
Sparse Non-Negative Tensor Factorization Using
Columnwise Coordinate Descent

Ji Liu, Jun Liu, Peter Wonka, and Jieping Ye
Department of Computer Science and Engineering, Arizona State University, Tempe, AZ, 85287.

Abstract

Many applications in computer vision, biomedical informatics, and graphics deal
with data in the matrix or tensor form. Non-negative matrix and tensor factoriza-
tion, which extract data-dependent non-negative basis functions, have been com-
monly applied for the analysis of such data for data compression, visualization,
and detection of hidden information (factors). In this paper, we present a fast
and flexible algorithm for sparse non-negative tensor factorization (SNTF) based
on columnwise coordinate descent (CCD). Different from the traditional coordi-
nate descent which updates one element at a time, CCD updates one column vec-
tor simultaneously. Our empirical results on higher-mode images, such as brain
MRI images, gene expression images, and hyperspectral images show that the
proposed algorithm is 1-2 orders of magnitude faster than several state-of-the-art
algorithms.
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1. Introduction

Non-negative matrix and tensor factorization (NMF/NTF) aim to extract data-
dependent non-negative basis functions [13, 6, 20, 27], so that the target data can
be expressed by the linear or multi-linear combination of these non-negative com-
ponents. They have been commonly applied for the analysis of such data for data
compression, visualization, and detection of hidden information (factors), e.g., in
face recognition [24], psychometric [19] and image analysis [25]. Additionally,
the basis can be constrained to be sparse which typically leads to an even more
meaningful decomposition of the data. As a result, many researchers focused on
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sparse non-negative matrix factorization (SNMF) [13, 14, 4, 9] in the past few
years.

A tensor, as a more general “matrix”, can be used to express more complicated
intrinsic structures of higher-mode data. Thus, sparse non-negative tensor factor-
ization (SNTF) is a natural extension of the SNMF problem. Recently, SNTF be-
gan to receive more attention. It is used in high-mode medical data analysis [18],
psychometric [19], etc. The SNTF problem is not as well studied as the matrix
case. In comparison with SNMF, SNTF has two additional challenges. First, a
tensor usually contains a much larger data set than a matrix, thus SNMF needs to
pay more attention to computing efficiency than other factors.

The other challenge lies in how to deal with the so-called “core tensor” in
SNMF. Because of the special structure, tensor factorization always contains im-
plicitly or explicitly a core tensor, which does not exist in matrix factorization.
How to efficiently and effectively deal with it is one key problem in SNTF. We
can either fix it as an identity [18], or incorporate it into the optimization proce-
dure [17]. The former approach is not flexible in handling the unbalanced target
tensor data, while the latter one is computationally very expensive, which makes
it unsuitable for large high-mode tensor data.

In this paper, we propose a fast and flexible SNTF algorithm, which iteratively
updates one basis at a time. We employ the idea of coordinate descent (CD)
for the updating. CD has recently been shown to be very efficient in solving
the sparse learning problem [22]. It updates one element of the basis at a time
and the algorithm cycles through all elements until convergence. The key to its
high efficiency lies in the closed-form solution for each update. In the proposed
algorithm, we identify the independent groups of elements among different bases,
and update at one time one column vector which consists of elements from all
bases, rather than one element from one group. We call it “columnwise coordinate
descent” (CCD). In addition, we design a flexible way to deal with the core tensor
problem mentioned above. We apply the proposed algorithms to three types of
higher-mode images such as brain MRI images, gene expression pattern images,
and hyperspectral images. Our experiments show that the proposed algorithm is
1-2 orders of magnitude faster than several recent SNMF and SNTF algorithms
while achieving the same objective value.

The rest of the paper is structured as follows: the related work is presented
in section 2; section 3 introduces the proposed CCD algorithm; we present the
experimental results in section 4; finally, we conclude this paper in section 5.
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2. Related Work

Since Lee and Seung [13] started a flurry of research on non-negative ma-
trix factorization (NMF), this field received broad attention. In addition to the
use of different objective functions such as the least squares [4] and Kullback
Leibler [13], the main difference among various algorithms lies in the update rule.
The update rule directly influences the convergence speed and the quality of the
factorization. The multiplicative update rule proposed by Lee and Seung [14] was
considered to be the classical one, although its convergence speed was quite slow.
Gonzalez and Zhang [7] used an interior-point gradient method to accelerate the
multiplicative update. Recently, a quasi-Newton optimization approach was em-
ployed as the update rule by Zdunedk and Cichocki [28]. Lin [15] employed a
projected gradient bound-constrained optimization method which has better con-
vergence properties than the multiplicative update. Recently, Kim and Park [10]
proposed a novel formulation of sparse non-negative matrix factorization (SNMF)
and used alternating non-negativity-constrained least squares for the computation.
Their results showed that it achieved better clustering performance with a lower
computational cost than other existing NMF algorithms. See [1] for a more de-
tailed review on NMF.

Tensor factorization is a natural extension of matrix factorization. It has been
applied successfully in face recognition [24], psychometric [19], and image anal-
ysis [25]. Two popular models have been studied for tensor factorization includ-
ing the parafac model [8, 3] and the tucker model [23]. Most work focus on
the parafac model, since it is simpler and easier to understand from the matrix
perspective. Welling, M. and Weber, M. [26] proposed a non-negative tensor
factorization algorithm based on the multiplicative updating rule [14], a natu-
ral extension of matrix factorization; Kim et al. [11] proposed a non-negative
tensor factorization algorithm based on the alternating large-scale non-negativity
constrained least squares; A non-negative sparse factorization algorithm using
Kullback-Leibler divergence [13] was introduced by FitzGerald et al. [20]; Mørup
et al. [16] proposed a SNTF algorithm based on the parafac model, which employs
the L1 norm penalty as the sparseness constraint like ours, and applies the mul-
tiplicative updating rule like most other algorithms [6, 20]. They further employ
over relaxed bound optimization strategy to accelerate the computing speed; Re-
cently, Cichocki et al. [5] presented an algorithm using alpha and beta divergences.

It is interesting to note that the parafac model is just a specific example of the
tucker model when the core tensor is fixed to be an identity. A key issue in ap-
plying the tucker model is how to construct the core tensor. Lathauwer et al. [12]
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presented the well-known HOSVD (Higher-Order Singular Value Decomposition)
factorization based on the SVD algorithm for matrices. Without a non-negative
requirement, it forced all factors to be orthogonal so that the core tensor could
be computed through a unique and explicit expression. Bro and Andersson [2]
implemented a non-negative tucker model factorization, but the core tensor was
not guaranteed to be non-negative. Recently, Mørup et al. [17] proposed a non-
negative sparse tensor factorization algorithm, which incorporated the core tensor
into the optimization. However, the optimization process for the core tensor domi-
nates the computational cost per iteration, resulting in overloaded computing time
for convergence.

3. Algorithm

We detail the proposed algorithm in this section. We first introduce the SNMF
problem in section 3.1. Then, the more general SNTF problem is presented in
section 3.2. We handle the core tensor issue in section 3.3.

3.1. SNMF
SNMF approximates a matrix A by a matrix Â so that Â is the product of two

matrices, i.e.,
A ∼ Â = MNT .

We formulate the SNMF problem as the following optimization:

min
M,N

:
1

2
‖A−MNT‖2 + λ1|M |+ λ2|N |

s.t. M ≥ 0, N ≥ 0
(1)

where A ∈ Rp×q, M ∈ Rp×r and N ∈ Rq×r. Here, the L1 norm penalty λ1|M |+
λ2|N | is used as the sparseness constraint. Without loss of generality, we can
express the target matrix A as A ≈ MINT , where I is an identity matrix with the
rank r. It is worthwhile to point out that I can be considered as a core tensor for
the matrix Â, when Â is regarded as a 2-mode tensor. We will discuss the more
general tensor case in the next subsection.

3.2. SNTF
Before formulating the SNTF problem, we first introduce some tensor fun-

damentals and notations. Tensors are multilinear mappings over a set of vector
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spaces. An N-mode tensor is defined as A ∈ RI1×I2×...IN . Its elements are de-
noted as ai1i2...iN , where 1 ≤ in ≤ In, 1 ≤ n ≤ N . For instance, a vector is
a 1-mode tensor and a matrix is a 2-mode tensor. It is sometimes convenient to
unfold a tensor into a matrix. The unfolding of a tensor A along the nth mode is
defined as

A(n) ∈ RIn×(I1...In−1In+1...IN ).

The mode-n product of a tensor A ∈ RI1×I2×...IN and a matrix U ∈ RJ×In is
denoted byA×nU . Its result is still a N-mode tensor B ∈ RI1...×In−1×J×In+1...×IN .
Its elements are defined as:

bi1...in−1jin+1...iN =
∑
in

ai1...in−1inin+1...iN ujin (2)

The mode-n product B = A×n U can be computed via the matrix multiplication
B(n) = UA(n) followed by a “fold” operation along the nth mode. The “fold”
operation is defined as foldn(B(n)) = B. This paper uses

‖A‖ = (
∑

i1,i2,...iN

|ai1,i2,...iN |2)
1
2

as the Frobenious norm of a tensor and |A| =
∑

i1,i2,...iN
(|ai1,i2,...iN |) as the L1

norm.
Next, we formally formulate the SNTF problem. Like SNMF, the goal of

SNTF is to search for the factorization of a tensor Â to approximate the target
tensor A. For convenience, let us first consider a simple example where the mode
of Â is 2 , i.e. Â is a matrix. According to the definition of SNMF, Â can be
factored as Â = MNT or Â = MINT . Using the tensor notation, Â is denoted
as Â = I ×1 M ×2 N . Here, the identity I plays the role of the core tensor.
Through a simple generalization, when the mode of the target tensor is greater
than 2, the approximate tensor Â can be factored as

Â = C ×1 U1 ×2 ...×N UN ,

where C is an identity tensor whose elements are 1 in the diagonal and 0 otherwise.
Similar to equation (1), the SNTF problem can be described as the following
optimization problem:

min
U1,...,UN

1

2
‖A − C ×1 U1 ×2 ...×N UN‖2 +

∑
1≤n≤N

λn|Un|

s.t. Un ≥ 0, 1 ≤ n ≤ N

(3)
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where Â ∈ RI1×I2×...IN and Un ∈ RIn×Jn for all 1 ≤ n ≤ N . Since the core
tensor C is assumed to be an identity tensor, J1 = J2 = . . . = JN . The L1 norm
penalty in the objective function forces Un to be sparse.

We propose to solve the optimization problem in Eq. (3) iteratively by updat-
ing one part at a time with all other parts fixed. For example, if we fix U1, ...Un−1,
Un+1, ..., UN and search for the optimal U∗

n, we obtain the following optimization
sub-problem:

min
Un

:
1

2
‖A − C ×1 U1...×N UN‖2 + λn|Un|

s.t. Un ≥ 0.
(4)

Since ‖A−C×1 U1 . . .×N UN‖ = ‖A(n)−Un(C×1 U1 . . .×n−1 Un−1×n+1 . . .×N

UN)(n)‖, the problem is equal to the following one:

min
Un

:
1

2
‖A(n) − UnB(n)‖2 + λn|Un|

s.t. Un ≥ 0
(5)

where
B(n) = (C ×1 U1 . . .×n−1 Un−1 ×n+1 . . .×N UN)(n).

We can further simply the optimization problem in Eq. (5), by taking the trans-
pose and separating the equations into the In columns of the matrix UT

n . resulting
in In independent optimization problems:

min
ui

:
1

2
‖BT

(n)ui − ai‖2 + λn|ui|
s.t. ui ≥ 0,

(6)

where

A(n) = [a1, a2, ..., aIn ]T ,

Un = [u1, u2, . . . , uIn ]T .

For this convex but not differentiable optimization problem, a coordinate de-
scent (CD) method can be applied to find the global minimum [22]. The basic
idea of CD is to optimize one element at a time while fixing other elements by
decomposing the problem in the Eq. (6) into several sub-problems as:

min
uij

:
1

2
‖BT

(n)ui − ai‖2 + λn|uij|
s.t. uij ≥ 0

(7)
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where ui = [ui1, . . . , uij, . . . , uiJn ]T . Since the objective function is not differ-
entiable, we need to compute its subdifferential to search for its optimum. The
subdifferential of a function f(x) at a point x is defined as

∂f(x) = {d|f(y) ≥ f(x)+ < d, y − x >, ∀y}.
In general, the subdifferential at a particular point is a set rather than a single
value. If the function f(x) is differentiable at the point x̂, then the differential
value f ′(x̂) is the unique element in its subdifferential. If x∗ is a global optimum,
then 0 ∈ ∂f(x∗) must be satisfied. For the problem in Eq. (7), we compute the
subdifferential of the objective function as follows:

∂f(uik) =





{bk(B
T
(n)ui − bT

k ai) + λn}, uik > 0

{bk(B
T
(n)ui − bT

k ai)− λn}, uik < 0

[bk(B
T
(n)ui − bT

k ai)− λn,

bk(B
T
(n)ui − bT

k ai) + λn], uik = 0

(8)

where
B(n) = [bT

1 , . . . , bT
j , . . . , bT

JN
]T .

Eq. (8) distinguishes between three cases. In the first two cases, the function is
differentiable at point uik and the subdifferential corresponds to the gradient. In
the third case the subdifferential is a closed interval. We then look for the optimal
u∗ij which satisfies 0 ∈ ∂f(u∗ij). We can obtain the solution in a closed-form as
follows:

u∗ij =





t−λn

bkbT
j

, t > λn

t+λn

bkbT
j

, t < λn

0, otherwise

(9)

where
t = bj(B

T
(n)ui − bT

j ai)− bjuij. (10)

If we further force the non-negative constraint uij ≥ 0, the optimum solution can
be computed as follows:

u∗ij =

{
t−λn

bjbT
j

, t > λn

0, otherwise
(11)

The coordinate descent method discussed above optimizes the objective func-
tion in Eq. (5) by one element at a time where the formulation for each individual
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element is given by Eq. (7). This is illustrated in the first row of Fig. (1). A big
advantage of our derivation is that several variables are independent and can be
updated simultaneously. The optimization formulation in Eq. (6) considers a row
of Un at the time, but all elements in a row are dependent. Therefore, it seems
that no more simplification is possible. However, the trick is to realize that all of
the nth coordinates in each of the In rows of Un are independent. Therefore, we
can update one column vector at the time. That means we simultaneously work
on In individual elements, one from each of the row equations shown in Eq. (6).
We call the algorithm “columnwise coordinate descent” (CCD), which updates
all elements in one column together as shown in the second row of Fig.(1). Our
empirical results show that CCD is 1-2 orders of magnitude faster than CD. The
detailed CCD updating procedure is shown in Algorithm 1.

Algorithm 1 Columnwise Coordinate Descent Updating
Input: A(n), B(n), λn

Output: Un

1: Set M = B(n)B
T
(n);

2: Set N = A(n)B
T
(n) − λn;

3: Set D = [M(1, 1) M(2, 2) . . . M(Jn, Jn)];
4: Set M(j, j) = 0 for all 1 ≤ j ≤ Jn;
5: while not convergent do
6: for j = 1 to Jn do
7: Updating Un(:, j) = max

(
0, N(:,j)−UnM

D(j)

)

8: end for
9: end while

The computational complexity is presented in Tab. 1 (considering only the
“multiplication” and “addition” operations). We defined KI as the maximal itera-
tion number for the iteration in step 5 to 9 in Algorithm 1 and KO as the running
number of Algorithm 1.

In our experience, KI ≤ 100 and KO ≤ 300 in general. One can see that if the
mode number N is large,

∏
i6=n Ii À KIIn such that the main computational load

lies in Step 1 and Step 2. The computational complexity in Step 1 and 2 has the
same asymptotic complexity as an iteration in the state-of-the-art tensor/matrix
factorization algorithms [18, 14]. However, our algorithm converges much faster
than the state-of-the-art tensor/matrix factorization algorithms (see the empirical
comparison in section 4). That is why our algorithm is more efficient especially
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Figure 1: Comparison of CD Updating (top row) and CCD Updating (bottom
row).

Method Complexity
Step 1 O(J2

n

∏
i6=n Ii)

Step 2 O(Jn

∏N
i=1 Ii)

Step 3 0
Step 4 0

Step 5-9 O(KIInJ
2
n)

Algorithm 1 O(KIInJ
2
n) + O(Jn

∏N
i=1 Ii)

Total O(KOKI

∑N
i=1 IiJ

2
i ) + O(KO

∑N
i=1 Ii

∏N
i=1 Ii)

Table 1: Complexity analysis
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in the large scale data.

3.3. Non-Identity Core Tensor
In the exposition above we assume that the core tensor is an identity following

the SNMF structure. However, forcing the core tensor to be an identity may not
work in some situations. For instance, when the target tensor is very unbalanced,
say, its mode is 1000×1000×15×3 in size, then choosing an identity core tensor
will create a dilemma. A high-mode core tensor (say, 20×20×20×20) obviously
leads to redundant computing; a low-mode core tensor (say, 3 × 3 × 3 × 3) may
result in a high error. Thus, it is essential to construct a non-identity core tensor
to deal with unbalanced tensors. In the following, we describe how to establish a
non-identity core tensor.

We set out to create a core tensor using the requirements described below. This
will lead to a core tensor that is similar to an identity matrix.

1. It consists of ”0” and ”1” elements.
2. Any two slices of the core tensor along any mode must be orthogonal. In

other word, all rows of C(n) must be orthogonal.
3. It does not decrease the rank of Â(n). In other word, for any n, C(n) is of

full row rank: rank(C(n)) = Jn. Here, we assume that Jn ≤
∏

k 6=n Jk for
any n.

It is clear that a tensor designed using the guidelines above is not unique. We pro-
pose to automatically generate a core tensor fulfilling all three conditions above.

Since the core tensor contains two types of elements: “1” and “0” only, we
use a matrix to store all locations of 1’s. The matrix can be expressed as S =
[c1, c2, . . . , cN ] or [rT

1 , rT
2 , . . . , rT

M ]T .
Each row of the matrix S corresponds to an element in the core tensor which

has a value of “1”. For example, if there is a row of the matrix given by rm =
[j1, j2, . . . , jN ], then the (j1, j2, . . . , jN)-th element of the core tensor is 1. The
condition 2 requires that any two rows of the matrix S have at least two different
elements. To fulfill the condition 3, the n-th column cn of the matrix S contains
all integers from 1 to Jn. The pseudo-code for the core tensor estimation is given
in Algorithm 2.

Under the C-filling rule, all combinations fill the matrix in a circular fashion,
while under the P-filling rule, all combinations fill the matrix in a piecewise fash-
ion. To illustrate the algorithm, We show an example in Fig.2. The mode size is
given as 2× 3× 4× 8. Since 2× 3 ≤ 8 ≤ 2× 3× 4, the first two columns should
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Algorithm 2 Core Tensor Estimation
Input: J1, J2, . . . , JN

Output: S
1: Sort J1, J2, . . . , JN in increasing order. Without loss of generality, we assume

J1 ≤ J2 ≤ . . . ≤ JN ;
2: Set S = [0]JN×N ;
3: Set S(:, j) = 1 : Jn;
4: Find n satisfying M =

∏n−1
i=1 Ji ≤ JN ≤ ∏n

i=1 Ji;
5: if Jn ≥ M then
6: Fill S(:, n) using the C-filling rule
7: Fill S(:, 1 : n− 1) using the P-filling rule
8: else
9: Fill S(:, n) using the P-filling rule

10: Fill S(:, 1 : n− 1) using the C-filling rule
11: end if
12: Fill S(:, n + 1 : N) using the C-filling rule

be packed together. Since 2 × 3 ≥ 4, the first two columns are filled using the
C-filling rule and the third column follows the P-filling rule.

Figure 2: Illustration of C-filling and P-filling.

4. Empirical Evaluation

In this section, we evaluate the proposed algorithms using three different types
of higher-mode images including brain MRI images, gene expression images, and
hyperspectral images. All algorithms were implemented in Matlab version 7.6.0
and all tests were performed on an Intel Core 2 2.0Hz and 3GB RAM computer.
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Mode size = 20× 20× 20 λ1 = λ2 = λ3 = 0.5
Method Iter. Comp. Spar. Time Error
Parafac 211 0.0016 0.18532 192.875 0.1451
Tucker 721 0.0027 0.4632 4327.75 0.1034
T-CCD 49 0.0016 0.5080 94.0803 0.1402

Mode size = 40× 40× 40 λ1 = λ2 = λ3 = 0.5
Method Iter. Comp. Spar. Time Error
Parafac 227 0.0033 0.1856 334.145 0.0877
Tucker - 0.0123 - >6000 -
T-CCD 54 0.0033 0.5365 136.876 0.0809

Mode size = 60× 60× 60 λ1 = λ2 = λ3 = 0.5
Method Iter. Comp. Spar. Time Error
Parafac 233 0.0049 0.2539 440.370 0.0748
Tucker - 0.0353 - >6000 -
T-CCD 61 0.0049 0.5844 198.394 0.0651

Table 2: Comparison of Parafac, Tucker, and T-CCD on the brain MRI data: Iter.
= Iteration number; Comp. = Compression ratio; Spar. = Sparseness ratio, indi-
cating the percentage of zero values in the factors; Time = Running Time; Error =
Error ratio defined as ‖A − Â‖/‖A‖.
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Core tensor size = 5× 5× 5 λ1 = λ2 = λ3 = 0.1
Method Iter. Comp. Spar. Time Error
Parafac 330 0.00141 0.0802 29.3842 0.3955
Tucker 46 0.00145 0.0081 29.7751 0.4152
T-CCD 143 0.00141 0.0791 29.3618 0.3935
Core tensor size = 10× 10× 10 λ1 = λ2 = λ3 = 0.1
Method Iter. Comp. Spar. Time Error
Parafac 330 0.0027 0.2392 30.8170 0.3471
Tucker 45 0.0032 0.0567 29.4274 0.3868
T-CCD 130 0.0027 0.2423 29.6574 0.3425
Core tensor size = 15× 15× 15 λ1 = λ2 = λ3 = 0.1
Method Iter. Comp. Spar. Time Error
Parafac 235 0.0041 0.1702 29.8741 0.2997
Tucker 42 0.0056 0.0097 30.6174 0.3672
T-CCD 113 0.0041 0.1822 29.4654 0.2943

Table 3: Comparison of Parafac, Tucker, and T-CCD on the EEG data: Iter. = It-
eration number; Comp. = Compression ratio; Spar. = Sparseness ratio, indicating
the percentage of zero values in the factors; Time = Running Time; Error = Error
ratio defined as ‖A − Â‖/‖A‖.
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4.1. Comparison with Several Recent Algorithms
We compare our proposed sparse non-negative tensor/matrix factorization us-

ing columnwise coordinate descent (called “T-CCD”/“M-CCD”) against three ex-
isting methods, including Parafac [18], Tucker [17], and ALS (alternating least
squares) [10]. Note that we name the first two algorithms after the well estab-
lished tensor structure they use, but all three optimization algorithms stem from
recent papers.

Our first experiment compares the proposed tensor factorization algorithm T-
CCD against the Parfac and Tucker algorithms. We use a Brain MRI image of
size 181 × 217 × 181. We use a core tensor of size 20 × 20 × 20, 40 × 40 × 40,
and 60 × 60 × 60, respectively. We apply the same initialization and the same
sparseness coefficient (“λ” value in Tab. 2) for all three methods. The tolerance
value is fixed at 10−5 × ‖A‖2. To make a fair comparison, we report the average
results over five runs with different initializations. We compare the algorithms in
the following aspects:

• running time,

• compression ratio: the memory size of storing the factorization results over
the original size of this data,

• sparseness ratio: the percentage of nonzero entries in the factorization re-
sult, and

• error ratio: the reconstruction error defined by ‖A − Â/‖A‖.

We also compare three algorithms on an open EEG (electroencephalography)
data set 1 used in the Parfac and Tucker algorithms [17, 18]. This data of size 64×
512 × 72 is linearly normalized into the range [0, 1]. We report the performance
comparison in Tab. 3. Note that different from Tab. 2, we fix the computation time
to about 30 seconds for three algorithms in terms of “Error ratio” and “Sparseness
ratio”.

We can observe from Tab. 2 and 3 that the proposed method outperforms the
other two competing algorithms in terms of the convergence speed and the sparse-
ness ratio. A visual comparison of the convergence speed is shown in Fig. 3. The
proposed algorithm is 1-2 orders of magnitude faster than other methods to reach

1http://www.erpwavelab.org/
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Figure 3: Comparison of all three methods in terms of the decrease of the objective
function over iterations (left figure) and time (right figure). The size of the core
tensor is set to be 40×40×40, and λ1 = λ2 = λ3 = 0.5. We can observe from the
figures that the Tucker algorithm will take orders of magnitude longer to achieve
the same value of the objective function.

a certain objective value. Although the Tucker algorithm can achieve a lower er-
ror ratio, its computing time and additional storage requirement for the core tensor
makes it not competitive for larger data sets. Note that our algorithm can outper-
form the Tucker algorithm in terms of the error ratio if both algorithms employ
the same compression ratio, especially when the the core tensor is unbalanced as
verified in the experiment shown in next subsection.

Next, we evaluate the performance of the proposed algorithm for matrix fac-
torization. We compare the algorithms on a Drosophila gene expression pattern
image data set from the BDGP database2. The data matrix is of size 10240×1000.
The M-CCD algorithm is compared with the ALS algorithm [10]. Since ALS
employs both L1 norm and L2 norm in their objective function, it is difficult to
compare the objective function directly. Our comparison will focus on the main
aspects of the SNMF algorithm including the sparseness ratio, the running time,
and the error ratio. The results are summarized in Tab. 4. We can observe from
Tab. 4 that (1) the performance of both methods are similar, if the mode size is
low; (2) when the mode size become larger, our algorithm is significantly faster

2http://www.fruitfly.org/cgi-bin/ex/insitu.pl
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than ALS. We present in Fig. 4 a visual comparison between these two algorithms.

Core tensor size = 20× 20
Method Iter. Spar. Time Error

ALS 42 0.2345 76.4423 0.1641
M-CCD 47 0.3541 81.3976 0.1603

Core tensor size = 40× 40
Method Iter. Spar. Time Error

ALS 53 0.3281 312.395 0.1349
M-CCD 59 0.4219 126.812 0.1323

Core tensor size = 80× 80
Method Iter. Spar. Time Error

ALS 73 0.4530 1475.39 0.1074
M-CCD 75 0.4913 306.123 0.1072

Table 4: Comparison between ALS and M-CCD using Drosophila gene expres-
sion pattern images.
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Figure 4: Comparison between M-CCD and ALS algorithm for matrix factoriza-
tion. The mode size is set to be 80× 80.
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Data: Hyperspectral image Size = 256× 307× 11
Mode Iter. Comp. Spar. Time Error

29×29×29 64 0.0193 0.4968 87.3137 0.0892
30×30×10 53 0.0197 0.4897 56.9032 0.0884

Data: Brain image Size = 181× 217× 20
Mode Iter. Comp. Spar. Time Error

48×48×48 77 0.0246 0.5301 95.4573 0.0765
50×50×20 65 0.0244 0.5398 69.3374 0.0772

Table 5: Comparison between Balanced Mode and Unbalanced Mode.

4.2. Unbalanced Core Tensor
When the modes of the target tensor are very different, e.g.,

max(I1, I2, .., IN)/ min(I1, I2, .., IN) À 1,

the proposed algorithm may not perform well if we force all modes of the tensor
to a common size. We evaluate the effectiveness of the proposed unbalanced core
tensor using the MRI brain image and the “lunar lake” hyperspectral image data3.
We sub-sample them into images of size 256 × 207 × 11 and 181 × 217 × 21,
respectively as the target tensor.

For the first data set, we test two different mode sizes: a balanced size 29 ×
29 × 29 and an unbalanced size 30 × 30 × 10. For the second data set, two
different mode sizes: 48×48×48 and 50×50×20 are used. The results in Tab. 5
show that using an unbalanced mode size requires less running time and iteration
number than using a balanced one when achieving a similar compression ratio,
sparseness ratio, and error ratio.

Next, we compare the proposed unbalanced core tensor with the one automat-
ically learnt from the Tucker model. Note that the learning of the core tensor can
further decrease the error ratio, however, additional time and space are required
for the core tensor optimization. In this experiment, we compare T-CCD with the
core tensor derived from Algorithm 2 with the Tucker model in terms of the er-
ror ratio when using the same compression ratio. The results are summarized in
Tab. 6. We can observe from the table that the proposed algorithm can achieve a
lower error ratio than the Tucker model when using the same compression ratio.

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Data: Hyperspectral image Size = 256× 307× 11
Method Mode Comp. Spar. Time Error
Tucker 30×30×10 0.030 0.5049 1250 0.0852
T-CCD 46×46×10 0.030 0.4917 67.32 0.0813

Data: Brain MRI image Size = 181× 217× 61
Method Mode Comp. Spar. Time Error
Tucker 30×30×10 0.009 0.5187 1834 0.0972
T-CCD 50×50×30 0.009 0.5297 105.3 0.0779

Table 6: Comparison between Tucker and T-CCD when using the same compres-
sion ratio.

4.3. An Application Example on Biological Images
In this experiment, we employ the proposed algorithm (M-CCD) on 5 groups

of biological images. The target data in each group consists of 1000 Drosophila
gene expression pattern images from the BDGP database. The Drosophila gene
expression pattern images [21] document the spatial and temporal dynamics of
gene expression and provide valuable resources for explicating the gene functions,
interactions, and networks during Drosophila embryogenesis. The images of 5
groups are from stage ranges 4-6, 7-8, 9-10, 11-12, 13-16 of embryo development,
respectively. Each image is of size 64× 160 and is unfolded into a column vector.
The resulting target tensor (matrix) for each group is of size 10240 × 1000. We
apply M-CCD to extract a set of basis images by setting the mode size to be
100×100. We show some sample basis images of stage range 11-12 in Fig. 5. The
complete 100 basis images are not shown due to the space constraint. In Fig. 6, we
show sample images on the decomposition of an image as a linear combination of
several basis images. We are currently working with developmental biologists to
analyze the biological significance of the learnt basis images.

5. Conclusion

In this paper, we propose a fast and flexible algorithm for sparse non-negative
tensor factorization (SNTF) based on columnwise coordinate descent (CCD). Dif-
ferent from the traditional coordinate descent, CCD updates one column vector
simultaneously, resulting in a significant reduction in the computation time. Our
empirical results on brain MRI images, gene expression images, and hyperspec-
tral images show that the proposed algorithm is 1-2 orders of magnitude faster
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Figure 5: Sample basis images at stage range 11-12 learnt by M-CCD.
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Figure 6: Decomposition of an image as the summation of a set of the learnt basis
images.

20



than several state-of-the-art algorithms. In addition, we propose to construct non-
identity core tensors. Our experiments show the effectiveness of the proposed
unbalanced core tensor especially when the target tensor is very unbalanced.

We have constructed a collection of basis images for Drosophila gene expres-
sion pattern images from stages 11-12. We plan to analyze the biological signifi-
cance of the learnt basis images in the future. In addition, we plan to construct and
compare the basis images for all stages to study the dynamics of the embryo de-
velopment. We will explore the automatic estimation of the parameters involved
in T-CCD including the size of the core tensor and λ in the future.
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