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A family of measures for best top-n class-selective degisites’

Hoel Le Capitaing®, Carl Frélicot

aMathematics) mage andApplications Laboratory, University of La Rochelle,
Av. M. Crépeau, 17042 La Rochelle, FRANCE

Abstract

When classes strongly overlap in the feature space, or wdrae slasses are not known in advance, the performance dsifida
heavily decreases. To overcome this problem, the reje@impas been introduced. It simply consists in withdrawhwydecision,
and let another classifier, or an expert, take the decisi@never exclusively classifying is not reliable enough. Tlassification
problem is then a matter of class-selection, from none tolafises. In this paper, we propose a family of measureduita
define such decision rules. It is based on a new family of dpesahat are able to detect blocks of similar values withsea
of numbers in the unit interval, the soft labels of an incognrattern to be classified, using a single threshold. Expmrison
synthetic and real data sets available in the public donfewshe éficiency of our approach.

Keywords: Reject options, Class-selective decision rules, Fuzzyegggion operators.

1. Introduction Tax & Duin have recently proposed two rescaling heuristies a

) N ) ) . lowing to adjust the thresholds and combine one-class rsodel
Supervised classifier design aims at defining rules that alnat are based either on class-densities or on distances-+o p

low to associate an incoming object with one of a set of knowrlotypes [12]. Mascarilla et. al have defined a class of oper-
classes, based on a training set of labeled objects, (sge [2htors based on triangular norms that combine soft classdab
Such exclusive classification rules must béfisiently reliable  gitable to select several classes [13]. As said above, jt ma
for real-world problemse.g. in medical diagnosis or nuclear pe required to reject an incoming object from all the known
plant monitoring. In many applications, some objects to bejasses. Dubuisson & Masson [14] first proposed to threshold
classified fit several classes (inliers), are distributediad the  {he mixture density in order tdistance rejecoutliers and op-
classes or even arise from an unknown class (outliers),eso thposed this approach to tiaenbiguity rejectiordedicated to in-
classifier performance can significantly f€eated. It is more |igrs as tackled by Chow and following authors (Ha, Horiixchi
convenient to reject such samplee, withhold making a deci-  The yse of class-dependent thresholds to distance rejgiersu
sion and call for a exceptional handling (use of igtent rule,  can pe found in [15]. Many decision rules dealing with onekin
different classifier, human inspection) than making a wrong ass¢ reject or both have been proposed so far, in other theoreti
signment. Pattern rejection has been first formalized imtime ) frameworkse.g: neural networks [16], genetic algorithms
text of statistical pattern recognition under the minimums-m [17], support vector machines [18, 19], fuzzy inferenceeys
classification risk theory. Chow modified the Bayes decisior'[zo, 21], theory of evidence [22], but we restrict to the istat
rule in order to reject an object if its highest posteriortpro tjcal one. Let us precise theftirence authors make between
ability is less than a threshold [3, 4]. Ha extended it to in-5 classification methodnd adecision rule A classification
liers that can be associated with a subset of the known dassgethod is a two-step procedure as illustrated in Figure & Th
[5, 6] leading to eclass-selective rejection rukes opposed to  first step provides soft labels to classes). posterior probabil-
Chow's rejection rule In order to avoid unnatural decisions ties for the Bayes classifier, while the second one deals wit
due to posterior probabilities normalization, Horiuchoposed  the decisioni.e. associates a (set of) class(es) to the incoming
to test their diferences [7] while Frélicot & Dubuisson had pre- pattern by means of a rule applied on the soft class-labeds,
viously used their ratios [8]. This latter idea has beenointr the MAP (Maximum A Posteriojirule for the Bayes classifier.
duced again several times [9, 10]. In order to overconfie-di |nc|yding reject options consists in defining an appropré-
culties due to errors in probability estimations, claspat@ent  cision rule such that an outlier (respectively an inlier) be as-
rejection based on multiple thresholds can be introducéfl [1 ggciated to the empty set (respectively a subset) of cla¥bés
paper addresses this particular problem. Therefore, thdyfa

of class-selective decision rules we propose can be indlirde
any classification method.

UThis article is a widely extended version of a paper preseatghe 19th
International Conference on Pattern Recognition by theast[1].

*Corresponding author In order to illustrate the dlierent class-selective schemes,
Email addresseshoel.le_capitaine@univ-1r.fr (Hoel Le Figure 2 shows how some typical decision rules among the cite
Capitaine).carl. frelicot@univ-1r.fr (Carl Frélicon) ones partition the pattern space into decision regionsdor 8
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Figure 1: A classification method procedure composed ofalifedpstep and a
decision rule.

classes problem. The MAP rule results in three regions, each
of which corresponds to a single class (a). The outcomes of
Chow'’s rejection rule are also singletons augmented byithe e
tire set of classefl, 2, 3} which corresponds to thetal ambi-
guity reject region (b), to which Dubuisson & Masson add the
one of no class assignmejt} dedicated to distance rejection

reject options emphasizes the followingfdrent issues related
to the design of decision rules:

¢ which kind of rejection should be preferred?

— it may depend on the application, however a class-
selective rule should be able to cope with both types of
rejection at the same time, as shown in Figure 2-(e),

which model should be used (density-based or distance-
based)?

— to correctly distinguish whether an object has to be
distance or ambiguity rejected, distance-based models are
often easier to manage because they allow to compute

(c). A general class-selective rejection rule resultstiregions
(e) corresponding to all possible combination of classesyd-

ing no class assignment. This latter option is not allowed by
earliest rules proposed by Ha, Horiuchi and Frélicot & Dsbu

son (d).

{3} (3}

{1,2,3}

(a) MAP (no rejection)

0

(b) Chow (rejection rule)

{0} {0}

(c) Dubuisson & Masson

0

(d) Ha, Horiuchi

{0} H {0}

(e) Generalized class-selective

Figure 2: Feature space partitioning for a three-classlenoland decision rules
with reject options.

A short state-of-the-art in statistical pattern recogmitivith

non-normalized soft labels whereas posterior probabili-
ties or fuzzy membership degrees have the constraint to
sum up to one,

e how many thresholds are required?
— the less the number of thresholds, the better it is from
a statistical point of view as well as for the practitioner
who faces their tuning, except if it allows to increase the
classifier performance according to the application.

In this paper, we propose a family of block-similarity mea-
sures of class-labels and derive a general class-selactige
which allows, in one single step, either to distance rejeché
class is selected), or to classify (one selected class), ambi-
guity reject (two up to all selected classes) a pattern gordy
one user-specified threshold.

In Section 2 we start by discussing the standard approaches
of rejecting objects and the necessary background on aggreg
tion operators to settle it in terms of soft labels aggreyati
Next, we recall some measures suitable for class-seldutised
on combination of basic aggregation operators. The newyami
of class-selective decision rules is presented in Sectidhi8
based on an operator which detects tHeedent blocks of sim-
ilar values within a tuple of values in [@]. Thus, the block of
a number (from O te) similar largest labels gives the classes
to which the pattern has to be assigned to. We discuss its prop
erties and illustrate its behavior on simple examples. Expe
mental results on several synthetic and real data sets fiem t
public domain that show itsficiency and concluding remarks
as well as perspectives remarks are given in Section 4 and 5,
respectively.

2. Preliminaries

2.1. Pattern classification and reject options

Let us consider an object described jpyeatures, namely
a vectorx in a p-dimensional real space, to be classified in
a c—classes problem. LeE* = {1,...,c} be the set of class
indexes, a classification rule farsupposes soft labels to the
classesi(x), i € C*, to be available [23], namelyadimensional
vectoru(x). For density-based models, soft labeléx) are
posterior probabilitie$(ijx) computed through the Bayes for-
mula, using class-conditional densities and prior proliads



estimated on a training s&tof labeled objects. For distance- WhereLﬁ’c+ = {0, 1}°\0, the set of vertices of the unit hy-
based models, one can use soft labels computed as funcfionspercube [Q1]¢ without the origin0 = (0, ...,0), and {) is the
distances to class-prototypesg.a Cauchy-type function: permutation of the class indéxsuch thatg is thei-th largest
value inu. We can say that all rejection rules are the restric-
(1)  tion of (4) tok € {1,c} and the measure used by Chow is
Dcp(u) = 1 - ugy(x). Propositions from the literature mainly
whereq; is a parameter controlling the membership, which carconsist in defining new selection measutesuitable for class-
be user-defined or learned frod) d is a distance irkRP, and  selective rejection instead of total ambiguity rejection.[6],
vi is a prototype of the-th class. Among the possible dis- the posterior probabilities are ranked in decreasing oaser
tances, one finds the squared Mahalanobis distdf(@evi) =  their values are tested up to tHe 1)-th to decide ik classes
(x = vi)'Z 1 (x — vi) wherev; andy; are thei-th class mean vec- are selected, so the selection measur@ig(u) = Ug:1)(X)
tor and covariance matrix estimated 8n It has been shown with the conventionuc,1(x) = 0. The corresponding rule
through empirical studies that (1) is a good model for vagueD,, by Ha minimizes the error probability for a given aver-
concepts or classes [24]. Recall that we do not addressadlbe pr age number of classes and the domainisf[0, %]. Whenever
lem of obtaining reliable soft labels but the problem of defin ¢ - % n*(x,t) = 1 soDya reduces tdDg, and can increase
decision rules based on the labels, see Figure 1. Conséyquenbp toc ast decreases down to zero, (see [5]). Because of the
any soft labels (constrained or not) provided by a classtB&r  normalization constraint on (¢ L), Ha's rule can lead to
be used in the proposed framework. counterintuitive results, so Horiuchi proposed to test dife
A soft label vector(x) takes values infyc = [0,1]°if it ference between successive ordered posterior probe®ilii.
is distance-based or if¢; = {u(x) € Lpd X, ui(x) = 1} if Using our conventions, we can rewrite the selection measure
its components are posterior probabilities or fuzzy memsiipr  as ®po(u) = 1 — (Ugy(X) — Uk+1)(X)) and Horiuchi’s ruleDyqo
functions. Then, a decision rule is defined as a mapfiing minimizes the maximum distance between selected classes fo
Lo = Lhe, UKX) > h(X) where L = {h(X) € Li|hi(x) € a given average number of selected classes which is specified
{0,1}}. The MAP Maximum A Posteriojidecision rule usedby by t € [0,1]. It is identical toDg, so n*(x,t) = 1 when
the probabilistic Bayes classifier is definedDy : Lic = Lne, t = 0 and increases up to ast increases up to 1. Given

Qi

Uik = aj + d2(x, v;)

u(x) — h(x) such that Ue = Maxex Ua)(Y), Pos(U) = Uay(X)/u, is used in [25]. In
_ [8], it has been proposed to replace posterior probalsiliig
hi() =1, i=argmax.cuj(x). (2)  soft labels, for instance as defined by (1),l8& Ly instead

Chow’s rejection rule minimizes the error probability for a ©f Lre, and take, givert € [0, 1], ®rp(u) = U)(X)/Ua)(X)

given reject probability which is specified by a threshold @S the selection measure so that (4) is restricteld ¢o{1, c}.

[0, €21, or vice-versa. Thus, this rule yields the optimum error-Note that the same measure has been reintroduced with pos-
9 C ’ . 7

reject trade 6 [4] and is defined bYDch : Le — {Lhe 1}, terior probabilities by several authors [9, 10], referredcht a

u(x) — h(x) such that reliability measure), = 1 — ®gp(u). Naturally, as defined in
[8], this measure does not minimize the expected Bayessén ri
{ hi(x) =1, i=argmax_cuj(x) if u(x)>(1-1) (3 anymore. The measurkep(u) has been extended toe C*
h(x) =1 otherwise in [26, 27] by ®em(U) = Ugs1)(X)/U@y(X) and its more gen-

eral form®g (u) = ug.1)(X)/uk(x) can be found in [28]. The
resulting ruleDg| reduces tdg whent = 0, andn*(x,t) in-
creases from 1 up toast increases from O up to 1.

Recently, a family of operators using a combination of dual
triangular norms and conorms (L) has been proposed in [13].

wherel is the p-dimensional one vectd(l, ..., 1), meaning
that x is ambiguity rejected between all known classes if its
largest posterior probability is lower than-1t, as shown in
Figure 2-(b). Sinceu(x) € Ls, it is easy to show thaDcy, is
identical toDg whenevet > C;Cl i.e. x cannot be rejected [3]. K _
Since the work by Chow, most of authors intended to avoid totaPenoted byL(u), these operators generalize the th largest
ambiguity rejection whenever a number between 2 andl ~ Value inu in the sense that it is exactlyy(x) when using the
classes have to be selected. Thus, a class-selective precedstandard normsT = min the largest t-norm and = max

can be defined, in its general form, as the seek for the best topthe smallest t-conorm (see section below for details). The a
classes according to: thors showed in [28] that Ha's measure is the particular case

of Oypr(u) = kil(u) when using the standard norms. In the
same paper, they introduce another selection measi(ty =
1 - 1(u) which generalizes Chow’s one.

Earliest rules that include both distance and ambiguity re-
ject options involve a pre-step procedure dedicated todhe f

u: L.c — [0, 1], andn*(x,t) is the number of selected classes " .
. , e mer case thanks to an additional measure (and a corresgondin
for x, given a user-defined threshdldSuch rules partition the . t
threshold), here called atceptation measui¥. It can be ei-

feature spaceca}rs shown in Figure 2-(d) and can be defined ?Ner a function of as by Dubuisson & Masson [14JF(x) =
Dset: Luc = Lyc, U(x) = h(x) such that f(x) the mixture density fox, or a function ofu as in [25]:
h(x)=1, Vi: 1<(i) <n*(x1) (5) P(u(x)) = 1-ug)(x). Even Chow's rejection rule and class-

n*(x,1) = minfk : A(UK)) < 4 @

with the convention: ifd(u(x)) > t for all k e C*, thenn*(x, t)
is set toc. In (4), ® is aselection measuren object’s labels



selective rules as defined by Ha, Horiuchi, and Frélicot &0is-
sonLe Capitaine can be modified to include such a measure. In
order to accept a pattern, the acceptation meaguneust be

Table 1: Basic triangular norm couples

Ts(a b) = min(a, b)

larger than a threshold. Here, we propose the measure Standard
Ls(a, b) = max(@, b)
P(U(X)) = Ugy(X). (6) S
H . . . .o Tp(a’ b) = ab
The pattermx is distance rejected W(u(x)) < t, i.e. it is ac- Product
cepted if¥(u(x)) > t. We claim that a class-selective rule in- Lp(ab)=a+b-ab
cluding both options must be able to partition the featuezep T.(a,b) = max@+b-1,0)

tukasiewicz

as shown in Figure 2-(e). In other words, it must map the entir
set of vertices® = {0, 1}°. Therefore, the selection measure
requiresk not to restrict inC* but to include the zero class-

selection,i.e. ke C = {0,C*}. We express such a rule as

- C
Dser: Luc = Ly, u(x) = h(x) such that Some properties of fOR-result from those ofr and L,

hix) =1, Vi: 0< (i) <n*(x,t) (7)  others have been proved in [13]. Among these propertiesslet
recall those that are useful for the context we are inteddate

1,(a,b) =min(@a+b, 1)

where the numben*(x, t) of classes to be selected for
; ; k k
given a threshold, is e 1(0) = 0 andL(1) = 1 (boundaries)
n*(x,1) = min{k : Oy,1(u(x)) < t} (8) k k
keC e for u andv such thatu; < v,Vi € C*, L(u) < L(V)
with the conventionsug)(x)) = 1 andue.1y(x) = 0. The se- (monotonicity)
lection measur@y,1(u(x)) can be obtained by aggregating the
components ofl in a suitable way. Note that fdt = O (i.e. « for any permutationr of C*

distance rejection}py, anddy, are equivalent, as given in (6). ) [
metry

k k
3_ ycug(i) = 3_ ,cui (sym-

2.2. Aggregation operators 1 c
Aggregation operators aim at associating a typical valaeto e L(u) = L(u) and_L(u) = T(u), whateverc and (T, L),

number of several numerical values which are generally défin p

on afinite real interval or on ordinal scales and many fasibie o if the standard norms are taken, theg(u) = uy), the

such functions are available,g: triangular norms [29], OWA k-th largest value i.

(Ordered Weighted Averaging) operators [3@perators [31],

fuzzy integrals [32], (see [33, 34, 35] for a survey). Theg ar Example1. Let us consider C = {1,2,3,4} and k = 3 such

used in many fields.g. decision-making and pattern recogni- thatPx-1 = #2 = {{1,2},{1,3},{1,4},{2,3},{2,4}.{3,4}}. For

tion. They are generally classified either by some mathematach subset itP,, one can select its complement with respect

cal properties they share (symmetry, associativity, momict ~ t0 C* and obtain, given any € [0, 1]

ity and so on) or by the way the values are aggregated (con-

junctive, disjunctive, compensatory, and so on). The tridar 15(u) = min( maxs, us), maxsz, us), maxs, us),

norms are _of special interest b_ecause of their ability teegaln max(Us, Us), max(Us, Us), max(Uy, Ua)).

ize the logical AND and OR crisp operators to fuzzy sets, (see

[36] for a survey). Briefly, a triangular norm (or t-norm) i®a  If uis such that w = ug) > Uz = U) > Us = Ug) > Uz = Uy, it

nary operation on the unit interval : [0,1]> — [0, 1] whichis  gives

commutative, associative, non decreasing and has 1 forateut

element. A t-normmr is conjunctive and the minimum opera- is(u) = MiN (Us, Us, Uz, Uy, Uy, Us)

tor A is the largest one. Alternatively, a triangular conorm (or

t-conorm) is the dual binary operatian: [0, 1]? — [0, 1] hav-

ing the same properties except the latter: its neutral ai¢ise =Ug).

0. A t-conorm. is disjunctive and the maximum operator

is the smallest one. Basic dual couplas() that will be used

in the sequel are given in Table 1. Combining norm-couple

(T, L) allows to define operators that can be used to solve th xtent the (generglizgtion of thi)largest yalues ot are all
class-selection problem, as in [13]. L@tbe the power set of arge. Therefore, ifi is a vector of posterior probabilities, or

C* and®y = {A € P : card(A) = k). Thefuzzy k-order OR a membership function of an objextto be classified, fOR-
operator (fORk for short) is a family of aggregation operator (k+ 1) can be used as a family of measures to séleasses

=U4

Since Ts = min is the largest t-norm, this last property al-
ows the authors to claim that their operator measures td wha

kel
Dppr(u) = T (u), given a dual couplet(, L).

We will use another fuzzy aggregation operator, namely the
) Sugeno integral in its discrete form [32]. It computes theme

parametrized by, 1): [0, 1]° — [0, 1], u > L (u), where

k
J_ U =
=1

1

K
1(u) =
() AePk_l(j€C+\A !

©) value of a function with respect to a fuzzy measuyrevhich is



a non-additive measure of uncertairitg, more general than a Example2. Let us considen = (0.5 0.2 05 0.8 0.5)and
possibility one and therefore a probability one, see [38jptar (i, j) = (2,4). Since w) = U) = Uy = 0.5, we have:
5 for details. The Sugeno integral of a functiénw.r.t u is

. j i

defined by Ls(u)/ Ls (u) =ug)/up)

n

=1
Su=\/ 1(6) A p(Ag) (10)

i=1 but
whereAg) = {Xq, - , Xn)} with respect to a permutation so that j [
f(X@) < --- < f(Xn). This integral is widely used in decision Le(u)/ Lp (u) =0.05580.7764
making, and in particular for pattern recognition [37] besa #1.

of its ability to model some kind of interaction between teat

- Let us correct this drawback by defining a generalized discre
describing a patterx.

Sugeno integralife. using any t-norm) ofi with respect to a
fuzzy measurgy as:
3. Thenew class-selectiverule

k
o Su(u) = L (U Tr(A))
3.1. Motivation i=1c
k
Since L(u) as defined by (9) generalizes tke- th largest = ( %F l(U(i)T,uk(Ai))) 1 (Jk_ (U(i)Tyk(Ai))) (15)
k+ k 1I=1k- i=k,c

value inu € Ly, it seems natural to use the ratilol(u)/ 1 (u)
to extend the selection measubg (U) = Ug1)(X)/Ugy(X) in ]
order to compare two consecutive (ordered) values. Anothdp€asure defined by

whereA; = {j € C* : uj) = ug}. By choosingu as the cardinal

extension consists in comparing more than two successive or 0 if Card(A) <k
dered values, that is to say all the values betwgganduj.i. H(A) = { 1 else ’ (16)
In [38], Le Capitaine et al. have definethlack-similarityoper- )
ator by: [Q1]° — [0, 1], u = B j(u) satisfying the following i s easy to show, by (15), th&,(u) can be written as
four propertiesy(i, j)) e C* xC*,i < |: n ’
Ug if Uk-1) > U
e the similarity should be minimum whenever the largest Skﬂ(u) = ij'ic 0 « _l? “
and the smallest values in the block are the maximum U else,jis s.t.ugj-1) > Ug) = -+ = U

and the minimum possible ones a7)

since 0 (respectively 1) is the absorbing (respectivelytnadu
Bii.j(u) = O whenever) = 1anduy =0 (11)  glement of any t-nornT (respectively t-conorm).

e asthe opposite, it should be maximum whenever the Iargg {Tpoiitilonlll. _For standard qnd product horm c.ouplesljr.),
and the smallest values (therefore all values) in the blocig PoCK-SImi arity operator satisfying (11-14) is givert i, ) €

+ + 1
are the same CrxChi<y,

j i
B(i,j)(u) =le Uiy = Ugj) (12) Zi—,j)(u) = Sﬂ(u)/S/l(u)~ (18)
For brevity, the proof of the proposition is omitted, and the

e the similarity should increase as the range of values withifeader is invited to refer to a review paper on block-siritijar
the block decreases operators by the authors [39].

V0 < & < Ug-1) — Ugy, .
=&=ti-n=to Example 3. Let us considen = {(0.5 02 05 0.8 05)and
B (U s Uy + 8 s Ue) < B p(Ugys s Ups - Ug) (1) = (2 4)as definedin Ex. 2. Sinceyi= 0.8 > 0.5 = ue) =
(13)  ug) = uw), we have by (17)S+,(u) = L Uy and Sy, (u) =

e inversely, it should decrease as the range increases 4_ Ugy, Whatever(T, L). Therefore:i%(TZ54)(u) = R(TZP4)(U) -1
V0<e< Ugi-1) — Ug)» k=2.c ' '
As defined by (18), the block-similarity operator is not yull
By (Uys - Ugj) + &, .0y Ug) 2 Bi.jy (U, - UGy - Ug))-  convenient for measuring the similarity between valuesiwit
(14)  the block. First, it is not symmetrical because all the valoe-
; i tweenu(j.1) andu, are taken into account evenuif; > U1y,
Unfortunately, these properties are not all satisfie&by)/L while values between(;) andug_1y are not even ifij_1y > Ug).
(u) for all (T,L1). For instance, (12) is satisfied with standard Second, the cardinal fuzzy measure (16) equally weightsakill
norms but not with product ones. ues in the block whatever their position, so their relativegm
nitude. We propose to use a kernel function to overcome these
drawbacks and make the values betwagrandujy, and only
them, meaningful.



3.2. The symmetrical block-similarity operator L2p

if
Given a symmetrical kernel functiol, (I, k) centered ok, -- -Erga%rcr?hnikov
. . . L oo triangular
parametrized by a resolution parameter R* which controls 1 ; Gaussian
its area of influence, let us define two fuzzy Sugeno integrals o -g’g;gﬁ}ml
0.8F )
K k
Sx() = L (ugTHi(e.K)  if(j-i)iseven  (19) o :
=51 or B
K k
Sk = L (upTH(t.k) if(j-i)isodd (20) )
wherek* denotes the two possible valuks andk™ meaning o2 e ,
i+j+1 |+] 1 e d b
that the control variablestarts from—— or ——, respectively. ol ‘ : : J4 \ L,
Proposition 2. For strictly continuous norm couples (L), a .
symmetrical block-similarity operator satisfying (11)1glgiven ' Cardinal measure
(i + + i i - = =Ni(k,6)
by: V(i j) e C* xC*,i < |, v -
-
. . - [
R(Ti’jq)("(u) _ Sm(u)/Sq(l(u) if (j—1i)is even 21) 0sl IF “l
’ Sx(U)/ S, (W) if (j — i) is odd A
0.6 St \
1
with the conventloﬂ%T 7“ (u) =1ifug = ! \
1
Here again, the proof is omitted, (see [39] for details). o ' "
Many symmetrical functions are available, (see Table 2). ool B 1
Note that we impose them to be normalized so @t 1) = 1 ' B \
and the corresponding is of maximum weight in the Sugeno e ‘ \~ S
integrals (19-20). Figure 3€ft) shows diferent kernel func- % 0 2 4 6 8 0 12 14

tions %K, (1, k) centered irk = 6.

Figure 3: Examples of symmetrical kernel functions cemtérek = 6 with

A = 2 (left), cardinal measure withs) > ue) and Gaussian kernel§:(l, 6)
Table 2: Examples of normalized symmetrical kernel fumeti&, (1, k) where andNs(l, 6) (right).

= k-1,

Kernel K e whena — +o0, the kernel becomes the constant value 1.
unrforrn Unly) = ]l(yﬁ)yz Proposition 3. For continuous norm couples (1), then
Gaussian Na(y) = exp(- %)
exponential  E,(y) = exp( — Ay?) T, 1 ifup=0
Epanechnikov E,(y) = (1 - ﬁz) Liy<a) I|m R(' (W % else (23)
triangular Tay) =(2- ) Liy<a) i i
Cauchy C) = 75 J‘; (k)/ J_ L u  if(j-i)iseven
_ . ik m RN =<
With no loss of generality, let us study h ‘(u) be- A—>+°° L ug )/ J_ L uw if (j—i)is odd
haves using a Gaussian keri@l(l, k) = N (1, k). Other kernels k=t
such as the exponential or Cauchy have a similar behavice sin 1 if ugy =0
the resolution parameter can be chosen such that the shapes a (24)
roughly identical. The Gaussian kernel is defined as a fancti o . .
of (1> 0,k, ) for sake of clarity: Therefore, the contribution of the intermediate valitgs,), ..., Ugj-1)}
to RT N* (u) is small if 1 is close to zero and increases withas
_ (k=1 shown in Figure 3.
Ntk 1 = exp( - A ) @2 Note thatR;1,(U) = Ug1)/ug) does not depend om what-

The resolution parametarcontrols the area of influence as ever the kernel funetron,. This means that mcrea_ﬁrm@es not
follows: make two successiviyy’s more similar but may increase the
similarity of blocks of larger size (strictly greater than 2
e whenl — 0, the kernel becomes a Dirac centered,in Figure 4 clearly shows how the valuﬁgj)*(u) depend on

61, because the convergence is not uniform by continuity; ). Two high values are sficient to makdﬂg‘w(u) large
of A, and non continuity o8, 1.2)
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3.3. The selection measure and the induced rule

We propose to use (18) to define a new family of class-
selective decision rules including both types of rejechwi-
spect to (7-8) as: given a symmetrical kernel functitn

@, () = R(T]l’ii”o)’kﬂ)(u) (25)

wherel o) ensures thaﬂ%&ﬁl)(u) is used whatevek > 0 and
R(Tdf)‘(u) = Uy according to the remark following the propo-
sition 3 and the usual conventiagyy = 1. Note that it allows

to retrieve the usual distance rejection (6) ko= 0, imply-

ing equivalence withby,, @y, and ®g for this special case.
Whenever the number of classegis 2, (D;ff* reduces t@g|
and(DFD.

Let us see how the proposed family of rules given by (8)-
(25) behaves, compared to the other class-selective rdizs (
Horiuchi, Frélicot & Le Capitaine, referred to as literals
rules in the remaining part of the paper) on particular idunes
expressed by vectors of soft class-labels.

Example5. Let us consider the following fowr vectors, each
representing a particular classification case, emphasizetheir
expected classification hard labddgiven by (7-8) assuming an

appropriate threshold t:
e u(x) = (0.70,0.10,0.85,0.80)~ h(x) = (1,0, 1, 1), n*(x,t) =
3;
e uly) = 1(0.20, 0.10,0.85,0.80) — h(y) = t(O, 0,1,1),
n*(y,t) =2;
0 o
e U(2) = t(0.20, 0.10,0.85,0.15) — h(z) = t(O, 0,1,0),
Figure 4: Values oR(Tl"’;’)OB(u) (left) andR(Tl’SN)Qs(u) (right) using (r, L)s for n*(z,t) =1;
all u € [0, 1]3. Hot (respectively cold) colors represent high (respebtivow)
values. e u(v) = 1(0.20, 0.10,0.05,0.15) — h(v) = t(O, 0,0,0),

n*(v,t) = 0.

where three are necessary to maﬂ@@’)‘w(u) reach a similar  Table 3 reports, fok = 0,1,2,3 and 4, the values of the se-
level. lection measure®a(u) = Ugr1), Pro(U) = 1 — (Ugy — Ue1)),
Example 4. Let us consider the following soft label vectoe PrL(U) = U/ and ;" (u) using two kernel functions
'(0.82 080 060 051 050 045 010)and compute the and two resolution parameter values. For eaclihe range
values of‘RTiS.’K‘(u), i = 1.6and j = 2 7 for all the kernels _of the thr_eshold .values leading to the correc_:t class!flcatlon
functions of Table 2 and some resolution parameter values "> 9Ve™ if there is any. The two kernel functions being con-

One can compare the obtained values to a threshold s, here S%(]jered_ in this exam_ple are th_e umform_and the Ga.u55|an ones
t0 0.95, 50 that iiR7sX(u) > s then the values in blodk, j) e uniform kernel is used with a special purpose: emphasize

R _ ble . : : . i
are detected as S|m|iar. The following blocks of similarues its poor performances because of its equalence with eardi
are detected: based measures such as (18). Results with other kernels such

as Cauchy, exponential or triangular are roughly the saae th
e (1,2)and @, 5), corresponding t¢0.82, 0.80} and{0.51, 0.50}Gaussian’s ones, since a convenient resolution paramater c
for nottoo wide influence areas specifiediy 1 (or1/4  be tuned to obtain similar shapes, as can be seen in Figure 3.
with &,) According to Table 3, we obtain a larger range of threshold
values by using the proposed selection measure than by using
o either (1,2) and @, 5) exclusively or{, 2) and @,6), cor-  ysual selection measures. In particular, for low values, dlfie
responding td0.82, 0.80} and{0.51,0.50,0.45}whenin-  yange is much larger. The consequence is that the threshold
creasinga (or 1/ with &), e.g. using Nz, &, 72 and  js easier to tune with the proposed framework. Except in un-
Ca. usual cases, it is always possible to retrieve the right rarrab
classes for the four considered soft label vectors. Foelarg
values, the Lukasiewicz t-norms are the only couple allgwin



to keep a large range of threshold values. The Gaussianlgerne
are, as expected, moréieient than the uniform kernels. Non
available (n.a.) ranges€. there are no thresholds allowing to

Table 4: Datasets used in the experiments.

retrieve the right number of classes) only occur with umifor bataset n p_ ¢ Overlap
kernels. As a final remark, let us mention that in these syn- DH 1600 2 2 slight
thetic examples, the t-norm couples can be ranked as fallows D1 2000 7 2 moderate
(T, L)s < (T, L)p < (T, L)L. D2 4000 2 4 strong
Forest 495411 10 2 strong
4. Experimental Results lonosphere 351 34 2 strong
Pima 768 9 2 strong
4.1. Datasets and protocol Iris 150 4 3 slight
To validate the fiiciency of the proposed class-selective Thyroid 215 5 3 slight
rejection rules, we compare their performance on threé-arti PageBlocks 5473 10 5 moderate
cial datasets and thirteen real datasets from the UCI Machin Glass 214 9 6  strong
Learning Repository [40] of various characteristics imtsiof: Statlog 6435 36 6 moderate
numbem of objects, numbep of features, numbes of classes Digits 10992 16 10  slight
and degree of overlap, as summarized in Table 4. Correspond- Yeast 1484 8 10  strong
ing degrees of overlap are roughly estimated through a three Optical 5620 64 10  slight
dimensional PCA Rrincipal Component Analysiprojection. Vowel 528 10 11 moderate
The synthetic datasets are: Letter 20000 16 26  strong

e D1 composed of 2000 points drawn from a mixture of
two normal seven-dimensional distributions of 1000 point@ the subset of selected ones. ThereforeBlRetrade df is
each withmeang; = '(1,0,...,0)andvz = '(-1,0,..,0),  replaced by the error-average number of clas&@strade df
and equal covariance matricBs= X, = |, and one analyses tHEn—curves as introduced by Ha [5]. The

e D2 contains 4000 points drawn from a mixture of four area under th&n-curve [34] is given by

normal two-dimensional distributions of 1000 points each 1

with means/; = '(1,1),v> = Y(1,-1),v3 = '(-1,1) and AUC(EN) = f E(R(t))dt. (26)
v4 = (-1, -1), and equal covariance matricgs= X, = 0

I3 =24 =1, (see Figure 5¢ft)) Since the decision rule is evaluated for all the possiblest

. . . .. olds, the less the area under t&e-curve is, the better the per-
e DH consists of two overlapping Gaussian classes Wlthformance that is achieved [34]

different covariance matrices according to the Highley- We use 10-fold cross-validation, dividing the set of sam-

man distribution, each composed of 800 observations in | : . | Lsi
R2 [41], (see Figure 5#(ght)) ples at random into 10 approximately equal-size parts. The 1_
' ' parts are roughly balanced, ensuring that the classes ste di

Soft labels are computed using the model defined by (1)tributed proportionally among each of the 10 parts. Ted-fol
whereq; are set to 1 for each class. Note that other decreagross-validation works as follows: we fit the model on 90%
ing functions of the distance to the class-means can be osed @f the samples and then predict the hard class labeithe
obtain soft labelse.g. u(x) = expa; d?(x, v;)), but since per- remaining 10% (the test samples). This procedure is repeate
formances obtained with it are roughly the same, the reatdts 10 times, with each part playing the role of the test samples,
not reported here. and the errors on all 10 parts are added together to compmite th

There are several ways to evaluate a decision rule, depen@verall error.
ing on the type(s) or reject(s) involved (ambiguity gorddis-
tance) and the kind of rule (rejection rule or class-selectile).  4.2. Results
One generally uses the following quantities, as a functiche The AUC(EN) values obtained on the datasets of Table 4 us-
rule’s parameter®: the correct classificatio€(®), the mis-  ing the new family decision rule using the three t-norm cespl
classification (or error(®) and the rejecR(®) probabilities  of Table 1 and the literature’s decision rules: Ha [6], Hohi
or rates. Chow introduced the error-rejeER) trade df and  [7], Frélicot and Le Capitaine [28], Mascarilit al. [13] re-
proposed to analyze tfeR-curve E(®) vs. R®)) for all pos-  ferred to asd},z., Tax and Duin [12] referred to &BD, are
sible values o® (limited to {t} for Chow's rule as well as for given in Table 5. Theb,.. rule is not directly derived from
all other rules studied in this paper), in order to find théropt  the ®ygr measure but is a rule adapted to the specific case of
or an operational value far[3]. Therefore a common way to class selection by normalization steps in order to allowglei
compare such rules is to plot théiR-curves and look for the  threshold use, as suggested by their authors (see the maper f

minimum AreaUnder theCurve (AUC). details). For sake of brevity, we only report results okeadiby
For class-selective rules, an object is generally consitier Oy 5e-., I.e. using the Standard t-norms. THeD rule is the
5 1S

as misclassified if the class it is issued from does not belong
8



Table 3: Selection measures fafx) = (0.70,0.10,0.85,0.80), u(y) = (0.20,0.10,0.85,0.80), u(z) = '(0.20,0.10, 0.85, 0.15) andu(v) = (0.20,0.10,0.05,0.15)
(from top to bottom) for which the right number of class&$x, t) = 3, 2, 1 and 0 respectively is selected whatehiarthe specified interval.

X
Py
u Kk ®Dya  Dpo DL (T.L)s (T. e (T, L
U, N, U, N, U, N
A=.1 A2=1 a1=1 A=1 a2=.1 A=1 a2=.1 A2=1 a2=1 a=1 a=.1 a=1
0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8585 0. 0.85 0.85
1 0.80 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.9494 0. 0.94 0.94
u(x) 2 0.70 0.90 0.87 0.82 0.94 0.82 0.82 0.82 0.96 0.82 0.88 0.8200 1. 0.82 0.86
3 0.10 0.40 0.14 0.11 0.82 0.11 0.43 0.11 0.75 0.11 0.37 0.1180 0. 0.11 0.16
4 0 0.90 0 0 0.11 0 0.11 0 0.10 0 0.05 0 0.10 0 0
Yte [1.7] [4.85 [14,.85] [11,82[ [82,.85[ [11,82[[43,82[ [11,82[ [75.85 [11,82] [37..85 [182] [8..85] [11,82[ [.16,.85
0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8585 0. 0.85 0.85
1 0.80 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.9494 0. 0.94 0.94
u(y) 2 0.20 0.40 0.25 0.23 0.94 0.23 0.43 0.23 0.86 0.23 0.48 0.23 1.23 0 0.36
Y 3 0.10 0.90 0.50 0.11 0.23 0.11 0.23 0.11 0.29 0.11 0.18 0.1130 0. 0.11 0.10
4 0 0.90 0 0 0.11 0.01 0.11 0 0.10 0.01 0.04 0 0.10 0 0
Vte [2.8] [40.85 [25.85 [23.85] na  [23.85] [485[ [23.85[ na  [23.85] [48,.85 [23.85] n.a 23,85 [.36,.85[
0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8585 0. 0.85 0.85
1 0.20 0.35 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.2323 0. 0.23 0.23
u(2) 2 0.15 0.95 0.75 0.17 0.23 0.17 0.23 0.17 0.36 0.17 0.24 0.1735 0. 0.17 0.17
3 0.10 0.95 0.67 0.11 0.17 0.11 0.17 0.11 0.26 0.11 0.17 0.1125 0. 0.11 0.11
4 0 0.90 0 0 0.11 0.01 0.11 0 0.11 0.01 0.04 0 0.10 0 0
Vte [2,.85 [35.85 [.23,85[ [23,85] [.23,85[ [235B [23,.85[ [.23,.85[ [23,85] [.23,.85[ [23,85[ [285[ [23,.85[ [.23..85[ [.23,.85]
0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2020 0. 0.20 0.20
1 0.15 0.95 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7575 0. 0.75 0.75
uv) 2 0.10 0.95 0.67 0.50 0.75 0.50 0.75 0.50 0.73 0.50 0.61 0.5071 0. 0.50 0.50
3 0.05 0.95 0.50 0.25 0.50 0.25 0.50 0.25 0.45 0.25 0.34 0.2542 0. 0.25 0.25
4 0 0 0 0 0.25 0.02 0.25 0 0.15 0.01 0.08 0 0.14 0 0
Yte [21  [24  [24 24 24 24 24 24 20 21 24 21 24 2 24
° 1 or i
o 2
i of
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Figure 5: Synthetic datase®? (left) andDH (right)

one their authors cathrget normalization Since it is not ded-
icated to class selection, only results obtained on twosekas
datasets are reported, rejection meaning that two classega
lected.

ble 2, except the uniform one, behave well provided a reason-
able tuning of the resolution parameter. Therefore, we only
present the results obtained with a good kernel (Gauggjgn
and the poorest one (uniforfit;) for two values ofd (0.1,1).

As explained in the previous section, all the kernels of Ta-The results show that the rules basedlpp and®y, selection
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Table 5: Area under thEn—curve for class-selective decision rules. Best resultsnaoeld.

(DT,'K,[
(Lk>0).k+1)
Datasets Ona  Oho  DFL (DK/IBF,TS D (T, L)s (T, L)p (T, L)
U, N U, Na U, Na

1=01 2=1 A2=01 2=1 2=01 A=1 2=01 2=1 2=01 2=1 2=01 a=1
DH 0.011 0.029 0.008 0.008 0.010 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
D1 0.070 0.073 0.046 0.046 0.053 0.046 0.046 0046 0.046 0.046 0.046 0.046 0046 0.046 0.046 0.046 0.046
D2 0.223 0.408 0.250 0.259 - 0207 0.259 0207 0.258 0207 0.257 0207 0.229 0207 0.253 0.207 0.207
Forest 0.146 0.151 0128 0128 0.138 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128
lonosphere 0.186 0.196 0.163 0163 0.176 0.163 0.163 0163 0163 0163 0.163 0.163 0163 0163 0.163 0.163 0.163
Pima 0.164 0.141 0115 0115 0.139 0115 0115 0115 0115 0115 0115 0115 0115 0.115 0.115 0.115 0.115
Iris 0.034 0.022 0.009 0.012 - 0.009 0.011 0.009 0.010008 0.010 0.008 0.009 0.008 0.010 0.008 0.008
Thyroid 0.056 0.034 0.007 0.013 - 0006 0.012 0006 0.012 0.006 0.010 0.006 0.008 0.006 0.010 0.006 0.006
PageBlocks 0.215 0.146 0.086 0.087 - 0.087 0.087 0.086 0.087 0.087 0.08®87 0080 0.087 0.083 0.087 0.087
Glass 0.526 0.537 0.125 0.166 - 0106 0.165 0106 0.175 0106 0.144 0.106 0.118 0106 0.143 0.106 0.106
Statlog 0.436 0.436 0.116 0.154 - 0.089 0.114€0.086 0.129 0.089 0.102 0.089 0.093 0.089 0.102 0.089 0.089
Digits 0.171 0.167 0.010 0.010 - 0.008 0.010 0.008 0.010 0.008 0.00908 0.007 0.008 0.009 0.008 0.008
Yeast 1.665 2.122 1.189 0.911 - 0790 0.898 0790 0.954 0790 0.854 0.790 0.807 0.790 0.849 0.790 0.790
Optical 0.099 0.097 0.042 0.039 - 0.004 0.0080.003 0.004 0.003 0.005 0.003 0.004 0.003 0.005 0.003 0.003
Vowel 0.404 0.423 0.075 0.047 - 0035 0.044 0035 0.049 0.035 0.042 0.035 0.036 0.035 0.042 0.035 0.035
Letter 1.387 1.379 0.190 0.201 - 0058 0.070 0.058 0.076 0.058 0.069 0.058 0.061 0.058 0.069 0.058 0.058

measures never reach the performance of the others. Let us decision rule including a reject optioe.g.[3, 14, 6].
further into the analysis according to: As expected, using a Gaussian kerNglleads to better perfor-
) mances than using an uniform o®&,. For almost all datasets
e the number of classes of the datasets and their degree ngceptPageBbCkSind Digits), the best scores are obtained
overlap between the classes, for small values oft, whatever the kernel. Setting a small value
« the parameters of the rules, namely the kernel, its resolRf 4 consigts in considering only_the first large and last low soft
tion parameter value, and the triangular norm couple. labels. Th.|§ result shows that m|do_lle values of detectedkslo
are not critical for the class selection problem. Moreottes,
As expected, the rules based ®ggr, P andd);ff‘ givethe  Gaussian kernel is less sensitive than the uniform one te var
same results on two-classes datagetis DH, Forest lonosphereation of their resolution parameter. For instance, chamgin
Pima}, whatever the kernel and the resolution parameter, anftom 0.1 to 1 for U, significantly dfects the performance. As
outperform the rules based on other measulgg, @y, and  discussed in Section 3, the uniform kernel handles the simi-
TD. The number of classes is of great interest because the prtarity analogously to the cardinal measure and does nowallo
posed family of rules can take into account simultaneousiynf  to make soft labels of various importances contributingn-Co
two up toc values so that the whole similarity can be exhib-sequently, the cardinal measure, as well as the uniform ker-
ited while the literature’s rules that only involve two sessive  nel, is not well adapted and convenient for the class selecti
ordered values cannot. The more the number of classes, tipgoblem. Moreover, as shown in Section 3, tunihdpr U,
more the proposed family of rules outperforms the others, seis much more dficult because the range of threshold values
datasetgPageBlocksGlass Statlog Digits, Yeast Vowel| allowing to select a reasonable number of classes is smaller
Optical, Letter} for which ¢ > 3. The way the tested rules What about the triangular norm couples? According to Table
perform with respect to the degree of overlap can be undes5, the results are quite similar. However, considering than
lined by the scores ratios andf@irences. Th&UC ratios are  ber of cases for which the proposed family of rules gives the
much larger for datasets presenting a slight or moderate ovebest result, whatever the kernel, one can observe the follow
lap of classe§DH, D1, Iris, Thyroid, PageBlocksS tatlog ing ranking: (T, L)s < (T,L)p < (T,L1).. This confirms the
Digits, Vowel Optical} than for those presenting a strong over-results reported in the previous section in Example 5. More
lap{D2, lonosphereForest Pima Glass Yeast Letter. The  generally, the product and Lukasiewicz norms induce riias t
reason is that for better separated classes, there are rabre pare less sensitive, in terms of performances, to changesrof k
terns for which the largest soft label is much larger than thenels and resolution parameter value. For final illustrapon
other values, and this situation is handled by the propoped o pose, some of theE,n) curves are shown in Figure 6. For
ator whereas it is not taken into account in literature’sciddn ~ sake of brevity, only six datasets presenting various amofun
measures. While thAUC ratios are lower for datasets pre- overlap, number of classes and number of patterns, are cho-
senting a strong overlap, thJC differences are much larger sen: {D2,Digits,S tatlogY eastPageBlocksVowe}. One can
(e.g.{Glass Statlog Vowel Letter} and except folyeast for  see that for every average number of selected classes rtre er
datasets presenting better separated classes. This ettt rate obtained with the proposed family of rules is lower ttran
less the classes overlap, the less the benefit is, as it is1fjor a ones obtained with literature’s rules.
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Figure 6: E,n) curves for Ha, Horiuchi, FL, MBF rules, and two examples @fwvnrules obtained on six datasets (from left to right, up tdtdmo):
{D2,Digits,S tatlogY easfPageBlocksVowe}.

5. Conclusion definition domain. We also plan to use this optimum decision
) ) _ - _rule for outliers detection,e. patterns that do not match any of
A generic formulation of class-selective decision rules isthe known classes so that they must be distance rejected. Thi
presented. It allows to write state-of-the-art single shied tproblem, as well as its variant for support vector machinls,
based decision rules with a single equation. A new family ofpe addressed using hinge loss minimization [43], or suteoga
measures suitable to define tolass-selective decision rules conyex loss functions [44]. It will be studied by taking into
is proposed as well. These selection measures rely on thk blo 3ccount new results oiU C variants [45, 46].
similarity deteCt!qn of the soft labels to the classgs of & pa [1] H. Le Capitaine, C. Frélicot, A class-selective rejestscheme based on
tern to be classified by means of a new aggregation operator. = plockwise similarity of typicality degrees, in: 19th Intetional Confer-
It is based on specific discrete fuzzy integrals of the omlere ence on Pattern Recognition, 2008, Tampa, USA, pp. 1-4.
soft labels with respect to a symmetrical kernel functiorioith [ It-\’e.rsli:lijgr?(,:epé%%r(t)‘ D. Stork, Pattern Classification, 2niiga Wiley In-
Welghts the degre_es accordlng t9 their rel_atlve pOSItIdIh_IWI 3] C. Chow, An optimum character recognition system usiagision func-
the block. The ratio of such two integrals is used to define the  tions, IRE Transactions on Electronic Computers 6 (1957)-254.
selection measures from which class-selective decisitesru [4] C. Chow, On optimum error and reject trad¢olEEE Transactions on
; ; _Information Theory 16 (1970) 41-46.
Ca?. be dheI’IVid.I Sl?lce .SUChhrUIeS depfen(_j Or.] Only On.e user[5] T. Ha, On Functional Relation between Recognition Emod Class-
_de ined threshold re ecting the costs of rejection and eitror Selective Reject, Technical Report, Institute of Comp@&erence and
is proposed to use the area under the curve of the error rate as  Applied Mathematics, University of Berne, 1996.
function of all possible threshold values as a performanea-m [6] T.Ha, The optimum class-selective rejection rules, EEEansactions on
sure. An extensive comparison with the usual one-threshold., Patem Analysis and Machine Intelligence 19 (1997) 608-61
) . . L 7] T.Horiuchi, Class-selective rejection rule to minimithe maximum dis-
based class-selective decision rU|e§ on 5|Xte?n datasgiten. tance between selected classes, Pattern Recognition 98)(1879—
The results show that the new family of decision rules largel 1588.
Outperforms the existing ones on all datasets. [8] C. FTéliCOtl,).B. Ii;lbuiss?n, ,bemuhlti-stet? predictor q{_mber_sr;ip“furtjctior;
. . . . _ as an amboiguity reject solver In pattern recognition, Inteinationa
The ChOI(_:Q of the t”a”QU'ar norms used in the fuzzy inte Conference on Information Processing and Management oérthiaty
grals is not trivial and remains an open problem from a thteore in Knowledge-based Systems, 1992, pp. 709—715.
ical point of view. It requires a further study on the mathéma [9] P. Foggia, C. Sansone, F. Tortorella, M. Vento, Multisidication: reject
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