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Latent Semantic Learning with Structured Sparse
Representation for Human
Action Recognition
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Abstract—This paper proposes a novel latent semantic learning
method for extracting high-level features (i.e. latent semntics)
from a large vocabulary of abundant mid-level features (i.evisual
keywords) with structured sparse representation, which ca help
to bridge the semantic gap in the challenging task of human
action recognition. To discover the manifold structure of md-

work has shown promising results when the local spatio-
temporal descriptors are used for bag-of-words (BOW) nedel
[Bl-[11], where the local features are quantized to form a
visual vocabulary and each video clip is thus summarized as
a histogram of visual keywords. In the following, we refer to

level features, we develop a spectral embedding approach tothe visual keywords as mid-level features to distinguignth

latent semantic learning based onL;-graph, without the need
to tune any parameter for graph construction as a key step of
manifold learning. More importantly, we construct the L;-graph
with structured sparse representation, which can be obtaiad by
structured sparse coding with its structured sparsity enswved
by novel Li-norm hypergraph regularization over mid-level
features. In the new embedding space, we learn latent semacg
automatically from abundant mid-level features through spectral
clustering. The learnt latent semantics can be readily usedor
human action recognition with SVM by defining a histogram
intersection kernel. Different from the traditional latent semantic
analysis based on topic models, our latent semantic learnin
method can explore the manifold structure of mid-level featires
in both L;-graph construction and spectral embedding, which
results in compact but discriminative high-level features The
experimental results on the commonly used KTH action datage
and unconstrained YouTube action dataset show the superior
performance of our method.

Index Terms—Human action recognition, latent semantic
learning, spectral embedding, structured sparse represdation,
L1-norm hypergraph regularization.

I. INTRODUCTION

from the low-level features and high-level action categ®ri
However, this BOW representation may suffer from the
redundancy of mid-level features, since typically thousan
of visual keywords are formed to obtain better performance
on a relatively large action dataseéet [12]. Here, it should be
noted that the large vocabulary size means that the BOW
representation would incur large time cost in not only vecab
ulary formation but also later action recognition. Moregve
the mid-level features are applied to human action recamgnit
independently and mainly the first-order statistics is @bns
ered. Intuitively, the higher-order semantic correlati@tween
mid-level features is very useful for bridging the semantic
gap in human action recognition. Although the semantic
information can be incorporated into the visual vocabulary
using either local descriptor annotation or video annotgti
the manual labeling is too expensive and tedious for a large
action dataset. Therefore, to reduce the redundancy of mid-
level features, this paper focuses on automatically etigc
high-level features (or latent semantics) that are comjpact
size but more discriminative in terms of descriptive power.
Previously, several unsupervised methads [13]] [14] have

Automatic recognition of human actions in videos has laeen developed to learn latent semantics based on topic
wide range of applications such as video summarizatiomodels, such as probabilistic latent semantic analysiSAL
human-computer interaction, and activity surveillancd- A[15] and latent Dirichlet allocation (LDA) [16]. A mixture
though many impressive results have been reported on huno@natent topics is used to model each video, and the topics
action recognition, it still remains a challenging problemare learnt as multinomial distributions of mid-level fetst
[1] owing to viewpoint changes, occlusions, and backgroumdoreover, information theory has also been applied to taten
clutters. In the literature, one direct strategy is to measusemantic analysis for human action recognitionlinl [1/7]][18
how humans are moving in the scene, using the techniquese success of these models may be due to the fact that the
for tracking or body pose estimation! [2]+[4]. However, aemantically similar mid-level features generally havéghar

distinct limitation of this strategy is that it requires ieddle
tracking or body pose estimation, which is difficult for rietit
videos. Another more effective strategy adopts an interated
representation based on spatio-temporal interest p@ht§7]

probability of co-occurring in a video across the entireadat.

It should be noted that, besides this simple co-occurring
information, there also exists more complicated semalitica
similar information, e.g., the mid-level features geneddrom

to bridge the semantic gap between low-level spatio-teaiposimilar video contents tend to lie in the same geometric

features and high-level action categories. In particukrent
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or manifold structure. However, this intrinsic informatias

not considered by the latent topic or information theoretic
models [13], [14], [1F¥], [[18]. In the literature, very few
attempts have been made to explicitly preserve the manifold
geometry of the mid-level feature space when learning high-
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Fig. 1. The flowchart of human action recognition using therfasemantics (i.e. high-level features) learnt by spéembedding based on the -graph
constructed with structured sparse representation.

level latent semantics from the abundant mid-level featurg27]-[29]. In this paper, the hypergraph [30]-[32] used for
To our best knowledge! [19] is the first attempt to extractur Li-norm hypergraph regularization is also constructed in
latent semantics from videos for human action recognitian parameter-free manner. That is, each video that contains
using a manifold learning technique based on diffusion mapwultiple mid-level features is regarded as a hyperedge, and
[20]. Although this diffusion map method has been shown its weight can be estimated based on the original cluster
achieve better results than the information theoretic fsoide centers associated with mid-level features. Although both
[19], it requires fine parameter tuning for graph constarcti spare representation and hypergraph are also used in atr sho
which can significantly affect the performance and has beeanference versiom [29], the present paper has integrated t
noted as an inherent weakness of graph-based methods. in a unified structured sparse representation frameworkceSi

To address the above problems associated with hunf L1-norm hypergraph regularization can be applied to many
action recognition, we propose a novel latent semantiaiegr Other machine learning problems (considering the wide use
method based on spectral embedding [Z1]-[23] vithgraph, of Laplacian regularization), the present paper has made a
without the need to tune any parameter for graph constmuctigignificant extra contribution as compared(tol[29]. In addit
as a key step of manifold learning. More importantly, wéhe proposed new structured sparse coding can certainly be
construct theL;-graph with structured sparse representatiof@nsidered as another extra contribution.
which can be obtained by structured sparse coding withIn this paper, we apply the learnt latent semantics to
its structured sparsity being ensured by noggtnorm hy- human action recognition with SVM by defining a histogram
pergraph regularization over mid-level features. A disttin intersection kernel. The flowchart of human action recognit
advantage of characterizing the similarity between miale is illustrated in Fig.[]l, which contains four components:
features based on structured sparse representation isv¢ha€xtraction of low-level spatio-temporal descriptors tizene
can collect a sparse affinity matrix in a parameter-free reannas [6], formation of mid-level features bymeans clustering,

In contrast, since the mid-level features are represensedextraction of high-level latent semantics by spectral ethalieg
vectors of point-wise mutual information and their simiar based onZ;-graph, and action classification with SVM. We
is typically characterized via a Gaussian function[in| [18 have tested our method on the commonly used KTH action
choice of the variance in this function has been shown taaffélataset[6] and unconstrained YouTube action datasetThe].
the performance of human action recognition significarfity. €xperimental results demonstrate the superior perforsmahc
summarize, through spectral embedding based.pmraph, our method for human action recognition. To emphasize the
we can discover more intrinsic manifold structure hiddefain contributions of this paper, we summarize the follayin
among mid-level features and thus learn more compact igtvantages of our method:

discriminative latent semantics by spectral clusteringhia (1) Our method can learn compact but discriminative
new embedding space, which has been shown in our later latent semantics by exploring the manifold structure
experiments. In _th|s paper, we fOCPS on parameter-fiee of visual keywords in botli, -graph construction and

graph construction and only consider the commonly used spectral embedding, which is quite different from the
spectral embedding method [21], regardless of many other traditional latent semantic analysis based on topic

manifold learning techniques in the literature.

Since our newL;-norm hypergraph regularization can (2)
ensure the structured sparsity in-graph construction, we
discuss it in detail as follows. Although derived from the
traditional Laplacian regularization [24]-[26], our;-norm
hypergraph regularization is more suitable for paramfeter-
L-graph construction as ah;-norm term (see SectidnlIl). (3)
More importantly, we can exploit the manifold structure of
mid-level features for graph construction and simultasou
introduce another important type of sparsity by-norm hy-
pergraph regularization, which is the main difference leetw
our structured sparse coding and the traditional sparsmgod

models.

This is the first attempt to develop novel structured
sparse coding for latent semantic learning in the chal-
lenging task of human action recognition, although
many efforts have already been made to apply sparse
coding to other difficult tasks in the literature.

Our newL-norm hypergraph regularization can in-
corporate the manifold structure of mid-level features
into graph construction. More importantly, it can
be further applied to many other machine learning
problems, considering the wide use of Laplacian
regularization.



(4) Our method has been shown to significantly outpecoding to latent semantic learning for action recognitidore
form other latent semantic learning approaches$ [13nportantly, we have developed a novel structured sparse
[17]-[19], which turns to be more impressive givercoding algorithm forl;-graph construction with the structured
that we do not use feature prunirig [7],_[18], [19]sparsity being ensured ki, -norm hypergraph regularization,
multiple types of low-level features|[7],_[11]._[18], different from the traditionall;-graph construction methods
or spatio-temporal layout information [11]], [17], [33][34], [35] without considering the structured sparsity.réle
for human action recognition. it should be noted that our new;-norm hypergraph regu-

The remainder of this paper is organized as follows. searization is defined directly over all the eigenvectors loé t
tion [ gives a brief review of related work. Sectidn]illhypergraph Laplacian matrix, other than théaplacian reg-
proposes a latent semantic learning method based on sedctilarization [36] as an ordinary;-generalization (witlp = 1)
sparse representation. In Section IV, we present the dethil Of the Laplacian regularization. Moreover, although Laja
human action recognition with SVM using our learnt laterf€gularization is also combined with sparse coding in \lisua
semantics. In SectidalV, our method is evaluated on the cokgyword generation [37], it is just a quadratic term and thus
monly used KTH action dataset and unconstrained YouTui§ehard to be used in parameter-fieg-graph construction for

action dataset. Finally, Secti@n]VI gives the conclusions. learning latent semantics from visual keywords. In contras
our Li-norm hypergraph regularization can be readily used

for parameter-fred.; -graph construction as aby -norm term.
We will provide further comparison to_[36]._[87] in Section
Our method differs from other latent semantic learnirf] In this paper, we focus on exploring the manifold struret
approaches based on latent togic|[18],1[14] or informatiasf mid-level features in spare coding, regardless of otheed
theoretic models [17],[18] in that the manifold structurfe oof structured sparsity [38]/ [39].
mid-level features can be explored in bdih-graph construc-  Since our main goal is to learn compact but discriminative
tion and spectral embedding, which results in compact biatent semantics from abundant mid-level features for huma
discriminative high-level features. Although the diffasimap action recognition, we consider very simple experimengél s
method [19] can also exploit this manifold structural inforting in this paper. For example, only a single type of lowelev
mation for latent semantic learning, it requires fine part@me spatio-temporal descriptors are extracted from actioreasd
tuning for graph construction which can significantly affequst the same as$[6]. Moreover, the learnt high-level fesstur
the performance. In contrast, our method can construckthe are directly applied to action recognition without consideg
graph in a parameter-free manner by structured sparsegodineir spatio-temporal layout information. In fact, we dot no
with L;-norm hypergraph regularization. More importantly, agse feature pruning [7].[18].[19], multiple types of loavel
shown in later experiments, our spectral embedding With features[[7], [11],[1B], or spatio-temporal layout infaation
graph can help to discover more intrinsic manifold struetofr  [11], [17], [33] for action recognition. However, even with
mid-level features and thus learn more compact but diserimsiuch simple setting, our method can still achieve improveme
native latent semantics. Here, it should be noted that wesfoawvith respect to the state of the arts, as shown in our later
on parameter-free graph construction for manifold leagnin experiments.
this paper and thus only adopt the commonly used spectral
embedding method introduced ih_[21], without considering|||. L ATENT SEMANTIC LEARNING WITH STRUCTURED
other manifold learning techniques developed in the lites SPARSITY REPRESENTATION
Although our latent semantic learning method can be re-
garded as dimensionality reduction over mid-level feaiureto

it completely differs from the traditional dimensionalite- Iy

. : ‘ features. To explore structured sparsityZif-graph construc-
dl_Jct|on approaches [’ZO]’_ [22] based on spectral embeddlﬂgh’ we further improve the sparse coding algorithm with
Firstly, the latent semantics learnt by our method can help dorm hypergraph regularization. Finally, in the new emtiegd

form high-level representation and thus bridge the Sem"”mgpace, we learn latent semantics from abundant mid-level
gap to some extent. This is also the reason why the toq

C .

models [13], [14] for latent semantic analysis are widelgdis Catures by spectral clustering.
for multimedia information processing. However, the tradi ) )
tional dimensionality reduction approaches based on gdect?: Spectral Embedding with,-Graph
embedding fail to give explicit explanation of each reduced Given a vocabulary of mid-level featurés, = {m;}},,
feature by directly using the eigenvectors of the Laplacisgach video can be represented as a histogram of mid-level
matrix to form the new feature representation. Secondly, ofeatures{c,(m;) : i = 1,..., M}, wherec,(m;) is the
latent semantic learning method by spectral embedding witbunt of times thatn; occurs in videon (n = 1,...,N).
Ly-graph over mid-level features incurs much less time coBased on this BOW representation, our goal is to discover the
than the traditional dimensionality reduction approachgs manifold structure of mid-level features by spectral enuiegl
spectral embedding with graphs over all the data. with graphs for learning compact but discriminative latent

In the literature, many efforts have been made to explosemantics, which is different from the topic modelsi[13],
sparse coding [27]/128] for different difficult tasks. Hoves, [14] for latent semantic analysis. Although many spectral
this paper makes the first attempt to apply structured spassabedding methods have been developed in previous work,

Il. RELATED WORK

In this section, we first propose a sparse coding algorithm
constructL-graph for spectral embedding over mid-level



this paper focuses on graph construction as the key step of Mho M M My M5 M M M
spectral embedding. That is, once a graph is constructed, we = i S L U S
can adopt any spectral embedding method to discover t
manifold structure hidden among mid-level features. Sthee
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traditional graph construction method proposed!in| [19] has iy L Sl I U L
cppe . . . . . m, 0 0 0 1 0
difficulty in choosing the variance for the Gaussian funatio m [T o T To T —
we thus construct a graph with sparse representation (i.e. m| 0| o] o] 1 |o 050 | o

Ly-graph) in a parameter-free manner, inspired by recent
advances in sparse coding [27], [28]. Specifically, we first
represent each mid-level feature (z =1,.., ]V[) as a vector Fig. 2. lllustration of theL;-graph constructed by sparse coding. The
_ n=1 N d then find th luti fvocabulary of mid-level featured’,, = {m;}%_;, and the set of five
i = {en(ms) - n= 1y } an en nind the solution ot \igeos are represented as: videe=1{ma, ms}, video 2= {m1, ma, ms},
linear reconstruction of; using the rest of mid-level featuresvideo 3 = {m4,ms, mg}, video 4 = {mg, mr,msg}, and video 5
based on sparse coding. Since the obtained sparse coefficieni’n2,ms,mes, ms}. If we assume that each mid-level feature occurs only
for li tructi b d to defi th - .gnce in a video, the affinity matrix given by Figl 2(b) can benputed by
or linear r.econs ruction can be use O. efhne the .Smwa” parse coding, and the correspondibg-graph is shown in Fig.12(a) where
between mid-level features, we succeed in constructing;an each graph edge only denotes whether a pair of mid-leveliiestare related

graph for spectral embedding. and its length has no meaning.

Our Li-graph construction by linear reconstruction with
sparse coding is presented in detail as follows. For eagh . - .
mid-level featurem; (i — 1,..., M), we suppose it can be oth reconstruction coefficients and reconstruction error
reconstructed using.the re_st of mid-level features, whaslilits min  ||o/||1, st. z; = Blal, (4)
in an underdetermined linear system; = B;«;, where a;
;i € RY is the vector ofin; to be approximatedy; € _RM‘l here B! — [BC\, 1] € RVX(N+M) and ! — (a7, (T
is the vector for unknown reconstructlo]\rgxE:A(zeiflf;m_ents, ar}‘ﬁ’uis convex optimization can be transformed into a general
Bi = [v1,23, .. i1, Tig1, . wm] € R s ttl)e linear programming problem and thus has a globally optimal
overcomplete dictionary witdf —1 bases. According @ [27], solution. After we have obtained the reconstruction coieffits

if the solution forz; is sparse enough, it can be recovered b¥6r all the mid-level features, we can define an affinity matri
A = {a;;}mxm as follows (considering the special form of

(a) L,-Graph (b) Affinity Matrix

i ill1, st. x; = Bay, 1
min o, st @ = Bia @ 2
where||a;|]1 is the L;-norm of ;. Considering that the struc- (D, J # i
tured sparsity term (i.e.;-norm hypergraph regularization) is @ij = 0 j=i ®)

defined over all mid-level features, we need to usa&lso as
a base and thus reformulate the above spare representawibarec(j) is the j-th element of the vectos,. By setting

problem as follows: A= (A+ AT)/2, we can construct an undirected graph-
{V, A} with the vertex seV¥ being the vocabulary,,. In the
min - ||Ciaif[1, stz = Ba, (2) following, we will called it asL,-graph, since it is obtained

by Li-optimization.
wherea; € RM is the new vector for unknown reconstruction Due to the sparse representation given by equation (4),
coefficients,B = [z1,...,z5r] € RV*M is the overcomplete each mid-level feature (i.e. vertex) in this;-graph is only
dictionary with M bases, and”; € RM*M is a diagonal related to several other mid-level features (see an example
matrix with its (j,j)-elementC;(j,j) = 4+oo(j = i) and shown in Fig[R). Although the traditionatnearest neighbors
Ci(j,7) = 1(j # i). Due to such special form of’;, we (k-NN) graph also has such sparse property, aurgraph
always havew; (i) = 0 for problem (2), wheren; (i) is the constructed by linear reconstruction with sparse codirgéda
i-th element ofw;. This means that we can obtain a solutiodistinct advantage, i.e., we can determine the number affere|
equivalent to that of the original problem (1). Here, it slibu mid-level features automatically for each mid-level featand
be noted that the distinct advantage of the above reforipnlatthus do not need to set it as a fixed value If&N graph.
is that the L;-norm hypergraph regularization defined ovefor example, we can observe from Hig. 2(a) that each mid-
all mid-level features can now be readily explored in spatevel feature is related to different number of related mid-
representation, which will be shown in the next subsectiolevel features. Moreover, another advantage of bwgraph
Moreover, if we seta; = C;a;, the spare representations that the similarity between mid-level featured is ledbgt

problem (2) can be transformed into: sparse coding in a parameter-free manner, while the toadaiti
graph construction method proposed [in|[19] has difficulty in
I%i}n l|&ill1, st. z; = BCO; tay, (3) choosing the variance for the Gaussian function given that i

is used to characterize the similarity measure.
which takes the same form as the original problem (1). In Based on the abové;-graph, we further perform spectral
practice, due to the noise, we can reconstrucsimilar to embedding to discover the manifold structure of mid-level
[28]: z; = BO;ldi+Ci, where(; is the noise term. The abovefeatures. The goal of spectral embedding is to represeift eac
problem can then be redefined by minimizing thenorm of vertex in the Li-graph as a lower dimensional vector that



preserves the similarities between the vertex pairs. Algtua dko3, - oe video! video2 video3 video4 videoS
this is equivalent to finding the leading eigenvectors of the .. | © 7
normalized Laplacian matrix RN

L=1-D"'24D"1/2 (6)

where D is a diagonal matrix with itgi,i)-element equal ® R m
to the sum of the-th row of the affinity matrixA. In this m [ o
paper, we only consider this type of normalized Lapladidij,[2 @ Hypergraph (b) Incidence Matrix

regardless of other normalized versiohs|[20]. Kéh;,v;) : _ _
lllustration of the hypergraph constructed in a peeter-free manner.

. . . ig. 3.
¢ T L., M} be the set of 8|genva|ues and thﬁ aSSOCIatEBFig'E(a)Y each dashed ellipse denotes a hyperedgeiiemn)y and each red
eigenvectors ofZ, where0 < A\; < ... < Ay andv; v; = 1. solid node denotes the vertex (i.e. mid-level feature). Huidence matrix

The spectral embeddingf the L;-graph is given by H of the hypergraph given by Fi@] 3(b) is computed using theuoences
of mid-level features within videos.
E = [Vl,...,VK], (7)

where thej-th row E; of the matrix £ can be regarded as
the new representation for vertex;. Here, it should be noted
that we focus on parameter-freg -graph construction for
manifold learning in this paper and thus only adopt the spéct
embedding method introduced ih_21], without considering w(e;) = 1 Z R 9)
other manifold learning techniques that have been devdlope / lej] "

in the literature. Since we usually s&t < M, the mid-level ) o
features have actually been represented as lower dimensiodhere|e;| denotes the number of vertices withip, and R

by spectral clustering. centers associated with mid-level features. This ensirass t

the weight ofe; is set to a larger value when this hyperedge is
B. L;-Graph Construction with Structured Sparsity Represemrore compact. Given these hyperedge weights, we can define
tation the degree of a vertew,; € V asd(mi) = >, o w(e;)Hi;.

In the aboveL; graph, the similarity between mid-levelFOr @ hyperedge; € &, its degree is defined a¥e;) =
features is defined as the reconstruction coefficients of them, ey Hij- An example hypergraph is shown in Fig. 3.
linear reconstruction solution obtained by sparse coditog- It is worth noting that the above hypergraph construction
ever, the structured sparsity of these reconstructiorficamfts method is parameter-free, which is similar to alif-graph
is ignored in such sparse representation. In this paper, §@nstruction method by linear reconstruction with spars
only consider one special type of structure, i.e., the naéahif iNg- More importantly, according t0 [30], the above hypeygr
structure of the mid-level features. Actually, this matdfo ca@n capture the high order correlation between mid-level
structure can be explored in sparse representation based@Hures. Moreover, to define the hypergraph regulariaatio
the normalized Laplacian matrix of the hypergraphl [30]€rm for sparse representation, we first compute the nazethli
[32] defined over mid-level features, which is well knowr-@placian matrix the same &s [31]:
as ITapIacian regularization or hypergraph .regylari.zat‘lﬂle Ly =1— D;l/QHWD(i—lHTDgl/Q’ (10)
distinct advantage of hypergraph regularization is that th
structured sparsity can be ensured for sparse representatfhere Dv, De, and W denote the diagonal matrices of the
and thus we can obtain new structured sparse representa¥i@fiex degrees, the hyperedge degrees, and the hyperedge
for Li-graph construction. Since the hypergraph plays aveights, respectively. Based on this normalized Laplacian
important role in structured sparse representation, wiefivet matrix £,, we can then define the hypergraph regularization
give the details of hypergraph construction. term for the sparse representation problem ()o@,

In fact, the hypergraph can be constructed in a parametahich can also be regarded as a smoothness measurg of
free manner. That is, each video that contains multiple mi@ver the hypergraph.
level features is regarded as a hyperedge, and its weightean However, this hypergraph regularization term is hard to be
estimated based on the original cluster centers assoaidtied directly incorporated into the sparse representation Iprob
mid-level features. Suppose each video is representedias a (2), N0 matter as a part of the objective function or a coirgtra
togram of mid-level feature$c;(m;) : i = 1,..., M}, where condition. Hence, we further formulate @3-norm version of
¢;(m;) is the count of times that mid-level featune; occurs hypergraph regularization as:
invideoj (j =1,...,N). The hypergraply = {V, &, H, w}
can be constructed as follows. We first ¥et V,, = {m;}4,
and & = {e; : ej = {mi : ¢j(mi) > 0,i = 1,.., M}} .
The incidence matrix{ of the hypergraply can be directly
defined by

Here, we consider a soft incidence matrix (if;; € [0, 1]),
which is different from|[3l] withH;; = 1 or 0. Moreover, we
define the hyperedge weights = {w(e;)} ., by

m;ce;,m;r€e;

1
[ Brailly = 125 Vil il (11)

1
whereBy, = X7 VIV, is anM x M orthonormal matrix with
each column being an eigenvector®f, and>};, is anM x M
diagonal matrix with its diagonal elemedty, (i,7) being an
Hij = cj(ms)/ Z c;j(mar). (8) eigenvalue onh (sorted anh(l,.l). < .. < E@(M, M)).
myce; Given that£; is nonnegative definite;, > 0 (i.e. all the



eigenvalue$> 0). Sincel,V;, = V3, andV}, is orthonormal, the normalized Laplacian matrix. In the new low-dimenslona
we havel, = V;,3,V,I. Hence, the original hypergraphembedding space, we learn high-level latent semantics by
regularization can be reformulated as: spectral clustering. The algorithm is summarized as faltow

(1) Find K smallest nontrivial eigenvectoss, ..., v of

T T Sy3yT,. _ TpT o 12
o; Lnoi = o VaZEE; Vi as = o By Buai = || Bualfz, (12) the normalized Laplacian matrig of the L,-graph

which means that our new formulatidhB,;||; is indeed constructed with structured spare representation.
an L,-norm version of the original hypergraph regularization. (2) FormE = [vi,...,vk], and normalize each row of
By introducing noise terms for linear reconstruction and E to have unit length. Here, theth row E; is a new
Li-norm hypergraph regularization, we transform the sparse low-dimensional feature vector for mid-level feature
representation problem (2) into m;.
) o T (3) Performk-means clustering on the new feature vec-
erowd I[(Ciai)™, 67 & ]l tors E; (i = 1,..., M) to partition the vocabulary,,
s.t. i = Ba; + ¢, 0= Bray + &, (13) of M mid-level features intd< clusters. Here, each
cluster of mid-level features denotes a new high-level
where the reconstruction error and hypergraph smoothness feature.

with respect toa; are controlled by(; and&;, respectively. ;0 following, our latent semantic learning algorithm
If we setd; = Ciay, we can reformulate the above problenp,qeq on spectral embedding with structured sparse repre-

as sentation will be denoted as?ISSL (i.e. structured sparse
min |[[aF,¢T €T, latent semantic learning), while the algorithm based octspk
@irGirki embedding only with sparse representation will be denoted
st. @i =BC;7'a; + ¢, 0= ByC;'a; + &, (14) as SLSL (i.e. sparse latent semantic learning). Since the
BC-' I 0 spectral embedding is performed with-graph over mid-level
Let o = [af, ¢l ¢, B! = Bh(}l 0 I ] and features, our algorithm can run efficiently even on a largewi
zi = [#F,0T]T. We finally solve the fé)llowing structured 92taset.

spare representation problem fbg-graph construction:
IV. HUMAN ACTION RECOGNITION WITH SVM

H(lyi{n ||, s.t. zi = Blal, (15)

In this section, we present the details of human action recog
which takes the same form as the original spare repre taPition with SVM using our learnt latent semantics. We first
- . 9 P Presemialiiorive a new semantics-aware representation (i.e. hatogr
problem (4). The affinity matrixA of the L,-graph can be : . C
: ) of high-level features) for each video from the original BOW
defined the same as equation (5). : : . : .
. representation, and then define a histogram intersectioreke

o 'Dased on the new representation for action cognition with
our Li-norm hypergraph regularization can be smoothly ins\/m

corporated into the original sparse representation pnolf. Let V, — {h}/, be the vocabulary of high-level fea-

However, this is not true for the tradition hypergraph reglﬁ]res learnt from the vocabulary of mid-level featulés —

s, ro ), by our SLSL o SLSL igrtm. The BOW re
P P resentation withy,, for each video can be derived from the

with our original goal of parameter-fre[a—graph c_onstructlon. original BOW representation with,, as follows. Given the
Moreover, ourL-norm hypergraph regularization can cause

another type of sparsity (see the extra noise t€fmwhich count of timescy, (m;) .that mid-level fegturenj oceurs In
o . . videon, the count of times:,(h;) that high-level featuré;
can not be ensured by the tradition Laplacian regularinatio L )
S oc&urs in this video can be computed by:

These are also the main differences between our structure

i

spare coding for high-level latent semantic learning arel th M

Laplacian sparse coding proposed.inl[37] for mid-leveldeat cn(hi) =Y en(my)e(my, hi), (16)
generation. Here, it should be noted that thé.aplacian j=1

regularization[[36] can also be regarded as an ordidary where c(m;,h;) = 1 if mid-level featurem; occurs in
generalization of the Laplacian regularization with= 1. clusteri (i.e. high-level featureh;) according to the above

M(M—T)
2

By defining a matrixC, € Rz *M the p-Laplacian spectral clustering an@d(mj,h;) = 0 otherwise. That is,
regularization can be formulated a8”,c;|l1 [40], similar each video is now represented as a histogram of high-level
to our L;-norm hypergraph regularization. Hence, we cafeatures. Similar to the traditional BOW representatidrg t
apply p-Laplacian regularization similarly to structured sparabove semantics-aware representation can be used to define a
representation. However, it incurs too large time cost dubé histogram intersection kernéd :
large matrixC),, even for a moderate vocabulary sixe= 500. K
Kpr(n,it) = min(cn(hs), ca(hs))- (17)

C. Latent Semantic Learning by Spectral Clustering i=1

After the Li-graph has been constructed with structurethhis semantics-aware kernély; is further used for human
spare representation, we perform spectral embedding usaaion recognition with SVM.



Query Retrieved videos using mid-level features Retrieved videos using high-level features

Fig. 4. Retrieval examples using mid-level and high-leegltfires on the YouTube action datagei [18]. For each quarnyvideos with the highest values of
the histogram intersection kernel are retrieved. The motly retrieved videos (which do not come from the sameoactiategory as the query) are marked
with red boxes. The high-level features are shown to achsayeificantly better retrieval results than the mid-levehtires.

To provide preliminary evaluation of our learnt latent sedataset. The second dataset is YouTlbé [18] which has lots of
mantics, we apply the above semantics-aware kernel toracttamera movement, cluttered backgrounds, different vigwin
retrieval, and some retrieval examples on the YouTube mctidirections, and varying illumination conditions. Hence,s
dataset[[18] are shown in Fi§] 4. Here, we learn 400 highkignificantly more complex and challenging than KTH. This
level features from 2,000 mid-level features by oL SL action dataset contains 11 categories: diving, golf swing-
algorithm. We can find that the high-level features can aghieing (g _swinging), horse riding (triding), soccer juggling
significantly better retrieval results than the mid-lewestures, (s juggling), swinging, tennis swinging _($winging), tram-
which means that the learnt high-level features can proaideoline jumping (tjumping), volleyball spiking (vspiking),
semantically more succinct representation but a moreidiscr basketball shooting (lshooting), biking, and walking (with
native descriptor of human actions than the mid-level festu a dog). Most of them share some common motions such
Moreover, we can also find in the experiments that similas “jumping” and “swinging”. The video clips are organized
dominating high-level features are used to represent theogi into 25 relatively independent groups, where separatepgrou
from the same action category, although their exact meanirage either taken in different environments or by different
are unknown. This is also the reason why we call them “latephotographers. The dataset contains 1,168 video clipgah to
semantics” in this paper like the traditional topic mod&ighe To the best of our knowledge, this is one of the most extensive
following, we will apply our semantics-aware represemtato realistic action datasets in the literature.
human action recognition on the commonly used KTH action

dataset[[5] and unconstrained YouTube action dataset [18]. To extract Iow-IgveI features_ from the two action datasets,
we adopt the spatio-temporal interest point detector psego

V. EXPERIMENTAL RESULTS in [6]. Compared to the 3D _Harris-C_orner detectdt [8], |t
i i ] ) generates dense features which can improve the recognition
In this section, our latent semantic learning method W'gerformance in most cases. Specifically, this detector make
be evaluated on two standard action datasets. We first gee ot op Gaussian filter and 1D Gabor filters in spatial and
scribe Fhe experimental set_up, mcludlng mformgtlon oé thtemporal directions, respectively. A response value iemiv
two action datasets and the |mp_Iementr?1t|on details. Mcmeovat every position(z, y, ). The interest points are selected at
we compare our latent semantic learning method with Othﬁ"re locations of local maximal responses, and 3D cuboids
closely _related methods on the two standard action datasg% extracted around them. For simplicity, we describe the
respectively. 3D cuboids using the flat gradient vectors, which are further
_ reduced to 100 dimensions by PCA the same[as [18], [19].
A. Experimental Setup In our experiments, we extract 400 descriptors from each
We select two different action datasets for performanck evaideo clip for the KTH dataset, while for the YouTube dataset
uation. The first dataset is KTHI[5] which contains six acion more descriptors (i.e. 1,600) are extracted from each vide
boxing, clapping, waving, jogging, running, and walkingclip since this dataset is more complex and challenging.
These actions are performed by 25 actors under four differéfinally, on the two action datasets, we quantize the exdhct
scenarios. In total, this dataset contains 598 video cBpsce spatio-temporal descriptors inth/ mid-level features byk-
KTH has been widely used for performance evaluation imeans clustering. Here, it should be noted that we adopt very
human action recognition, we can make direct comparissimple experimental setting for low-level feature exti@ut
with the state-of-the-art methods using their own resultthis  since we focus on learning compact but discriminative laten



semantics in this paper. We do not consider pruning lowtle *
features[[7], [[18], [[19] or combining multiple types of low
level featuresl[]7],[11],[[18] for human action recognitio
However, even with such simple setting, our latent semai
learning method can still achieve performance improveme
with respect to the state of the arts, as shown in our l¢
experiments.

Since the diffusion map (DM) method for latent sema
learning proposed in_[19] has been reported to outperfc
other manifold learning techniques (e.g. Isomap! [41] & sl

I I I I I
100 150 200 250 300 350

Eigenmaps [42]) and also the information theoretic apgreac "

(e.g. information maximization [17]), we focus on comparinrig. 5. Comparison of the four latent semantic learning mmestfor human
our $LSL with DM and do not make direct comparisorction recognition on the KTH dataset.

with [17], [47], [42]. In fact, our SLSL has been shown

in later experimen_ts to _pe_rform much b_et_ter than DM, andl'HE RELATIVE PERFORMANCE OF OURS2LSL AS COMPARED TOBOW
thus we succeed in verifying the superiority of our method (M = 2,000) ON THE KTH DATASET

TABLE |

indirectly with respect to other manifold learning techusg
; ; ; KM (%) 25 50 75 10.0 125 150 175 20.0 225
and the information theoretic approaches. Moreover, tavsho Sheed Gain (06) | 440 337 282 243 215 191 172 155 1

the effectiveness of our structured sparse represenfatien | accuracy Gain (%}-1.0 06 09 1.4 20 17 12 0.9 11
also compare our 28SL with SLSL that does not consider
the structured sparsity. Finally, oufISSL is compared with
LDA and BOW, since they are the most widely used in the

literature. Here, all the methods for comparison except BOWWowever, since the manifold structure of mid-level feasure
are designed to learn latent semantics from a large voagbul&an be explored in boti,-graph construction and spectral
of mid-level features. In the following, we seletf = 2,000 embedding, our 8 SL is able to generate more compact but
for the four latent semantic learning methods (i.8LSL, discriminative high-level features for human action reueg
SLSL, DM, and LDA). For the two action datasets, we uséon, which can be observed from Figl 5. Specifically, our

24 actors or groups for training SVM and the rest for testing’LSL is shown to outperform LDA significantly in all cases,
just the same as previous wofk [18]. [19]. which could be due to that our learnt high-level featureshav

better discriminative ability. Moreover, we can also fingtth
our $LSL consistently achieves promising results with varied

B. Results on the KTH Dataset number of high-level features, while LDA suffers from obwio

The comparison of the four latent semantic learning metherformance degradation for a large number of high-level
ods is shown in Fig[]5. We find that ourISSL generally features since the model parameters of LDA increasd(as
performs the best. As compared to SLSL without considerigjows and thus only local optima may be found in this case.
the structured sparsity, our’lSSL leads to better results in In the above experiments, we learn latent semantics from
most cases, which means that the structured sparsity ehsuté = 2,000 mid-level features. To demonstrate the gain
by our newL;-norm hypergraph regularization is very usefuéchieved by our 4.SL, we need to make direct comparison
for learning compact but discriminative latent semantios. to BOW with M = 2,000. Table[] shows the relative
fact, the better discriminative ability of the high-leveltures performance of our 8.SL, where both speed and accuracy
learnt by our 8LSL may be due to the fact that the manifoldgains are computed relatively upon BOW. In particular, to
structure of mid-level features can be explored lbynorm obtain the speed gain, we compare the speed of kernel com-
hypergraph regularization ifi.;-graph construction and thenputation on the high-level features learnt by otfLSL to
latent semantic learning. Moreover, we also find that otiat of kernel computation on the 2,000 mid-level features.
S?LSL can always achieve performance improvement over thiere, we only consider kernel computation since the SVM
DM method for latent semantic learnirig [19], which becomegassification incurs the same time cost once the kernelixnatr
more significant when the number of high-level features is provided. From Tabl€l I, we can observe that oGt S
relatively smaller (e.gK < 150). The reason may be that ourcan reduce the number of features to a very low level (e.g.
S?LSL has eliminated the need to tune any parameter for grapl9%) without obvious performance degradation (or eveh wit
construction based on structured sparse representathile wperformance improvement), which is exactly consistentiwit
DM heavily suffers from the difficulty of parameter tuningthe original goal of latent semantic learning in the literat
in graph construction since the Gaussian function is usedTbis nice property of our 8.SL can speed up the subsequent
characterize the similarity between mid-level featuresterlit classification and retrieval significantly, which is extredgn
should be noted that such parameter tuning can significantiyportant for large datasets.
affect the performance and has been noted as an inherer®ur $LSL is further compared to BOW witi/ = 2,000
weakness of graph-based methods. on each action category. Here, we only considér= 250

Similar to topic models such as LDA, oufISSL can explic- for our SLSL. To make extensive comparison, we take BOW
itly learn latent semantics from abundant mid-level feasur with M = 250 as a baseline method. The comparison between
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Fig. 6. Comparison betweer? BSL and BOW for human action recognition Fig. 7. Comparison of the four latent semantic learning wéshfor human
on the KTH dataset. Here, our?BSL learns 250 high-level features (i.e. action recognition on the YouTube dataset.
K = 250) from 2,000 mid-level feature (i.el/ = 2,000).

TABLE Il
THE RELATIVE PERFORMANCE OF OURS?LSL AS COMPARED TOBOW
TABLE Il (M = 2,000) ON THE YOUTUBE DATASET
COMPARISON OF OURS?LSL WITH PREVIOUS METHODS FOR ACTION
RECOGNITION ON THEKTH DATASET (FEATURE PRUNING FP; MULTIPLE KM (%) 55 50 75 100 125 150 175 200 225
FEATURES MF; SPATIO-TEMPORAL LAYOUT: STL) Speed Gain (%) | 973 701 544 441 365 308 268 235 2p7
Accuracy Gain (%)-14.1 -6.6 -3.0 -1.1 -15 16 1.7 19 -05
| Methods | FP [ MF | STL | Accuracy (%) ]
Dollar et al. [6] no | no no 81.2
Niebles et al.[[1B] no | no no 83.3
Liu and Shah.[T17 no no es 94.2
Bregonzio et al. [7]] ves | yes ¥,0 932 C. Results on the YouTube Dataset
Liu et al. [18] yes | yes | no 93.8 : :
Liu et al. [1€] ves | o | no 92.3 The YouTgbe dataset is more complex and challenging than
Oikonomopoulos et all[T33] no | no | ves 88.0 KTH, since it has lots of camera movement, cluttered back-
Wu et al. [11] no | yes| yes 94.5 grounds, different viewing directions, and varying illuration
Our method no | no | no 95.1 conditions. We repeat the same experiments on this dataset,

and the recognition results are shown in [Ey. 7, Table I14 an
Fig. [8. Here, the four latent semantic learning methods are
compared in Fig.]7, while in Table]Il and Figl 8 we focus on

our SLSL and these two BOW methods is shown in Fib. &omparing our 3LSL directly with BOW to show the relative
We can find that our 8.SL leads to improvements over BOWgain achieved by our28SL. The speed gain in Tablelll is

(M = 2,000) on four action categories: “boxing”, “waving”, stjll computed when only kernel computation is concerned.

‘jogging”, and “running”, without performance degradatio Qverall, we can make the same observations on this dataset
on the other categories, even when the number of featuregdSwe have done with the KTH dataset.

decreased from 2,000 to 250. The ability of our HSE to achievegpecifically, our 8LSL can generally achieve better per-

promising results using only a small number of featurggrmance than the other latent semantic learning appreache
is important because it means that the proposed methodri§s observation further verifies that oufLSL can learn
scalable for large datasets. Moreover, odtSL is shown mqre compact but discriminative latent semantics by expior
to perform better than BOWM = 300) on all the action the manifold structure of mid-level features in both graph
categories when they select the same number of features. construction and spectral embedding. Moreover, the cotnpac
Since we focus on learning compact but discriminative Iaet of high-level features learnt by outLSL can speed up the
tent semantics for human action recognition, we considgr vesubsequent kernel computation significantly without obsio
simple experimental setting in this paper. For exampleh& tperformance degradation (wheki/M > 5.0%), as shown
experiments, only a single type of low-level spatio-tengborin Table[Ill. In particular, when our & SL (K = 400) is
descriptors are extracted from action videos the samélas [Empared to BOW X/ = 400 or 2,000) on each action
Moreover, the learnt high-level features are directly supl category, we can observe from FId. 8 that odL.SL leads
to human action recognition without considering their &pat to performance improvements over BOW on most action
temporal layout information. That is, we do not use featugategories. The reason may be that the high-level features
pruning [7], [18], [19], multiple types of low-level feates [7], learnt by our 8LSL can help to reduce the semantic ambiguity
[11], [18], or spatio-temporal layout information [11], 4}L of the most confusing action categories. When we focus
[33] for action recognition. However, even with such simplen the comparison betweer?ISSL (X = 400) and BOW
experimental setting, our28SL method can still achieve (M = 2,000), the performance improvement achieved by
performance improvements with respect to the state of tise aour SLSL is really impressive given that we have decreased
as shown in Tabl€]ll. This also provides further convincinthe number of features from 2,000 to 400. Although the
validation of the effectiveness of our latent semanticdeay commonly used LDA can do the same thing as our GlrSs,
method based on structured sparse representatidn {mprm it completely fails in this case, as shown in Hi§). 7. Consitgr
hypergraph regularization. the superior performance of LDA reported in the literatund a
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