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Abstract

It is widely understood that the performance of the nearest neighbor (NN) rule is dependent on: (i) the way distances
are computed between di↵erent examples, and (ii) the type of feature representation used. Linear filters are often used
in computer vision as a pre-processing step, to extract useful feature representations. In this paper we demonstrate an
equivalence between (i) and (ii) for NN tasks involving weighted Euclidean distances. Specifically, we demonstrate
how the application of a bank of linear filters can be re-interpreted, in the form of a symmetric weighting matrix, as a
manipulation of how distances are computed between di↵erent examples for NN classification. Further, we argue that
filters fulfill the role of encoding local spatial constraints into this weighting matrix. We then demonstrate how these
constraints can dramatically increase the generalization capability of canonical distance metric learning techniques in
the presence of unseen illumination and viewpoint change.
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1. Introduction

The nearest neighbor (NN) rule [1] is one of the old-
est and simplest classification methods used in learn-
ing and vision. The NN rule classifies an unlabeled
example by the label of its nearest neighbors in the
training set. The classical NN rule is based on evalu-
ating the Euclidean distance between data points. Eu-
clidean distance, however, does not leverage any statis-
tical patterns that might be estimated from a large train-
ing set. Consequently, a number of researchers have
demonstrated that NN classification can be greatly im-
proved by learning, specifically for weighted Euclidean
distances, an appropriate distance metric from labeled
examples [2, 3, 4, 5, 6, 7]. The success of this approach
has spawned the discipline of distance metric learning
that strives to learn a weighted Euclidean metric that op-
timizes a particular learning criterion. Notable distance
metric learning techniques of this form include canon-
ical principal component analysis [8], linear discrimi-
nant analysis [8], and more recently non-parametric dis-
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criminant analysis [9] and large margin nearest neigh-
bor [7] classification.

Applying an ensemble of linear filter banks has
proved advantageous [10, 11, 12] as a pre-processing
step to extract useful feature representations for NN
classification problems in computer vision. Unfortu-
nately, these approaches are heavily reliant on heuristics
like: (i) the choice of filter class (e.g., Gabor, log-Gabor,
Haar, edge, etc.), and (ii) the number of filters from that
class. Attempts to answer these questions have often
been based previously on heuristics or qualitative bio-
logical motivations.

In this paper we argue that most of these questions
can be largely circumvented if we re-interpret the appli-
cation of these filters as a manipulation of the distance
metric (i.e. the weighting matrix) in the Fourier domain.
Our approach centers upon a hitherto overlooked equiv-
alence between weighted Euclidean NN classification
of images preprocessed with linear filters and distance
metric learning. The main contributions of this paper
are,

• Demonstrating that because the role of filters can
be re-interpreted as a Fourier weighting matrix,
the number and type of filters is inherently am-
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biguous with respect to linear NN classification,
whereas the choice of weighting matrix is always
unique. This insight greatly reduces the guess
work/heuristics in filter selection and allows one to
explore the role of distance metric learning in filter
learning. (Section 3)

• We propose a method for learning this unique
Fourier weighting matrix through the augmenta-
tion of canonical eigenvector methods for distance
metric learning. (Section 4)

• The introduction of spatial constraints, like those
seen in conventional filters, which we argue theo-
retically and demonstrate empirically are essential
to good generalization performance. (Section 5)

The most important contribution of the work in this
paper, however, is the remarkable generalization per-
formance obtained through our approach for situations
when the train image set is considerably di↵erent in ap-
pearance to the test image set (e.g. di↵erent viewpoints
for the train and test sets). In these situations state of
the art approaches to distance metric learning, such as
large margin nearest neighbor (LMNN) classifiers [7],
start to fail whereas our approach exhibits impressive in-
variance and superior performance. Further, we demon-
strate our approach also outperforms biologically moti-
vated Gabor filter banks in this generalization task.

Relation to previous work.: It should be noted that
there has been some previous work performed in litera-
ture on the topic of learning filters for vision tasks such
as object alignment and classification [13, 14, 15]. The
paper closest in spirit to our own, can be found in the
seminal work of Kumar et al. [15] concerning discrim-
inant analysis using Volterra kernels (specifically when
a first order approximation of the kernel is employed).
Like our approach, the authors present an approach that
applies discriminant analysis to sub-patches in an im-
age, rather than the whole image itself. Their approach
exhibits impressive empirical performance for a number
of NN facial identity tasks compared to current state of
the art. Although similar conceptually, our work di↵ers
substantially to the work of Kumar et al. [15]. First, our
work is centrally motivated by the connection between
filters as a distance metric in the Fourier domain. Un-
like [15] we provide theoretical insight into the unique-
ness of filters with respect to linear NN classification.
Finally, our work is focused on investigating the role of
filters with spatial constraints in encoding generaliza-
tions into classifiers whereas [15] concentrated solely
on classification performance.

Notation: Images/signals in this paper shall always be
expressed in vector form (e.g., x), where vectors are al-
ways represented in lower-case bold. Matrices are al-
ways expressed in upper-case bold (e.g., A). A ˆ ap-
plied to any vector denotes the DFT of a vectorized im-
age/signal such that x̂  Fx, where F is the N ⇥ N ma-
trix of complex basis vectors for mapping to the Fourier
domain for any N dimensional vectorized image/signal.
We present our work in this paper in a manner that is
agnostic about the nature of the signal (i.e. whether the
signal is 1D, 2D, 3D, etc.) as a F can always be formed
and its role expressed in vector form. In practice, how-
ever, since we are working with images it should be as-
sumed that F refers generally to a vectorized 2D-DFT.
We have chosen to employ a Fourier representation in
this paper due to its particularly useful ability to repre-
sent convolutions as a Hadamard product in the Fourier
domain. Additionally, we take advantage of the fact
that diag(ĝ)x̂ = ĝ � x̂, where � represents the Hadamard
product, and diag() is an operator that transforms a N
dimensional vector into a N ⇥ N dimensional diagonal
matrix. The role of filter ĝ or image/signal x̂ can be in-
terchanged with this property. Any transpose operator T

on a complex vector or matrix in this paper additionally
takes the complex conjugate in a similar fashion to the
Hermitian adjoint [16].

2. Distance Metric Learning

As noted by [7] the NN classification rule is quite sen-
sitive to the type of metric used. Here we shall assume
a weighted Euclidean distance,

k V(xi � x j) k2 (1)

where xi and x j are two input vectors between which we
are calculating distances, and V is a projection matrix.
Equation 1 can also be written as,

D
Q

(xi, x j) =k xi � x j k2
Q

(2)

where,
Q = V

T
V . (3)

Throughout this paper we use the notation k x k2
Q

to rep-
resent the quadratic term x

T
Qx. Any matrix Q formed

in this way from a real-valued matrix V is guaranteed to
be positive semidefinite (i.e. to have no negative eigen-
values).

Learning Q: There are an abundance of approaches in
literature [7] on how to best learn Q for NN rule classifi-
cation. Eigenvector methods are perhaps the most pop-
ular in literature. Notable examples include principal
component analysis [8], linear discriminant analysis [8],
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relevant vector analysis [5] and non-parametric discrim-
inant analysis [9]. These methods attempt to learn Q in-
directly through the estimation of V, and di↵er largely
in how they use labeled or unlabeled data. Direct meth-
ods, such as Mahalanobis metric clustering [6] or large
margin nearest neighbor (LMNN) classifiers [7] attempt
to learn Q directly through convex optimization.

3. Filters as Distance Transforms

Let x represent a N dimensional vectorized image that
is passed through a bank of M linear filters such that gm

represents the vectorized impulse response of the mth fil-
ter. One can obtain the N dimensional vector response,

r̂m = x̂ � ĝm (4)

where ĝ, x̂ and r̂ are the vectorized complex 2D dis-
crete Fourier transforms (DFT) [16] of the vectorized
real images g, x and r respectively. In the common case
where x is larger than the filter image g, zeros can be
padded to ensure it is the same size as x. We should
note that the operation in Equation 4 can be equiva-
lently accomplished purely in the image (spatial) do-
main through the use of e�cient 2D convolution opera-
tors, however, we have chosen to employ a Fourier rep-
resentation due to its particularly useful ability to rep-
resent a 2D convolution as a Hadamard product in the
Fourier domain.

One can now obtain an over-complete representa-
tion z of x based on the concatenation of filter output
responses,

z = [rT
1 , . . . , r

T
M]T (5)

where M is the number of filters in the bank.

Theorem 3.1. One can always express the Euclidean
distance between two over-complete representations zi

and z j, derived from multiple filters {ĝm}Mm=1 and the raw
images xi and x j respectively as,

D
I

(zi, z j) =k ˆ

h � (x̂i � x̂ j) k2 (6)

where ˆ

h is a single filter.

Proof.D
I

(zi, z j)1 can be expressed in the frequency do-
main by using Parseval’s relation [16]. Parseval’s rela-
tion states that the energy content of any signal is pre-
served as we move from the spatial to the Fourier space.
As a result one can express,

1
I indicates an MN⇥MN identity matrix indicating an unweighted

Euclidean distance.

D
I

(zi, z j) =

MX

m=1

k ĝm � (x̂i � x̂ j) k2 (7)

=

MX

m=1

k (x̂i � x̂ j) k2
S

where,
S =

MX

i=1

diag{ĝi}T diag{ĝi} (8)

is a diagonal weighting matrix in the Fourier domain.
From the perspective of computing distances, applying
a bank of M linear filters {gi}Mi=1 is equivalent to applying
a single filter ˆ

h such that S = diag{ ˆh}T diag{ ˆh}. One can
see that, unlike the filter banks {gi}Mi=1, S is unique and
can always be represented by a single filter ˆ

h.
Equation 7 shows that the step of pre-processing im-

ages by passing them through a bank of linear filters
corresponds to weighting the distance between images
in the Fourier space as specified by the matrix S given
in Equation 8. In Equation 7 we can replace the opera-
tion of taking the Fourier transform by pre-multiplying
the signals with a matrix F containing the vectorized 2D
Fourier basis. We may then write the distance in Equa-
tion 6 as follows.

D
I

(zi, z j) = D
Q

(xi, x j)
= k xi � x j k2

Q

(9)

where
Q = F

T
SF . (10)

4. Filter Metric Learning

In Section 3, we have shown that from the perspec-
tive of classification, the e↵ect of linear filters is to ma-
nipulate the distance metric with a weighting matrix
Q = F

T
SF, where S = diag{ ˆh}T diag{ ˆh}.

Eigenvector methods: In this section we will demon-
strate how eigenvector methods for distance metric
learning can be adapted to learning filters. Eigenvec-
tor methods for distance metric learning canonically at-
tempt to maximize the objective function,

arg max
ˆ

h

ˆ

h

T
C1 ˆ

h

ˆ

h

T
C2 ˆ

h

subject to ˆ

h

T
ˆ

h = 1 (11)

where C1 and C2 are symmetric scatter matrices encod-
ing the particular requirements on ˆ

h (e.g., preserving
energy, discriminating between classes, etc.). The vec-
tor ˆ

h can be found e�ciently and deterministically by
finding the leading eigenvector of C

�1
2 C1. Traditionally

a scatter matrix can always be expressed in the generic
form C =

P
xk2C x̂kx̂

T
k where C = {x̂k}Kk=1.
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Unfortunately, the vector ˆ

h estimated from Equa-
tion 11 using traditional scatter matrices cannot be con-
sidered a filter as nothing about convolutions has been
encoded into the objective function. In fact, it should be
noted one can find ˆ

h in the Fourier or spatial domains
with the exact same result due to Parseval’s relation (i.e.
inner products are equal in the spatial and Fourier do-
mains).

Theorem 4.1. A modified filter scatter matrix C

⇤ can
always be formed from the traditional scatter matrix C

where,
C

⇤ =
X

xk2C
diag(x̂k)diag(x̂k)T (12)

such that the solution to ˆ

h in Equation 11 using the mod-
ified scatter matrices is equivalent to solving,

arg max
ˆ

h

P
C12x̂k

k ˆ

h � x̂k k2
P
C22x̂ j

k ˆ

h � x̂ j k2
(13)

which is the filter that maximizes the objective function
across all shifts.

Proof. If we pass all the images C = {x̂k}Kk=1, stem-
ming from scatter matrix C, through a filter specified by
the impulse response ˆ

h, then the variance in the filtered
space may be written as,

�2
h

=
X

xk2C
k ˆ

h � x̂k k2 . (14)

As demonstrated earlier, we may replace the Hadamard
product with a matrix product by using the diag(.) oper-
ator as follows,

�2
ˆ

h

=
X

xk2C
k diag(x̂k) ˆ

h k2 (15)

which can be simplified as follows,

�2
ˆ

h

= ˆ

h

T (
X

xk2C
diag(x̂k)T diag(x̂k)) ˆ

h

= ˆ

h

T
C

⇤
ˆ

h (16)

where C

⇤ has been defined previously in Equation 12.
Thus if ˆ

h is a filter, then ˆ

h

T
C

⇤
ˆ

h represents the data vari-
ance in the filtered space, justifying the employment of
the modified scatter matrix C

⇤ within Equation 11. It is
this result that enables the co-option of eigen decompo-
sition methods for learning filters.

Multiple eigenvectors: One may note in Equation 11
that we are only solving for a single eigenvector ˆ

h,

rather than multiple eigenvectors (which is often done
in traditional eigenvector methods like PCA and LDA).
The choice of solving for a single filter/eigenvector
stems directlty from the previous result in Theorem 3.1
stating that: (i) multiple filters are not unique, and (ii)
an equivalent distance measure can always be obtained
using a single filter. This result has also been confirmed
empirically in the results section (Figure ??) of this pa-
per.

5. Spatial Constraints

A fundamental di↵erence between the learned filter ˆ

h

in Equation 11 and traditional filters (e.g., Gabor, log-
Gabor, Haar, edge, etc.) lies in their spatial support re-
gion. For the case of traditional filters, the support re-
gion is typically quite small (e.g., 5 ⇥ 5, 8 ⇥ 8, etc.) in
comparison to the images upon which they are applied.
No such spatial constraint is enforced on the filter in
Equation 11. As a consequence ˆ

h is the same size as
the images from which it is learned. This large spatial
support has some unwanted properties, as we will dis-
cuss in the latter sections, with respect to generalization
(i.e. how tuned is h to the training data). In this sec-
tion we will present an approach for constraining this
support region using existing distance metric learning
techniques.

Enforcing spatial constraints: As in Section 4 we
shall concern ourselves with eigenvector methods for
distance metric learning, taking the view that augmen-
tations on this canonical form can be applied to other
metric learning techniques with nominal e↵ort (as pre-
viously discussed in Section ??). Adapting Equation 11
one can enforce a smaller spatial support region through
the application of the following constraints,

arg max
h

h

T (FT
C

⇤
1F)h

h

T (FT
C

⇤
2F)h

subject to h

T
h = 1

h(i) = 0 8 i < ⌦h⇥w (17)

where⌦h⇥w represents the set of indices stemming from
a h ⇥ w local neighborhood of positions at the center of
the vectorized 2D filter h, C

⇤
1 and C

⇤
2 are the augmented

scatter matrices defined by the training images. Other
than the additional spatial constraints, one should note
that Equation 17 di↵ers from Equation 11 in that we
are solving for h spatially instead of ˆ

h in the Fourier
domain. This has to be done so we can enforce our new
spatial constraints, and is accomplished by employing
the matrix F containing the vectorized 2D Fourier basis
into the objective function.
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Problem: The original objective function in
Equation 11 is solved e�ciently through eigen-
decomposition. However, the introduction of the spatial
constraints in Equation 17 changes our objective func-
tion into a quadratic fractional programming problem
with equality constraints. This shift, unfortunately,
greatly complicates the optimization task. The sheer
number of constraints is especially problematic as
employing training images of dimensionality N would
result in N � hw constraints where h and w are the
height and width of the desired spatial support region
defined by ⌦h⇥w.

Theorem 5.1. Equation 17 can be re-written as a
tractable eigen-decomposition task,

arg max
↵

↵T (AT
C

⇤
1A)↵

↵T (AT
C

⇤
2A)↵

subject to ↵T↵ = 1 (18)

where A is a submatrix of the Fourier basis ma-
trix F whose rows lie in the desired spatial support
region ⌦h⇥w. As a consequence, instead of solving
for h 2 RN which has the same dimensionality as the
training images, the result of Equation 18 is ↵ 2 Rhw

will instead have the same dimensionality as the desired
support region.

Proof. Equation 17 can be re-written in the following
form,

arg max
↵,⇠

↵T (AT
C

⇤
1A)↵ + ⇠T ( T

C

⇤
1 )⇠

↵T (AT
C

⇤
2A)↵ + ⇠T ( T

C

⇤
2 )⇠

subject to ↵T↵ = 1
⇠ = 0 (19)

where ↵ 2 Rhw and ⇠ 2 RN�hw are sub-vectors of h 2
RN , where h is the original filter being solved in Equa-
tion 17. The vector ↵ contains the elements of h relating
to the indices in ⌦h⇥w. Similarly, the vector ⇠ contains
the elements of h relating to the indices not in ⌦h⇥w.
The matrices A 2 Rhw⇥N and  2 R(N�hw)⇥N are sub-
matrices of the Fourier matrix F 2 RN⇥N . In a similar
fashion to ↵ and ⇠, A and  contain the rows of F relat-
ing to the indices in, and not in ⌦h⇥w respectively. As a
consequence of the constraint ⇠ = 0 we can now obtain
Equation 18 as the second term of Equation 19 has to be
zero.

6. Experiments

Our aim in these experiments was to evaluate the gen-
eralization properties of NN2 classification for a num-

2For all the experiments in this paper we shall be performing NN
classification for k = 1, we refer to this as simply NN classification.

ber of distance metric methods. To this end we con-
ducted experiments to evaluate the generalization per-
formance of NN identity classification for: (i) matched,
and (ii) mismatched viewpoints of faces. The train set,
from which the weight matrix Q is learned, is always
from a single viewpoint. In our experiments it is only
the test set where the viewpoint is varied. To emphasize
this point, when the Q matrix is learned it has knowl-
edge of a single and fixed viewpoint of the face. It is
only during testing that other viewpoints of the face are
presented. For all our experiments in this paper the train
set stems from the frontal (0o) viewpoint of the face.

MultiPIE: The MultiPIE face dataset [17] was used
in all our experiments, as it is considered one of the
largest and most comprehensive of its kind. It consists
of images of 346 subjects. Each subject has been pho-
tographed by illuminating the face from 20 di↵erent il-
luminations, and the images have been captured from
15 viewpoints. Moreover, the subjects were asked to
elicit facial expressions corresponding to 5 high level
emotional states – neutral, happy, disgust, surprise, and
pain. In our experiments all images were registered us-
ing hand labeled eye coordinates, with the face area then
cropped to give a 140 ⇥ 80 image (irrespective of view-
point). In all experiments in this paper subject identities
are di↵erent in the train and test sets.

Distance metrics considered: We chose to compare
our proposed method against canonical distance met-
ric learning methods for learning Q such as PCA and
LDA [8]. State of the art methods for distance met-
ric learning were also considered, namely the popular
LMNN classifier of Weinberger [7]. A biologically mo-
tivated Q was also considered through the employment
of a bank of Gabor filters. The Q matrix was obtained
in this instance through the application of Equations 8
and 10 discussed earlier in this paper. For the PCA,
LDA, LMNN and Gabor filter derived Q matrices appli-
cation specific parameters (such as the number of eigen-
vectors, number of filter banks, etc.) were tuned using
cross-validation. For brevity, these specific implemen-
tation details are omitted but can be found in our exper-
iments which are available online3.

For our own proposed approach we employed the
modified scatter matrices, as discussed in Section 4,
stemming from the traditional scatter matrices used in
LDA. As discussed in Section 4 only the first eigenvec-
tor is used to solve for the filter. Unlike, traditional LDA
and LMNN methods on images, no initial PCA step was

3During the double blind review process we have omitted this hy-
perlink.
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employed in our approach to reduce dimensionality and
avoid overfitting issues. Instead, the inclusion of spa-
tial constraints, as discussed in Section 5, automatically
handles this issue.

Illumination variation: Figure 1 depicts results for
identity classification for a subset of the MultiPIE
dataset in the presence of 20 di↵erent illumination con-
ditions (fixed neutral expression). As expected for the
matched viewpoint experiments in (a) (where the train-
ing and testing images both stem from the frontal (0o)
viewpoint) that LMNN, LDA and our approach obtain
close to 100% classification accuracy. Far more interest-
ingly, however, are the results in (b) which demonstrate
substantial performance deterioration for all canonical
distance metric learning methods (i.e., PCA, LDA and
LMNN).

Contrastingly, our learned filter remains virtually un-
changed still achieving close to 100% classification per-
formance. A similar e↵ect can be noticed for the Gabor
filter metric approach, which obtains virtually identical
classification performance in (a) and (b) (with Gabor
filters also outperforming LMNN for the mismatched
scenario). The e↵ect of filter support size, for our
learned filter, was also investigated on this illumination
subset of MultiPIE. Figure 2 depicts identification re-
sults as a result of spatial support. This result strongly
demonstrates the importance of limiting spatial support
in order to reduce overfitting and encourage generaliza-
tion. Experiments in this instance were carried out on
matched viewpoints. A visualization of the filters, for
varying spatial support, can be found in Figure 3. An
interesting thing to note in Figure 3 is the highly syn-
thetic nature of the learned filters, compared to canoni-
cal filters such as Gabor which are smoothly varying.

Expression variation: Similar experimental results can
be found in Figure 4 for a subset of the MultiPIE dataset
where 5 di↵erent expression conditions are presented
(fixed frontal illumination). For these experiments in
(a), our learned filter does not fair as well compared to
LDA and LMNN. This is in contrast to the results for (a)
seen in Figure 1 for illumination variation. This result,
however, is largely expected as expression variation is
much more spatially specific than illumination variation
making it harder for a spatially invariant filter to o↵er
invariance. Interestingly, however, in (b), which is of
primary interest in this paper, our learned filter still out-
performs LDA and LMNN.

7. Discussion

An obvious question that stems from the results in
Figures 1 and 4 is: why do distance metric learning tech-
niques like PCA, LDA and even LMNN behave so poorly
in mismatched conditions, whereas filter metrics such as
Gabor and our own learned filter exhibit such promising
invariance?

A partial answer to this question can be found if
we obtain a visualization of a candidate eigenvector
method to distance metric learning using canonical and
filter modified (with spatial constraints) scatter matri-
ces. Eigenvectors were obtained for both viewpoints
used in testing. For this discussion we chose one of the
simplest forms of eigenvector method distance metric
learning, namely PCA. In Figure 5 we depict canonical
PCA using the first 5 eigenvectors of the illumination
variation subset of MultiPIE dataset for both frontal (0o)
and profile (45o) sets. Inspecting these eigenvectors,
one can clearly see that (a) stems from the frontal view,
and (b) stems from the profile view. In Figure 5 we de-
pict filter PCA eigenvectors (estimated using a modified
scatter matrix and an 8⇥8 spatial support). For this visu-
alization we chose to keep all the eigenvectors, instead
of keeping the first principal eigenvector. Unlike 5, it
is very di�cult to ascertain in Figure 6 which eigenvec-
tors stem from which view. Instead, the eigenvectors
from both viewpoints (a) and (b) look very similar.

Even though traditional PCA performed poorly com-
pared to LDA and LMNN in Figures 1 and 4, the vi-
sualizations in Figures 5 and 6 goes some way to ex-
plaining why non-filter distance metric learning meth-
ods perform poorly. Traditional distance metric meth-
ods like PCA, LDA and even LMNN are spatial specific
(i.e., images should all roughly follow the same spa-
tial configuration). The distance metric learning frame-
work presented in this paper, circumvents this prob-
lem, by learning distances (through the application of
filters) that are approximately spatially invariant. This
is largely why our proposed approach works so well on
unseen viewpoints.

8. Conclusions

In this paper we demonstrate how the application of
an ensemble of linear filter banks, as a pre-processing
step, before NN classification can be re-interpreted as a
manipulation of the distance metric (i.e. the weighting
matrix). As a result we also demonstrate how canon-
ical distance metric learning techniques can be aug-
mented to learn filters, and take much of the guess

6



Figure 1: Comparison of distance metric methods for: (a) matched, and (b) mismatched viewpoints in the presence of illumination
variation. For both (a) and (b) the train set images employed a frontal viewpoint (0o), whereas the test set employed a viewpoint
for (a) 0o, and (b) 45o. For (b), which is of central interest in this paper, our approach outperforms both LMNN classifiers and
biologically motivated Gabor filter banks.

Figure 2: Identification results as a function of filter support size. Empirically, we found a filter size of 8⇥8 gave the best performance
(99.54%).

Figure 3: Visualization of our learned filters for varying spatial support.
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Figure 4: Comparison of distance metric methods for: (a) matched, and (b) mismatched viewpoints in the presence of expression
variation. For both (a) and (b) the train set images employed a frontal viewpoint (0o), whereas the test set employed a viewpoint for
(a) 0o, and (b) 45o. Similarly to Figure 1 for the results in (b), which is of central interest in this paper, our approach outperforms
both LMNN classifier and biologically motivated Gabor filter banks distance metrics.

PAMI DRAFT - 2010 5

(a) Eigenvectors for frontal faces 

(b) Eigenvectors for profile faces 

Fig. 1. Eigenvectors learned from a set of frontal (a) and profile (b) images.

Fig. 2. Spatially constrained filters learned from a set of
frontal images such that the variance in filtered Fourier space
is maximized.

Fig. 3. Spatially constrained filters learned from a set of
profile images such that the variance in filtered Fourier space
is maximized.

by illuminating the face from � � different illuminations, and
the images have been captured from � � viewpoints. Moreover,
the subjects were asked to elicit facial expressions corre-
sponding to � high level emotional states – neutral, happy,
disgust, surprise, and pain. In our experiments all images were
registered using hand labeled eye coordinates, with the face
area then cropped to give a � � � � � � image (irrespective of
viewpoint).

Experiment 1: Learning Illumination invariant filters.: In
this experiment we employed two subsets of the MultiPIE
dataset. Group I consisted of subjects with frontal images,
having neutral expressions captured under � � different illumi-
nation conditions. Group II consisted of subjects with profile
view images ( viewpoint � � � � ), having neutral expressions
and captured under the same � � different illuminations seen
in Group I. Sample images for each group are shown in
Figures 4 and 5. Filters were learned from the training
subset of Group I using spatially constrained Filter-LDA
based on the scatter matrices in Equation 15 and solving
the objective function in Equation 17. Visualizations of the
resultant � � diag� �� � � diag� �� � matrices in the � � Fourier

domain can be seen in Figure 6(a) for the spatial support sizes:
� � � � � � � � � � � � � � � � � � � , and � � � � � . The corresponding
filters (� ) in the spatial domain are shown in Figure 6(b).
� � � nearest neighbor classification results on the testing
subset of Group I, for the task of identity classification, can be
seen in Figure 7 across these same spatial support sizes using
the weighting matrix � � � � � � . Training and testing subsets
of Group I were chosen to split subject identities equally, with
both sets containing the same amount of illumination variation.
Results in Figure 7 show that some degree of overfitting occurs
for filters using a spatial support larger than � � � � � with best
results seen for a spatial support of � � � . Evidence of this
overfitting can be seen in the visualizations of � in Figure 6(a)
with � � � � � and � � � � � estimating particularly narrow band
solutions.

Comparison on matched viewpoints: In Figure 8(a) we see
classification results for different estimations of � derived
from the training subset of Group I and evaluated on the
testing subset of the matched group (i.e. Group I). We compare
our approach with a variety of other notable choices for the
weighting matrix � namely: (i) unweighted Euclidean (i.e.

(a) Viewpoint 0o

(b) Viewpoint 45o

Figure 5: Visualization of the first 5 eigenvectors stemming from PCA using traditional scatter matrices for the (a) matched test set
viewpoint (0o), and the (b) mismatched test set viewpoint (45o).
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Fig. 1. Eigenvectors learned from a set of frontal (a) and profile (b) images.

Fig. 2. Spatially constrained filters learned from a set of
frontal images such that the variance in filtered Fourier space
is maximized.

Fig. 3. Spatially constrained filters learned from a set of
profile images such that the variance in filtered Fourier space
is maximized.
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viewpoint).

Experiment 1: Learning Illumination invariant filters.: In
this experiment we employed two subsets of the MultiPIE
dataset. Group I consisted of subjects with frontal images,
having neutral expressions captured under � � different illumi-
nation conditions. Group II consisted of subjects with profile
view images ( viewpoint � � � � ), having neutral expressions
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subset of Group I using spatially constrained Filter-LDA
based on the scatter matrices in Equation 15 and solving
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both sets containing the same amount of illumination variation.
Results in Figure 7 show that some degree of overfitting occurs
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� � � nearest neighbor classification results on the testing
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seen in Figure 7 across these same spatial support sizes using
the weighting matrix � � � � � � . Training and testing subsets
of Group I were chosen to split subject identities equally, with
both sets containing the same amount of illumination variation.
Results in Figure 7 show that some degree of overfitting occurs
for filters using a spatial support larger than � � � � � with best
results seen for a spatial support of � � � . Evidence of this
overfitting can be seen in the visualizations of � in Figure 6(a)
with � � � � � and � � � � � estimating particularly narrow band
solutions.

Comparison on matched viewpoints: In Figure 8(a) we see
classification results for different estimations of � derived
from the training subset of Group I and evaluated on the
testing subset of the matched group (i.e. Group I). We compare
our approach with a variety of other notable choices for the
weighting matrix � namely: (i) unweighted Euclidean (i.e.

(a) Viewpoint 0o (b) Viewpoint 45o

Figure 6: Visualization of eigenvectors stemming from PCA using filter modified scatter matrices with a spatial support of 8 ⇥ 8
pixels. Eigenvectors are presented for (a) matched test set viewpoint (0o), and the (b) mismatched test set viewpoint (45o).

work/heuristics out of selecting filters for a specific vi-
sion task. Finally, we demonstrated the useful general-
ization properties of our filters for classification tasks in-
cluding illumination and expression variation under un-
seen viewpoints outperforming biologically motivated
filters (i.e. Gabor).
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