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A family of measures for best top-n class-selective decision rules✩

Hoel Le Capitainea,∗, Carl Frélicota

aMathematics,Image andApplications Laboratory, University of La Rochelle,
Av. M. Crépeau, 17042 La Rochelle, FRANCE

Abstract

When classes strongly overlap in the feature space, or when some classes are not known in advance, the performance of a classifier
heavily decreases. To overcome this problem, the reject option has been introduced. It simply consists in withdrawing the decision,
and let another classifier, or an expert, take the decision whenever exclusively classifying is not reliable enough. Theclassification
problem is then a matter of class-selection, from none to allclasses. In this paper, we propose a family of measures suitable to
define such decision rules. It is based on a new family of operators that are able to detect blocks of similar values within aset
of numbers in the unit interval, the soft labels of an incoming pattern to be classified, using a single threshold. Experiments on
synthetic and real data sets available in the public domain show the efficiency of our approach.

Keywords: Reject options, Class-selective decision rules, Fuzzy aggregation operators.

1. Introduction

Supervised classifier design aims at defining rules that al-
low to associate an incoming object with one of a set of known
classes, based on a training set of labeled objects, (see [2]).
Such exclusive classification rules must be sufficiently reliable
for real-world problems,e.g. in medical diagnosis or nuclear
plant monitoring. In many applications, some objects to be
classified fit several classes (inliers), are distributed around the
classes or even arise from an unknown class (outliers), so the
classifier performance can significantly be affected. It is more
convenient to reject such samples,i.e. withhold making a deci-
sion and call for a exceptional handling (use of a different rule,
different classifier, human inspection) than making a wrong as-
signment. Pattern rejection has been first formalized in thecon-
text of statistical pattern recognition under the minimum mis-
classification risk theory. Chow modified the Bayes decision
rule in order to reject an object if its highest posterior prob-
ability is less than a threshold [3, 4]. Ha extended it to in-
liers that can be associated with a subset of the known classes
[5, 6] leading to aclass-selective rejection ruleas opposed to
Chow’s rejection rule. In order to avoid unnatural decisions
due to posterior probabilities normalization, Horiuchi proposed
to test their differences [7] while Frélicot & Dubuisson had pre-
viously used their ratios [8]. This latter idea has been intro-
duced again several times [9, 10]. In order to overcome diffi-
culties due to errors in probability estimations, class-dependent
rejection based on multiple thresholds can be introduced [11].

✩ This article is a widely extended version of a paper presented at the 19th
International Conference on Pattern Recognition by the authors [1].
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Tax & Duin have recently proposed two rescaling heuristics al-
lowing to adjust the thresholds and combine one-class models
that are based either on class-densities or on distances to pro-
totypes [12]. Mascarilla et. al have defined a class of oper-
ators based on triangular norms that combine soft class-labels
suitable to select several classes [13]. As said above, it may
be required to reject an incoming object from all the known
classes. Dubuisson & Masson [14] first proposed to threshold
the mixture density in order todistance rejectoutliers and op-
posed this approach to theambiguity rejectiondedicated to in-
liers as tackled by Chow and following authors (Ha, Horiuchi).
The use of class-dependent thresholds to distance reject outliers
can be found in [15]. Many decision rules dealing with one kind
of reject or both have been proposed so far, in other theoreti-
cal frameworks,e.g.: neural networks [16], genetic algorithms
[17], support vector machines [18, 19], fuzzy inference systems
[20, 21], theory of evidence [22], but we restrict to the statis-
tical one. Let us precise the difference authors make between
a classification methodand adecision rule. A classification
method is a two-step procedure as illustrated in Figure 1. The
first step provides soft labels to classes,e.g.posterior probabil-
ities for the Bayes classifier, while the second one deals with
the decision,i.e. associates a (set of) class(es) to the incoming
pattern by means of a rule applied on the soft class-labels,e.g.
the MAP (Maximum A Posteriori) rule for the Bayes classifier.
Including reject options consists in defining an appropriate de-
cision rule such that an outlier (respectively an inlier) can be as-
sociated to the empty set (respectively a subset) of classes. This
paper addresses this particular problem. Therefore, the family
of class-selective decision rules we propose can be included in
any classification method.

In order to illustrate the different class-selective schemes,
Figure 2 shows how some typical decision rules among the cited
ones partition the pattern space into decision regions for ac = 3
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Labeling Decision rule
x u(x) h(x)

Figure 1: A classification method procedure composed of a labeling step and a
decision rule.

classes problem. The MAP rule results in three regions, each
of which corresponds to a single class (a). The outcomes of
Chow’s rejection rule are also singletons augmented by the en-
tire set of classes{1, 2, 3} which corresponds to thetotal ambi-
guity reject region (b), to which Dubuisson & Masson add the
one of no class assignment{0} dedicated to distance rejection
(c). A general class-selective rejection rule results in 2c regions
(e) corresponding to all possible combination of classes, includ-
ing no class assignment. This latter option is not allowed by
earliest rules proposed by Ha, Horiuchi and Frélicot & Dubuis-
son (d).
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(e) Generalized class-selective

Figure 2: Feature space partitioning for a three-class problem and decision rules
with reject options.

A short state-of-the-art in statistical pattern recognition with

reject options emphasizes the following different issues related
to the design of decision rules:

• which kind of rejection should be preferred?
→ it may depend on the application, however a class-
selective rule should be able to cope with both types of
rejection at the same time, as shown in Figure 2-(e),

• which model should be used (density-based or distance-
based)?
→ to correctly distinguish whether an object has to be
distance or ambiguity rejected, distance-based models are
often easier to manage because they allow to compute
non-normalized soft labels whereas posterior probabili-
ties or fuzzy membership degrees have the constraint to
sum up to one,

• how many thresholds are required?
→ the less the number of thresholds, the better it is from
a statistical point of view as well as for the practitioner
who faces their tuning, except if it allows to increase the
classifier performance according to the application.

In this paper, we propose a family of block-similarity mea-
sures of class-labels and derive a general class-selectiverule
which allows, in one single step, either to distance reject (none
class is selected), or to classify (one selected class), or to ambi-
guity reject (two up to all selected classes) a pattern, given only
one user-specified threshold.

In Section 2 we start by discussing the standard approaches
of rejecting objects and the necessary background on aggrega-
tion operators to settle it in terms of soft labels aggregation.
Next, we recall some measures suitable for class-selectionbased
on combination of basic aggregation operators. The new family
of class-selective decision rules is presented in Section 3. It is
based on an operator which detects the different blocks of sim-
ilar values within a tuple of values in [0, 1]. Thus, the block of
a number (from 0 toc) similar largest labels gives the classes
to which the pattern has to be assigned to. We discuss its prop-
erties and illustrate its behavior on simple examples. Experi-
mental results on several synthetic and real data sets from the
public domain that show its efficiency and concluding remarks
as well as perspectives remarks are given in Section 4 and 5,
respectively.

2. Preliminaries

2.1. Pattern classification and reject options

Let us consider an object described byp features, namely
a vectorx in a p-dimensional real space, to be classified in
a c−classes problem. LetC+ = {1, ..., c} be the set of class
indexes, a classification rule forx supposes soft labels to the
classesui(x), i ∈ C+, to be available [23], namely ac-dimensional
vector u(x). For density-based models, soft labelsui(x) are
posterior probabilitiesP(i|x) computed through the Bayes for-
mula, using class-conditional densities and prior probabilities
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estimated on a training setℵ of labeled objects. For distance-
based models, one can use soft labels computed as functions of
distances to class-prototypes,e.g.a Cauchy-type function:

ui(x) =
αi

αi + d2(x, vi)
(1)

whereαi is a parameter controlling the membership, which can
be user-defined or learned fromℵ, d is a distance inRp, and
vi is a prototype of thei-th class. Among the possible dis-
tances, one finds the squared Mahalanobis distanced2(x, vi) =
(x − vi)tΣ−1

i (x − vi) wherevi andΣi are thei-th class mean vec-
tor and covariance matrix estimated onℵ. It has been shown
through empirical studies that (1) is a good model for vague
concepts or classes [24]. Recall that we do not address the prob-
lem of obtaining reliable soft labels but the problem of defining
decision rules based on the labels, see Figure 1. Consequently,
any soft labels (constrained or not) provided by a classifiercan
be used in the proposed framework.

A soft label vectoru(x) takes values inLpc = [0, 1]c if it
is distance-based or inL f c =

{

u(x) ∈ Lpc|
∑c

i=1 ui(x) = 1
}

if
its components are posterior probabilities or fuzzy membership
functions. Then, a decision rule is defined as a mappingD:
L•c → Lhc, u(x) 7→ h(x) whereLhc = {h(x) ∈ L f c|hi(x) ∈
{0, 1}}. The MAP (Maximum A Posteriori) decision rule used by
the probabilistic Bayes classifier is defined byDB : L f c → Lhc,
u(x) 7→ h(x) such that

hi(x) = 1, i = argmaxj=1,c u j(x). (2)

Chow’s rejection rule minimizes the error probability for a
given reject probability which is specified by a thresholdt ∈
[0, c−1

c ], or vice-versa. Thus, this rule yields the optimum error-
reject trade off [4] and is defined byDCh : L f c → {Lhc, 1},
u(x) 7→ h(x) such that
{

hi(x) = 1, i = argmaxj=1,c u j(x) if ui(x) > (1− t)
h(x) = 1 otherwise

(3)

where1 is thep-dimensional one vectort(1, ..., 1), meaning
that x is ambiguity rejected between all known classes if its
largest posterior probability is lower than 1− t, as shown in
Figure 2-(b). Sinceu(x) ∈ L f c, it is easy to show thatDCh is
identical toDB whenevert > c−1

c , i.e. x cannot be rejected [3].
Since the work by Chow, most of authors intended to avoid total
ambiguity rejection whenever a number between 2 andc − 1
classes have to be selected. Thus, a class-selective procedure
can be defined, in its general form, as the seek for the best top-n
classes according to:

n⋆(x, t) = min
k∈C+
{k : Φ(u(x)) ≤ t} (4)

with the convention: ifΦ(u(x)) > t for all k ∈ C+, thenn⋆(x, t)
is set toc. In (4),Φ is a selection measureon object’s labels
u: L•c → [0, 1], andn⋆(x, t) is the number of selected classes
for x, given a user-defined thresholdt. Such rules partition the
feature space as shown in Figure 2-(d) and can be defined by
Dsel : L•c→ L

c,+
hc , u(x) 7→ h(x) such that

hi(x) = 1, ∀i : 1 ≤ (i) ≤ n⋆(x, t) (5)

whereLc,+
hc = {0, 1}

c\0, the set of vertices of the unit hy-
percube [0, 1]c without the origin0 = t(0, ..., 0), and (i) is the
permutation of the class indexi such thatu(i) is thei-th largest
value inu. We can say that all rejection rules are the restric-
tion of (4) to k ∈ {1, c} and the measure used by Chow is
ΦCh(u) = 1 − u(1)(x). Propositions from the literature mainly
consist in defining new selection measuresΦ suitable for class-
selective rejection instead of total ambiguity rejection.In [6],
the posterior probabilities are ranked in decreasing orderand
their values are tested up to the (k + 1)-th to decide ifk classes
are selected, so the selection measure isΦHa(u) = u(k+1)(x)
with the conventionu(c+1)(x) = 0. The corresponding rule
DHa by Ha minimizes the error probability for a given aver-
age number of classes and the domain oft is [0, 1

2]. Whenever
t > 1

2, n⋆(x, t) = 1 so DHa reduces toDB, and can increase
up to c as t decreases down to zero, (see [5]). Because of the
normalization constraint onu (∈ L f c), Ha’s rule can lead to
counterintuitive results, so Horiuchi proposed to test thedif-
ference between successive ordered posterior probabilities [7].
Using our conventions, we can rewrite the selection measure
asΦHo(u) = 1 − (u(k)(x) − u(k+1)(x)) and Horiuchi’s ruleDHo

minimizes the maximum distance between selected classes for
a given average number of selected classes which is specified
by t ∈ [0, 1]. It is identical to DB, so n⋆(x, t) = 1 when
t = 0 and increases up toc as t increases up to 1. Given
u⋆ = maxy∈ℵ u(1)(y), ΦDs(u) = u(1)(x)/u⋆ is used in [25]. In
[8], it has been proposed to replace posterior probabilities by
soft labels, for instance as defined by (1), sou ∈ Lpc instead
of L f c, and take, givent ∈ [0, 1], ΦFD(u) = u(2)(x)/u(1)(x)
as the selection measure so that (4) is restricted tok ∈ {1, c}.
Note that the same measure has been reintroduced with pos-
terior probabilities by several authors [9, 10], referred to as a
reliability measureψb = 1 − ΦFD(u). Naturally, as defined in
[8], this measure does not minimize the expected Bayesian risk
anymore. The measureΦFD(u) has been extended tok ∈ C+

in [26, 27] byΦFM(u) = u(k+1)(x)/u(1)(x) and its more gen-
eral formΦFL(u) = u(k+1)(x)/u(k)(x) can be found in [28]. The
resulting ruleDFL reduces toDB when t = 0, andn⋆(x, t) in-
creases from 1 up toc ast increases from 0 up to 1.

Recently, a family of operators using a combination of dual
triangular norms and conorms (⊤,⊥) has been proposed in [13].

Denoted by
k
⊥(u), these operators generalize thek − th largest

value inu in the sense that it is exactlyu(k)(x) when using the
standard norms:⊤ = min the largest t-norm and⊥ = max
the smallest t-conorm (see section below for details). The au-
thors showed in [28] that Ha’s measure is the particular case

of ΦMBF(u) =
k+1
⊥ (u) when using the standard norms. In the

same paper, they introduce another selection measureΦ1(u) =
1− ⊥(u) which generalizes Chow’s one.

Earliest rules that include both distance and ambiguity re-
ject options involve a pre-step procedure dedicated to the for-
mer case thanks to an additional measure (and a corresponding
threshold), here called anacceptation measureΨ. It can be ei-
ther a function ofx as by Dubuisson & Masson [14]:Ψ(x) =
f (x) the mixture density forx, or a function ofu as in [25]:
Ψ(u(x)) = 1 − u(1)(x). Even Chow’s rejection rule and class-
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selective rules as defined by Ha, Horiuchi, and Frélicot & Dubuis-
son/Le Capitaine can be modified to include such a measure. In
order to accept a pattern, the acceptation measureΨ must be
larger than a threshold. Here, we propose the measure

Ψ(u(x)) = u(1)(x). (6)

The patternx is distance rejected ifΨ(u(x)) ≤ t, i.e. it is ac-
cepted ifΨ(u(x)) > t. We claim that a class-selective rule in-
cluding both options must be able to partition the feature space
as shown in Figure 2-(e). In other words, it must map the entire
set of verticesLc = {0, 1}c. Therefore, the selection measure
requiresk not to restrict inC+ but to include the zero class-
selection,i.e. k ∈ C = {0,C+}. We express such a rule as
Dsel : L•c→ Lc

hc, u(x) 7→ h(x) such that

hi(x) = 1, ∀i : 0 ≤ (i) ≤ n⋆(x, t) (7)

where the numbern⋆(x, t) of classes to be selected forx,
given a thresholdt, is

n⋆(x, t) = min
k∈C
{k : Φk+1(u(x)) ≤ t} (8)

with the conventions:u(0)(x)) = 1 andu(c+1)(x) = 0. The se-
lection measureΦk+1(u(x)) can be obtained by aggregating the
components ofu in a suitable way. Note that fork = 0 (i.e.
distance rejection),ΦHa andΦHo are equivalent, as given in (6).

2.2. Aggregation operators
Aggregation operators aim at associating a typical value toa

number of several numerical values which are generally defined
on a finite real interval or on ordinal scales and many families of
such functions are available,e.g.: triangular norms [29], OWA
(Ordered Weighted Averaging) operators [30],γ-operators [31],
fuzzy integrals [32], (see [33, 34, 35] for a survey). They are
used in many fields,e.g. decision-making and pattern recogni-
tion. They are generally classified either by some mathemati-
cal properties they share (symmetry, associativity, monotonic-
ity and so on) or by the way the values are aggregated (con-
junctive, disjunctive, compensatory, and so on). The triangular
norms are of special interest because of their ability to general-
ize the logical AND and OR crisp operators to fuzzy sets, (see
[36] for a survey). Briefly, a triangular norm (or t-norm) is abi-
nary operation on the unit interval⊤ : [0, 1]2→ [0, 1] which is
commutative, associative, non decreasing and has 1 for neutral
element. A t-norm⊤ is conjunctive and the minimum opera-
tor ∧ is the largest one. Alternatively, a triangular conorm (or
t-conorm) is the dual binary operation⊥ : [0, 1]2→ [0, 1] hav-
ing the same properties except the latter: its neutral element is
0. A t-conorm⊥ is disjunctive and the maximum operator∨
is the smallest one. Basic dual couples (⊤,⊥) that will be used
in the sequel are given in Table 1. Combining norm-couples
(⊤,⊥) allows to define operators that can be used to solve the
class-selection problem, as in [13]. LetP be the power set of
C+ andPk = {A ∈ P : card(A) = k}. The fuzzy k-order OR
operator (fOR-k for short) is a family of aggregation operator

parametrized by (⊤,⊥): [0, 1]c→ [0, 1], u 7→
k
⊥(u), where

k
⊥(u) =

k

⊥
i=1,··· ,c

ui = ⊤
A∈Pk−1

(

⊥
j∈C+\A

u j

)

(9)

Table 1: Basic triangular norm couples

Standard
⊤S(a, b) = min(a, b)

⊥S(a, b) = max(a, b)

Product
⊤P(a, b) = a b

⊥P(a, b) = a+ b− a b

Łukasiewicz
⊤L(a, b) = max(a+ b− 1, 0)

⊥L(a, b) = min(a+ b, 1)

Some properties of fOR-k result from those of⊤ and⊥,
others have been proved in [13]. Among these properties, letus
recall those that are useful for the context we are interested in:

•
k
⊥(0) = 0 and

k
⊥(1) = 1 (boundaries)

• for u and v such thatui ≤ vi ,∀i ∈ C+,
k
⊥(u) ≤

k
⊥(v)

(monotonicity)

• for any permutationσ of C+,
k

⊥
i=1,··· ,c

uσ(i) =

k

⊥
i=1,··· ,c

ui (sym-

metry)

•
1
⊥(u) = ⊥(u) and

c
⊥(u) = ⊤(u), whateverc and (⊤,⊥),

• if the standard norms are taken, then
k
⊥S(u) = u(k), the

k-th largest value inu.

Example 1. Let us consider C+ = {1, 2, 3, 4} and k = 3 such
thatPk−1 = P2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3,4}}. For
each subset inP2, one can select its complement with respect
to C+ and obtain, given anyu ∈ [0, 1]c:

3
⊥S(u) =min

(

max(u3, u4),max(u2, u4),max(u2, u3),

max(u1, u4),max(u1, u3),max(u1, u2)
)

.

If u is such that u1 = u(1) > u3 = u(2) > u4 = u(3) > u2 = u(4), it
gives

3
⊥S(u) =min

(

u3, u4, u3, u1, u1, u1
)

=u4

=u(3).

Since⊤S = min is the largest t-norm, this last property al-
lows the authors to claim that their operator measures to what
extent the (generalization of the)k largest values ofu are all
large. Therefore, ifu is a vector of posterior probabilities, or
a membership function of an objectx to be classified, fOR-
(k + 1) can be used as a family of measures to selectk classes

ΦMBF(u) =
k+1
⊥ (u), given a dual couple (⊤,⊥).

We will use another fuzzy aggregation operator, namely the
Sugeno integral in its discrete form [32]. It computes the mean
value of a function with respect to a fuzzy measureµ, which is
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a non-additive measure of uncertainty,i.e. more general than a
possibility one and therefore a probability one, see [35] chapter
5 for details. The Sugeno integral of a functionf w.r.t µ is
defined by

Sµ =

n
∨

i=1

f (xi) ∧ µ(A(i)) (10)

whereA(i) = {x(i), · · · , x(n)}with respect to a permutation so that
f (x(i)) ≤ · · · ≤ f (x(n)). This integral is widely used in decision
making, and in particular for pattern recognition [37] because
of its ability to model some kind of interaction between features
describing a patternx.

3. The new class-selective rule

3.1. Motivation

Since
k
⊥(u) as defined by (9) generalizes thek − th largest

value inu ∈ Lpc, it seems natural to use the ratio
k+1
⊥ (u)

/
k
⊥ (u)

to extend the selection measureΦFL(u) = u(k+1)(x)/u(k)(x) in
order to compare two consecutive (ordered) values. Another
extension consists in comparing more than two successive or-
dered values, that is to say all the values betweenu(i) andu( j>i).
In [38], Le Capitaine et al. have defined ablock-similarityoper-
ator by: [0, 1]c → [0, 1], u 7→ B(i, j)(u) satisfying the following
four properties,∀(i, j) ∈ C+ ×C+, i < j:

• the similarity should be minimum whenever the largest
and the smallest values in the block are the maximum
and the minimum possible ones

B(i, j)(u) = 0 wheneveru(i) = 1 andu( j) = 0 (11)

• as the opposite, it should be maximum whenever the largest
and the smallest values (therefore all values) in the block
are the same

B(i, j)(u) = 1⇔ u(i) = u( j) (12)

• the similarity should increase as the range of values within
the block decreases
∀0 ≤ ε ≤ u(i−1) − u(i),

B(i, j)(u(1), ..., u(i) + ε, ..., u(c)) ≤ B(i, j)(u(1), ..., u(i), ..., u(c))
(13)

• inversely, it should decrease as the range increases
∀0 ≤ ε ≤ u( j−1) − u( j),

B(i, j)(u(1), ..., u( j) + ε, ..., u(c)) ≥ B(i, j)(u(1), ..., u( j), ..., u(c)).
(14)

Unfortunately, these properties are not all satisfied by
j
⊥(u)

/
i
⊥

(u) for all (⊤,⊥). For instance, (12) is satisfied with standard
norms but not with product ones.

Example 2. Let us consideru = t(0.5 0.2 0.5 0.8 0.5) and
(i, j) = (2, 4). Since u(2) = u(3) = u(4) = 0.5, we have:

j
⊥S(u)

/
i
⊥S (u) =u(4)

/

u(2)

=1

but
j
⊥P(u)

/
i
⊥P (u) =0.0558

/

0.7764

,1.

Let us correct this drawback by defining a generalized discrete
Sugeno integral (i.e. using any t-norm) ofu with respect to a
fuzzy measureµk as:

k
Sµ(u) = ⊥

i=1,c

(

u(i)⊤µk(Ai)
)

=

(

⊥
i=1,k−1

(

u(i)⊤µk(Ai)
)

)

⊥

(

⊥
i=k,c

(

u(i)⊤µk(Ai)
)

)

(15)

whereAi = { j ∈ C+ : u( j) ≥ u(i)}. By choosingµk as the cardinal
measure defined by

µk(Ai) =

{

0 if Card(Ai) < k
1 else

, (16)

it is easy to show, by (15), that
k
Sµ(u) can be written as

k
Sµ(u) =



















⊥
i=k,c

u(i) if u(k−1) > u(k)

⊥
i= j,c

u(i) else, j is s.t.u( j−1) > u( j) = · · · = u(k)

(17)
since 0 (respectively 1) is the absorbing (respectively neutral)
element of any t-norm⊤ (respectively t-conorm⊥).

Proposition 1. For standard and product norm couples (⊤,⊥),
a block-similarity operator satisfying (11-14) is given by: ∀(i, j) ∈
C+ ×C+, i < j,

R⊤(i, j)(u) =
j

Sµ(u)
/

i
Sµ(u). (18)

For brevity, the proof of the proposition is omitted, and the
reader is invited to refer to a review paper on block-similarity
operators by the authors [39].

Example 3. Let us consideru = t(0.5 0.2 0.5 0.8 0.5) and
(i, j) = (2, 4) as defined in Ex. 2. Since u(1) = 0.8 > 0.5 = u(2) =

u(3) = u(4), we have by (17):
2
S⊤,µ(u) = ⊥

k=2,c
u(k) and

4
S⊤,µ(u) =

⊥
k=2,c

u(k), whatever(⊤,⊥). Therefore,R⊤S
(2,4)(u) = R⊤P

(2,4)(u) = 1.

As defined by (18), the block-similarity operator is not fully
convenient for measuring the similarity between values within
the block. First, it is not symmetrical because all the values be-
tweenu( j+1) andu(c) are taken into account even ifu( j) > u( j+1),
while values betweenu(1) andu(i−1) are not even ifu(i−1) > u(i).
Second, the cardinal fuzzy measure (16) equally weights allval-
ues in the block whatever their position, so their relative mag-
nitude. We propose to use a kernel function to overcome these
drawbacks and make the values betweenu(i) andu( j), and only
them, meaningful.
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3.2. The symmetrical block-similarity operator

Given a symmetrical kernel functionKλ(l, k) centered onk,
parametrized by a resolution parameterλ ∈ R+ which controls
its area of influence, let us define two fuzzy Sugeno integrals:

k
SKλ(u) =

k

⊥
ℓ=

i+ j
2

(

u(ℓ)⊤Kλ(ℓ, k)
)

if ( j − i) is even (19)

k±

SKλ(u) =
k

⊥
ℓ=

i+ j±1
2

(

u(ℓ)⊤Kλ(ℓ, k)
)

if ( j − i) is odd (20)

wherek± denotes the two possible valuesk+ andk− meaning
that the control variablek starts fromi+ j+1

2 or i+ j−1
2 , respectively.

Proposition 2. For strictly continuous norm couples (⊤,⊥), a
symmetrical block-similarity operator satisfying (11-14) is given
by: ∀(i, j) ∈ C+ ×C+, i < j,

R
⊤,Kλ
(i, j) (u) =























j

SKλ(u)
/

i
SKλ(u) if ( j − i) is even

j+

SKλ(u)
/

i−

SKλ(u) if ( j − i) is odd
(21)

with the conventionR⊤,Kλ(i, j) (u) = 1 if u(i) = 0.

Here again, the proof is omitted, (see [39] for details).
Many symmetrical functions are available, (see Table 2).

Note that we impose them to be normalized so thatK(l, l) = 1
and the correspondingu(l) is of maximum weight in the Sugeno
integrals (19-20). Figure 3-(left) shows different kernel func-
tionsKλ(l, k) centered ink = 6.

Table 2: Examples of normalized symmetrical kernel functionsKλ(l, k) where
y = |k − l|.

Kernel Kλ

uniform Uλ(y) = 1(y≤λ)

Gaussian Nλ(y) = exp
(

−
y2

λ

)

exponential Eλ(y) = exp
(

− λy2)

Epanechnikov Eλ(y) = (1− y2

λ2 ) 1(y≤λ)

triangular Tλ(y) =
(

1− y
λ

) 1(y≤λ)

Cauchy Cλ(y) = λ
λ+y2

With no loss of generality, let us study howR⊤,Kλ(i, j) (u) be-
haves using a Gaussian kernelKλ(l, k) = Nλ(l, k). Other kernels
such as the exponential or Cauchy have a similar behavior since
the resolution parameter can be chosen such that the shapes are
roughly identical. The Gaussian kernel is defined as a function
of (λ > 0, k, l) for sake of clarity:

Nλ(k, l) = exp
(

−
(k− l)2

λ

)

. (22)

The resolution parameterλ controls the area of influence as
follows:

• whenλ → 0, the kernel becomes a Dirac centered inl,
δl , because the convergence is not uniform by continuity
ofNλ and non continuity ofδl ,
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Figure 3: Examples of symmetrical kernel functions centered in k = 6 with
λ = 2 (left), cardinal measure withu(5) > u(6) and Gaussian kernelsN1(l, 6)
andN5(l, 6) (right).

• whenλ→ +∞, the kernel becomes the constant value 1.

Proposition 3. For continuous norm couples (⊤,⊥), then

lim
λ→0
R
⊤,Nλ

(i, j) (u) =

{

1 if u(i) = 0
u( j)

u(i)
else (23)

lim
λ→+∞

R
⊤,Nλ

(i, j) (u) =



















































j

⊥
k= i+ j

2

u(k)
/

i

⊥
k= i+ j

2

u(k) if ( j − i) is even

j

⊥
k= i+ j+1

2

u(k)
/

i

⊥
k= i+ j−1

2

u(k) if ( j − i) is odd

1 if u(i) = 0
(24)

Therefore, the contribution of the intermediate values{u(i+1), ..., u( j−1)}

toR⊤,Nλ

(i, j) (u) is small ifλ is close to zero and increases withλ, as
shown in Figure 3.
Note thatR⊤,Kλ(i,i+1)(u) = u(i+1)/u(i) does not depend onλ what-
ever the kernel function. This means that increasingλ does not
make two successiveu(k)’s more similar but may increase the
similarity of blocks of larger size (strictly greater than 2).

Figure 4 clearly shows how the valuesR⊤,Nλ

(i, j) (u) depend on

(i, j). Two high values are sufficient to makeR⊤,N0.8

(1,2) (u) large
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Figure 4: Values ofR⊤,N0.8
(1,2) (u) (left) andR⊤,N0.8

(1,3) (u) (right) using (⊤,⊥)S for

all u ∈ [0, 1]3. Hot (respectively cold) colors represent high (respectively low)
values.

where three are necessary to makeR⊤,N0.8

(1,3) (u) reach a similar
level.

Example 4. Let us consider the following soft label vectoru =
t(0.82 0.80 0.60 0.51 0.50 0.45 0.10) and compute the
values ofR⊤S ,Kλ

(i, j) (u), i = 1, 6 and j = 2, 7 for all the kernels
functions of Table 2 and some resolution parameter valuesλ.
One can compare the obtained values to a threshold s, here set
to 0.95, so that ifR⊤S,Kλ

(i, j) (u) > s then the values in block(i, j)
are detected as similar. The following blocks of similar values
are detected:

• (1, 2) and (4, 5), corresponding to{0.82, 0.80}and{0.51, 0.50},
for not too wide influence areas specified byλ < 1 (or 1/λ
with Eλ)

• either (1, 2) and (4, 5) exclusively or (1, 2) and (4, 6), cor-
responding to{0.82, 0.80} and{0.51, 0.50, 0.45}when in-
creasingλ (or 1/λ with Eλ), e.g. usingN2, E2, T2 and
C2.

3.3. The selection measure and the induced rule

We propose to use (18) to define a new family of class-
selective decision rules including both types of reject with re-
spect to (7-8) as: given a symmetrical kernel functionKλ,

Φ
⊤,Kλ
k+1 (u) = R⊤,Kλ(1(k>0),k+1)(u) (25)

where1(k>0) ensures thatR⊤,Kλ(1,k+1)(u) is used whateverk > 0 and

R
⊤,Kλ
(0,1) (u) = u(1) according to the remark following the propo-

sition 3 and the usual conventionu(0) = 1. Note that it allows
to retrieve the usual distance rejection (6) fork = 0, imply-
ing equivalence withΦHa, ΦHo andΦFL for this special case.
Whenever the number of classes isc = 2,Φ⊤,Kλk+1 reduces toΦFL

andΦFD.
Let us see how the proposed family of rules given by (8)-

(25) behaves, compared to the other class-selective rules (Ha,
Horiuchi, Frélicot & Le Capitaine, referred to as literature’s
rules in the remaining part of the paper) on particular situations
expressed by vectors of soft class-labels.

Example 5. Let us consider the following fouru vectors, each
representing a particular classification case, emphasizedby their
expected classification hard labelsh given by (7-8) assuming an
appropriate threshold t:

• u(x) = t(0.70, 0.10, 0.85, 0.80)7→h(x) = t(1, 0, 1, 1), n⋆(x, t) =
3 ;

• u(y) = t(0.20, 0.10, 0.85,0.80) 7→ h(y) = t(0, 0, 1, 1),
n⋆(y, t) = 2 ;

• u(z) = t(0.20, 0.10, 0.85,0.15) 7→ h(z) = t(0, 0, 1, 0),
n⋆(z, t) = 1 ;

• u(v) = t(0.20, 0.10, 0.05,0.15) 7→ h(v) = t(0, 0, 0, 0),
n⋆(v, t) = 0.

Table 3 reports, fork = 0, 1, 2, 3 and 4, the values of the se-
lection measuresΦHa(u) = u(k+1), ΦHo(u) = 1− (u(k) − u(k+1)),
ΦFL(u) = u(k+1)/u(k) andΦ⊤,Kλk+1 (u) using two kernel functions
and two resolution parameter values. For eachu, the range
of the thresholdt values leading to the correct classification
is given, if there is any. The two kernel functions being con-
sidered in this example are the uniform and the Gaussian ones.
The uniform kernel is used with a special purpose: emphasize
its poor performances because of its equivalence with cardinal
based measures such as (18). Results with other kernels such
as Cauchy, exponential or triangular are roughly the same than
Gaussian’s ones, since a convenient resolution parameter can
be tuned to obtain similar shapes, as can be seen in Figure 3.

According to Table 3, we obtain a larger range of threshold
values by using the proposed selection measure than by using
usual selection measures. In particular, for low values ofλ, the
range is much larger. The consequence is that the threshold
is easier to tune with the proposed framework. Except in un-
usual cases, it is always possible to retrieve the right number of
classes for the four considered soft label vectors. For large λ
values, the Łukasiewicz t-norms are the only couple allowing
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to keep a large range of threshold values. The Gaussian kernels
are, as expected, more efficient than the uniform kernels. Non
available (n.a.) ranges (i.e. there are no thresholds allowing to
retrieve the right number of classes) only occur with uniform
kernels. As a final remark, let us mention that in these syn-
thetic examples, the t-norm couples can be ranked as follows:
(⊤,⊥)S ≺ (⊤,⊥)P ≺ (⊤,⊥)L.

4. Experimental Results

4.1. Datasets and protocol

To validate the efficiency of the proposed class-selective
rejection rules, we compare their performance on three artifi-
cial datasets and thirteen real datasets from the UCI Machine
Learning Repository [40] of various characteristics in terms of:
numbern of objects, numberp of features, numberc of classes
and degree of overlap, as summarized in Table 4. Correspond-
ing degrees of overlap are roughly estimated through a three-
dimensional PCA (Principal Component Analysis) projection.
The synthetic datasets are:

• D1 composed of 2000 points drawn from a mixture of
two normal seven-dimensional distributions of 1000 points
each with meansv1 =

t(1, 0, ..., 0) andv2 =
t(−1, 0, ..., 0),

and equal covariance matricesΣ1 = Σ2 = I ,

• D2 contains 4000 points drawn from a mixture of four
normal two-dimensional distributions of 1000 points each
with meansv1 =

t(1, 1), v2 =
t(1,−1), v3 =

t(−1, 1) and
v4 =

t(−1,−1), and equal covariance matricesΣ1 = Σ2 =

Σ3 = Σ4 = I , (see Figure 5-(left))

• DH consists of two overlapping Gaussian classes with
different covariance matrices according to the Highley-
man distribution, each composed of 800 observations inR2 [41], (see Figure 5-(right)).

Soft labels are computed using the model defined by (1),
whereαi are set to 1 for each class. Note that other decreas-
ing functions of the distance to the class-means can be used to
obtain soft labels,e.g. ui(x) = exp(−αi d2(x, vi)), but since per-
formances obtained with it are roughly the same, the resultsare
not reported here.

There are several ways to evaluate a decision rule, depend-
ing on the type(s) or reject(s) involved (ambiguity and/or dis-
tance) and the kind of rule (rejection rule or class-selective rule).
One generally uses the following quantities, as a function of the
rule’s parametersΘ: the correct classificationC(Θ), the mis-
classification (or error)E(Θ) and the rejectR(Θ) probabilities
or rates. Chow introduced the error-reject (ER) trade off and
proposed to analyze theER−curve (E(Θ) vs. R(Θ)) for all pos-
sible values ofΘ (limited to {t} for Chow’s rule as well as for
all other rules studied in this paper), in order to find the optimal
or an operational value fort [3]. Therefore a common way to
compare such rules is to plot theirER−curves and look for the
minimumAreaUnder theCurve (AUC).

For class-selective rules, an object is generally considered
as misclassified if the class it is issued from does not belong

Table 4: Datasets used in the experiments.

Dataset n p c Overlap

DH 1600 2 2 slight
D1 2000 7 2 moderate
D2 4000 2 4 strong

Forest 495411 10 2 strong
Ionosphere 351 34 2 strong

Pima 768 9 2 strong
Iris 150 4 3 slight

Thyroid 215 5 3 slight
PageBlocks 5473 10 5 moderate

Glass 214 9 6 strong
S tatlog 6435 36 6 moderate
Digits 10992 16 10 slight
Yeast 1484 8 10 strong

Optical 5620 64 10 slight
Vowel 528 10 11 moderate
Letter 20000 16 26 strong

to the subset of selected ones. Therefore theER−trade off is
replaced by the error-average number of classesEn−trade off
and one analyses theEn−curves as introduced by Ha [5]. The
area under theEn−curve [34] is given by

AUC(En) =
∫ 1

0
E
(

n(t)
)

dt. (26)

Since the decision rule is evaluated for all the possible thresh-
olds, the less the area under theEn−curve is, the better the per-
formance that is achieved [34].

We use 10-fold cross-validation, dividing the set of sam-
ples at random into 10 approximately equal-size parts. The 10
parts are roughly balanced, ensuring that the classes are dis-
tributed proportionally among each of the 10 parts. Ten-fold
cross-validation works as follows: we fit the model on 90%
of the samples and then predict the hard class labelsh of the
remaining 10% (the test samples). This procedure is repeated
10 times, with each part playing the role of the test samples,
and the errors on all 10 parts are added together to compute the
overall error.

4.2. Results

TheAUC(En) values obtained on the datasets of Table 4 us-
ing the new family decision rule using the three t-norm couples
of Table 1 and the literature’s decision rules: Ha [6], Horiuchi
[7], Frélicot and Le Capitaine [28], Mascarillaet al. [13] re-
ferred to asΦ⋆MBF, Tax and Duin [12] referred to asTD, are
given in Table 5. TheΦ⋆MBF rule is not directly derived from
theΦMBF measure but is a rule adapted to the specific case of
class selection by normalization steps in order to allow a single
threshold use, as suggested by their authors (see the paper for
details). For sake of brevity, we only report results obtained by
Φ⋆MBF,⊤S

, i.e. using the Standard t-norms. TheT D rule is the
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Table 3: Selection measures foru(x) = t(0.70, 0.10, 0.85, 0.80), u(y) = t(0.20, 0.10, 0.85, 0.80), u(z) = t(0.20, 0.10, 0.85, 0.15) andu(v) = t(0.20, 0.10, 0.05, 0.15)
(from top to bottom) for which the right number of classesn⋆(x, t) = 3, 2, 1 and 0 respectively is selected whatevert in the specified interval.

u k ΦHa ΦHo ΦFL

Φ
⊤,Kλ
(k+1)

(⊤,⊥)S (⊤,⊥)P (⊤,⊥)L

Uλ Nλ Uλ Nλ Uλ Nλ

λ = .1 λ = 1 λ = .1 λ = 1 λ = .1 λ = 1 λ = .1 λ = 1 λ = .1 λ = 1 λ = .1 λ = 1

u(x)

0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
1 0.80 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
2 0.70 0.90 0.87 0.82 0.94 0.82 0.82 0.82 0.96 0.82 0.88 0.82 1.00 0.82 0.86
3 0.10 0.40 0.14 0.11 0.82 0.11 0.43 0.11 0.75 0.11 0.37 0.11 0.80 0.11 0.16
4 0 0.90 0 0 0.11 0 0.11 0 0.10 0 0.05 0 0.10 0 0

∀t ∈ [.1,.7[ [.4,.85[ [.14,.85[ [.11,.82[ [.82,.85[ [.11,.82[ [.43,.82[ [.11,.82[ [.75,.85[ [.11,.82[ [.37,.85[ [.11,.82[ [.8,.85[ [.11,.82[ [.16,.85[

u(y)

0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
1 0.80 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
2 0.20 0.40 0.25 0.23 0.94 0.23 0.43 0.23 0.86 0.23 0.48 0.23 1 0.23 0.36
3 0.10 0.90 0.50 0.11 0.23 0.11 0.23 0.11 0.29 0.11 0.18 0.11 0.30 0.11 0.10
4 0 0.90 0 0 0.11 0.01 0.11 0 0.10 0.01 0.04 0 0.10 0 0

∀t ∈ [.2,.8[ [.4,0.85[ [.25,.85[ [.23,.85[ n.a. [.23,.85[ [.43,.85[ [.23,.85[ n.a. [.23,.85[ [.48,.85[ [.23,.85[ n.a. [.23,.85[ [.36,.85[

u(z)

0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
1 0.20 0.35 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
2 0.15 0.95 0.75 0.17 0.23 0.17 0.23 0.17 0.36 0.17 0.24 0.17 0.35 0.17 0.17
3 0.10 0.95 0.67 0.11 0.17 0.11 0.17 0.11 0.26 0.11 0.17 0.11 0.25 0.11 0.11
4 0 0.90 0 0 0.11 0.01 0.11 0 0.11 0.01 0.04 0 0.10 0 0

∀t ∈ [.2,.85[ [.35,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[ [.23,.85[

u(v)

0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
1 0.15 0.95 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
2 0.10 0.95 0.67 0.50 0.75 0.50 0.75 0.50 0.73 0.50 0.61 0.50 0.71 0.50 0.50
3 0.05 0.95 0.50 0.25 0.50 0.25 0.50 0.25 0.45 0.25 0.34 0.25 0.42 0.25 0.25
4 0 0 0 0 0.25 0.02 0.25 0 0.15 0.01 0.08 0 0.14 0 0

∀t ∈ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[ [.2,1[
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Figure 5: Synthetic datasetsD2 (left) andDH (right)

one their authors calltarget normalization. Since it is not ded-
icated to class selection, only results obtained on two classes
datasets are reported, rejection meaning that two classes are se-
lected.

As explained in the previous section, all the kernels of Ta-

ble 2, except the uniform one, behave well provided a reason-
able tuning of the resolution parameter. Therefore, we only
present the results obtained with a good kernel (GaussianNλ)
and the poorest one (uniformUλ) for two values ofλ (0.1,1).
The results show that the rules based onΦHa andΦHo selection
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Table 5: Area under theEn−curve for class-selective decision rules. Best results arein bold.

ΦHa ΦHo ΦFL Φ⋆MBF,⊤S
TD

Φ
⊤,Kλ
(1(k>0),k+1)

Datasets (⊤,⊥)S (⊤,⊥)P (⊤,⊥)L

Uλ Nλ Uλ Nλ Uλ Nλ

λ = 0.1 λ = 1 λ = 0.1 λ = 1 λ = 0.1 λ = 1 λ = 0.1 λ = 1 λ = 0.1 λ = 1 λ = 0.1 λ = 1

DH 0.011 0.029 0.008 0.008 0.010 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
D1 0.070 0.073 0.046 0.046 0.053 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046
D2 0.223 0.408 0.250 0.259 - 0.207 0.259 0.207 0.258 0.207 0.257 0.207 0.229 0.207 0.253 0.207 0.207
Forest 0.146 0.151 0.128 0.128 0.138 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128
Ionosphere 0.186 0.196 0.163 0.163 0.176 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163
Pima 0.164 0.141 0.115 0.115 0.139 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115
Iris 0.034 0.022 0.009 0.012 - 0.009 0.011 0.009 0.0110.008 0.010 0.008 0.009 0.008 0.010 0.008 0.008
Thyroid 0.056 0.034 0.007 0.013 - 0.006 0.012 0.006 0.012 0.006 0.010 0.006 0.008 0.006 0.010 0.006 0.006
PageBlocks 0.215 0.146 0.086 0.087 - 0.087 0.087 0.086 0.087 0.087 0.0830.087 0.080 0.087 0.083 0.087 0.087
Glass 0.526 0.537 0.125 0.166 - 0.106 0.165 0.106 0.175 0.106 0.144 0.106 0.118 0.106 0.143 0.106 0.106
S tatlog 0.436 0.436 0.116 0.154 - 0.089 0.1140.086 0.129 0.089 0.102 0.089 0.093 0.089 0.102 0.089 0.089
Digits 0.171 0.167 0.010 0.010 - 0.008 0.010 0.008 0.010 0.008 0.0090.008 0.007 0.008 0.009 0.008 0.008
Yeast 1.665 2.122 1.189 0.911 - 0.790 0.898 0.790 0.954 0.790 0.854 0.790 0.807 0.790 0.849 0.790 0.790
Optical 0.099 0.097 0.042 0.039 - 0.004 0.0060.003 0.004 0.003 0.005 0.003 0.004 0.003 0.005 0.003 0.003
Vowel 0.404 0.423 0.075 0.047 - 0.035 0.044 0.035 0.049 0.035 0.042 0.035 0.036 0.035 0.042 0.035 0.035
Letter 1.387 1.379 0.190 0.201 - 0.058 0.070 0.058 0.076 0.058 0.069 0.058 0.061 0.058 0.069 0.058 0.058

measures never reach the performance of the others. Let us go
further into the analysis according to:

• the number of classes of the datasets and their degree of
overlap between the classes,

• the parameters of the rules, namely the kernel, its resolu-
tion parameter value, and the triangular norm couple.

As expected, the rules based onΦMBF, ΦFL andΦ⊤,Kλk+1 give the
same results on two-classes datasets{D1, DH, Forest, Ionosphere,
Pima}, whatever the kernel and the resolution parameter, and
outperform the rules based on other measures,ΦHa, ΦHo and
TD. The number of classes is of great interest because the pro-
posed family of rules can take into account simultaneously from
two up toc values so that the whole similarity can be exhib-
ited while the literature’s rules that only involve two successive
ordered values cannot. The more the number of classes, the
more the proposed family of rules outperforms the others, see
datasets{PageBlocks, Glass, S tatlog, Digits, Yeast, Vowel,
Optical, Letter} for which c > 3. The way the tested rules
perform with respect to the degree of overlap can be under-
lined by the scores ratios and differences. TheAUC ratios are
much larger for datasets presenting a slight or moderate over-
lap of classes{DH, D1, Iris, Thyroid, PageBlocks, S tatlog,
Digits, Vowel, Optical} than for those presenting a strong over-
lap {D2, Ionosphere, Forest, Pima, Glass, Yeast, Letter}. The
reason is that for better separated classes, there are more pat-
terns for which the largest soft label is much larger than the
other values, and this situation is handled by the proposed oper-
ator whereas it is not taken into account in literature’s selection
measures. While theAUC ratios are lower for datasets pre-
senting a strong overlap, theAUC differences are much larger
(e.g.{Glass, S tatlog, Vowel, Letter } and except forYeast) for
datasets presenting better separated classes. This means that the
less the classes overlap, the less the benefit is, as it is for any

decision rule including a reject option,e.g.[3, 14, 6].
As expected, using a Gaussian kernelNλ leads to better perfor-
mances than using an uniform oneUλ. For almost all datasets
(exceptPageBlocksand Digits), the best scores are obtained
for small values ofλ, whatever the kernel. Setting a small value
of λ consists in considering only the first large and last low soft
labels. This result shows that middle values of detected blocks
are not critical for the class selection problem. Moreover,the
Gaussian kernel is less sensitive than the uniform one to vari-
ation of their resolution parameter. For instance, changing λ

from 0.1 to 1 forUλ significantly affects the performance. As
discussed in Section 3, the uniform kernel handles the simi-
larity analogously to the cardinal measure and does not allow
to make soft labels of various importances contributing. Con-
sequently, the cardinal measure, as well as the uniform ker-
nel, is not well adapted and convenient for the class selection
problem. Moreover, as shown in Section 3, tuningλ for Uλ

is much more difficult because the range of threshold values
allowing to select a reasonable number of classes is smaller.
What about the triangular norm couples? According to Table
5, the results are quite similar. However, considering the num-
ber of cases for which the proposed family of rules gives the
best result, whatever the kernel, one can observe the follow-
ing ranking: (⊤,⊥)S ≺ (⊤,⊥)P ≺ (⊤,⊥)L. This confirms the
results reported in the previous section in Example 5. More
generally, the product and Lukasiewicz norms induce rules that
are less sensitive, in terms of performances, to changes of ker-
nels and resolution parameter value. For final illustrationpur-
pose, some of the (E, n) curves are shown in Figure 6. For
sake of brevity, only six datasets presenting various amount of
overlap, number of classes and number of patterns, are cho-
sen: {D2,Digits,S tatlog,Yeast,PageBlocks, Vowel}. One can
see that for every average number of selected classes, the error
rate obtained with the proposed family of rules is lower thanthe
ones obtained with literature’s rules.
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Figure 6: (E, n) curves for Ha, Horiuchi, FL, MBF rules, and two examples of new rules obtained on six datasets (from left to right, up to bottom):
{D2,Digits,S tatlog,Yeast,PageBlocks, Vowel}.

5. Conclusion

A generic formulation of class-selective decision rules is
presented. It allows to write state-of-the-art single threshold
based decision rules with a single equation. A new family of
measures suitable to define top-n class-selective decision rules
is proposed as well. These selection measures rely on the block
similarity detection of the soft labels to the classes of a pat-
tern to be classified by means of a new aggregation operator.
It is based on specific discrete fuzzy integrals of the ordered
soft labels with respect to a symmetrical kernel function which
weights the degrees according to their relative position within
the block. The ratio of such two integrals is used to define the
selection measures from which class-selective decision rules
can be derived. Since such rules depend on only one user-
defined threshold reflecting the costs of rejection and error, it
is proposed to use the area under the curve of the error rate asa
function of all possible threshold values as a performance mea-
sure. An extensive comparison with the usual one-threshold
based class-selective decision rules on sixteen datasets is given.
The results show that the new family of decision rules largely
outperforms the existing ones on all datasets.

The choice of the triangular norms used in the fuzzy inte-
grals is not trivial and remains an open problem from a theoret-
ical point of view. It requires a further study on the mathemat-
ical properties of each t-norm, and to what extent the proper-
ties would affect the performance of the derived class-selective
rules. Other future research will concern the study of a new
mixed class-selective-rejective decision rule which should jointly
optimize the number of selected (in the sense of class accep-
tation) and rejected (in the sense of elimination, see the pre-
liminary work in [42]) classes over the user-defined threshold

definition domain. We also plan to use this optimum decision
rule for outliers detection,i.e. patterns that do not match any of
the known classes so that they must be distance rejected. This
problem, as well as its variant for support vector machines,will
be addressed using hinge loss minimization [43], or surrogate
convex loss functions [44]. It will be studied by taking into
account new results onAUC variants [45, 46].
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[42] H. Le Capitaine, C. Frélicot, An optimum class-rejective decision rule and

its evaluation, in: 20th International Conference on Pattern Recognition,
2010, Istanbul, Turkey, pp. 3312–3315.

[43] P. Bartlett, M. Wegkamp, Classification with a reject option using a hinge
loss, Journal of Machine Learning Research 9 (2008).

[44] M. Yuan, B. Wegkamp, Classification methods with rejectoption based
on convex risk minimization, Journal of Machine Learning Research 11
(2010) 111–130.
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