M1 in the surface hierarchy. In the original mono-
scale completion result (Figure 2A/B/C) the effects of aliasing, due to limited
original surface sampling, were limited to a mild statistical difference in relief
(<1%, Table 1). By contrast the introduction of reduced resolution, in terms of
the surface hierarchy, increases the aliasing effects resulting in a highly coarse
representation of this relief at level m1. This coarseness leads to a requirement
for a higher error threshold, e = 0.2, to facilitate vertex matching at this level.
The combination of this higher threshold and the amplification of the mild
aliasing by an initial stage of highly coarse matching results in the artifacts
present in Figure 8B.

However, the hierarchical technique facilitated a similar run-time improvement
to that achieved in the cylindrical examples (~50%, Table 1). This is consis-
tent with the results achieved over the wider set of synthetic planar surfaces
where it took an average of 198.7 seconds per example [7].

In Figure 9 we specifically examine a very simple completion example where
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we can clearly show the advantage hierarchical completion has in terms of pro-
ducing plausibly acceptable completion results in terms of consistent global
surface structure.

Figure 9 (top, left) depicts an original portion of a simple cylindrical surface
with a single raised band around the centre. Unlike the earlier low-density,
simple synthetic examples (e.g. Figure 8) this example is a simplistic real
surface capture specifically captured at high resolution (0.5mm2). Being a
real surface capture this band contains subtle surface imperfections (i.e. fine
detail) not present on a synthetic example.

The high point density of the surface coupled together with the physical im-
perfections in the surface band itself and additional capture noise create an
ideal scenario for accumulated noise to propagate. As a given window size, w,
will only cover a very small physical area of the surface (due to high sample
resolution) completion decisions/actions made with this purely localised view
of surface structure are highly likely to accumulate error. This can be caused
either from capture noise or due to the imperfect the original surface and can
in turn cause imperfections in the overall structure of the surface due to the
global effects of this locally accumulated error. The hypothesis that is that
a more global view of surface structure (e.g. using hierarchical completion in
place of the earlier mono-scale approach) will overcome this problem.

From Figure 9 (top, right) we see that mono-scale completion of this example
with a window size parameter w = 6 (reasonably large given level of surface
relief detail present) does indeed cause an obvious structural anomaly in the
relief completion at the rear of the surface. In this case it is the accumulation
of noise due to fine surface sampling and capture noise that specifically causes
this problem (Figure 9 top, right). This problem could possibly be solved
with a larger window size parameter in order to reduce the localised view of
the mono-scale completion but this incurs considerable computational cost. In
addition, with a featureless surface such as this, suitable window size settings
can be difficult to determine successfully. Instead we maintain the same set of
parameters and introduce a more global view of surface structure by the use
of hierarchical completion.

As shown in Figure 9 (bottom, right) the use of hierarchical completion over-
comes the structural anomaly encountered in the earlier mono-scale comple-
tion (9 top, right). Here we introduce four levels of surface hierarchy (m = 4,
chosen empirically) and see a structurally correct completion with only mild
additional surface noise. This is reflected in the mild statistical difference be-
tween the mono-scale and hierarchical completions (~1-2%, Table 1). The
hierarchical algorithm has a ~83% computational saving over the mono-scale
technique (Table 1). Additional surface noise could be easily removed by ad-
ditional post-processing (e.g. [16]) and overall we show the potential of hier-
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Figure 10. Hierarchical correction of Pisa Tower artifacts

archical approach to overcome the structural plausibility and computational
limitations identified with the earlier mono-scale approach.

From these exemplar surfaces we now investigate the benefits of hierarchical
completion to more general surface examples. Firstly let us consider a sub-part
of the Pisa Tower example that we original considered in Figure 2D. Here we
consider part of the mid section with which the mono-scale completion ap-
proach originally had difficulty (Figure 3A/B). We isolate a sub-part of the
original mid-section and complete it in turn with the mono-scale and hierar-
chical completion approaches (Figure 10). Using a smaller window size than
in the earlier Pisa examples of (i.e. Figure 3A/B) we recreate the structural
anomaly of Figure 3B in this example surface (Figure 10A, i.e. non-uniform
window features, mis-aligned architectural rings).
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Figure 11. Stages of hierarchical completion for Figure 10

By maintaining the same window parameters we now introduce seven levels
of hierarchy (m = 7) using our hierarchical completion approaches (Figure
10B). We see the correction of the structural anomaly with only a minimal
statistical change in the surface MSI (~0.1 Table 1). This is further highlighted
in Figure 10 with the use of overlays of the key structural elements (middle)
and geometric displacement visualisation. It is clear to see that the anomaly
is mostly corrected in the hierarchical cases albeit at the expense of additional
surface noise in the resulting completion (despite the use of post-completion
smoothing). This noise is less apparent in the less detailed hierarchical com-
pletion examples (e.g. Figures 9, 14 & 15) and may be a feature of applying
hierarchical completion on a highly detailed surface such as the Pisa model.

This example (Figure 10) shows both how the introduction of hierarchy into
the surface completion problem can : a) help overcome the problems of struc-
tural imperfections in real multi-level of detail surfaces and b) facilitate the
use of a smaller window size parameter (here w = 4, in Figure 2D w = 7).

Figure 11 shows the level by level completion of this example (Figure 10). The
realisation of the more global surface relief structure occurs almost initially
from the first level of hierarchical completion, M1. After this successive levels
of refining surface detail are added and subsequently smoothed (M2 −→ M6)
on top of this established surface relief structure on a global to local scale.
Finally, the finest, most localised detail is added at level M7. By contrast we
also show some final results for this example using less levels of hierarchy in
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Figure 12. Figure 10 with less hierarchical levels

Figure 13. Hierarchical completion of Pisa Tower

Figure 12. This figure shows how inadequate levels of surface hierarchy fails
to solve the problem of structural relief anomalies. In general determining a
suitable choice of hierarchical LoD (parameter m) for a given surface is left as
an area for future work.
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We similarly re-consider the original Pisa Tower examples of Figure 2D in
Figure 13. Here we see the use of hierarchical completion overcomes the struc-
tural anomalies previously highlighted in the mono-scale completion results
(Figure 3 A/B) and additionally see the use of hierarchical completion offers
a significant computational saving (Table1). However, for the bottom part of
the tower in isolation (Figure 13, bottom left) we see a significant increase in
the statistical difference with the use of hierarchical completion (~25%, Table
1) despite a visual similarity from a side-on or top-down view (Figure 13, bot-
tom left). Similar results are achieved for the isolated top section (Figure 13,
top left) where a ~7% statistical increase is present when compared to mono-
scale completion (Table 1). Similarly the mid-section of the tower (Figure 13,
middle left) shows an improvement of ~8% in statistical difference. The same
prevalence of noise in the resulting completion is suffered here in Figure 13
as was suffered in the original hierarchical Pisa example (Figure 10). We see
significant loss of surface detail but overall structural consistency. The changes
in MSI statistics comparisons in this example may be equally attributable to
the presence of this noise in addition to differences in the more global struc-
ture of the surface itself. By varying the levels of hierarchy introduced for each
isolated part (Figure 13) we are able to see the differing effects this may be
having (statistically, not visually) - with more variation present, despite visual
similarity, where more levels of hierarchy have been introduced (i.e. Figure 13,
middle right). However, as suitability of a given number of hierarchical levels
to a given surface relief is difficult to determine this may vary on a per-surface
basis and no universal conclusion can be drawn. Further investigation of this
issue is left as an area for future work.

In addition we also re-introduce the candlestick completion example previously
considered in Figure 3D. Here we maintain the same parameter settings as
the original mono-scale completion (Figure3D) but introduce three levels of
hierarchy (m = 3) in a bid to allow hierarchical completion to overcome the
rear-side structural anomaly shown in Figure 3D. As shown in Figure 14, a
significant reduction in the statistical difference against the original (~9%,
Table1) is also achieved. Due to local computational resource management the
original mono-scale completions, for the Pisa Tower and candlestick examples,
were computed on a dedicated multi-job, multi-user compute server. As a result
their CPU timing results are not comparable to those presented here for the
hierarchical completion approaches and as such they are omitted.

The example of Figure 15 shows the application of hierarchical completion to
the non-conforming plinth example originally from Figure 3C. Figure 15 shows
that hierarchical completion offer a visual improvement over the mono-scale
completion with the removal of the rear-side structural anomalies encountered
previously (shown in Figure 3C). Statistically we see a minor variation in the
surface (<1%, Table 1) with a substantial computational gain (~95% over
mono-scale completion, Table 1). Notably these results were achieved using a
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Figure 14. Hierarchical completion of candlestick

Figure 15. Hierarchical completion of non-conforming plinth

smaller hierarchical window size (w = 2, Figure 15) than required previously
with mono-scale completion (w = 6, Figure 3C) and additionally a slight
increase in error bound e = 1.0 was required to facilitate successful matching
in the restricted case.

In our final example we return to quite a different type of surface than those
previously examined in our evaluation - tree bark (Figure 2E). Here we are
specifically interested in the completion of such a stochastic, natural surface
relief texture using a methodology inherently suited towards highly structured
relief types. Also we are interested in the additional effect that the use of
restricted hierarchical completion may have on the plausibility of the resulting
tree bark texture.

Maintaining the same window size and rotation parameters (w = 3, r = 2)
as used in the original mono-scale completion of this surface example (shown
Figure 3E) we apply hierarchical completion using a slightly increased error
bound e = 1.0 to facilitate the coarseness of the lower levels of surface hier-
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Figure 16. Hierarchical completion of tree bark

archy. From Figure 16 we see no immediate effects on visual plausibility from
the use of either technique and the surface appears as visually plausible as
the original mono-scale completion of Figure 3E. The careful observer may
additionally argue that the hierarchical result appears slightly more plausible
in terms of the apparent coherence of relief features (Figure 16) that are not
immediately present in the earlier example (Figure 3E). This subjective visual
opinion, which is difficult to verify for a stochastic surface such as this, is ad-
ditionally supported by an improvement in the statistical difference with the
use of hierarchical completion (~10% improvement, Table 1). This may point
to an underlying hierarchical nature for relief of this type.

Further investigation into the hierarchical completion of natural surface re-
lief and possible underlying hierarchical traits in natural surface relief (and
colour) is left as an area for future work. Overall, this example shows that the
application of our hierarchical completion approaches is valid for stochastic
“non-structured” such as tree bark and that restrictions on the diversity of the
completion approach do not implausibly restrict the nature of the resulting
completed surface. Indeed in this case hierarchical completion offers a ~89%
improvement in computational cost (i.e. CPU run-time) over the mono-scale
approach.

5 Summary

Overall we successfully propose a hierarchical extension to non-parametric 3D
surface relief completion approach of [7] that facilitates the successful comple-
tion of 3D surface relief whilst maintaining the integrity of the global structure
of the completed surface portion. This advances the prior state of the art in the
automated completion of 3D surface relief detail and is successfully illustrated
on a range of a range of real 3D surface scans of both artificial, structured and
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natural surface relief types.

Notably, the introduction of such a hierarchical multi-scale approach allows
issues of global surface structure to be resolved albeit at the potential expense
of noise propagation for fine relief detail. In addition a considerable computa-
tional saving over prior work following this approach is illustrated [7]. Future
work will investigate the effective attenuation of noise propagation with the hi-
erarchical multi-scale surface relief synthesis and the use of surface completion
via combined local and global learning approaches.
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