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Abstract: Image segmentation is a fundamental problem in computer vision. Despite many years of 

research, general purpose image segmentation is still a very challenging task because segmentation is 

inherently ill-posed. Among different segmentation schemes, graph theoretical ones have several good 

features in practical applications. It explicitly organizes the image elements into mathematically sound 

structures, and makes the formulation of the problem more flexible and the computation more 

efficient. In this paper, we conduct a systematic survey of graph theoretical methods for image 

segmentation, where the problem is modeled in terms of partitioning a graph into several sub-graphs 

such that each of them represents a meaningful object of interest in the image. These methods are 

categorized into five classes under a uniform notation: the minimal spanning tree based methods, 

graph cut based methods with cost functions, graph cut based methods on Markov random field 

models, the shortest path based methods and the other methods that do not belong to any of these 

classes. We present motivations and detailed technical descriptions for each category of methods. The 

quantitative evaluation is carried by using five indices – Probabilistic Rand (PR) index, Normalized 

Probabilistic Rand (NPR) index, Variation of Information (VI), Global Consistency Error (GCE) and 

Boundary Displacement Error (BDE) – on some representative automatic and interactive 

segmentation methods. 
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1. Introduction 

Image segmentation is a classical and fundamental problem in computer vision. It refers to 

partitioning an image into several disjoint subsets such that each subset corresponds to a meaningful 

part of the image. As an integral step of many computer vision problems, the quality of segmentation 

output largely influences the performance of the whole vision system. A rich amount of literature on 

image segmentation has been published over the past decades. Some of them have achieved an 

extraordinary success and become popular in a wide range of applications, such as medical image 

processing [1-3], object tracking [4-5], recognition [6-7], image reconstruction [8-9] and so on.  

Since the very beginning, image segmentation has been closely related to perceptual grouping or 

data clustering. Such a relationship was clearly pointed out by Wertheimer’s gestalt theory [10] in 

1938. In this theory, a set of grouping laws such as similarity, proximity and good continuation are 

identified to explain the particular way by which the human perceptual system groups tokens together. 

The gestalt theory has inspired many approaches to segmentation, and it is hoped that a good 

segmentation can capture perceptually important clusters which reflect local and/or global properties 

of the image. Early edge detection methods such as the Robert edge detector, the Sobel edge detector 

[11] and the Canny edge detector [12-13] are based on the abrupt changes in image intensity or color. 

Due to the distinguishable features of the objects and the background, a large number of thresholding 

based methods [14-16] have been proposed to separate the objects from the background. In the partial 

differential equations (PDE) based methods [17-18, 19-21], the segmentation of a given image is 

calculated by evolving parametric curves in the continuous space such that an energy functional is 

minimized for a desirable segmentation. Region splitting and merging is another popular category of 

segmentation methods, where the segmentation is performed in an iterative manner until some 

uniformity criteria [22-23] are satisfied. The reviews of various segmentation techniques can be found 

for image thresholding methods [24], medical image segmentation [25-26], statistical level set 

segmentation [27], 3D image segmentation [28], edge detection techniques [29] and so on.  

Among the previous image segmentation techniques, many successful ones benefit from mapping 

the image elements onto a graph. The segmentation problem is then solved in a spatially discrete 
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space by the efficient tools from graph theory. One of the advantages of formulating the segmentation 

on a graph is that it might require no discretization by virtue of purely combinatorial operators and 

thus incur no discretization errors. Despite the large amount of efforts devoted to image segmentation, 

little work has been done to review the work in this field. In this paper, we conduct a systematic 

survey of some influential graph theoretic techniques for image segmentation, where the problem is 

generally modeled in term of partitioning a graph into several sub-graphs.  

With a history dating back to 1960s, the earliest graph theoretic methods stress the importance of 

the gestalt principles of similarity or proximity in capturing perceptual clusters. The graph is then 

partitioned according to these criteria such that each partition is considered as an object segment in 

the image. In these methods, fixed thresholds and local measures are usually used for computing the 

segmentation results, while global properties of segmentation are hard to guarantee. The introduction 

of graph as a general approach to segmentation with a global cost function was brought by Wu et al. 

[30] in 1990s. From then on, much research attention was moved to the study of optimization 

techniques on the graph. It is known that one of the difficulties in image segmentation is its ill-posed 

nature. Since there are multiple possible interpretations of the image content, it might be difficult to 

find a single correct answer for segmenting a given image. This suggests that image segmentation 

should incorporate the mid- and high-level knowledge in order to accurately extract objects of interest. 

In the late 1990s, a prominent graph technique emerged in the use of a combination of model-specific 

cues and contextual information. An influential representation is the s/t graph cut algorithm [31]. Its 

technical framework is closely related to some variational methods [17-18, 19-21] in terms of a 

discrete manner. Up to now, s/t graph cut and its variants have been extended for solving many 

computer vision problems, and eventually acting as an optimization tool in these areas. 

This paper provides a systematic survey of graph theoretic techniques and distinguishes them by 

broadly grouping them into five categories. (1) Minimal spanning tree based methods: the clustering 

or grouping of image pixels are performed on the minimal spanning tree. The connection of graph 

vertices satisfies the minimal sum on the defined edge weights, and the partition of a graph is 

achieved by removing edges to form different sub-graphs. (2) Graph cut with cost functions: graph cut 

is a natural description of image segmentation. Using different cut criteria, the global functions for 
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partitioning the graph will be different. Usually, by optimizing these functions, we can get the 

desirable segmentation. (3) Graph cut on Markov random field models: the goal is to combine the 

high level interactive information with the regularization of the smoothness in the graph cut function. 

Under the MAP-MRF framework, the optimization of the function is obtained by the classical min-

cut/max-flow algorithms or its nearly optimal variants. (4) The shortest path based methods: the 

object boundary is defined on a set of shortest path between pairs of graph vertices. These methods 

require user interactions to guide the segmentation. Therefore, the process is more flexible and can 

provide friendly feedback. (5) Other methods: we will refer to several efficient graph theoretic 

methods that do not belong to any of the above categories, such as random walker [32] and dominant 

set based method [33].  

For each of the above categories, the principle of graph theory will be firstly introduced, and then 

the theoretic formulation as well as their segmentation criteria will be reviewed. Performance 

assessment of some well-known methods will also be given for the sake of completeness and 

illustration. The outline of the paper is as follows. In Section 2, important notations and definitions in 

graph theory are introduced. In Section 3, the methodologies of the five categories of methods are 

reviewed. Explicit explanations are presented on the formulation of the problem and the details of 

different segmentation criteria. In Section 4, some quantitative metrics of the segmentation quality are 

described. The performances of some representative automatic and interactive segmentation 

techniques are analyzed in Section 5 and Section 6, respectively. In Section 7, the applications of 

graph based methods in medical image segmentation are discussed. Section 8 draws the conclusion.   

 

2. Background 

In this section we define some terminologies that will be used throughout the paper for explaining the 

graph based segmentation methods.  

Let G = (V, E) be a graph where V ={ v1 ,..., vn } is a set of vertices corresponding to the image 

elements, which might represent pixels or regions in the Euclidean space. E is a set of edges 

connecting certain pairs of neighboring vertices. Each edge (vi,vj)∈E has a corresponding weight 
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w(vi,vj) which measures a certain quantity based on the property between the two vertices connected 

by that edge. For image segmentation, an image is partitioned into mutually exclusive components, 

such that each component A is a connected graph G′=(V′, E′), where V′⊆ V, E′⊆ E and E' contains 

only edges built from the nodes of V'. In other words, nonempty sets A1, …, Ak form a partition of the 

graph G if Ai∩Aj =φ (i,j∈{1, 2, …, k}, i≠j) and A1∪…∪Ak=G. The well-accepted segmentation criteria 

[10] require that image elements in each component should have uniform and homogeneous 

properties in the form of brightness, color, or texture, etc., and elements in different components 

should be dissimilar.  

In graph theoretic definition, the degree of dissimilarity between two components can be 

computed in the form of a graph cut. A cut is related to a set of edges by which the graph G will be 

partitioned into two disjoint sets A and B. As a consequence, the segmentation of an image can be 

interpreted in form of graph cuts, and the cut value is usually defined as: 

∑ ∈∈
=

BvAu
vuwBAcut

,
),(),(                         (1) 

where u and v refer to the vertices in the two different components. In image segmentation, noise and 

other ambiguities bring uncertainties into the understanding of image content. The exact solution to 

image segmentation is hard to obtain. Therefore, it is more appropriate to solve this problem with 

optimization methods. The optimization-based approach formulates the problem as a minimization of 

some established criterion, whereas one can find an exact or approximate solution to the original 

uncertain visual problem. In this case, the optimal bi-partitioning of a graph can be taken as the one 

which minimizes the cut value in Eq. (1). 

In a large amount of literature, image segmentation is also formulated as a labeling problem, 

where a set of labels L is assigned to a set of sites in S. In two-class segmentation, for example, the 

problem can be described as assigning a label fi from the set L={object, background} to site i∈S 

where the elements in S are the image pixels or regions. Labeling can be performed separately from 

image partitioning, while they achieve the same effect on image segmentation. We will see in this 

survey that many methods perform both partitioning and labeling simultaneously. An example to 

illustrate the relationship between graph cuts and the corresponding vertex labeling is given in Fig. 1, 
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where a graph is segmented by two cuts and thus has 3 labels in the final segmentation. 

   
(a) Graph cuts     (b) A labeling 

Figure 1: An example of graph cuts and the corresponding vertex labeling. (a) shows a graph whose 
vertices are image pixels, and maintains the 4-neighborhood system. Graph cuts separate the graph 
into three subgraphs. A labeling shown in (b) assigns some label Lp∈{0,1,2} to each pixel w.r.t. the 
graph cuts. Thick lines show labeling discontinuities between neighboring pixels.  
 

Methods in image segmentation can be categorized into automatic methods and interactive 

methods. Automatic segmentation is desirable in many cases for its convenience and generality. 

However, in many applications such as medical or biomedical imaging, objects of interest are often 

ill-defined so that even sophisticated automatic segmentation algorithms will fail. Interactive methods 

can improve the accuracy by incorporating prior knowledge from the user; however, in some practical 

applications where a large number of images are needed to be handled, they can be laborious and time 

consuming. Note that automatic and interactive methods are often used together to improve the 

segmentation results. Some automatic segmentation methods may require interaction for setting initial 

parameters and some interactive methods may start with the results from automatic segmentation as 

an initial segmentation. In this survey, the methods we will introduce refer to either of the two 

categories. 

 

3. Methods 

In this section, we review the representative methods on graph based image segmentation. For each 

class of methods, we provide the formulation of the problem and present an overview of how the 

methods are implemented. The advantages and disadvantages of these methods are discussed as well. 
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Although we classify the methods into five categories, some of them are often used in conjunction 

with one another. The main differences between these methods lie in how they define the desirable 

quality in the segmentation and how they achieve it using distinctive graph properties.  

 

3.1  Minimal spanning tree (MST) based methods  

The minimal spanning tree (MST) (also called shortest spanning tree) is an important concept in graph 

theory. A spanning tree T of a graph G is a tree such that T = (V, E′), where E′⊆ E. A graph may have 

several different spanning trees. The MST is then a spanning tree with the smallest weights among all 

spanning trees. The algorithms for computing the MST can be found in [34-36]. For example, in 

Prim’s algorithm [36], the MST is constructed by iteratively adding the frontier edge of the smallest 

edge-weight. The algorithm is in a greedy style and runs in polynomial time.  

MST based segmentation methods are essentially related to the graph based clustering. The 

general study of graph clustering can be dated back to 1970s or earlier. In graph based clustering, the 

data to be clustered are represented by an undirected adjacency graph. To represent the affinity, edges 

with certain weights are defined between two vertices if they are neighbors according to a given 

neighborhood system. Clustering is then achieved by removing edges of the graph to form mutually 

exclusive subgraphs. The clustering process usually emphasizes the importance of the gestalt 

principles of similarity or proximity in the graph vertices.  

The early MST based methods [37] perform image segmentation in an implicit way, which is 

based on the inherent relationship between the MST and cluster structure. The intuition underlying 

this relationship is that the MST consists of edges with the minimal sum of weights among all 

spanning trees, and as a result, it guarantees the connection of graph vertices which are most similar to 

each other (i.e., at the lowest cost of weights). This nature makes MST spans all the vertices and at the 

same time jump across the smaller gaps between different clusters. However, it is not enough to deal 

with situations when there is a large variation inside a cluster. The complex scenes in real world 

images often have perceptually meaningful clusters with non-uniform densities; therefore it is more 

desirable to consider both the difference across the two clusters and the difference inside a cluster. The 
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gestalt principles play an important role in guiding the MST based image segmentation; however, 

there lacks a precise measurement on the definition in the quantitative results. 

Morris et al. [38] used MST to hierarchically partition images. Their method can obtain the 

segmentation in different scales based on the principle that the most similar pixels should be grouped 

together and dissimilar pixels should be separated. By cutting the MST at the highest edge weights, 

partitions of a graph are formed with the maximal difference between neighboring sub-graphs. In [38], 

some improved algorithms were also proposed based on MST, e.g., the recursive MST algorithm. In 

each iteration, the segmentation is formed by partitioning one sub-graph. Therefore, the algorithm can 

lead to a final segmentation with a given number of sub-graphs. Apparently, the algorithm in this form 

is inefficient. Kwok et al. [39] proposed a fast recursive MST algorithm to speed up Morris et al.’s 

method.  

An advanced work of MST based algorithm proposed in [40] makes use of both the differences 

across the two sub-graphs and the differences inside a sub-graph. The segmentation is performed in 

conjunction with a region merging process and produces results that satisfy some global properties. 

The key of this algorithm is adaptive thresholding. In contrast to single linkage clustering which uses 

a constant K to set the threshold, the threshold here is a variable and is defined on the size of clusters. 

It allows two components to be merged if the linkage between them is smaller than the maximal edge 

in either of the components’ MST plus this threshold. The formal definition of the merging criterion is 

given as below: 

1 2
1 2

min ( ) , ( )t
K Ke Int C Int C
C C

⎛ ⎞
< + +⎜ ⎟⎜ ⎟

⎝ ⎠
                      (2) 

where K is a constant, |C1| and |C2| are the sizes of components C1 and C2, respectively. Int(C) is the 

largest edge weight in the MST of C. |et| is the edge with the smallest weight which connects C1 and 

C2. From Eq. (2), we can see that the algorithm is sensitive to edges in smooth areas and less sensitive 

to areas with high variability. In Fig. 2, we present the segmentation results obtained with this 

algorithm. The two images contain regions with large variations or different levels of details, while 

segmentation results preserve most of the perceptually important structures without any bias on the 
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size of regions.   

       

Figure 2: Original images and the segmentation results by the MST based algorithm [27]. The 
original code is provided by P.F. Felzenszwalb (http://people.cs.uchicago.edu/~pff/segment/).   

 

From the discussion above, we can see that in the context of edge-weighted graphs, MST based 

algorithms explicitly define the structures of clusters. Pixels expressed by low level features such as 

intensity, color or texture can be intuitively organized by these algorithms. However, the algorithms 

are strongly based on the assumption that labeling of pixels in the same segment is consistent. This is 

not always the case when these pixels belong to different object classes. Therefore, this category of 

algorithms is often used as an initial processing for other high-level applications [41-42]. MST often 

forms a segmentation by cutting it at the highest edge weights, so a further region can be obtained by 

making a further cut in the tree. This implies a hierarchical segmentation in MST, which provides a 

mechanism for converting any over-segmentation into the higher-level counterparts without loss of 

the cluster feature.  

 

3.2  Graph cut with cost functions 

3.2.1 Minimal cut methods Using graph cut for image segmentation was firstly proposed by Wu and 

Leahy [43] in 1990. Like MST, graph cut is also a notion explicitly defined on edge-weighted graph. 

Graph cut based methods possess a distinctive property against previous methods in that a general 

framework of optimally partitioning the graph globally is presented. This brings the advantages that 

for different applications, different cost functions can be designed with a clear definition of segmented 

objects. Graph cut in Eq. (1) provides us an opportunity for a clear and meaningful definition of graph 

partitioning: minimizing this cut makes vertices in different sets dissimilar. However, for a practical 
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graph partition problem, it also requires vertices in the same set to be similar. These two requirements 

are studied by existing graph cut methods, which attempt to satisfy one or two of the requirements.  

In Wu and Leahy’s work [43], they minimized a cost function formulated exactly in the form of 

Eq. (1), namely minimal cut. According to the Ford-Fulkerson theorem [44], the maximum flow 

between a pair of vertices equals to the value of the minimal s/t-cut, which could be solved efficiently. 

In [43], the authors also discussed a more general case where a k-partition of graph G is identified by 

using the Gomory-Hu algorithm [45], as an equivalent of “finding the maximal flow between k-pairs 

of vertices”.  

 
3.2.2. Normalized cut methods The minimal cut criterion is intuitive to illustrate the idea of gestalt 

principle; however, it has a bias toward finding small components. To alleviate this problem, one 

should consider to explicitly require that each individual set is “reasonably large”. Several studies 

have been done to address this problem, which lead to various normalized objective functions.  

One well-known objective function to avoid this unnatural bias is proposed by Shi et al. [46] in 

terms of normalized cut (Ncut). The graph cut is measured by the weights of vol(⋅), which is the total 

connection from vertices in a set (e.g., A) to all the vertices in the graph. Formally we have 

∑ ∈∈= VjvAiv ji vvwAvol , ),()( , where weight w(vi,vj) measures a certain image quantity (e.g., intensity, 

color, etc.) between the two vertices connected by that edge. Then Ncut cost function is defined as 

follows: 
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where xi is the indicator variable, xi = 1 if vertex vi is in A and xi = -1 otherwise. ∑= j jii vvwd ),(  is 

the total connection from vi to all the other vertices. Note that with this definition, the partitions 

containing small set of vertices will not have small Ncut value, and hence the minimal cut bias is 

circumvented. The minimization of Eq. (3) can be formulated into a generalized eigenvalue problem, 

which has been well-studied in the field of spectral graph theory. After a common matrix 



11 

transformation, the Ncut problem can be re-written into: 

( )min Ncut( , ) min
T

TA B −
= y

y D W y
y Dy

                       (4) 

subject to y(i)∈{1,-b}, 
∑

∑

<

>=
0

0

ix i

ix i

d
d

b  and yTD1=0, where D and W are the degree matrix and the 

adjacency matrix of G, respectively. We call L=D-W the graph Laplacian of G. It can be seen that -b 

represents the ratio of connections which are from vi to vertices inside and outside the same set, 

respectively. The relaxed optimization of Eq. (4) is obtained by discarding the discreteness condition 

but allowing y to take arbitrary real values. According to the Rayleigh-Ritz theorem [47], the 

eigenvector corresponding to the second smallest general eigenvalue of L is the real valued solution to 

the relaxed version of Eq. (4). Finally, to partition the graph, one can perform a simple thresholding 

on this eigenvector. The multi-class partitioning is also discussed in [46], where an iterative process of 

2-way partition is implemented on the graph until a satisfactory result is achieved. Fig. 3 shows a 

segmentation example of Ncut, where the Figs. 3 (c-h) are the eigenvectors corresponding to the 

second smallest to the seventh smallest eigenvalues of the system. Partitioning the graph into 6 pieces 

using the second smallest eigenvector, we obtain the segmentation result in Fig. 3(b). 

 

    
             (a)                (b)               (c)       (d) 

    
             (e)        (f)     (g)      (h) 

Figure 3: (a) The original image. (b) The segmentation result of Ncut algorithm [46]. (c-h) The 
eigenvectors corresponding to the second smallest to the seventh smallest eigenvalues of the system. 
The eigenvectors are reshaped to be the size of the image. The code is provided by Shi et al. [46] 
(http://www.cis.upenn.edu/~jshi/software/). 
 

In fact, not limited to image segmentation, there has been several existing works in spectral graph 
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clustering referring to the “graph cut” problem. The ratio cut [48] and MinMaxCut [49] define 

different cut functions on other types of data and lead to different graph Laplacians for clustering. 

These methods all overcome the drawback of Wu et al’s minimal cut criterion and achieve “balanced” 

partitions. As a clustering method, spectral clustering often outperforms the traditional approaches in 

its efficiency and simplicity in implementation. 

Cox et al. [50] incorporated the interior region and boundary information in image segmentation. 

To this end, the ratio between the exterior boundary cost and the enclosed interior benefit is 

minimized using an efficient graph partitioning algorithm. Let P be a directed path in G that starts and 

finishes at the same node v. Denote by cost(P) the length of the boundary, and by weight(P) the 

segment-area cost. The graph cut cost function is then defined as:  

( )Regioncut( , )
( )

cost PA B
weight P

=                        (5) 

Obviously, this cut criterion favorites large objects in the image and the object characteristic of 

smoothness is induced via the area and perimeter measures. This definition is very similar to Eq. (3) 

except that it is defined on a single region. Additionally, one can use different interior information 

such as the intensity, texture or the size of the region in coding the area term. The limitation of this 

method is that it can only segment enclosed objects due to the definition of cost function.  

The mean cut [51] proposed by Wang et al. addresses the problem by defining an edge-weight 

function: 

)1|,(
)),(|,(),(Meancut

BAcut
vuwBAcutBA =                     (6) 

where cut(A,B|w(u,v)) is the cut cost between region A and region B given the edge weight w(u,v), 

cut(A,B|1) is defined similarly with all edge weights to be 1. This cut function minimizes the average 

edge weight in the cut boundary. It allows both open and closed boundaries and guarantees that 

partitions are connected. However, the mean cut criterion does not explicitly introduce the bias on the 

preference for large object regions or smooth boundaries. The authors argued that this lack of bias 

allows producing segmentations that are better aligned with image edges. The global minimization is 
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performed in a polynomial time by graph theoretic algorithm, but limited to connected planar graphs. 

To solve the cost function Eq. (6), there are three reductions in their algorithm: from minimal mean 

cut to minimal mean simple cycle, from minimal mean simple cycle to negative simple cycle, and 

from negative simple cycle to minimal weight perfect matching. Afterwards Wang and Siskind 

extended the mean cut to a more general form called ratio cut [52]. The ratio cut inherits the merit of 

mean cut but corresponds to the average affinity per unit length of the segmentation boundary instead 

of the average affinity per element of the cut boundary. Furthermore, graph nodes in ratio cut method 

correspond to regions which are created by iterated region-based segmentation. The cut function is 

formulated as: 

1

2

( , )Rcut( , )
( , )

cut A BA B
cut A B

=                        (7) 

where cut1(A,B) and cut2(A,B) are defined on the graphs of different iterations. Mean cut is the same 

as ratio cut when cut2(A,B) contains the unit weights. Minimization of ratio cut for arbitrary graph is 

NP-hard, and thus the same reduction process is used as in the mean cut.  

Table 1 summarizes different graph cut methods introduced in this subsection, including the cost 

functions, optimization methods, complexity and their properties.  

 
Table 1: Comparisons between different graph cut cost functions. 

Algorithms Functional Optimization 
method 

Computational 
complexity Bias 

Minimal cut 
[43] 

∑
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),(),(Mincut  
Gomory-Hu’s K-

way maxflow 
algorithm 

Polynomial time Short 
boundary 

Ncut [46] )(
),(

)(
),(),(Ncut

Bvol
BAcut

Avol
BAcutBA +=  

Solve the 
generalized 
eigensystem 

O(mn)  
Similar 
weight 

partition 
Ratio 

Regions 
[50] 

( )Regioncut( , )
( )

cost PA B
weight P

=  
Local searching 
for the minimal 

solution 
O(nlog(n))  Smooth 

boundary 

Mean cut 
[31] )1|,(

)),(|,(),(Meancut
BAcut

vuwBAcutBA =
minimum-

weight perfect 
matching 

Polynomial time No bias 

Ratio cut 
[52] ),(2

),(1),(Rcut
BAcut
BAcutBA =  Baseline method O(n7/4)  No bias 
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Graph cut methods provide well-defined relationship between the segments, while the problem of 

finding a cut in an arbitrary graph may be NP-hard. Efficient approximation of the solution needs to 

be studied. Since these methods form good basis for general image segmentation problem, they can be 

combined with other segmentation techniques for further extension.  

 

3.3  Graph cut on Markov random field models 

The study of psychology suggests that the use of contextual constraints is crucial for interpreting 

visual information. For example, an image should be understood in both of the spatial and visual 

contexts. The Markov random field (MRF) theory provides a useful and consistent way of modeling 

contextual information such as image pixels and features. In this framework, the mutual influences 

among pixels can be formulated into conditional MRF distributions. Due to the equivalence between 

MRF’s and Gibbs distributions, a mathematically sound means is built for transforming the joint 

distribution of an MRF into a simple form. In conjunction with the Bayesian maximum a posterior 

(MAP) estimation, the MAP-MRF framework [53-56] formulates the labeling problem into a problem 

of minimizing an energy function: f*=argminfE(f|d), where d is the observation of image elements, f is 

the unknown labeling, and E(f|d) is thus the posterior energy function. Compared with the graph cut 

methods introduced in Section 3.2.1, the methods discussed in this section will emphasize on the 

MAP-MRF framework which tends to explicitly incorporate any desirable high-level contextual 

information in the energy function.  

 
3.3.1 Bi-labeling graph cut (s/t graph cut) methods Strategies for optimizing the energy functional 

can be various. For those defined on discrete set of variables, the combinatorial min-cut/max-flow 

graph cut algorithm [57] is a prominent one. Greig et al. [58] are the first to find out that powerful 

min-cut/max-flow algorithms can be used to minimize certain energy functions in image restoration. 

The energy functional they used is:  

∑ ∑
∈ ∈

+=
Pp Nqp

qpqppp ffVfDfE
),(

, ),()()( λ                     (8) 

where fp is the label of an image pixel, Dp(⋅) is the regional term that measures the penalties for 
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assigning fp to p, Vp,q(⋅) is the boundary term for measuring the interaction potential, and N is the 

neighborhood set. This graph energy functional is later brought attention in multi-camera stereo 

problem [59] and further generalized to image segmentation for convex or non-convex problems.  

The graph cut energy functional encodes both the constraints from user interaction and the 

regularization of the image smoothness under the MAP-MRF framework. In the graph cut model, 

edges E consist of two types of links to formulate these two constraints: t-links and n-links. Visual 

terminal nodes are added in the graph to represent the user input information. For example, if one 

attempts to partition an image into two classes (i.e., the object and the background), the class 

information is then modeled as two visual terminal nodes based on the user input. With this setting, 

each node is connected to the terminal nodes by t-links, and each pair of neighboring nodes is 

connected by an n-link. The relationship between the energy functional and a graph cut model is 

illustrated in Fig. 4, where the boundary term and the regional term of Eq. (8) define the n-links and t-

links in the graph, respectively. Fig. 4(a) shows an example of bi-labeling cut and Fig. 4(b) shows 

graph cut with multi-labels. Some of the t-links are omitted for the convenience of illustration.  

 

       
(a) 2-way cut                (b) multi-way cut  

Figure 4: Graph cut model and labeling for a 3×3 image. (a) An s/t graph cut model (left), where the 
boundary term in Eq. (8) defines the n-links and the regional term defines the t-links. A cut partitions 
the graph into two sets (right). (b) A multi-label graph cut model (left) and a multiway cut (right).  
 

The work in [60] studies what energy functionals can be minimized via graph cut. In particular, it 

provides a simple necessary and sufficient condition on energy functionals of binary variables with 

double and triple cliques. The global optimal solution of minimal cut can be found by different 

combinatorial min-cut/max-flow algorithms [44,61-64], where Boykov and Kolmogorov’s 

augmenting-path based algorithm [62] has the best performance for common vision problems. For 

huge 2D or 3D grids, the parallelizing of graph cut algorithm has also been studied [65-66, 67]. Fig. 5 
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demonstrates some examples of image segmentation by s/t graph cut.  

 

         

Figure 5: Examples of s/t graph cut segmentation, where user interactively inputs objects seeds (red 
strokes) and background seeds (green strokes).  
 

The most typical way to represent the object/background models is based on the intensity 

distributions (e.g., histogram). Blake et al. [68] suggested using a Gaussian Mixture model (GMM) to 

approximate the distributions. As the object/background models are updated interactively, the high-

level contextual information is enhanced for a stable representation of the objects of interest. A similar 

way of iteratively updating the regional term was proposed in [69], where the information is obtained 

progressively from the local image. In each iteration, only the local neighboring regions to the labeled 

regions are involved in the optimization so that much interference from the far unknown regions can 

be significantly reduced. Fig. 6 shows an example of segmentation with this method.  

 

  

   
Figure 6: The iterated segmentation process of [69]. From left to right and top to bottom: user input 
seeds and initial segmentation by watershed method [70]; the intermediate segmentation results in the 
1st, 2nd and 3rd iterations; the segmentation result; and the energy evolution of this process. The 
newly added regions in the sub-graphs are shown in red color and the background regions are in blue 
color. We can see that the target object is well segmented from the background. The graph cut energy 
decreases monotonically in the iterated process. 
 

The boundary term of Eq. (8) reflects the smoothness of the segmentation, and hence the penalty 
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of neighboring graph elements will be small if they are similar. To describe such a penalty, local 

intensity gradient or color histograms are the most commonly used criteria. Boykov et al. [71] 

investigated geometric properties of segments. They showed that discrete topology of graph cut can 

approximate any continuous Riemannian metric space. Thus many of the well-known geometric 

methods based on level sets [18, 72] can also be studied in the discrete space by the combinatorial 

graph cut. 

 
3.3.2 Multi-labeling graph cut methods The standard s/t graph cut algorithm can find the exact 

optimal solution for a certain class of energy functionals [60]; however, in many cases the number of 

labels for assigning to graph nodes is more than two, and the minimization of energy functions 

becomes NP-hard. For approximate optimization, Boykov et al. [31] developed the α-expansion-

move and αβ-swap-move algorithms to deal with multi-labeling problems for more general energy 

functionals. Although the algorithms can only find local minimum solutions, their effectiveness has 

been validated by extensive experiments. This work inspires more studies to incorporate various 

constraints in the energy functional. In [73-75], the authors used ordering constraints in object 

segmentation. By defining the spatial relationship between the objects, the impossible segmentation is 

ruled out. The improved α-expansion-move algorithms make the optimization of energy functional 

more effective under the constraints. 

  
3.3.3 Graph cut with shape prior Incorporating the shape prior in graph cut has been proven very 

useful for image segmentation. This visual cue can be added in either the regional term or the 

boundary terms to force the segmented object to follow a certain pre-defined shape. The idea of using 

a signed distance map function to represent some shape was proposed by Kolmogorov and Boykov 

[60], where they pointed out that combining geometric concept of flux and length/area in the regional 

term can improve the segmentation quality of long thin objects. In [76], the gradient flow evolution of 

a surface was computed by the L2 distance of the drifting from its current position. It guarantees that 

the shape is not very far from the previous position in the evolving process. Freedman et al. [77] used 

a similar idea as in level-sets [21, 78] to specify the template as a distance function whose zero level 
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set corresponds to the template. The rigid and the scale transformations were also considered in this 

work, where the shape term is integrated into the boundary term of the energy functional. Instead of 

using the specific shape template, Das et al. [79] and Veksler [80] studied more generic shape priors 

for image segmentation. These shapes are defined on the relative positions of neighboring pixel pairs, 

thus the neighborhood system for incorporating the shape constraints is the same as for the boundary 

constraints. In 2-labeling case, minimizing the shape based energy functionals can be accomplished 

exactly with a graph cut if all the pairwise terms are submodular. Fig. 7 shows segmentation examples 

by Das et al. [79] and Veksler’s methods [80], respectively.  

 

       
         (a) Segment collinear compact pieces    (b) Segment star shape object 

Figure 7: (a) Left: original image; right: segmented image (taken from Das et al. [79]). The white 
circle marks are the seeds. The algorithm extends the current segment by using graph cut on several 
approximately collinear pieces. New seed points are automatically selected (shown as white squares). 
(b) Left: original image; right: the segmentation result for “star shape” object (taken from Veksler 
[80]).  

 

3.3.4 Interactive graph cut methods The interactive property of graph cut allows an efficient editing 

of segmentation results. The lazy snapping [81] and Grabcut [82] provide quick object marking 

schemes for better user experience. Users are allowed to loosely position seed points to indicate which 

parts of the image are objects and modify the segmentation results by editing the boundary with some 

soft constraint [81]. Or instead of putting the seeds in both of the object and background, user can 

simply drag a rectangle around the candidate object to indicate the background region only [82]. This 

“incomplete labeling” leads to a considerably reduction of user interaction. In Grabcut, the graph cut 

algorithm is performed iteratively with an updating process on the object and background models. The 

user interaction and segmentation results by Grabcut are illustrated in Fig. 8. Lempitsky et al. [83] 

used such a rectangle to impose the topological prior on the segmented object. The prior is 

incorporated into the energy minimization framework which leads to an NP-hard integer 

programming. An approximated solution is achieved by first relaxing it to a convex continuous 
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optimization problem, and then using a new graph cut based algorithm as a rounding procedure for the 

original problem. A more advanced user interactive tool was developed by Liu et al. [84], called 

“Paint Selection”. It provides instant feedback to the users when they drag the mouse. This 

progressive selection algorithm is implemented based on multicore graph-cut and adaptive band 

upsampling. Experiment shows that a series of local optimization guarantees the segmentation quality, 

since in each step the algorithm will match users’ directions as much as possible.  

 

        

Figure 8: In Grabcut method [64], the interactive input from the user is a rectangle (shown in red) 
which contains the object of interest. Area outside the rectangle is taken as the background. 
Segmentation results are obtained after iterated running of graph cut algorithms.  
 
 

From the discussion above, we can see that graph cut on MRF is a combinatorial optimization 

technique and can be used as a general tool for exactly minimizing certain binary energies. It extends 

the principle of graph cut (see the methods in section 3.2) to an interactive style. As a result the high-

level information can be introduced in the segmentation process. Iterated techniques based on graph 

cut can produce good approximations for empirically efficient solutions. The theoretical properties of 

graph cut will motivate its general applications in many applications for low-level vision problems.  

 

3.4 Shortest path based methods 

Finding the shortest path between two vertices is a classical problem in graph theory. In a weighted 

graph, the shortest path will connect the two vertices with the minimized sum of edge weights. 

Formally, let s and t be two vertices of a connected weighted graph G. The goal is to find a path from s 

to t whose total edge weights is minimal. This is a single pair shortest path problem, and there are 

several algorithms to solve it. The most well-known one is Dijkstra’s algorithm [35, 85] based on 

dynamic programming. This algorithm is to grow a Dijkstra tree, staring at the vertex s, by adding at 

each iteration, a frontier edge whose non-tree endpoint is as close to s as possible. After each iteration, 
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the vertices in the Dijkstra tree are those to which the shortest paths from s have been found [86]. In 

the shortest path based image segmentation, the problem of finding the best boundary segment is 

converted into finding the minimum cost path between the two vertices. In practical applications, the 

modeling of this problem suggests an interactive guidance from the users such that the segmentation 

process becomes more effective.  

The livewire method [87-88] allows the user to select an initial point on the boundary. The 

subsequent point is chosen such that the shortest path between the initial point and the current cursor 

position will best fit the object of interest. In this setting, the boundary is represented as a sequence of 

oriented pixel edges. Each oriented edge carries a single cost value to measure the quality of boundary. 

Then boundary wraps around the object at a real-time speed. Compared with tedious manual tracing, 

livewire provides a more accurate and more reproducible tool for segmentation task. The difficulty 

with livewire is that the user has to accurately put the seeds near the desired boundary. When there is 

texture or weak boundary, a lot of guidance from the user may be required to obtain an acceptable 

segmentation. Fig. 9 shows the segmentation with the livewire method, where three seed points are 

drawn to guide the segmentation process.  

 

 

Figure 9: Livewire segmentation leads to open and close boundaries (shown in red). Three seeds 
points are drawn sequentially during the segmentation process. The livewire segment snaps to the 
object boundary as the cursor moves. It can jump of the gaps and result in continuous boundaries.   

 

Livewire requires a searching over the whole graph for the shortest paths, therefore a large 

amount of computational resource is needed when segmenting high resolution images. Live lane [87] 

overcomes this limitation by confining the searching space in a much smaller range (5 to 100 pixels), 
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and largely reduces the computational time in most cases. As a matter of fact, the use of shortest path 

in edge and contour detection has been investigated for many years. Early work in this area [89] tried 

to improve the computing time by heuristic search methods. However, the computing time is still 

dependent on the amount of noise in the picture. Other works [90-91] embed certain restrictions on 

the form of the contour, which are useful in specific applications. One recent work was proposed by 

Falcão et al. [92], who exploited some known properties of graphs to avoid the unnecessary shortest 

path computation and proposed a fast algorithm called live-wire-on-the-fly. The acceleration of graph 

searching is based on the fact that the results of computation from the selected point can make use of 

the previous position of the cursor. Their algorithm has the advantages that there is no restriction on 

the shape or size of the boundary and the boundary is oriented so that it has well defined inner and 

outer parts of the boundary. The later property would be very useful when there are stronger 

boundaries nearby. The same idea has been adopted by other segmentation methods such as graph cut 

based algorithms [60]. A very similar technique called Intelligence Scissors [95] integrates the 

boundary cooling and on-the-fly-training in the graph searching process, and as a result, it reduces the 

amount of user interaction and makes the boundary adhere to the specific type of edges.  

Bai et al. [96] used geodesics distance to assign the path weights and study the image 

segmentation under a different framework. Instead of computing the shortest path on the boundary, 

their algorithm is based on image regions. A pixel is assigned with a foreground label if there is a 

shorter path from that pixel to a foreground seed than to any background seed. The algorithm can be 

implemented very efficiently as the time complexity for geodesic is in linear time. However, it is 

strongly dependent on the seed locations and is more likely to leak through weak boundaries.  

Due to the increasing applications of 3D data in practice, researchers have been looking for the 

3D extensions of the 2D shortest path techniques. The 3D examples of live wire was proposed in [93-

94] for medical image segmentation. Other 3D extensions of the shortest path algorithm can be found 

in [127,128]. However, these extensions are not straightforward and fundamentally path-based 

techniques. There is no guarantee that the shortest paths will lie on the minimal surface. To solve this 

problem, Grady [129] adopted a mathematically elegant method to find the minimal surfaces and then 

used them to segment the 3D data. 
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In comparison with the MST based methods, which focus on the clustering properties of a 

segment, the shortest path can well describe certain nature of the object boundaries in the image. By 

virtue of its computational reliability, the image segmentation problem can be solved intuitively and 

effectively. Unlike contour evolution methods (e.g., active contour [97, 98]), livewire is based on a 

user-driven process where image features are used to defined the graph model. In most circumstances, 

livewire provides more freedom for user to control the segmentation process. It might be more 

suitable for extracting complex objects with relatively explicit boundaries than other graph based 

methods. As a robust technique for interactive segmentation, it can be extended to 2D sequences or 

3D data.  

 

3.5 Other methods 

The random walker [32] is an interactive segmentation method that is formulated on a weighted graph 

to assign a label to each pixel on an image. Each edge on the graph is assigned a real valued weight 

defined as: ))(exp( 2
jiij ggw −−= β , where gi is the image intensity at pixel i and β is a free parameter. 

This weight can be taken as the likelihood that a random walker will go across that edge. As a 

consequence, the label of a pixel is given by the seed point that the random walker first reaches. The 

theoretical basis of random walker is an analogue of the discrete potential theory on electrical circuits 

[99]. The solution of random walker probabilities has been found the same as minimizing a 

combinatorial Dirichlet problem [100]:  
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Minimizing D[x] equals to solving the harmonic function that satisfies the boundary condition, which 

can be set by letting the seed point value be unit. Eq. (9) has an identical form to graph cut function in 

Eq. (1); however, random walker will be more likely reaching the seed with the least steps, and thus it 

might avoid segmentation leakage and shrinking bias. In Fig. 10, we show some example 

segmentations on natural images, where the edge weights are based on the RGB color differences only. 

Sinop et al. [130] unified the graph cuts [57] and random walker [32] into a general framework, which 
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is based on the minimization of lq norms. A new algorithm was therefore derived in the case of q=∞. It 

exhibits the greatest robustness to seed quantity, but the least robustness to seed placement compared 

with the graph cuts and random walker algorithms.  

 

    

    

    

Figure 10: Examples of segmentation on natural images by the random walker algorithm [32]. The 
green strokes and the blue strokes represent the object seeds and the background seeds, respectively 
(the second row). The segmentation is shown by red boundary (the third row).  
 

Pavan et al. [33] proposed an image segmentation method based on dominant sets, which is a 

generalization of maximum clique in the context of weighted graph. The maximal clique is the 

strictest definition of a cluster [101], since it defines a cluster in the edge-weighted graph which has 

the internal homogeneity and the external inhomogeneity simultaneously. The dominant sets are 

converted into a continuous quadratic optimization problem and thus solved by the replicator 

dynamics from evolutionary game theory [102]. However, to compute the dominant set in a graph, 

there is a requirement of comparing all possible pairs of pixels in an image. To reduce the 

computational load, an efficient solution to this problem was studied in [103]. The dominant sets 

clustering method has been proved with better classification performance in intensity, color, texture 

image segmentation, and it is competitive with other spectral graph clustering methods such as 

normalized cut method [46] in both clustering quality and computational cost.  
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4. Evaluation of Image Segmentation Methods 

In previous sections, we have reviewed many graph based methods of image segmentation. It is well-

known that image segmentation is an ill-posed problem, which makes the evaluation of a candidate 

algorithm a very challenging work. The most usual way of evaluation is to visually observe different 

segmentation results by the user. However, it is time consuming and may result in different outcomes by 

users. Quantitative evaluation of segmentation is hence more preferable in practice. In supervised 

evaluation, the task is performed by measuring the similarity between the segmentation results and 

some ground truth images, which are provided by human observers. This has been widely used by 

researchers.  

For most segmentation methods, an objective evaluation often requires a measure of 

segmentation to have the following characteristics [104]:  

 Adaptive accommodation of refinement. Since human perceives images in different levels of 

details, it is reasonable to compensate for the difference in granularity by allowing refinement 

through the image. 

 Non-degeneracy. The measure will not give abnormally high value of similarity when 

confronted unrealistic segments. 

 No assumption about data generation. The measure should be available for any class of labels 

or region sizes. 

 Comparable scores. The measure gives scores that permit meaningful comparison between 

different segmentations. 

To quantitatively evaluate the segmentation results, as in [133-134]) we use five well-known 

indices: Probabilistic Rand (PR) index [107], Normalized Probabilistic Rand (NPR) index [107], 

Variation of Information (VI) [131], Global Consistency Error (GCE) [106] and Boundary 

Displacement Error (BDE) [132].  

 

Probabilistic Rand (PR) index. The PR index defines the correctness of segmentations under a 

statistical point of view. It is supposed that the segmentation of an image can be described in the form 
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of binary numbers )( kS
j

kS
i ll =I  on each pair of pixels (xi, xj). The distribution of these numbers 

follows a Bernoulli distribution and gives a random variable with expected value denoted by pij. The 

PR index of two segmentations is then defined as: 
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where N is the number of pixels, {Sk} is the set of ground truth segmentations, pij is the ground truth 

probability that the labels of (xi, xj) are the same. In practice, the mean pixel pair relationship in all 

ground truth segmentations is used to compute pij. We could see that the penalization of segmentation 

for being/not-being in the same region is dependent on the fraction of disagreeing with the ground 

truth data. The PR index takes values in the range [0, 1], where a score of zero indicates the labeling 

of test image is totally opposite to the ground truth segmentation and 1 indicates that they are the 

same on every pixel pair. The PR index accommodates the region refinements appropriately in that it 

accepts refinement only in regions that human observers find ambiguous. This property is more 

preferable than the refinement-invariant measures for preventing the degenerate cases.  

 

Normalized Probabilistic Rand (NPR) index. From the definition of PR index, however, it is 

impossible to know if a given score is good or bad. By introducing an excepted value for a given 

segmentation, the NPR is proposed by using a normalization scheme: 
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The maximum index can be set to 1. The expected value of NPR is given as follows: 
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The '
ijp  is to be estimated from segmentations of all images: 
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where Φ is the number of different images in the dataset, and KΦ is the number of ground truth 

segmentations of image ϕ. NPR index overcomes the flaw of PR, and allows a comparison between 

different segmentations of the same image or of different images.  

 

Variation of Information (VI). Meila [131] proposed an information-theoretic distance of clustering. 

For segmentations, it can be interpreted as the average conditional entropy of one segmentation given 

the other: 

)()(),( testKKtestKtest SSHSSHSSVI +=     (14) 

The first term in Eq. (14) measures the amount of information about testS  that we loose, while the 

second term measures the amount of information about KS  that we have to gain, when going from 

segmentation testS  to ground truth KS . An equivalent expression of Eq. (14) is: 

),(2)()(),( KtestKtestKtest SSISHSHSSVI −+=         (15) 

where H and I are respectively the entropies of and the mutual information between the segmentation 

testS  and the ground truth KS .   

VI is a distance metric since it satisfies the properties of non-negativity, symmetry and triangle 

inequality. If two segmentations are identical, the VI value will be zero. The upper bound of VI is 

finite and depends on the number of elements in the segments.  

 

Global Consistency Error (GCE). This evaluation criterion is designed for computing the degree of 

overlap of regions. Martin et al. [106] proposed the GCE measure to quantify the segmentation 

quality in different granularities. This measure allows for refinement, but suffers from degeneracy. Let 

),( ipSR  be the set of pixels in segmentation S that contains pixel pi, the local refinement error is 

defined as: 
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This error is not symmetric w.r.t. the compared segmentations, and takes the value of zero when S1 is a 

refinement of S2 at pixel pi. GCE is then defined as: 
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Boundary Displacement Error (BDE). BDE is a boundary based metric to evaluate the 

segmentation quality. It defines the error of one boundary pixel as the distance between the pixel and 

its closest pixel in the other boundary image. Let B1 represent the boundary point in a segmentation, 

an arbitrary point x in B1 to a boundary point B2 of the ground truth is defined as the minimum 

absolute distance from x to all the points in B2. So a near-zero mean and a small standard deviation 

will indicate a good quality of the image segmentation. 

 

From the above introduction of the five indices, one should note that it is not possible to define a 

criterion for comparing segmentations that fits every problem optimally. For example, PR and NPR 

are based on examining the relationship between pairs of pixels. As a result, segmentation algorithms 

which are concerned with pairs (e.g., graph partitioning) can better use PR and NPR for evaluation. 

While for clustering algorithms (e.g., mean-shift) focus on the relationship between a point and its 

clustering centroid, VI will be a better choice. A good segmentation will achieve large value of PR 

and NPR indices while small values of GCE, VI and BDE. Note that these indices are not designed for 

evaluating segmentation quality with multiple ground truths. More information on segmentation 

quality evaluation with multiple ground truths can be found in [135].  

  

5. Experiments on Automatic Image Segmentation 

In this section, three well-known graph theoretic segmentation methods are selected for our 

experiments due to their reasonable performance and publicly available implementations: the MST 

based method by Felzenszwalb and Huttenlocher [40] (FH method), the normalized cut by Shi et al. 
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[46] (Ncut method), and the ratio cut by Wang et al. [52] (Rcut method). The FH method represents a 

different category of graph based segmentation techniques against the Ncut and Rcut methods as we 

introduced in Section 3. The evaluation also shows the consistency of segmentation quality produced 

by them. We would like to see the stability of the methods and their variance or bias in different 

parameter settings. In addition, we make a comparison with the well-known mean-shift method [108], 

which does not belong to the graph theoretic category but has been accepted as a robust and efficient 

segmentation approach. 

All the experiments were performed on the Berkeley dataset [105], where all of the 500 images 

are used for our evaluation. These images have 5 to 8 human-marked ground truths on each one of 

them. Examples of images are shown in Fig. 11. We can see that there is a high degree of consistency 

between different human subjects but a certain variance in the level of details. 

 

 

 

 

Figure 11: Examples of images and their ground truths from the Berkeley image dataset [105]. 
 
 

For each image, we manually choose the optimal set of parameters in each algorithm to achieve 

the best evaluation scores. Particularly, in FH method, the smoothing parameter σ was held constantly 

to be 0.5, the threshold parameter K was varied through K∈[200, 1500] and the minimum component 

size was in the interval of [100,1000]. For Ncut, the number of segments was the only parameter and 

it was set from 2 to 20. For Rcut, the linear edge weights were used for both scales and the blending 

factor was set as α=0.5. The termination criterion HT was set from 500 to 1200. For mean-shift, the 

spatial band width was set from 7 to 25, the color band width was set from 7 to 18 and the minimum 



29 

region was set from 200 to 2000.  

Fig. 12 shows the histograms of five criteria on the 500 natural images. In Fig. 12(a), we see that 

the Ncut and Rcut methods have similar best score distributions, which demonstrates their roughly 

equal performance on image segmentation. However, since Rcut does not have the shape or boundary-

length bias, it achieves more PR scores over 0.95 than Ncut. In the best performance, nearly all the 

algorithms have PR index score above 0.5. And a large portion of segmentations achieves the score 

above 0.75. This demonstrates that all the algorithms can produce reasonable results on the test 

images. Comparing with the three graph based methods, the mean-shift method can produce more 

segmentations whose PR index scores are above 0.85, showing that it performs slightly better than the 

three graph based methods. Similar results can be observed in Figs. 12(b)-(e), the general performance 

of the four algorithms is acceptable since only a small portion of the segmentation has below-zero 

NPR scores. When evaluating the relationship of pixel pairs, Ncut and the Rcut methods have roughly 

equal ability to segment the given images. While results by GCE, VOI and BDE show that Rcut 

outperforms Ncut for producing more good segmentations, and the mean-shift method outperforms 

the three graph based methods in that it produces more scores ranking among the good ones. 
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(a) Histograms of PR indices 
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(b) Histograms of NPR indices 
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(c) Histograms of GCE 
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(d) Histograms of VI 

1 5 10 15 20 25 30 35 40 450

50

100

150

200

250

BDE

N
um

be
r o

f I
m

ag
es

 

 

FH
Ncut
Rcut
Meanshift

 
(e) Histograms of BDE 

Figure 12: Histograms of the best PR, NPR, GCE, VOI and BDE scores on 500 images by the FH 
method [40], Ncut method [46], Rcut method [52] and mean-shift method [108], respectively. 
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In the second experiment, we test the stability of FH, Ncut and Rcut algorithms with different 

parameter settings. Fig. 13 shows the segmentation results on 5 test images. For each of the competing 

algorithms, the parameters were set so that they produce roughly the same number of segments for 

comparison. The number of segments in the image ranges from 8 to 80. We can see that as the 

parameters change, the FH has stronger ability to extract the main structure of objects than Ncut and 

Rcut, especially when the number of segments is large. The quantitative measures of segmentation 

quality of Fig. 13 are listed in Table 2. The NPR index is used for its ability to compare segmentations 

of different images. It is shown that in most cases the Rcut method has better stability of performance 

as the parameters changing for the same image. However, the FH method has better average 

segmentation quality than Ncut and Rcut on most of the test images. 

Table 2: NPR index for segmentation results in Figure 13. 

 

Image 
#24077 

Algorithms Number of regions Mean 
(NPR) 

Variance 
(NPR) 8 16 26 38 42 68 

FH 0.1646 0.7553 0.8409 0.6346 0.8373 0.8252 0.6764 0.0690 
Normalized 

cut 0.6720 0.7906 0.7942 0.7906 0.7876 0.7667 0.7670 0.0023 

Ratio cut -0.113 0.5854 0.7021 0.7183 0.7339 0.68237 0.5516 0.1086 

Image 
#86000 

Algorithms Number of regions Mean 
(NPR) 

Variance 
(NPR) 5 14 21 33 57 88 

FH 0.2187 0.5971 0.5764 0.6064 0.5968 0.5922 0.5313 0.0235 
Normalized 

cut 0.3147 0.4966 0.4657 0.4674 0.4339 0.4171 0.54326 0.0041 

Ratio cut 0.5326 0.5451 0.6076 0.6020 0.5874 0.5767 0.5753 0.0009 

Image 
#219090 

Algorithms Number of regions Mean 
(NPR) 

Variance 
(NPR) 8 13 21 37 62 81 

FH 0.5505 0.9080 0.9080 0.8729 0.8737 0.7205 0.8056 0.0205 
Normalized 

cut 0.6448 0.5902 0.5254 0.4563 0.4275 0.4133 0.5096 0.0089 

Ratio cut 0.8063 0.7216 0.7418 0.6804 0.7403 0.7304 0.7368 0.0017 

Image 
#296059 

Algorithms Number of regions Mean 
(NPR) 

Variance 
(NPR) 9 14 20 37 48 66 

FH 0.4438 0.6181 0.5663 0.5693 0.7030 0.6674 0.5947 0.0083 
Normalized 

cut 0.4573 0.6189 0.5848 0.5619 0.5487 0.5302 0.5503 0.0030 

Ratio cut 0.5931 0.5651 0.5599 0.6101 0.6010 0.5533 0.5804 0.0006 

Image 
#42049 

Algorithms Number of regions Mean 
(NPR) 

Variance 
(NPR) 8 13 28 35 40 63 

FH 0.9590 0.9781 0.9715 0.9672 0.9532 0.9161 0.9576 0.0005 
Normalized 

cut 0.6686 0.5777 0.4547 0.4197 0.4011 0.3709 0.4822 0.0135 

Ratio cut 0.9110 0.9610 0.9479 0.9553 0.9408 0.9033 0.9366 0.0006 
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       #24077                       (a1) FH  

      
      (a2) Normalized cut  

               
(a3) Ratio cut  

       
      #86000                        (b1) FH  

      
      (b2) Normalized cut  

               
(b3) Ratio cut  

       
      #219090                       (c1) FH  

      
      (c2) Normalized cut  

         
(c3) Ratio cut  

       
      #296059                       (d1) FH  

      
      (d2) Normalized cut  

         
(d3) Ratio cut  

       
      #42049                        (e1) FH  
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      (e2) Normalized cut  

        
(e3) Ratio cut  

Figure 13: Segmentation results under different sets of parameters for FH, Ncut and Rcut algorithms. 
The number of segments is the same for the three methods on the same image, and changes 
ascendingly from left to right.  
 
 

6. Experiments on Interactive Image Segmentation 

The goal of interactive image segmentation is to extract semantic objects from an image, and thus it 

often turns out to be the form of foreground/background extraction. The comparison of interactive 

segmentation methods is not as that objective as the automatic ones. Usually, the performance is 

dependent not only on the computational strategies but also the user’s guidance. The user interactions 

are often input in terms of brush strokes [1-2, 57, 62, 67, 69] or bounding box [82-83], where the 

former is more flexible to achieve arbitrary segmentations. However, the lack of objective criteria for 

performing user interaction may lead to the unrepeatability and excessive input provision for the 

segmentation results. In general, the effort that a user makes in the interaction can be assessed from 

several aspects, for example, the amount of seeds, the cognitive load and the precision requirement for 

the user. Some extensive studies [109-110] have been made to evaluate interactive segmentation 

methods. In this section, we adopt the similar principle for a consistent and fair evaluation, where the 

selected interactive segmentation methods can be compared directly by the same interaction pattern.  

The selected interactive segmentation methods in the comparison are graph cut (GC) [57], 

iterated graph cut (IGC) [69], lazy snapping (LS) [81] and random walker (RW) [32]2. We consider 

two criteria for comparing their performance: the segmentation accuracy and the number of 

interactions required for the segmentation. The images we used in the experiments are from the 

                                                        
2 Codes of GC and IGC are provided by the authors. LS is implemented by Mohit Gupta and Krishnan Ramnath 

http://www.cs.cmu.edu/~mohitg/segmentation.htm . The code of RW is from http://cns.bu.edu/~lgrady/software.html by 
Leo Grady.  



34 

Berkeley Segmentation Dataset, where 96 of the 500 images are selected with the ground truths of 

100 objects3. Images are chosen so that each of them has one object that could be unambiguously 

extracted by the human beings.  

Some qualitative comparisons of the four interactive segmentation methods are shown in Fig. 14. 

Given the same amount of user interaction, the performances of these methods are visually different. 

We can see that IGC achieves better segmentation results than the other three methods. And most of 

the segmentation results are acceptable. 

 

 

 

 

 
    Original Image      GC        IGC      LS        RW 

Figure 14: Segmentation results of GC [57], IGC [69], LS [81] and RW [32] with the same input 
seeds. The first column shows the original images with seeds. The second to the fifth columns show 
the segmentation results obtained by GC, IGC, LS and RW, respectively. 
 

The best performance of each method on the 100 objects in terms of the five criteria are shown in 

Fig. 15(a)-(e), respectively. We can see that IGC produces the most segmentations whose evaluation 

scores are among the high quality.  Both IGC and LS are the extended versions of the GC method. 

However, with the iterated optimization of the graph cut energy function, IGC leads to better 

segmentation results. Table 3 shows the average segmentation accuracy of the four methods with 

                                                        
3 http://kspace.cdvp.dcu.ie/public/interactive-segmentation/downloads.html 
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respect to the results in Fig. 15. IGC still achieves the best performance, while the results of GC, LS 

and RW are comparable with each other. 
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(a) Histograms of PR indices 
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(b) Histograms of NPR indices 
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(c) Histograms of GCE 
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(d) Histograms of VI 
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(e) Histograms of BDE 

 
Figure 15: The segmentation accuracy in terms of the histograms of the five criteria.  

 

Table 3: Average PR and NPR index scores by the four segmentation methods. 

Algorithm GC IGC LS RW 
Average PR index 0.9255 0.9586 0.9329 0.9357 

Average NPR index 0.8399 0.8949 0.8295 0.8366 
Average GCE 0.0497 0.0418 0.0598 0.0571 

Average VI 0.3208 0.2709 0.3668 0.3573 
Average BDE 8.5343 4.7227 7.0519 6.6095 
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Figure 16: The number of interactions required for the segmentation results in Fig. 15. 

 

In addition to the segmentation accuracy, we also count the number of interactions required for 

the segmentation results. The histogram of the number of required interactions for the segmentation 

results in Fig. 15 is shown in Fig. 16. We can see that the GC method produces some segmentations 

which need more than 16 interactions, while all the other three methods needs less than 16 
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interactions. Table 4 gives the average number of interactions for the segmentations. IGC requires the 

least number of interactions among all the methods, while LS requires the most in average. From the 

experiments, it is also found that for GC, IGC and LS the seeds should be placed so that they can well 

represent the color distribution of the foreground/background regions. For RW, the seeds should be 

placed closely to the foreground to get the desirable segmentation.  

 

Table 4: The average number of required interactions by the four segmentation methods. 

Algorithm GC IGC LS RW 
Average number of interactions 6.8 6.71 7.47 6.89 

 

7. Applications in Medical Image Segmentation 

In the past years, many real world applications (e.g., medical diagnosis, video surveillance and image 

retrieval) have largely benefitted from the graph based segmentation methods. One typical application 

is the image based medical diagnosis where specific tissues or organs of interest need to be extracted. 

In this section, we review some frequently used methods in medical image segmentation. Although 

these methods are designed for specific biomedical imaging applications, most of them can be 

classified into one of the five categories introduced in Section 3.  

Graph cut based on MRF models (s/t graph cut) [57, 62] incorporates both of the region and 

boundary information. It allows for the interactive guidance from the user and no prior model of 

objects is required in initialization. More importantly, it can reach the global optima on some 

specifically defined graph functions. These features make graph cut based methods produce pleasing 

segmentation results for many medical applications. The earliest work was done by Y. Boykov et al. 

[111], where the segmentation of one or more objects in both 2D and 3D environments was 

implemented. Sophisticated extensions of the s/t graph cut were further proposed to solve the 

computation problem on massive grid graph [67], to segment multiple interacting surfaces of a single 

n-dimensional object [112-113], to segment multiple objects and surfaces on layered graph [114] and 

to extract the multi-surface with some shape prior [115]. Simultaneously segmenting surfaces and 
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objects in a global consistent manner requires considering how the graph is constructed and the 

relationship between each surface and object. Formulating the problem on specific graphs provides an 

intuitive way to find the mathematically sound solution.  

Segmentation of medical objects by extracting contours can be obtained as the shortest path on 

the weighted graph. In order to well incorporate the object-related knowledge, the user interaction is 

actively pursued and has resulted in better segmentation accuracy. In live-wire methods [116-117], all 

possible minimum-cost paths from the seed point to all other points in the image are computed via 

Dijkstra’s algorithm [35, 85]. To improve the efficiency, numerous modifications such as live lane [87] 

and live wire on the fly [92], which reduce the algorithm’s graph search space, were proposed. The 

extensions of live wire to 3D medical images can be found in [93-94, 118-121].   

There are also hybrid methods based on the combination of graph theoretic techniques for 

medical image segmentation. With the nature of evolution, many active contour models [19,122] find 

the path of minimal weighted length within two end points for contour extraction. It has been proven 

that under a specific framework, the boundary detection in active contour model is equivalent to the 

minimal distance computation in a Riemannian space [98]. Incorporation of shape prior knowledge 

has also been extensively studied in the active contour framework, with the statistical shape model 

[122-123], the global shape model [124] and the shape of interest [125-126]. The graph search 

methods solve the minimal path problems more directly than approximating the solution to PDEs in 

the active contour model. With appropriately defined graph structure, the search time and the 

computation accuracy are satisfactory to medical applications.  

 

8. Conclusion 

In this survey, we systematically discussed representative methods for graph based image 

segmentation. These methods are proposed to partition an image into disjoint regions, such that each 

region satisfies a certain predefined segmentation criterion. The use of graph as a representation of the 

image provides us an effective way to study the problem of image segmentation. The close 

relationship between them is not by accident and can be easily understood in two folds. First, the 
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graph is a good mathematical model to describe the discrete characteristics of the real world images. 

Second, there are many mature graph theories available to solve the clustering problem, which is 

another interpretation of the image segmentation problem. In the past decades, the study of graph 

based image segmentation has been making large progress. Particularly, in recent years the emergence 

of many new algorithms proves that this category of techniques is still a promising research direction 

in the image segmentation community. Further study can refer to versatile graph based algorithms for 

a wide range of practical applications. The choice of which method to use is often application specific, 

and we argue that the successful ones should utilize appropriate graph models and guarantee good 

properties of the segments.  

Several open issues still exist in this area. Many graph based methods convert the image 

segmentation into an optimization framework, while most of them are NP-hard to solve. Researchers 

often try to find alternative solutions to approximate the original problems, and some of them might 

result in unpredictable performance in general cases [60]. It is also not easy to find a single 

quantitative measure for evaluating the segmentation quality, even with a group of ground truth given 

beforehand. To some extent, the evaluation criterion might vary in different applications.  
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