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a b s t r a c t

This paper introduces the generalised relaxed Radon transform (GR2T) as an extension to the

generalised radon transform (GRT) [1]. This new modelling allows us to define a new framework for

robust inference. The resulting objective functions are probability density functions that can be chosen

differentiable and that can be optimised using gradient methods. One of this cost function is already

widely used in the forms of the Hough transform and generalised projection based M-estimator, and

it is interpreted as a conditional density function on the latent variables of interest. In addition the joint

density function of the latent variables is also proposed as a cost function and it has the advantage of

including a prior about the latent variable. Several applications, including lines detection in images and

volume reconstruction from silhouettes captured from multiple views, are presented to underline the

versatility of this framework.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Robust inference is one major focus in pattern recognition
applications. The possibility to find several occurrences of the same
object (pseudo-outliers) when the observations are contaminated
with data that have no relation to the information of interest
(outliers) is a major challenge in image and video processing. In the
past decades, several innovative approaches have been proposed to
deal with both outliers and pseudo-outliers (see Section 2 for a brief
review). The aim of this paper is to explain and generalise in the
same consistent non-parametric Bayesian framework several one-
to-many and many-to-one robust strategies that have been pro-
posed for inference in Computer vision. This new framework is
derived from the generalised Radon transform (GRT) and is coined
generalised relaxed Radon transform (GR2T) (see Section 3). Break-
ing away from past interpretations, the first contribution of this
paper is to be able to interpret the robust objective functions as
probability density functions of the latent variables of interest. In
this new framework, the addition of prior information is straight-
forward allowing the modelling to be fully Bayesian.

Secondly, we show how this framework can be used for a wide
range of inferential problems by using an auxiliary variable. The
versatility of our new framework is illustrated for various applica-
tions in Section 4. Depending on the experimenter’s assumptions,
this methodology can define discrete or differentiable smooth cost
functions suitable for parameter estimation. Section 3.3 discusses
the benefits and inconveniences of discrete versus differentiable
cost functions for performing stochastic exploration.
ll rights reserved.

: þ353 1 677 0711.
2. State of the art

We consider fxðiÞgi ¼ 1,...,N , N independent observations of the
random variable x that is related to a latent quantity of interest
ðl,YÞ by

lþFðY,xÞ ¼ E� pEðEÞ ð1Þ

where F is a known function. Using the observations, we note the
residuals:

EðiÞ ¼ lþFðY,xðiÞÞ, 8i¼ 1, . . . ,N

This section presents several objective functions that have been
proposed in the literature to estimate ðl,YÞ. These objective
functions originate from different frameworks namely: the stan-
dard likelihood approach used along with its extension to robust
M-estimation (Section 2.1), the Hough transform (Section 2.2) and
its extension (Section 2.3). More recent robust approaches in
computer vision are reported in Section 2.4.

2.1. Maximum likelihood estimation

The likelihood cost function corresponds to the joint prob-
ability of the residuals (assumed independent):

Lðl,YÞ ¼ pðEð1Þ, . . . ,EðNÞÞ ¼
YN
i ¼ 1

pEðEðiÞÞ ð2Þ

Using the negative log transformation, an estimate of ðl,YÞ can be
computed by

ðl̂, bYÞ ¼ arg min
l,Y

�log Lðl,YÞ ¼
XN

i ¼ 1

�logðpEðEðiÞÞÞ
( )

ð3Þ
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A popular choice for the density function pE is the normal dis-
tribution. However this choice is not robust to the presence of
outliers, and other distributions such as the Cauchy distribution can
be used. The maximum likelihood cost function has been extended
to the generalised maximum likelihood estimators as follows:

ðl̂, bYÞ ¼ arg min
l,Y

Mðl,YÞ ¼
XN

i ¼ 1

rðEðiÞÞ
( )

ð4Þ

where the function r is designed to penalise high residuals and is
not limited to the choice r¼�log pE [2].
2.2. Hough transform

The Hough transform increments a histogram in the parameter
space of the shape of interest by taking each observations
independently, and incrementing all possible bins corresponding
to the models that could have generated this observation [3]. This
can be understood as a voting scheme and the resulting discrete
objective function to optimise is a multidimensional histogram
where each significant local maxima is associated with a likely
occurrence of the object. This sort of strategy is referred as one-
to-many mapping [4] since one observation votes for several
possible models.

Mathematically, the Hough transform is defined [5,6] as

Hððl,YÞAOÞ ¼
Z

pðx,OÞ IðxÞ dx¼
XN

i ¼ 1

pðxðiÞ,OÞ ð5Þ

where O defines a finite cell in the parameter space such that

pðxðiÞ,OÞ ¼
1 if any curve of parameters
ðl,YÞAO passes through the point xðiÞ

0 otherwise

8<: ð6Þ

and I is proportional to the empirical density function of x:

IðxÞ ¼
XN

i ¼ 1

dðx�xðiÞÞ ð7Þ

The objective function Hððl,YÞAOÞ ¼HðOÞ is then computed on
all cells O such that the whole parameter space is covered. The
estimation for the global maximum is then performed by

Ô ¼ arg max
O

HðOÞ ¼
XN

i ¼ 1

pðxðiÞ,OÞ

( )
ð8Þ

The discrete nature of the voting kernel p (Eq. (6)) implies that the
objective function H is discrete but this can be relaxed to smooth
formulation [5]. Most applications of the Hough transform deal
with the image data and there has been many efforts for modelling
the noise in the image (observation) space and its consequence in
the latent (Hough) parameter space [7,8,5,9]. For line detection, the
function F is defined as Fðx¼ ðx1,x2Þ,YÞ ¼ x1 cos Yþx2 sin Y.
In this case, the Hough transform can be understood as the Radon
transform [10,11]. Another popular applications is for circle detec-
tion in images [7,5].
2.3. Mapping subsets of observations into the parameter space

Olson proposed to extend the Hough transform to map subsets
of observations in the parameter space [6]. Considering all subsets
s¼ ðxði1Þ, . . . ,xðiK ÞÞ of K observations selected from fxðiÞgi ¼ 1,...,N , the
Hough transform is generalised to [6]

HK ðOÞ ¼
X
8s

YK
k ¼ 1

pðxðikÞ,OÞ ð9Þ
If the sets s are computed without repetitions (a.k.a. if the sets
correspond to delete-d jackknife subsamples [12]), then there are
ðNKÞ possible different subsets s [6]. To simplify computation of HK ,
one can consider to randomly select a few to compute HK [6].
Note that H1 corresponds to the standard Hough transform as
defined in Eq. (5). In addition constraints can be added for
selecting the best subsets [6].

This strategy can be classified as a many-to-one method [4]
where several observations are grouped in a subset to map one
solution in the parameter space (when the size of the subsets is
equal or superior to the dimension of the parameter space
KZdimðYÞþdimðlÞ). RANSAC [13] is another popular example
of a many-to-one method. Estimation of the latent variables can
be computed by optimisation of the objective function HK .
2.4. Kernel-based cost functions for robust computer vision

Mittal et al. propose to use the generalised projection based M-
estimator as a cost function [14,15]. Their cost function is defined
like a kernel density estimate:

Gðl,YÞ ¼
1

N

XN

i ¼ 1

kðlþFðY,xðiÞÞÞ ð10Þ

Their formulation originates from the M-estimation (cf. Section 2.1)
where the kernel function is defined with respect to the M-
estimator loss function r such that kðuÞ ¼ 1�rðuÞ [14]. Note that
this kernel interpretation of M-estimators is only applicable
to hard redescending M-estimator functions r [16] (r is
non-negative, symmetric and non-decreasing with 9u9, has a
unique minimum rð0Þ ¼ 0 and a maximum of one for 9u941
[14]). This trick allows the equivalence with the M-estimation
approach:

ðl̂, bYÞ ¼ arg min
l,Y

1

N

XN

i ¼ 1

rðEðiÞÞ
( )

¼ arg max
l,Y

Gðl,YÞ ¼
1

N

XN

i ¼ 1

kðEðiÞÞ
( )

ð11Þ

M-estimation requires the estimation of a scale parameter along
with the location parameter ðl,YÞ [2]. Mittal et al.’s framework
also tackles the estimation of the nuisance adaptive scale para-
meter associated with each observation xðiÞ. The latent variables
ðl,YÞ are then iteratively estimated along with the scale using
gradient ascent methods to stochastically explore the G cost
function (Eq. (10)) [15].
2.5. Remarks and contributions

The form of the cost functions H Eq. (5) and G Eq. (10) are well
summarised by the following cost function C defined with a
discrete or continuous function c that models the vote of each
observation:

Cðl,YÞp
XN

i ¼ 1

cðEðiÞÞ

However the origin of these cost functions is not clear when using
statistics: both H and G have somewhat been related to a log
probability (e.g. via M-estimation) [5,17–19,14]. This interpreta-
tion limits the definition of generalised projection based
M-estimator to using specific kernels for instance [14].

Alternatively Dahyot interprets the Hough transform as a
density probability function of the latent variables ðl,YÞ [20]. In
this paper, we introduce next explicitly two objective functions,
noted p̂l9Y and p̂lY. We will show that the objective functions H
and G presented in this section can be better understood as the
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conditional density function p̂l9Y. The origin of both density
functions p̂l9Y and p̂lY is loosely derived from the generalised
Radon transform. Moreover, the joint density function p̂lY
encapsulates naturally prior information about the latent vari-
ables making the framework fully Bayesian. Finally we show that
this framework also explains the cost function HK and the like-
lihood L.
3. Generalised relaxed Radon transform

Section 3.1 presents the definition of the generalised Radon
transform (GRT) and proposes a statistical interpretation when
the transform is applied to density functions. We relax the
hypotheses about the noise E and propose new cost functions in
Section 3.2. Section 3.3 comments on the advantages of defining
smooth differentiable cost functions. Finally, Section 3.4 general-
ised the cost functions to use subsets of observations like HK and
show how the likelihood L can also be understood in the same
general approach.

3.1. Generalised Radon transform (GRT)

The generalised Radon transform is defined by [1]

R½f ðxÞ�ðl,YÞ ¼
Z
Rdx

Aðx,YÞ f ðxÞ dðl�Fðx,YÞÞ dx

with xARdx ,YARdY , and lAR ð12Þ

The functions f, A and F are defined such that the integral (12) can
be computed at ðl,YÞ [1]. The integral (12) can be equivalently
rewritten as

R½f ðxÞ�ðl,YÞ ¼
Z
D

Aðx,YÞ f ðxÞ dx ð13Þ

where the domain D�Rdx is defined as

D¼ fxARdx 9l�Fðx,YÞ ¼ 0g ð14Þ

This domain of integration can be rewritten as follows

D¼ fxARdx 9l�Fðx,YÞ ¼ E� dðEÞg ð15Þ

where the random variable E is introduced explicitly and its
distribution is the Dirac function centred on 0. Indeed the Dirac
function dðl�Fðx,YÞÞ in integral (12) can be understood as the
conditional density function pl9xYðl9x,YÞ given the equation
l�Fðx,YÞ ¼ E� dðEÞ.

Lets apply now the Generalised Radon Transform to functions
A and f that are density functions such that Aðx,YÞ is the
conditional pY9xðY9xÞ and f ðxÞ is the density function of x, noted
pxðxÞ. In this case, integral (12) becomes (using Bayes theorem):

R½pxðxÞ�ðl,YÞ ¼
Z

pY9xðY9xÞ pxðxÞ pl9xYðl9x,YÞ dx¼ plYðl,YÞ

ð16Þ

where plYðl,YÞ is the joint density function of the random
variables l and Y. The Generalised Radon Transform in Eq. (16)
can also be understood as an expectation w.r.t. the random
variable x:

R½pxðxÞ�ðl,YÞ ¼ Ex½pl9xYðl9x,YÞ pY9xðY9xÞ�

¼ Ex½dðl�Fðx,YÞÞ pY9xðY9xÞ� ð17Þ

Having collected independent observations fxðiÞgi ¼ 1,...,N of the
random variable x, the density function of x, pxðxÞ, can be
approximated by its empirical density function:

p̂xðxÞ ¼
XN

i ¼ 1

dðx�xðiÞÞ pi ð18Þ
where d is the Dirac density function, and pi is the prior
associated with the observation xðiÞ. In general, the observations
are equiprobable and pi ¼ 1=N,8i. By replacing pxðxÞ by its
empirical estimate in integral (16), the joint density pYlðY,lÞ
can then be estimated by the empirical average [21]:

p̂lYðl,YÞ ¼
XN

i ¼ 1

pY9xðY9xðiÞÞ pl9xYðl9x
ðiÞ,YÞ pi

¼
XN

i ¼ 1

pY9xðY9xðiÞÞ dðl�FðxðiÞ,YÞÞ pi ð19Þ

The term dðl�FðxðiÞ,YÞÞ corresponds to the vote of data point xðiÞ

and the term pY9xðY9xðiÞÞ allows the experimenter the possibility
to insert a prior on Y that is depending (or not) on the observa-
tion xðiÞ. When no prior knowledge is available then one can
assume independence between the variables Y and x (hence
pY9x ¼ pY) leading to

p̂lYðl,YÞ ¼ pYðYÞ
XN

i ¼ 1

dðl�FðxðiÞ,YÞÞ pi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p̂l9Yðl9YÞ

ð20Þ

Using the joint density estimate p̂Yl for inference of the latent
variables ðl,YÞ gives the user the opportunity to add prior
information about Y and perform the inference in a Bayesian
framework. Alternatively the conditional estimate p̂l9Y can also
be used as a cost function to find estimates of the latent variables.

In practice though, the Dirac kernel dðl�FðxðiÞ,YÞÞ cannot be
computed, and both density estimates p̂lY and p̂l9Y needs to be
approximated by a discrete histogram. By relaxing the hypothesis
about E (Eq. (15)), we will propose in Section 3.2 a smooth
differentiable estimate p̂lYðl,YÞ more suitable for computation
and optimisation.

Applications of GRT: The generalised Radon transform has been
widely applied to pattern detection. In its simplest form, the
Radon transform also known as the Hough transform, is very
much used for line detection in images [3,22,10,5,18]. The gen-
eralised Radon transform is approximated by a discrete multi-
dimensional histogram and its maxima provides candidates ðl,YÞ
of shapes. For instance, Toft proposed to use the discrete GRT for
detection of curve in images, and presented a way of setting a
threshold for this histogram to decide if a curve (lines) occurs or
not, depending on the noise level in the image [23]. Hansen and
Toft [24] used a discrete formulation of GRT to analyse seismic
data and find hyperbolas. They also point out the relation of GRT
to the Hough transform.

Hendricks et al. uses a discrete GRT to find circles and hyper-
sphere in images and their study focuses on the memory
consumption of such approach [25]. Indeed the multidimensional
histogram approximating plYðl,YÞ uses a lot of memory depend-
ing on the resolution of its bins and the dimension of the latent
space ðl,YÞ to explore. For circle detection, they propose to store
the best radius for each centre location instead of storing the full
histogram. One limitation is that information about concentric
circles is lost (only one circle would be detected). Daras et al. used
GRT to compute invariants suitable for indexing and retrieval of
3D meshes [26]. They considered two link functions F correspond-
ing to a sphere and a line in a 3D space [26].
3.2. Generalised relaxed Radon transform (GR2T)

We relax the definition of the GRT by changing the assumption
for the perturbation E (Eq. (15)) as follows:

l�Fðx,YÞ ¼ E� pEðEÞ ð21Þ
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E is now a random vector modelling the perturbation or noise and has
a given distribution pEðEÞ. This reformulation allows to include
explicitly uncertainty. The conditional density function pl9xYðl9x,YÞ
is now

pl9xYðl9x,YÞ ¼ pEðl�Fðx,YÞÞ ð22Þ

and consequently the joint density function of Y and l can be
computed by

plYðl,YÞ ¼
Z

pl9xYðl9x,YÞ pxYðx,YÞ dx

¼

Z
pEðl�Fðx,YÞÞ pY9xðY9xÞ pxðxÞ dx

¼ Ex½pEðl�Fðx,YÞÞ pY9xðY9xÞ� ð23Þ

Note that GRT is a special case of GR2T when the density pE is the
Dirac distribution dðEÞ. Having N independent observations of x,
fxðiÞgi ¼ 1,...,N , the density pYlðY,lÞ can be estimated by the empirical
average:

p̂lYðl,YÞ ¼
XN

i ¼ 1

pEðl�FðxðiÞ,YÞÞ pY9xðY9xðiÞÞ pi ð24Þ

While GRT is defined for lAR (Eq. (12), GR2T generalises to lARdl .
In this case, Eq. (21) is now a system of stochastic equations with the
error EARdl and the link function F is defined from the domain of
definition of ðx,YÞ to Rdl .

Assuming independence between Y and x (i.e. pY9xðY9xÞ ¼
pYðYÞ), the joint density estimate (Eq. (24)) becomes

p̂lYðl,YÞ ¼ pYðYÞ
XN

i ¼ 1

pEðl�FðxðiÞ,YÞÞ pi ð25Þ

and an estimate of the conditional density function pl9Y can easily
be computed as

p̂l9Yðl9YÞ ¼
XN

i ¼ 1

pEðl�FðxðiÞ,YÞÞ pi ð26Þ

Hence depending on the chosen assumptions and knowledge
available, both density estimates p̂lY (assuming pE and pY9x are
known) and p̂l9Y (given pE and, assuming Y and x are indepen-
dent) can be used for inference. In this later case, it is interesting
to compare the estimate p̂l9Y with the likelihood formulation
(Eq. (2)): while the likelihood cost function multiplies the con-
tribution of each observation, the conditional p̂l9Y modelled
thanks to GR2T, adds the contribution of each observation. The
addition of the contribution of each observation as opposed to
their multiplication allows the modelling to be more robust to
outliers. Indeed an outlier xðiÞ (for the structure parameterised by
ðl,YÞ) would more likely create a value pEðl�FðxðiÞ,YÞÞ close to
zero which would not affect much the overall score of p̂l9Y.

By the strong law of large numbers, the density estimate
p̂YlðY,lÞ converges almost surely to the exact density function
pYlðY,lÞ [21]:

lim
N-1

p̂lYðl,YÞ ¼ plYðl,YÞ a:s: ð27Þ

and similarly for the conditional density function:

lim
N-1

p̂l9Yðl9YÞ ¼ pl9Yðl9YÞ a:s: ð28Þ

In other words, as more independent observations are collected
about the random variable x, the more accurate the estimate
p̂lYðl,YÞ (resp. p̂l9Yðl9YÞ) is to approximate the true density
function plYðl,YÞ (resp. pl9Yðl9YÞ).
3.3. Discrete vs smooth objective functions

Depending of the chosen models for the densities functions pE
and pY9x, then the objective functions, p̂YlðY,lÞ and p̂l9Yðl9YÞ,
can be discrete or smooth differentiable functions. When defining
an estimator of the latent variables ðY,lÞ by

ðl̂, bYÞ ¼ arg max p̂YlðY,lÞ or ðl̂, bYÞ ¼ arg max p̂l9Yðl9YÞ

then using a smooth objective function improves the convergence
rate of that estimator compared to using a discrete objective
function [18,27,5].

Moreover, when the densities functions pE and pY9x are chosen
differentiable, then the objective functions can be optimised with
standard stochastic exploration techniques and in particular with
gradient ascent algorithms [21]. Using gradient ascent techniques
to find local maxima requires selecting initial guesses in the latent
space that iteratively climb towards their nearest maxima. These
strategies for stochastic exploration are well suited for parallel
architectures with GPU for instance [28] and are less memory
demanding than computing the objective function on a grid
spanning the latent space. Indeed memory consumption of the
discrete GRT is one major problem that has limited it application
for inference in high dimensional latent space [25]. However
when the latent space is of small dimension, inference with an
exhaustive search on a discrete grid is not sensitive to initial
guesses required by gradient ascent algorithms [17].

If the global maximum of the cost function is the only one of
interest, a simulated annealing approach can be used [29,30]. As
opposed to searching local maxima with gradient ascent that is
sensitive to the starting guesses selected in the latent space to
initialise the algorithm, the simulated annealing approach to find
the global maximum is not sensitive to the choice of the initial
guess in the latent space.
3.4. GR2T as a general framework for estimation

l as an auxiliary variable: Eq. (21) implies that the relationship
between the observed and latent random variables includes one
additive latent variable l. So what should we do if the problem to
solve is written as Fðx,YÞ ¼ E without additive latent random
variable? In this case, the problem Fðx,YÞ ¼ E can be augmented
by adding an auxiliary variable l to formulate the problem as in
Eq. (21). Inference of Y can then be done using GR2T objective
functions p̂lYðl,YÞ or p̂l9Yðl9YÞ computed at l¼ 0. Note that
choosing a modelling such that l is an auxiliary variable (of non-
interest) allows to choose a prior pY or pY9x related to the latent
variable of interest in the cost function p̂lY.

Mapping subsets of observations into the parameter space: We
can extend our framework to consider subsets of size K of
observations as Olson did with the Hough transform [6] (see
Section 2.3). To do that a system of Eqs. (33) is defined to link the
latent random variables with the observed one (see Table 1). Note
that this requires to define K additive random variables

flkgk ¼ 1,...,K to estimate the cost functions p̂
l
!

KY
and p̂

l
!

K 9Y
. The

joint density estimate has the following expression:

p̂
l
!

KY
ð l
!

K ,YÞ ¼
XNn

i ¼ 1

pi p
Y9 x
!ðY9 x

!ðiÞ
Þ
YK

k ¼ 1

pEðlkþFðxðikÞ,YÞÞ ð29Þ

where x
!ðiÞ
¼ ðxði1Þ, . . . ,xðiK ÞÞ is a subset of K observations taken

from fxðiÞgi ¼ 1,...,N without repetition. The weight pi is the prior

associated with the subset x
!ðiÞ

and can be chosen equiprobable

pi ¼ 1=Nn.



Table 1
GR2T for inference extended to mapping subsets of K observations in the parameter space.

Observations N independent observations are collected: fxðiÞgi ¼ 1,...,N

User design Choose relation F and subset size K

Case K¼1:
lþFðx,YÞ ¼ E l

!
Kþ F
!
ð x
!

,YÞ ¼ E!

equivalent to:
l1þFðx1 ,YÞ ¼ E1

^

lKþFðxK ,YÞ ¼ EK

8><>: ð33Þ

Randomvariables:

Latent: Y Y
Observed: x, with the associated N observations

fxðiÞgi ¼ 1,...,N

x
!
¼ ðx1 , . . . ,xK Þ, with the associated Nn

¼ ðNKÞ observations f x
!ðiÞ
gi ¼ 1,...,Nn with x

!ðiÞ
subset of

size K selected without repetition from fxðiÞgi ¼ 1,...,N

Hypotheses

Error E with distribution: E� pEðEÞ Error E!¼ ðE1 , . . . ,EK Þ with distribution: E!�
QK

k ¼ 1 pEðEkÞ

Model pY9x available, or assuming

independence pY9x ¼ pY

Model p
Y9 x
! available or assuming independence p

Y9 x
!¼ pY

Obj. functions p̂lYðl,YÞ or p̂l9Yðl9YÞ p̂
l
!

KY
ð l
!

K ,YÞ or p̂
l
!

K 9Y
ð l
!

K 9YÞ
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Assuming independence of Y and x
!

, the conditional density
estimate has a similar form as the cost function HK defined by
Olson [6] (cf. Eq. (9)):

p̂
l
!

K 9Y
ð l
!

K9YÞ ¼
XNn

i ¼ 1

pi

YK
k ¼ 1

pEðlkþFðxðikÞ,YÞÞ ð30Þ

In the case K¼N, the conditional density estimate corresponds to

p̂
l
!

N9Y
ð l
!

N9YÞ ¼
YN

k ¼ 1

pEðlkþFðxðkÞ,YÞÞ ð31Þ

This conditional density estimate limited to the subspace
lk ¼ l,8k¼ 1, . . . ,N becomes

p̂
l
!

N9Y
ðl,l, . . . ,l9YÞ ¼

YN
k ¼ 1

pEðlþFðxðkÞ,YÞÞ ð32Þ

corresponding to the likelihood cost function (Eq. (2)). Imposing

lk ¼ l,8k¼ 1, . . . ,K in the cost functions p̂
l
!

KY
and p̂

l
!

K 9Y
(Eqs. (31)

and (32)) is a similar trick as using l as an auxiliary variable: the cost
functions are modelled on a bigger latent space than needed but it is
easy to limit the search to a particular subspace or manifold.

In conclusion the objective function p̂
l
!

K 9Y
explains the cost

functions L (with K¼N), G (with K¼1), H (with K¼1) and HK

reviewed in Section 2. Any probability density function pE can be
chosen by the user and unlike the cost function G (Eq. (10)), the

cost function p̂
l
!

K 9Y
is not limited to some specific kernels related

to a robust M-estimator. The joint density estimate p̂
l
!

K ,Y

extends p̂
l
!

K 9Y
and provides a Bayesian framework where prior

information about the latent variable of interest can be added. We
summarise in Table 1 our approach for defining objective func-
tions for inference with GR2T.
4. Applications of GR2T

Modelling with GR2T is illustrated for line and circle detection,
line tracking and 3D shape from silhouettes.
4.1. Line and circle detection in images

The most common application of the Hough transform is for
detecting lines in images. In this case, the link function F is often
chosen as

Fðx,YÞ ¼ xT
cos Y
sin Y

� �
¼ x1 cos Yþx2 sin Y

where xAR2 is a spatial position for which N observations

fxðiÞ ¼ ðxðiÞ1 ,xðiÞ2 Þgi ¼ 1,...,N have been collected. In image processing,

these observations corresponds to the positions of the edge pixels.
The latent variable Y is an angle between �p=2 and p=2. Without
any model to link Y and x, independence can be assumed and the

cost function p̂l9Y can be used for inference. This can be general-

ised to infer hyperplanes in point clouds and by choosing the
density pE differentiable (e.g. normal [20,30]), gradient ascent
algorithms can be defined to find the local and global maxima for

the latent variable ðl,YÞ [30].
Using the spatial derivatives of the image (noted ðx3,x4Þ)

computed at location ðx1,x2Þ that gives information about the
orientation of the contour passing through ðx1,x2Þ, Dahyot [20]
proposed to model pY9x as follows:

pY9xðY9xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p s2

x2
3þx2

4

s exp �

Y�arctan
x3

x4

� �2

2
s2

x2
3þx2

4

0BBB@
1CCCA ð34Þ

where s is a constant capturing the noise on the image deriva-
tives, and the collected observations are now

fxðiÞ ¼ ðxðiÞ1 ,xðiÞ2 ,xðiÞ3 ,xðiÞ4 Þgi ¼ 1,...,N

The cost function p̂lY can be used efficiently to find the linear
contour without discarding any pixel in the image [20].

This framework for finding lines can be extended to other
parametric shapes such as circles using for instance the algebraic
distance [31]:

lþ
cos y1 cos y2

sin y1 cos y2

sin y2

0B@
1CA

T x1

x2

x2
1þx2

2

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fðx ¼ ðx1 ,x2Þ,Y ¼ ðy1 ,y2ÞÞ

¼ E
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Gander et al. have studied several different functions F to infer
circles with the standard likelihood function L [31]. They showed
that the geometric distance is a better alternative to find circles
with L:

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�y1Þ

2
þðx2�y2Þ

2
q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fðx ¼ ðx1 ,x2Þ,Y ¼ ðy1 ,y2ÞÞ

¼ E

where the latent variable l models the radius of the circles, and
ðy1,y2Þ are the spatial coordinates of their centres. Note that the

likelihood L is a special case of p̂
l
!

N9Y
(see Section 3.4). Alter-

natively many papers on the discrete Hough transform have also
focused on line and circle detection [7,5,17,6].

4.2. Line tracking in videos

Liu et al. uses the Hough transform for detecting and tracking
lanes on road images, and having detected the parameters of a
line in the image at time t, this information is used to reduce the
domain for searching the updated parameter values at time tþ1 [32].
To understand how one can limit the search in the space of the latent
variable of interest in the GR2T framework, lets consider the following
link function:

Fðx¼ ðx1,x2Þ,Y¼ ðy1,y2ÞÞ ¼ y1þx1 cos y2þx2 sin y2 ð35Þ

where the latent variable Y characterises entirely a line, then
inference about Y can be used with the density estimates
p̂l9Yðl¼ 09YÞ and p̂lYðl¼ 0,YÞ (using l as an auxiliary variable).
The joint density function p̂lYðl¼ 0,YÞ allows to consider a prior
about Y given x. For instance, choosing the prior pY9x as the
rectangular distribution allows to limit the domain of the search for
the best estimate in the Y-space.

4.3. Inferring 3D shapes from silhouettes [33]

Three-dimensional reconstruction of an object that is seen by
multiple image sensors has many applications such as 3D model-
ling [34,35]. Shape from silhouettes methods are very popular in
computer vision because of their simplicity and their computa-
tional efficiency. Laurentini [36] has defined the visual hull as the
best reconstruction that can be computed using an infinite
number of silhouettes captured from all viewpoints outside the
convex hull of the object. Volume-based approaches focus on the
volume of the visual hull while surface-based approaches, less
numerically stable, aim at estimating a surface representation of
the visual hull [37]. Ruttle et al. infer 3D shape from silhouettes
using the following link function [33]:

Fðx,YÞ ¼
x1�

y1x3þy2x4þy3x5þx6
y1x11þy2x12þy3x13þ x14

x2�
y1x7þy2x8þy3x9þx10

y1x11þy2x12þy3x13þ x14

0@ 1A
where:
�
 xAR14 with ðx1,x2Þ the variables modelling the pixel
coordinates recorded by the camera with matrix of para-
meters:

x3 x4 x5 x6

x7 x8 x9 x10

x11 x12 x13 x14

264
375 ð36Þ

For real cameras, the relation between the pixel position
and their corresponding 3D world coordinates is not
linear [38]. The observations fxðiÞgi ¼ 1,...,N correspond to
vectors concatenating the positions of the pixels in the
silhouettes images with their corresponding camera
parameters. Only the N pixels on the foreground of the
image silhouettes are kept as observations.
�
 Y¼ ðy1,y2,y3Þ is the 3D coordinates in the real world.

�
 Fðx,YÞ is defined from R14

�R3 to R2 and models the
projection of a position in the real world (Y) on the pixel
position in the images [38].

�
 E¼ ðE1,E2ÞAR2 is the error on the pixel position. The density

pE is chosen normal centred on 0 with diagonal covariance
matrix with standard deviations h1 and h2. We choose
h1 ¼ h2 ¼ 1 to model the uncertainty about pixel positions
due to digitisation of the images.
Ruttle et al. infer the 3D shape by searching the maxima of the
conditional pl9Yðl¼ 09YÞ using l as an auxiliary variable [33].
p̂l9Yðl¼ 09YÞ is a smooth density estimate of the visual hull of the
object since it is inferred using silhouettes. The volume of the
object can be inferred by thresholding p̂l9Yðl¼ 09YÞ or by using
gradient ascent method [33]. The cost function pl9Yðl¼ 09YÞ is a
smooth extension to volume based approaches based on voxel
occupancy [39–42] that rely on the optimisation of a discrete
objective function.
5. Conclusion

This paper presented the generalised relaxed Radon transform
(GR2T) as a generic framework for statistical inference. Modelling
with GR2T explains well-known cost functions such as the Hough
transform and the likelihood function as non-parametric prob-
ability density functions of the latent variables of interest. As an
improvement to the Hough transform, GR2T also allows to
consider prior information about the latent variables. The pro-
posed framework is versatile and the resulting cost function
depends on the choices made by the experimenter: the selection
of the link function F, using or not the additive latent variable l as
an auxiliary variable, considering subsets of size K of observa-
tions, density distribution chosen for modelling the noise E, prior
information about the latent variable.

GR2T also explains robust cost functions such as the general-
ised projection based M-estimator [14,15]. One important pro-
blem in robust computer vision is not only to compute estimates
for the latent variables but also simultaneously estimate the scale
parameter [14,15,43]. Indeed the distribution pE also depends on
nuisance parameters n (e.g. if pE is the normal distributionN ð0,SÞ,
then the covariance matrix or scale parameter S is often unknown
and is a nuisance parameter that needs to be estimated). The
nuisance parameter n may vary with the latent and/or observed
variables such that pEðE; nðx,YÞÞ, e.g. the noise may be different for
each structures Y, and even may vary in the observed space.
Future efforts will focus on extending GR2T to also allow for the
estimation of these nuisance parameters for a broader range of
applications.
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