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How large should ensembles of classifiers be?
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Abstract

We propose to determine the size of a parallel ensemble by estimating the minimum
number of classifiers that are required to obtain stable aggregate predictions. Assuming
that majority voting is used, a statistical description of the convergence of the ensemble
prediction to its asymptotic (infinite size) limit is given. The analysis of the voting pro-
cess shows that for most test instances the ensemble prediction stabilizes after only a few
classifiers are polled. By contrast, a small but non-negligible fraction of these instances
require large numbers of classifier queries to reach stable predictions. Specifically, the
fraction of instances whose stable predictions require more than T classifiers for T ≫ 1
has a universal form and is proportional to T−1/2. The ensemble size is determined
as the minimum number of classifiers that are needed to estimate the infinite ensemble
prediction at an average confidence level α, close to one. This approach differs from pre-
vious proposals, which are based on determining the size for which the prediction error
(not the predictions themselves) stabilizes. In particular, it does not require estimates
of the generalization performance of the ensemble, which can be unreliable. It has gen-
eral validity because it is based solely on the statistical description of the convergence
of majority voting to its asymptotic limit. Extensive experiments using representative
parallel ensembles (bagging and random forest) illustrate the application of the proposed
framework in a wide range of classification problems. These experiments show that the
optimal ensemble size is very sensitive to the particular classification problem considered.

Keywords:

Ensemble Learning, Bagging, Random Forest, Asymptotic Ensemble Prediction,
Ensemble Size.

1. Introduction

The use of ensembles in classification has been the object of numerous investigations
in the machine learning literature [1, 2, 3, 4, 5, 6, 7]. These studies show that combining
the decisions of complementary classifiers is an effective mechanism to improve the gen-
eralization performance of a single predictor. Furthermore, there is extensive empirical
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evidence that the generalization error of parallel ensembles decreases monotonically as
the size of the ensemble increases [8, 9, 5]. However, the gains that can be achieved by
incorporating additional classifiers become progressively smaller as the ensemble grows.
Therefore, it is reasonable to stop aggregating classifiers when the probability of changes
in the ensemble output that would result from considering additional predictions is suf-
ficiently small. Determining an appropriate size for the ensemble requires balancing
accuracy and efficiency: If, on the one hand, its size is too small, the aggregate ensemble
will have poor prediction accuracy. On the other hand, if the ensemble size is too large,
we would be wasting memory resources and slowing down the prediction process, which
could be a serious disadvantage for online applications.

The main contribution of this work is to take advantage of the convergence properties
of majority voting to determine the appropriate size of parallel ensembles composed of
classifiers of the same kind. The statistical description of the evolution of the class predic-
tion by majority voting in these types of ensembles has been extensively analyzed in the
literature [10, 11, 12, 13, 14, 15, 16, 17]. Given an individual test example, we compute
the probability that the class label predicted by an ensemble of classifiers will not change
by performing further queries (i.e. by increasing the size of the ensemble). Our analysis
shows that for most test instances only a small number of queries are needed to obtain
class label predictions that coincide with a high confidence with the predictions given
by an ensemble of infinite size. By contrast, a small number of these instances require
polling exceedingly large numbers of classifiers to reach a stable prediction. Therefore,
it is not possible to determine a fixed size for the ensemble so that the finite ensemble
prediction coincides with the asymptotic (infinite ensemble) prediction for every test in-
stance with a specified confidence level. Instead of enforcing convergence guarantees for
every test instance, we propose to determine the ensemble size by requiring that on av-

erage the predictions coincide with the infinite ensemble classification with a probability
larger than α. The value of α should be close to 1 (e.g. α = 99%). It is specified by
the user, depending on the desired level of confidence in the stability of the predictions.
We show, both theoretically and empirically, that some properties of the ensemble pre-
diction exhibit universal behavior as α approaches 1 or, alternatively, as the ensemble
becomes large (T → ∞). Specifically, the size of the ensemble increases monotonically
and becomes arbitrarily large as α approaches 1. Similarly, the fraction of instances for
which the prediction of an ensemble of size T differs from the prediction of the ensemble
of infinite size decreases as ∝ T−1/2 when T → ∞. For binary classification problems
the proportionality constant can be expressed in terms of the density of test instances for
which the prediction probability by a single ensemble member is equal for both classes.

In summary, the observations that (i) the prediction accuracy of parallel ensembles
generally improves with the size of the ensemble [9, 3, 5] and (ii) these improvements
become smaller for larger ensembles, suggest that it should be possible to reach the ac-
curacy of the infinite-size ensemble with a finite, though possibly large, ensemble. The
size of this ensemble is determined as the minimum number of classifiers required for the
finite ensemble prediction to coincide with the asymptotic one with the specified confi-
dence level α. The differences between the prediction errors of the finite and the infinite
ensemble are bounded from above by 1−α, which is the probability that the predictions
of the finite and of the infinite ensembles differ. In practice, the differences between
the finite ensemble and the infinite ensemble predictions occur with approximately equal
frequency in correctly and in incorrectly classified instances. Therefore, the differences in
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accuracy between the finite and the infinite ensembles are generally much smaller than
this bound.

The analysis developed is valid for any classification task and for ensembles composed
of any type of base learners: decision trees, decision stumps, neural networks, SVM’s, etc.
The only assumption is that the classifiers that make up the ensemble are generated in
independent applications of a randomized learning algorithm on the same training data,
and that the final prediction is made using majority voting. Examples of ensembles
of these types are bagging [1], variants of bagging [4, 18, 19], random forest [3], class-
switching ensembles [20, 5], rotation forest [6] and extra-trees [21].

The rest of the manuscript is organized as follows: In Section 2 we analyze the
evolution of the class prediction by majority voting as the number of classifiers in the
ensemble increases. This analysis is used to determine when a sufficient number of
classifiers have been included in the ensemble. Section 3 discusses the relation of the
present research with previous methods that have been used to estimate the ensemble
size. In Section 4 the results of experiments in a wide range of classification problems
are used to illustrate the validity of the proposed framework for the estimation of the
ensemble size. Finally, the results and conclusions of this investigation are summarized
in Section 5.

2. Estimation of the Optimal Ensemble Size

Consider a binary classification problem, in which Y = {y1, y2} is the set of possible
class labels. Let {hi(·)}Ti=1 be an ensemble of classifiers of size T . Assuming that simple
majority voting is used to combine the decisions of the individual classifiers, the global
ensemble prediction for a given unlabeled instance x is

ŷT = arg max
y

T
∑

i=1

I(hi(x) = y), y ∈ Y , (1)

where I is an indicator function.
Parallel ensembles such as bagging and random forest are composed of classifiers gen-

erated independently when conditioned to the available training data. More precisely,
these classifiers are built in independent executions of the same randomized learning
algorithm applied on the observed training data. Therefore, their predictions on a par-
ticular instance x are independent random variables, when conditioned to the training
data. This means that the probability distribution of the predictions for a fixed x of two
random ensemble classifiers h′(x) and h′′(x), generated on independent applications of a
randomized learning algorithm, factorizes

P(h′(x) = y′, h′′(x) = y′′) = P(h′(x) = y′)P(h′′(x) = y′′) , (2)

where y′ and y′′ are any class labels from the set Y. An empirical illustration of this
independence relation can be found in [22]. Note, however, that independence between
the individual predictions (2) does not in general imply that the prediction errors of the
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two classifiers are independent
∫

dxdyP(x, y)P(h′(x) 6= y, h′′(x) 6= y)

=

∫

dxdyP(x, y)P(h′(x) 6= y)P(h′′(x) 6= y)

6=
[∫

dxdyP(x, y)P(h′(x) 6= y)

] [∫

dxdyP(x, y)P(h′′(x) 6= y)

]

. (3)

For parallel randomized ensembles, because of the independence of the individual predic-
tions, the polling process defined by (1) is a sequence of T independent trials [10, 16, 17].
The outcome of each trial is in the set Y. In binary classification problems, the distri-
bution of class votes for the test instance x in an ensemble of size T is binomial

P(t|T,π(x)) = T !

t1!t2!
π1(x)

t1π2(x)
t2 , (4)

where ti is the number of classifiers that predict class label yi, i = 1, 2. In terms of the
vector of votes t = {t1, t2; t1 + t2 = T}, the class predicted by the ensemble of size T is

ŷT = arg max
i

{ti; i = 1, 2} , (5)

and π(x) is the probability vector

π(x) = {π1(x), π2(x)}, π1(x) + π2(x) = 1, (6)

where πi(x) is the probability that an individual classifier of the ensemble assigns class
label yi to the instance characterized by the vector of attributes x. The values of these
probabilities are in general unknown. They depend on the algorithm used to build the
base learners, on the particular classification problem and on x, the instance considered.
To simplify the notation, the dependence on x of the probability vector π is assumed to
be implicit in the remainder of the article.

Assuming that π is known, the probability that an ensemble of size T assigns class
label yi to instance x is the sum of (4) over all the ensemble predictions in which class
yi receives more votes than the other class. In particular, for class y1

P(ŷT = y1|T, π1) =
∑

t;t1>t2

P(t|T,π)

=

T
∑

t1=⌈T

2 ⌉

(

T

t1

)

πt1
1 (1− π1)

T−t1 = Iπ1

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

, (7)

where Ix(a, b) is the regularized incomplete beta function [23].
Figure 1 (left) displays the dependence of the probability that the ensemble predicts

class y1 (7) as a function of π1, the probability that an individual classifier predicts class
y1, for different values of the ensemble size T . Note that for T = 1, (7) is simply the
identity function. As T grows, (7) asymptotically approaches a step function.

lim
T→∞

P(ŷT = y1|T, π1) =











1 if π1 > 1/2,

1/2 if π1 = 1/2,

0 if π1 < 1/2.

(8)
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Figure 1: (left) Probability that an individual ensemble classifier predicts class y1 as a function of π1

for different values of T . (right) Histogram of 10, 000 samples from the probability distribution of π1,
denoted f(π1), for the Twonorm binary classification problem. The estimates are obtained using a
random forest (RF) composed of 10, 000 trees. This ensemble is built on a training set composed of 300
labeled instances.

The right-hand side of Figure 1 displays a histogram of 10, 000 samples from the probabil-
ity density function f(π1) for the Twonorm classification problem [24]. The estimations
are performed using random forest (RF) [3] of 10, 000 trees. The individual decision
trees are built using a training set composed of 300 instances. The estimations of π1 are
made on an independent test set of 10, 000 instances. For each test instance the value of
π1 is estimated as the fraction of classifiers that predict class label y1. The probability
density function estimated is bimodal. This means for some instances the classifiers tend
to predict class y1 more often and for other instances the prediction y2 is more frequent.
This bimodality should be expected, because the training set is composed of instances
of both classes in approximately equal numbers. For instances located near the decision
boundary, approximately one half of the predictions are class y1 and the other half are
class y2. The values of π1 for these instances are in the vicinity of 1/2. This means that
the uncertainty of the individual predictions is rather large. In consequence, for these
instances, more classifiers need to be queried to converge to a stable ensemble prediction.

It is important that the estimations of f(π1) be made on a set that is independent
of the training data: the training set estimate of the probability density, ftrain(π1), is
generally biased because the classifiers tend to agree more frequently on these instances.
Therefore, the fraction of training instances whose probability π1 is close to 1/2 is ex-
pected to be smaller than the corresponding fraction for an independent test set. Fur-
thermore, the modes of ftrain(π1) are closer to the extreme values π1 = 0 and π1 = 1 than
the corresponding modes in an independent test set. As a result of this bias, the size of
the ensemble required to obtain stable predictions is generally smaller for the training
set than for an independent test set.

2.1. Analysis of the ensemble prediction for an individual test instance

There is extensive evidence that the generalization error of parallel ensembles de-
creases monotonically as the size of the ensemble increases [9, 3, 5]. In practice, it is
not possible to query an infinite number of classifiers to obtain the asymptotic ensemble
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prediction. Nevertheless, assuming that the value of π1 for the instance to be classified
is known, or can be estimated in some way, the probability that an ensemble of size T
assigns the same class label as the infinite ensemble is

P(ŷT = ŷ∞|T, π1) = Imax{π1,1−π1}

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

. (9)

Using this expression we can compute T ⋆(α, π1), the minimum ensemble size whose
prediction for the instance characterized by the probability π1 coincides with the infinite
ensemble prediction with a confidence level α, by finding the smallest value of T that
satisfies the inequality

α ≤ Imax{π1,1−π1}

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

. (10)

It is not possible to derive an explicit exact formula for T ⋆(α, π1). Nevertheless, this
quantity can be readily calculated using numerical algorithms. If only odd values of
T are considered (to avoid ties in the ensemble prediction) the right-hand side of (10)
grows monotonically with T . Therefore, a simple binary search can be used to compute
T ⋆(α, π1), given α and π1.

For values of π1 close to 1/2 a closed-form approximation for T ⋆(α, π1) can be ob-
tained. In this limit T ⋆(α, π1) is large. Therefore, the binomial distribution in (7) can
be approximated by a Gaussian distribution with the same mean and variance

P(ŷT = ŷ∞|T, π1) ≈ Φ

(

Tmax{π1, 1− π1} − T/2
√

Tπ1(1− π1)

)

, (11)

where Φ(·) is the cumulative distribution function of a standard Gaussian distribution.
With this approximation (10) becomes

T ⋆(α, π1) ≈
Φ−1(α)2π1(1− π1)

(π1 − 1/2)2
, π1 ≈ 1/2 , (12)

where Φ−1(·) is the quantile function of a standard Gaussian distribution. For a fixed
value of α, expression (12) shows that T ⋆(α, π1) becomes infinite in the limit π1 →
1/2. Therefore, the limiting factor that determines the ensemble size is the presence
of instances for which π1 is close to 1/2. For these instances the ensemble decision is
uncertain and a very large number of classifiers needs to be queried to produce a reliable
estimate of the infinite ensemble prediction.

Since different examples have different values of π1, this quantity can be modeled
as a random variable whose probability density function is f(π1) (see the right-hand-
side of Figure 1). T ⋆(α, π1) is also a random variable because it depends on π1. Let
P(T ⋆(α, π1) > T ) be the probability that the minimum number of queries required
for convergence of the ensemble prediction is above threshold T when π1 follows the
distribution f(π1). In the limit T → ∞, this probability can be approximated as

P(T ⋆(α, π1) > T ) ≈ f( 12 )Φ
−1(α)√
T

. (13)
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assuming that the density function of π1 evaluated at π1 = 1/2 is positive f(π1 = 1/2) >
0. The details of the derivation are given in Appendix A.

This is an important result showing that, for a fixed value of α, the asymptotic decay
of the probability is algebraic with a universal behavior ∝ T−1/2. The only dependence
on the classification problem considered and on the ensemble method used is via the
proportionality constant f(π1 = 1/2) > 0. The heavy-tailed form of P(T ⋆(α, π1) > T )
implies that the fraction of instances that require a very large number of classifiers to
converge to the asymptotic prediction with a level of confidence α is significant.

Figure 2 illustrates this phenomenon. The left-hand side of this figure displays the
histogram for the minimum number of classifiers required to estimate the asymptotic
class label of test instances with a confidence level of at least α = 99% for the Twonorm

problem. The distribution of the probabilities π1 is estimated under the same conditions
as the experiments whose results are displayed in Figure 1 (right). The histogram shows
that the right tail of the distribution has a very slow decay. The origin of this heavy-
tailedness is the presence of instances close to the decision border (π1 ≈ 1/2), whose
stable prediction requires querying a large number of classifiers. The right-hand side of
this figure displays, in double logarithmic axes, an empirical estimate of P(T ⋆(α, π1) > T )
and the asymptotic approximation of P(T ⋆(α, π1) > T ) when T → ∞ given by (13). As
expected, the predicted dependence is very close to the empirical estimate for large T .

It is also possible to derive an asymptotic approximation for the probability that
the infinite ensemble prediction differs from the prediction of an ensemble of size T , for
sufficiently large T

P(ŷT 6= ŷ∞|T ) ≈
f( 12 )

∫ 0

−∞ Φ(z)dz
√
T

T → ∞ , (14)

assuming f( 12 ) > 0; that is, a non-vanishing probability density for instances whose
classification is uncertain (π1 = 1/2). The details of the derivation are given in Appendix
B. The asymptotic algebraic decay of this probability ∝ T−1/2 is also universal. The only
dependence on the classification problem considered and on the ensemble method used
is through f(π1 = 1/2) > 0.

In summary, most of the data instances require querying a fairly small number of
classifiers to produce an estimate of the asymptotic prediction with a high confidence. By
contrast, a small but not negligible fraction of test instances require querying extremely
large numbers of classifiers for the ensemble predictions to stabilize. The fraction of
instances whose stable predictions require at least T classifiers has a universal form
proportional to T−1/2 as T becomes large. The convergence of the ensemble prediction
to its asymptotic limit is dominated by these borderline instances. In consequence, it is
not possible to choose a finite ensemble size T so that the asymptotic prediction is reached
for every test instance with a specified level of confidence α > 0. This is a general result
that applies to any binary classification problem and any ensemble learning algorithm
provided that (i) the individual classifiers are built independently when conditioned to
the training data; (ii) majority voting is used to combine the outputs of the ensemble
classifiers; and (iii) f(1/2) > 0.

2.2. Ensemble Size

From the analysis presented one concludes that it is not possible to give convergence
guarantees for the ensemble prediction in every instance. As an alternative, we propose
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Figure 2: (left) Histogram for the values of T ⋆(α, π1) for the classification problem Twonorm and
α = 99%. (right) Empirical and theoretical estimations of the distribution P(T ⋆(α, π1) > T ) as T → ∞

displayed in double logarithmic axes. The slope of the straight line is −1/2.

to determine the size of the ensemble by requiring that the average confidence in the
asymptotic prediction be larger or equal to α. With this less restrictive condition, the
ensemble size T ⋆(α) is the minimum value of T that satisfies

α ≤ P(ŷT = ŷ∞|T )

=

∫ 1

0

P(ŷT = ŷ∞|π1, T )f(π1)dπ1

=

∫ 1

0

Imax{π1,1−π1}

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

f(π1)dπ1 . (15)

For values of α close to one, the value of T ⋆(α) is approximately

T ⋆(α) ≈
(

f( 12 )
∫ 0

−∞ Φ(z)dz

1− α

)2

, (16)

where we have used that 1 − α ≈ P(ŷT 6= ŷ∞|T = T ⋆(α)). This result shows that
T ⋆(α) → ∞ when α → 1, as expected. The ensemble size is proportional to the square
of f(π1 = 1/2), the density of test instances that are close to the decision boundary.
The more frequent these borderline instances are, the larger the ensembles required to
obtain stable predictions. Because of the large variability of this density, the ensemble
sizes T ⋆(α) can be very different in different classification tasks.

To compute T ⋆(α) we use (15) and an estimate of f(π1). This estimate can be
obtained from a validation set, by cross-validation, using out-of-bag data [25], or, since
the class labels are not required for this purpose, using the test set. The complete training
data should not be used because, as discussed earlier, it yields biased estimates of f(π1).
Given a set of N instances (either out-of-bag data, a validation set or the test set), the
integral in (15) is approximated by Monte Carlo

α ≤ 1

N

N
∑

i=1

I
max{π̂(i)

1 ,1−π̂
(i)
1 }

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

, (17)
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Input: Confidence level α and training data D

1. size← 100

2. E ← buildEnsemble(size,D)

3. Repeat

(a) T ⋆(α)← estimateEnsembleSize by Eq. (17)
(b) if T ⋆(α) < size

i. break

(c) else

i. size← min(T ⋆(α), 2 · size)
ii. E ← E ∪ buildEnsemble(size− |E|,D)

(d) End if

4. End Repeat

5. E ← truncateEnsemble(E, T ⋆(α))

Output: Ensemble E of size |E| = T ⋆(α).

Figure 3: Pseudo-code for the estimation of the optimal ensemble size T ⋆(α).

where {π̂(i)
1 }Ni=1 are the estimates of π1 for each of the N instances. Since (17) grows

monotonically with increasing values of T , assuming T odd, binary search can be used
to find T ⋆(α). Note that it is also possible to use (16) to estimate T ⋆(α) when α is close
to one. Nevertheless, this requires an estimate of f( 12 )

2 which can be unreliable as a
consequence of the variance of the estimator.

Figure 3 displays the pseudo-code of an algorithm that can be used to determine the
optimal ensemble size T ⋆(α). The starting point is an ensemble of size 100, which is a
typical value used in the literature on classification ensembles. This ensemble is used to
compute an initial estimate of T ⋆(α) using (17). If the value of T ⋆(α) is smaller than
or equal to the current size of the ensemble, the algorithm stops and the ensemble is
pruned by retaining only T ⋆(α) classifiers. Otherwise, new classifiers are incorporated
in the ensemble. The number of additional classifiers incorporated is the minimum of
T ⋆(α) and twice the size of the current ensemble. The process is repeated until the value
estimated for T ⋆(α) is smaller or equal than the size of the current ensemble. The rule
used to update the size of ensemble (step 3-(c)-i in the algorithm displayed in Figure 3)
provides a good balance between the number of times that T ⋆(α) has to be evaluated
and the number of final classifiers that have to be discarded due to the truncation step.
In all the cases investigated the algorithm converges after a few (typically no more than
5) iterations.

3. Related Work

The analysis presented in Section 2 relies exclusively on the convergence properties
of the class prediction by majority voting as the number of classifiers in the ensemble
increases [10, 11, 12, 13, 14, 15, 16, 17]. A similar analysis has been applied in [10] to
describe the evolution of the ensemble generalization error a as a function of its size.
The infinite ensemble limit is not considered explicitly by these authors. Nevertheless,

9



expressions that are valid in this limit can be readily obtained from their results. The
statistical description of majority voting was used also in [16] to address inference on
the prediction of an ensemble of finite size based on the predictions of only a fraction
of the ensemble classifiers. In contrast to the current research, that work assumes that
the original prediction ensemble is given. Therefore, the results of [16] cannot be used
to determine the appropriate size of the initial ensemble. Assuming a uniform prior dis-
tribution for π1, the analysis shows that it is possible to determine, for each instance to
be classified, the fraction of ensemble classifiers that need to be queried to estimate the
prediction of the complete ensemble with a confidence level above a specified threshold.
This fraction depends strongly on the particular test instance that is being processed.
Therefore, for a particular instance, the querying of the ensemble classifiers can be halted
when the probability that the current majority class would change because of the remain-
ing votes is sufficiently low. This dynamical (instance-based) ensemble pruning method
leads to a significant speed-up of the classification process with only a small deterioration
in the accuracy of the predictions. Notwithstanding, all the ensemble classifiers need to
be retained in memory and be available to resolve potential queries.

The dynamic pruning technique described in [16] has been extended to make inference
on the prediction of ensembles of infinite size in [17]. These authors propose to halt
the voting process for a particular test instance when the probability that the current
majority class coincides with the prediction of a hypothetical ensemble of infinite size is
above a user-specified confidence level. Given an initial ensemble of fixed size, one finds
that for some test instances it is not possible to estimate the prediction of an ensemble
of infinite size with the specified confidence, even after querying all the classifiers in
the ensemble. Thus, in practice, the guarantees on the convergence of the predictions
can only be made for a fraction of the test instances. For the remaining test instances
(typically small, but not negligible fraction), the stability of the predictions is uncertain
because all the classifiers contained in the ensemble are queried without reaching the
specified confidence level.

The two instance-based pruning techniques described in the previous paragraphs are
hence only useful to reduce the number of classifiers that need to be queried for prediction,
given an initial ensemble of a fixed size. They cannot be used to estimate an appropriate
size for the ensemble, which is the objective of the present investigation. In the current
manuscript we analyze the asymptotic behavior of the prediction of parallel ensembles as
their size approaches infinity. In particular, we show that the fraction of instances whose
stable predictions require more than T classifiers for T ≫ 1 has a universal form and
is proportional to T−1/2. This is an important observation that needs to be taken into
account in the design of effective ensembles. The results of this analysis are then used
to determine an appropriate ensemble size by requiring that, on average, the ensemble
predictions have converged to the asymptotic (infinite-size) ensemble with a specified
level of confidence. In most previous approaches to this problem the suitable ensemble
size is determined by aggregating classifiers until an estimate of the generalization error
stabilizes [26, 7, 27]. Methods based on the convergence of the prediction error require
the design of reliable estimators of the generalization performance and could be affected
by the variance of the estimations and also by overfitting. Our approach differs from
these in that it does not require an estimate of the generalization error: To determine
the probability that the ensemble prediction has converged to the infinite-size limit it
is not necessary to use the actual class labels. Convergence of the predictions of the
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ensemble is a sufficient condition for convergence of the generalization error. However,
it is not a necessary condition: the generalization error generally stabilizes earlier than
the predictions themselves.

One of the earlier proposals to determine the ensemble size is based on estimating
minimum number of classifiers which are needed to obtain a prediction accuracy similar
to a larger ensemble [26]. In that work, the McNemar non-parametric test is used to
determine whether the differences between the predictions on a validation set of ensem-
bles of sizes T and t with t < T are statistically significant. The size of the ensemble is
set to T ⋆, which is the minimum size of a subensemble whose predictive accuracy does
not significantly differ from an ensemble of T classifiers, with T sufficiently large. In a
different work, [7] use out-of-bag data [25] to determine whether the generalization error
has converged. First, the dependence of the out-of-bag error estimate on the size of the
ensemble is smoothed by averaging over a sliding window of size 5. Then, the algorithm
identifies the ensemble that has the best accuracy (i.e. the lowest smoothed value the
error estimated on the out-of-bag data) among ensembles of sizes 1 to 20. Progressively
larger ensembles are processed in batches of 20, until no improvement in accuracy is
found. At this point, the algorithm outputs the ensemble with the maximum accuracy.
The major advantage of this approach is that it does not require to overproduce and then
discard classifiers. This algorithm will be used as a benchmark for comparison in the
experiments section. Finally, the theoretical analysis of the dependence of the general-
ization error on the size of the ensemble size performed in [27] allows for the formulation
of simple, quantitative and theoretically grounded guidelines for choosing a suitable size
for bagging ensembles: By combining m bagged classifiers, one can expect to reach, on
average, a fraction of (m-1)/m of the overall error reduction that can be attained by
bagging an infinite number of classifiers with respect to using a single ensemble classifier.
Even though their analysis assumes that the individual classifiers output a probability
level and that the global prediction is obtained by a linear combination of these proba-
bilities a similar analysis can be carried out for majority voting [28]. However, this rule
has two drawbacks. First, it is based on relative gains. Therefore it cannot be used to
provide absolute bounds for the improvement. Second, it does not depend on the specific
properties of the task considered. This means the same bagging size should be suitable
for every possible classification problem, which is contrary to the empirical evidence.

4. Experiments

In this section we illustrate the application of the proposed framework to determine
the size of parallel classification ensembles. For this purpose experiments are carried
out in a suite of binary classification problems from the UCI repository [29], from the R
statistics software [30] and from the KEEL repository [31]. Table 1 displays the number
of attributes and instances for each problem. For the synthetic classification problems
(i.e. Twonorm, Ringnorm, Circle and Spiral) we use 100 independent realizations of the
problem. In each realization, we generate a training set composed of 300 instances and
a test set with 1000 instances, except for the Spiral problem, where 5, 000 instances are
used for training and 10, 000 instances for testing. For the non-synthetic classification
problems we make 100 independent random partitions into a training set and a test
set using 2/3 and 1/3 of the total available data, respectively. Finally, in the dataset
Whitewine the classification problem consists in discriminate between low (below 6) and

11



high-quality wines. In the Abalone dataset, the goal is to discriminate between infants
and non-infants.

Table 1: Datasets used in the experiments.

Problem Attributes Instances Source

Abalone 9 4,177 UCI
Australian 14 690 UCI
Banana 2 5,300 KEEL
Breast 9 699 UCI
Circle 2 300 R
Echo 12 131 UCI
German 20 1,000 UCI
Heart 13 270 UCI
Hepatitis 19 155 UCI
Horse 27 368 UCI
Ionosphere 34 351 UCI
Labor 16 57 UCI
Liver 6 345 UCI
Magic 10 19,020 UCI
Musk 166 6,598 UCI
Phoneme 5 5,404 UCI
Pima 8 768 UCI
Ringnorm 20 300 R
Sonar 60 208 UCI
Spam 57 4,601 UCI
Spiral 2 5,000 R
Tic-tac-toe 9 958 UCI
Twonorm 20 300 R
Votes 16 435 UCI
Whitewine 11 4,897 UCI

To build the classification ensembles we use two representative ensemble learning al-
gorithms: bagging [1] with unpruned CART trees [32] and random forest (RF) [3]. In
bagging, the individual classifiers are built by applying the CART algorithm to indepen-
dent bootstrap samples of the training set [1]. Each bootstrap sample has the same size
as the original training set and is obtained by drawing with replacement from this set.
Random forest [3] was introduced as an improvement over bagging when the classifiers
of the ensemble are decision trees. Besides resampling, random forest uses randomized
decision trees. Specifically, the splits of the data in the internal nodes of these trees are
generated by a greedy algorithm that considers for each split only a randomly selected
subset of attributes. The number of randomly selected attributes is set to the default
value in RF for classification, i.e. the square root of the total number of attributes.
This value has been shown to provide good generalization accuracy in a large range of
classification problems [33, 21]. Both RF and bagging are parallel ensemble learning
algorithms in which the individual classifiers are built independently when conditioned
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to the training data. Therefore, the framework introduced in Section 2 is appropriate to
estimate an appropriate size for the ensemble.

4.1. Universal Asymptotic Behavior

We first present results that illustrate the universal behavior of P(ŷT 6= ŷ∞|T ) (14)
asymptotically, as T → ∞. The experiments consist in comparing, for each test partition
of a given problem, the predictions of an ensemble of size T , where T ranges from 1 to
5000, with the predictions of an ensemble of size 10, 000. This large ensemble serves
as a proxy for the infinite-size ensemble because it assigns the asymptotic class label to
all but a very small fraction of the test instances. The disagreement rate between the
predictions of both ensembles provides an empirical estimate of P(ŷT 6= ŷ∞|T ) for each
test partition of the data.

Figure 4 displays the results of these experiments for a representative subset of prob-
lems considered in this work (Heart, Pima, German, Echo and Phoneme) and for both
types of ensembles (bagging and random forest). Similar curves are obtained for the
other classification problems investigated. The plots in this figure display the logarithm
of the empirical estimates of P(ŷT 6= ŷ∞|T ), averaged over the different test partitions,
as a function of ensemble of size T for T = 1, . . . , 5000. The corresponding asymptotic
approximation

logP(ŷT 6= ŷ∞|T ) ≈ log

(

f(π1 = 1/2)

∫ 0

−∞
Φ(z)dz

)

− 1

2
log T, (18)

derived from Eq. (14) is also depicted in each plot as a dashed line. In these curves,
the value of f(π1 = 1/2) is estimated using the test set predictions of the proxy for the
infinite ensemble. The approximately linear dependence of the empirical estimates of
logP(ŷT 6= ŷ∞|T ) with log T with a slope −1/2 as T → ∞ illustrates the validity of the
asymptotic analysis presented in Section 2.2.

4.2. Estimation of the Ensemble Size

For each problem, ensemble method, and train and test partition, the size T ⋆(α) of the
classification ensemble is estimated using the procedure described in the previous section
with α = 99%. We also compare two strategies for estimating T ⋆(α) that differ in whether
out-of-bag or test data are used to approximate f(π1). Once the estimate of f(π1) has
been computed, a binary search procedure is used to find T ⋆(α), the minimum value of
T that fulfills (17). Only odd values of T are considered to avoid ties in the ensemble
prediction. We refer to these ensembles as optimal, to reflect the fact that they are the
smallest ensembles whose prediction coincides with the asymptotic limit with probability
α, on average. For the purpose of comparison, we also generate ensembles whose sizes are
estimated using the method proposed in [7]. To determine whether the average fraction
of examples in which the prediction by the finite and the infinite ensemble differ is close
to 1− α, we compare the predictions of the finite ensembles with an ensemble of 10, 000
trees, which, as in the previous section, serves as a proxy for the infinite ensemble. The
error rate of the different ensembles is estimated on the corresponding test set. For the
ensembles whose size is determined using the method described in the previous section,
the differences in error rate should be smaller than 1−α, which is the average fraction of
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Figure 4: Logarithm of the fraction of disagreements in the test predictions between an ensemble of size
T and an ensemble composed of 10, 000 classifiers, which is a proxy for the ensemble of infinite size. The
dashed line corresponds to the asymptotic approximation Eq. (18).
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Table 2: Average disagreement rates in the test set % between the finite and the asymptotic (infinite-size)
ensemble prediction for bagging and RF.

Problem RF-Test RF-OOB RF-BAN Bag-Test Bag-OOB Bag-BAN
Abalone 1.0±0.2 1.0±0.3 2.2±0.7 1.1±0.2 1.0±0.3 2.1±0.5
Australian 1.0±0.6 1.2±0.7 2.3±1.1 1.0±0.6 1.1±0.7 2.3±1.3
Banana 1.0±0.2 1.0±0.2 1.4±0.5 1.0±0.2 1.0±0.3 1.4±0.4
Breast 0.9±0.6 1.0±0.7 0.6±0.5 0.9±0.5 0.9±0.7 0.8±0.6
Circle 1.0±0.4 1.1±0.5 1.3±0.6 1.0±0.4 1.0±0.5 1.3±0.7
Echo 1.0±1.5 1.1±1.8 2.2±2.4 1.2±1.5 1.1±2.0 2.0±2.6
German 1.1±0.5 1.2±0.6 5.1±1.5 1.1±0.6 1.2±0.6 5.7±2.1
Heart 1.2±1.1 1.3±1.2 4.7±3.1 1.3±1.0 1.2±1.1 4.9±3.4
Hepatitis 1.5±1.4 1.5±1.8 4.7±3.4 1.3±1.5 1.2±1.8 5.2±3.6
Horse 1.2±1.0 1.1±1.1 2.4±1.7 1.1±0.8 1.2±1.1 2.6±2.0
Ionosphere 0.9±0.8 1.0±0.8 1.5±1.2 0.9±0.8 1.1±1.0 1.8±1.5
Labor 1.8±2.8 1.9±2.9 3.5±4.9 1.4±2.6 1.7±3.7 3.2±4.2
Liver 1.5±1.1 1.5±1.2 8.5±3.5 1.3±1.0 1.2±0.9 7.6±4.0
Magic 1.0±0.1 1.0±0.1 1.4±0.3 1.0±0.1 1.0±0.1 1.4±0.3
Musk 0.9±0.2 0.8±0.2 0.4±0.1 1.0±0.2 0.9±0.2 0.4±0.2
Phoneme 1.0±0.2 1.0±0.2 1.7±0.5 1.0±0.2 1.0±0.3 1.6±0.4
Pima 1.1±0.7 1.0±0.7 5.2±2.1 1.3±0.6 1.2±0.7 5.2±2.2
Ringnorm 1.1±0.3 1.2±0.5 2.8±0.7 1.1±0.3 1.2±0.4 3.3±1.2
Sonar 1.4±1.2 1.9±1.7 8.1±3.9 1.3±1.4 1.4±1.6 7.0±4.1
Spam 1.0±0.3 0.9±0.3 0.8±0.3 1.0±0.3 1.0±0.3 0.8±0.3
Spiral 1.0±0.1 1.0±0.1 1.8±0.5 1.0±0.1 1.0±0.1 1.9±0.5
Tic-tac-toe 0.9±0.5 0.8±0.5 1.3±0.8 0.9±0.5 0.8±0.6 0.6±0.5
Twonorm 1.0±0.3 1.1±0.4 2.2±0.8 1.1±0.4 1.2±0.4 2.6±0.8
Votes 0.8±0.8 0.8±0.9 0.7±0.9 1.1±0.8 1.0±1.0 1.0±0.8
Whitewine 1.0±0.3 1.0±0.3 2.6±0.7 1.1±0.2 1.0±0.3 2.6±0.6

instances for which the assigned class label changes. The results presented are averages
(± standard deviation) over the different realizations of the training and test data.

Table 2 displays for each problem and ensemble method (bagging and RF) the av-
erage disagreement rates between the finite and the asymptotic (infinite-size) ensemble
predictions. The standard deviations of the disagreement rates are given after the ±
symbol. In this table the suffix OOB indicates that the value of T ⋆ is estimated using
the out-of-bag data. The suffix Test indicates that the value of T ⋆ is estimated using
the test set (note that the class labels of these examples are not needed for this estima-
tion). Finally, the suffix BAN indicates that the value of T has been estimated using the
method proposed in [7].

These results show that the disagreement rates of the optimal ensembles are close to
the 1 − α = 1% threshold level set in the experiments. By contrast, the disagreement
rates of ensembles whose size is estimated with the method of [7] are rather disperse: The
differences are small in some problems (e.g. 0.6% in Breast for RF, 0.6% in Tic-tac-toe,
for bagging, and 0.4% in Musk, for both ensemble methods) and much larger in others
(e.g. above 5% for German, Pima and Liver, for both RF and bagging).
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Tables 3 and 4 display for each problem and for bagging and RF the asymptotic en-
semble test error (Bag∞ and RF∞) and the average test error of the estimated ensembles
(Bag-Test, Bag-OOB, Bag-BAN, RF-Test, RF-OOB, and RF-BAN), averaged over the
100 realizations of the classification problems considered. The standard deviations of
these values are given after the ± symbol. As in the previous table, the procedure used
for the estimation of the size of the ensemble is indicated by a suffix attached to the
ensemble method (OOB for out-of-bag, Test for the method that uses the test set and
BAN for the method proposed by [7]). The median of the number of trees used in these
ensembles for the different realizations of the classification problems are also displayed.
The interquartile interval is shown between parentheses. These measures are used in-
stead of the mean and the standard deviation because they are more robust estimates of
the center and dispersion of the ensemble sizes, respectively. To determine whether the
differences in error rate are statistically significant we perform a Wilcoxon rank test [34].
Error rates that are significantly larger than the corresponding asymptotic ensemble level
(a p-value below 5% is obtained in the Wilcoxon test) are highlighted in boldface.

Regarding the generalization performance, these results confirm that RF typically
obtains lower error rates than bagging [3]. More relevant to this study, the lowest errors
correspond to the asymptotic ensembles, as expected. The error rates of the ensembles
estimated with the proposed method (Bag-OOB, Bag-Test, RF-OOB and RF-Test) are
only slightly higher. In many problems the differences are not statistically significant.
In all cases the increases in the error rate are much lower than the upper bound given
by 1 − α, the fraction of instances whose class label prediction is expected to change
from the finite to the infinite ensemble. This means that the changes in the predicted
class-label occur in approximately equal numbers of correctly and of incorrectly classified
instances. Ensembles whose size is estimated by the method of [7] typically have larger
error rates than the proposed method regardless of whether the out-of-bag or the test
data are used in the estimations of (15).

Tables 3 and 4 show that the values obtained for the optimum number of classifiers
for the ensemble, T ⋆(α), when f(π1) is estimated using out-of-bag data or using the test
set are very similar. In addition, different classification problems require ensembles of
very different sizes. Some classification tasks need ensembles of less than 50 trees to reach
a stable prediction with a confidence level α = 99% (e.g. Votes, Breast and Musk). For
others, the appropriate number of trees to combine is in the thousands (e.g. German,
Pima, Sonar and Liver). Therefore, contrary to the common practice in most of the
literature on ensembles, one should not use the same number of classifiers irrespective of
the problem considered. Furthermore, the ensembles used in previous studies are rarely
above 100-200 classifiers, which is probably too small for some problems.

The sizes of the ensembles obtained using the recommendation of [7] (RF-BAN and
Bag-BAN) are typically too small in classification problems with small numbers of train-
ing instances, such as Labor, Sonar Heart or Hepatitis. For these problems, RF-BAN
and Bag-BAN typically yield ensembles with lower accuracy and higher disagreement
rates than the method proposed in the current research. This behavior can be explained
by the rather large variability of the out-of-bag estimates, even when they are smoothed
by averaging. One empirically finds that this variability can lead to spurious variations
in accuracy solely because of sample fluctuations. The premature convergence of this
algorithm for small datasets is also discussed in [7] and is the main reason why their
analysis focuses on large classification problems with several thousands of training in-
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Table 3: Average and standard deviation of the test errors for the infinite-size and for the estimated RF ensembles. Median and interquartile interval
(between parentheses) of the number of trees for the estimated RF ensembles.

Problem RF∞ RF-Test RF-OOB RF-BAN # Tree RF-Test # Tree RF-OOB # Tree RF-BAN
Abalone 16.67±0.68 16.72±0.69 16.73±0.71 16.88±0.73 391 (318, 474) 397 (363, 442) 92 (66, 120)
Australian 13.13±1.90 13.08±2.02 13.20±2.06 13.24±1.89 257 (192, 427) 238 (189, 318) 58 (43, 78)
Banana 10.77±0.61 10.82±0.60 10.81±0.61 10.86±0.61 108 (91, 133) 111 (99, 127) 65 (43, 94)
Breast 3.20±0.89 3.55±1.00 3.57±1.02 3.40±0.94 19 (15, 34) 23 (17, 28) 57 (36, 76)
Circle 5.30±1.14 5.41±1.10 5.42±1.20 5.54±1.11 64 (46, 87) 57 (35, 87) 41 (23, 61)
Echo 9.16±3.41 9.59±3.50 9.20±3.53 9.52±3.50 57 (24, 131) 88 (62, 117) 35 (18, 46)
German 24.16±1.77 24.21±1.65 24.19±1.74 24.45±1.92 1570 (1216, 2280) 1616 (1422, 2130) 78 (54, 102)
Heart 17.20±3.42 17.10±3.35 17.22±3.40 17.90±3.63 529 (320, 1079) 618 (404, 1088) 47 (32, 74)
Hepatitis 15.44±4.68 15.63±4.53 15.27±4.56 15.73±5.07 313 (178, 767) 532 (288, 768) 30 (20, 61)
Horse 14.07±2.83 14.26±2.90 14.22±2.90 14.67±2.99 191 (126, 350) 241 (164, 368) 73 (49, 110)
Ionosphere 6.72±1.97 6.78±1.93 6.95±2.03 7.26±2.16 66 (39, 100) 71 (53, 96) 41 (29, 61)
Labor 8.42±5.39 9.53±5.43 8.74±5.90 9.89±7.42 64 (37, 117) 78 (53, 175) 21 (14, 37)
Liver 28.16±4.05 28.17±3.86 28.37±3.98 29.37±4.23 2224 (1312, 4062) 2440 (1526, 3631) 54 (33, 81)
Magic 12.07±0.35 12.14±0.34 12.13±0.33 12.18±0.36 247 (226, 276) 257 (243, 270) 144 (109, 175)
Musk 2.46±0.32 2.78±0.36 2.72±0.34 2.51±0.31 17 (15, 19) 17 (17, 19) 84 (66, 107)
Phoneme 9.60±0.72 9.63±0.70 9.63±0.69 9.77±0.66 246 (206, 287) 267 (233, 297) 96 (76, 122)
Pima 24.05±2.10 24.07±2.06 24.05±2.00 24.41±2.28 1194 (798, 1904) 1258 (1000, 1598) 56 (36, 89)
Ringnorm 6.17±1.14 6.29±1.09 6.26±1.17 6.86±1.15 563 (429, 703) 443 (346, 638) 83 (64, 111)
Sonar 18.30±5.16 18.36±5.28 18.41±5.44 19.38±5.05 1975 (954, 3877) 2070 (1198, 3146) 58 (37, 85)
Spam 5.00±0.56 5.08±0.61 5.03±0.53 5.09±0.53 63 (53, 72) 64 (58, 73) 90 (70, 114)
Spiral 16.18±0.40 16.23±0.40 16.22±0.42 16.30±0.40 234 (214, 262) 238 (212, 265) 77 (58, 107)
Tic-tac-toe 2.01±0.85 2.37±0.88 2.23±0.93 2.49±0.98 143 (97, 195) 185 (148, 216) 116 (86, 141)
Twonorm 3.82±0.66 3.96±0.64 3.98±0.71 4.55±0.78 365 (286, 428) 315 (225, 454) 96 (62, 117)
Votes 3.82±1.52 4.01±1.52 4.04±1.52 3.93±1.55 20 (13, 36) 29 (19, 41) 44 (30, 61)
Whitewine 16.93±0.87 17.01±0.88 16.97±0.91 17.12±0.86 714 (570, 842) 716 (644, 788) 100 (78, 127)
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Table 4: Average and standard deviation of the test errors for the infinite-size and for the estimated bagging ensembles. Median and interquartile
interval (between parentheses) of the estimated sized for the bagging ensembles.

Problem Bag∞ Bag-Test Bag-OOB Bag-BAN # Tree Bag-Test # Tree Bag-OOB # Tree Bag-BAN
Abalone 17.13±0.69 17.14±0.74 17.10±0.71 17.21±0.71 367 (304, 439) 399 (352, 454) 88 (66, 127)
Australian 13.21±1.72 13.18±1.84 13.26±1.80 13.50±1.91 181 (123, 263) 189 (140, 268) 54 (30, 70)
Banana 11.16±0.69 11.22±0.66 11.19±0.71 11.26±0.74 99 (90, 120) 107 (97, 117) 62 (38, 83)
Breast 3.99±1.11 4.17±1.11 4.20±1.12 4.17±1.10 21 (17, 29) 23 (18, 33) 42 (28, 63)
Circle 6.00±1.39 6.11±1.33 6.10±1.37 6.26±1.41 45 (33, 68) 48 (36, 69) 35 (20, 56)
Echo 9.70±4.07 10.18±4.22 9.84±4.06 10.16±3.65 37 (15, 80) 60 (33, 89) 23 (13, 41)
German 24.22±1.98 24.20±2.06 24.23±2.05 24.83±2.06 1645 (1196, 2296) 1605 (1264, 2242) 68 (42, 91)
Heart 19.14±3.68 19.31±3.61 19.19±3.57 20.28±3.85 422 (208, 886) 481 (307, 718) 44 (23, 61)
Hepatitis 17.29±5.08 17.25±5.20 17.13±5.11 17.75±5.02 259 (142, 640) 442 (271, 698) 27 (15, 46)
Horse 14.93±3.23 15.16±3.28 14.98±3.42 15.74±3.41 182 (100, 300) 193 (144, 312) 59 (41, 73)
Ionosphere 7.88±2.14 7.93±2.37 8.05±2.35 8.09±2.14 81 (43, 123) 72 (55, 100) 41 (25, 61)
Labor 11.95±7.84 12.32±7.64 12.00±7.52 12.58±6.56 53 (29, 96) 78 (50, 146) 21 (12, 28)
Liver 29.32±3.77 29.56±3.81 29.34±3.93 30.50±3.66 1292 (761, 1944) 1643 (1228, 2437) 46 (31, 69)
Magic 12.36±0.36 12.42±0.36 12.42±0.34 12.46±0.34 230 (208, 250) 225 (215, 239) 114 (93, 156)
Musk 2.66±0.34 2.89±0.37 2.87±0.37 2.71±0.34 17 (15, 21) 19 (17, 21) 78 (54, 110)
Phoneme 9.91±0.76 10.00±0.70 9.99±0.74 10.08±0.76 213 (183, 248) 224 (197, 253) 93 (67, 121)
Pima 24.41±2.20 24.41±2.16 24.36±2.24 24.74±2.24 1041 (670, 1555) 970 (701, 1408) 52 (32, 71)
Ringnorm 8.93±1.98 9.01±1.97 9.04±2.01 9.81±2.06 722 (547, 916) 607 (379, 774) 74 (53, 98)
Sonar 21.58±5.67 21.59±5.75 21.71±5.84 22.10±5.71 997 (476, 2004) 1298 (743, 1871) 36 (22, 66)
Spam 5.93±0.60 6.03±0.59 6.01±0.60 6.01±0.60 47 (41, 54) 47 (41, 55) 78 (59, 102)
Spiral 16.65±0.41 16.71±0.41 16.69±0.44 16.80±0.40 239 (221, 270) 243 (223, 282) 73 (56, 108)
Tic-tac-toe 1.95±0.85 2.37±0.90 2.27±0.96 2.05±0.86 35 (25, 62) 45 (37, 58) 77 (62, 101)
Twonorm 6.17±1.41 6.29±1.44 6.30±1.47 6.77±1.57 514 (388, 618) 445 (346, 670) 78 (63, 108)
Votes 4.69±1.71 4.85±1.60 4.86±1.69 4.80±1.72 21 (12, 48) 26 (17, 37) 25 (16, 43)
Whitewine 17.35±0.91 17.41±0.92 17.37±0.91 17.51±0.82 682 (532, 793) 663 (585, 744) 107 (82, 140)
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stances. In datasets with a larger number of training instances, the estimated ensemble
sizes for RF-BAN and Bag-BAN tend to be larger, e.g. Abalone, Magic or Whitewine. In
these datasets RF-BAN and Bag-BAN identify ensembles with a prediction performance
similar to the asymptotic one.

The predictive accuracy of the different ensembles generated is compared using the
statistical framework introduced in [34], for both RF and bagging. This framework allows
to compare different classification systems on a collection of classification problems. To
perform the comparison, the different methods are ranked according to their accuracy
in each of the problems considered. Then, the average of the ranks obtained by each
method in each of the problems is computed. Finally, a non-parametric statistical test
is applied to determine whether the differences among the average ranks of the methods
considered are statistically significant. In these tests, RF and bagging ensembles are
analyzed separately. A Friedman test based on these average ranks rejects (with a p-value
< 5%) the null-hypothesis that there are no significant differences in accuracy among
the different methods evaluated, for both bagging and RF. Finally, a Nemenyi post-
hoc test is applied to determine whether the differences in average rank are statistically
significant. If the differences between average ranks are above a critical distance (CD),
which depends on the level of significance specified for the test, they are considered
statistically significant.

Figure 5 displays the results of the Nemenyi post-hoc test for both RF (left) and
bagging (right). Methods whose differences in average rank are not statistically significant
at a level α = 5% are connected with a horizontal solid line. The critical distance (CD)
that marks whether the differences in average rank are statistically significant is displayed
on the top of the plots. From these results we observe that the proxies of the infinite-size
ensembles, RF-∞ and Bag-∞, have a significantly better average rank than any of the
ensembles of finite size. There are no statistically significant differences between the
average ranks of the proposed method when either out-of-bag or unlabeled test data are
used to determine the optimal ensemble size. In contrast, the differences in accuracy
between the method proposed in [7] (RF-BAN and Bag-BAN) and the one proposed
in this work are statistically significant when out-of-bag data are employed (i.e. with
respect to RF-OOB and Bag-OOB respectively). When using unlabeled test data for the
estimations (i.e. RF-Test and BF-Test), the differences in average ranks with respect
to Banfield’s method are statistically significant for Random Forest, but not for bagging
ensembles.

1 2 3 4

Avg. Rank

CD

RF∞
RF-TestRF-OOB
RF-BAN

1 2 3 4

Avg. Rank

CD

Bag∞
Bag-TestBag-OOB
Bag-BAN

Figure 5: Average rank of each method displayed in Table 3 (left) and Table 4 (right) over the 25
classification problems investigated. The critical distance (CD) between average ranks, as estimated by
a Nemenyi post-hoc test, is displayed on each figure for a p-value = 5%. The methods for which the
differences in accuracy are not statistically significant are linked with a solid segment.
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4.3. Dependence of the Ensemble Size on the Confidence Level

Additional experiments have been carried out to investigate the dependence of the
ensemble size on the confidence level for the prediction α. Figure 6 plots the classification
error and the median of the ensemble size as a function of α in five representative clas-
sification problems Twonorm, German, Breast, Ionosphere and Musk, for bagging and
random forest ensembles. T ⋆(α) is estimated using out-of-bag data. Similar curves are
obtained for the other classification problems investigated. These curves illustrate the
trade-off between the desired level of confidence in the predictions (α) and the number
of classifiers that are required for prediction. The larger the value of α, the larger the
number of classifiers that are needed to reach this confidence level. Specifically, when α
approaches 100% there is a sharp increase in the number of classifiers required to achieve
that level of confidence in the predictions. By contrast, the average test error decreases
more slowly with increasing α, and only very small gains are obtained when the confi-
dence level approaches 100%. The value of α = 99% used in the previous experiments
provides a good balance between the decrease in the average test error and the number
of classifiers required to reach that confidence level. The results of this section agree with
the dependence of T ⋆(α) on α, as described by Eq. (16).

4.4. Comparison with Dynamic Ensemble Pruning Techniques

A final batch of experiments is carried out to determine whether the two dynamic
ensemble pruning techniques described in [16, 17] are effective in reducing the number
of queries for ensembles whose size is determined using the methods introduced in this
work. These pruning techniques assume that an initial ensemble of appropriate size has
been generated. The goal of dynamic pruning is to reduce the number of classifiers of a
given initial ensemble that need to be queried to output a decision, without significant
deterioration of the generalization performance.

For this comparison, we have carried out experiments in the classification problems
that require large ensemble sizes, according to the results displayed in Tables 3 and
4. These datasets are German, Heart, Liver, Pima, Ringnorm, Sonar, Twonorm and
Whitewine. The performance of dynamic pruning in ensembles whose size is determined
by means the methods introduced in this work, using out-of-bag (OOB) data, is gauged
against an ensemble composed of 101 classifiers. This particular value (101 classifiers)
has been selected because it is a common choice for the ensemble size in the literature for
bagging and RF [16, 17, 3, 4, 35, 21]. All the ensembles considered are then dynamically
pruned using the two different methods described in [16, 17]. The confidence level for
both pruning methods is set to 99%. This confidence level is with respect to the complete
ensemble for [16] and with respect to the asymptotic (infinite) ensemble prediction for
[17]. The average number of queried trees is also recorded. The computational cost of
determining when to stop querying is negligible, provided that some computations are
made before the prediction process starts [16, 17]. Therefore, the reduction in the number
of trees queried directly translates into a reduction in the time required for classification.
It is worth noting that for the dynamic pruning method introduced in [17], as discussed
in Section 3, the prediction of some test instances at the desired confidence level may not
be possible even after querying all the available classifiers. When this occurs, we simply
return the prediction of the complete ensemble for those instances.

The results of the pruning experiments for RF are shown in Tables 5 for [16] and 6
for [17]. The results for bagging ensembles are very similar. The columns in the first
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Figure 6: Average test error and median of the number of classifiers in the ensemble as a function of the
confidence level α. The results are displayed for the classification problems Twonorm, German, Breast,
Ionosphere and Musk for both bagging and RF. The out-of-bag data are used to estimate the ensemble
size T ⋆(α).

21



block of these tables display the average test errors of the ensembles of size 101 (RF-101)
and of optimal size (RF-OOB), respectively. The columns in the second block show the
test error of the dynamically pruned ensembles (DP-RF-101 and DP-RF-OOB). For each
block, the error rates that are significantly smaller than the corresponding counterpart
using a Wilcoxon rank test [34] (with p-value < 5%) are highlighted in boldface. The
median and the interquartile range of the average number of trees queried for each test
instance when pruning is applied is also reported in these tables. Finally, the average
speed-up factor –measured as the number of classifiers available for querying divided by
the average number of classifiers actually used– is shown in the last column.

The results displayed in both tables are very similar. RF-OOB ensembles are typi-
cally more accurate than RF-101 ensembles either with or without pruning. RF-OOB
outperforms RF-101 in 5 of the 8 classification problems analyzed. After applying the
dynamic pruning technique, this number is reduced to 3. In addition, the average num-
ber of queries in RF-OOB ensembles is significantly reduced by the dynamic pruning
strategies. In most cases, the speed-up factor is above 10, as can be seen from the values
reported in the last column in tables 5 and 6. The reduction of the average number
of classifiers that need to be queried for accurate prediction is greater for larger initial
ensembles.

The different dynamic pruning methods are compared using the statistical framework
introduced in [34]. Specifically, the four different methods (RF-101, RF-OOB, DP-RF-
101 and DP-RF-OOB) are ranked according to their predictive accuracy in each of the
classification tasks considered. Figure 7 displays the results of the comparison among
average ranks for the dynamic pruning method described in [16] (left) and for the dynamic
pruning method described in [17] (right). Similar conclusions are obtained in both cases.
The comparison shows that there are significant differences between the average ranks
of RF-101 and RF-OOB. In contrast, there are no statistically significant differences
between the average ranks of RF-OOB and RF-101 and the corresponding dynamically
pruned counterparts. In the set of problems analyzed RF-OOB is better than RF-101,
both without and with pruning. Note, however, that the RF-OOB ensembles considered
are larger than the corresponding RF-101 ensembles

In summary, the results of these experiments show that the dynamical pruning tech-
niques introduced in [16, 17] are effective in reducing the number of required queries also
for ensembles whose size is determined with the methods introduced in this work. The
relative improvements of classification speed are more significant for larger ensembles.
This means that the overhead in cost of classification introduced by having larger initial
ensembles can be significantly reduced by applying dynamic pruning methods.
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Table 5: Average and standard deviation of the test errors for the RF ensembles of 101 classifiers and for the estimated RF ensembles using out-of-bag
data. We also show results when the dynamic pruning technique described in [16] is used in classification time. The median and interquartile range of
the average number of trees queried for each test instance and the average improvement in the classification time are also reported.

Not Pruned Dynamically Pruned Median # of Trees Speed-up

Problem RF-101 RF-OOB RF-101 RF-OOB RF-101 RF-OOB RF-OOB

German 24.29±2.00 24.19±1.74 24.34±2.08 24.25±1.79 29 (27, 30) 110 (98, 127) 15.73±3.93
Heart 17.34±3.57 17.22±3.40 17.44±3.62 17.34±3.40 23 (21, 25) 55 (44, 66) 13.76±7.41
Liver 28.61±4.12 28.37±3.98 28.59±3.87 28.49±4.08 34 (33, 36) 162 (128, 214) 16.30±9.58
Pima 24.31±2.06 24.05±2.00 24.39±2.06 24.13±2.05 26 (24, 27) 84 (71, 96) 15.63±5.08
Ringnorm 6.73±1.16 6.26±1.17 6.87±1.17 6.38±1.20 23 (22, 24) 42 (37, 49) 11.38±3.85
Sonar 19.03±5.24 18.41±5.44 19.03±5.15 18.72±5.48 32 (30, 34) 148 (119, 203) 14.39±7.23
Twonorm 4.40±0.80 3.98±0.71 4.51±0.80 4.14±0.75 21 (20, 22) 32 (28, 36) 10.62±3.87
Whitewine 17.14±0.90 16.97±0.91 17.19±0.89 17.00±0.90 21 (21, 22) 50 (48, 54) 14.35±1.87

Table 6: Average and standard deviation of the test errors for the RF ensembles of 101 classifiers and for the estimated RF ensembles using out-of-bag
data. We also show results when the dynamic pruning technique described in [17] is used in classification time. The median and interquartile range of
the average number of trees queried for each test instance and the average improvement in the classification time are also reported.

Not Pruned Dynamically Pruned Median # of Trees Speed-up

Problem RF-101 RF-OOB RF-101 RF-OOB RF-101 RF-OOB RF-OOB

German 24.29±2.00 24.19±1.74 24.29±2.03 24.25±1.79 38 (36, 39) 143 (124, 165) 12.23±3.13
Heart 17.34±3.57 17.22±3.40 17.36±3.60 17.27±3.44 30 (28, 32) 70 (54, 84) 11.06±6.36
Liver 28.61±4.12 28.37±3.98 28.58±3.98 28.54±4.15 46 (44, 48) 207 (164, 265) 12.97±8.86
Pima 24.31±2.06 24.05±2.00 24.34±2.07 24.12±2.04 34 (32, 35) 108 (91, 124) 12.27±4.08
Ringnorm 6.73±1.16 6.26±1.17 6.80±1.18 6.35±1.17 30 (28, 31) 53 (47, 62) 9.07±3.18
Sonar 19.03±5.24 18.41±5.44 18.96±5.25 18.67±5.38 42 (40, 46) 200 (155, 260) 11.24±5.68
Twonorm 4.40±0.80 3.98±0.71 4.46±0.80 4.10±0.73 27 (26, 28) 41 (36, 45) 8.43±3.12
Whitewine 17.14±0.90 16.97±0.91 17.19±0.90 17.00±0.90 27 (27, 28) 64 (60, 68) 11.36±1.55

23



1 2 3 4

Avg. Rank

CD

RF-101
DP-RF-101RF-OOB

DP-RF-OOB

1 2 3 4

Avg. Rank

CD

RF-101
DP-RF-101RF-OOB

DP-RF-OOB

Figure 7: Average rank of each method displayed in Table 5 (left) and Table 6 (right) over the 8
classification problems investigated. The critical distance (CD) between average ranks, as estimate by
a Nemyi post-hoc test, is displayed on each figure for a p-value = 5%. The methods for which the
differences in accuracy are statistically significant are linked with a solid segment. When a dynamic
pruning method has been used during classification, the prefix DP has been added.

5. Conclusions

In this research we have addressed the question of how to determine the size of par-
allel classification ensembles. The method proposed consists in estimating the number
of classifiers that are necessary to reach a prediction that, on average, coincides with a
hypothetical ensemble of infinite size with high probability α ≈ 1. In contrast to previous
proposals found in the literature this procedure is not based on estimating the general-
ization error. Instead, it relies on the analysis of the convergence of the prediction of
parallel classification ensembles as a function of ensemble size in the asymptotic regime,
when the number of classifiers in the ensemble tends to infinity. The framework is valid
for any classification problem and any parallel ensemble provided that the individual clas-
sifiers are built in independent applications of a randomized learning algorithm on the
training data and that their predictions are combined by majority voting. The analysis
performed shows that, while most of the instances require only a few classifiers to reach
the infinite ensemble prediction with a high confidence, the predictions of a small but not
negligible fraction of instances require extremely large numbers of queries to converge.
We demonstrate and provide empirical evidence that this observation leads to universal
behavior that emerges when large ensembles are used for prediction. In particular, the
fraction of instances whose predicted class label differs from the asymptotic prediction
is proportional to T−1/2. The proportionality constant is determined by the probability
density of instances with π1 ≈ 1/2. In consequence, the behavior of sufficiently large en-
sembles is determined by the fraction of data instances whose prediction by the ensemble
is uncertain (i.e. instances with π1 ≈ 1/2).

The validity of the probabilistic framework developed is illustrated using two rep-
resentative parallel ensemble learning algorithms (bagging and RF) for a wide range of
classification problems. Given the generality of this analysis, similar behavior should
be obtained for any type of parallel randomized ensemble, any type of base learner and
for any classification problem considered. From the results of the empirical study one
observes that the predictions of the finite classification ensembles constructed agree with
the asymptotic ones with a probability close to α, the target confidence level used to
determine the ensemble size. Because the differences in error are bound from above
by 1 − α, the prediction accuracy of the optimal ensembles is only slightly lower than

24



the corresponding infinite-size ensembles. The value α = 99% provides a good balance
between accuracy and ensemble size.

The method proposed has been evaluated in experiments in a wide range of classi-
fication problems. The results of this empirical evaluation show that ensembles whose
size is determined by requiring stability of the class prediction are, in the cases analyzed,
more accurate than ensembles whose size is determined by requiring that the prediction
error be stable, as in [7]. Even though the improvements are statistically significant
when α = 99%, the differences are small in absolute value. Furthermore, the resulting
ensembles are larger than in [7]. Nonetheless, if there are strict memory restrictions, one
can consider smaller values of α (e.g. 97% or 98%) to decrease the size of the resulting
ensembles at the expense of lower classification accuracy. Based on the results of the
experiments carried out, using the stability of class predictions to determine the size of
the ensemble leads to more consistent performance than using estimates of the general-
ization error. Another important conclusion of our study, which has also been pointed
out by [7], is the need to adapt the ensemble size to the particular classification problem
considered. Some problems require ensembles of only tens of classifiers to converge to
the infinite ensemble prediction. In others, very large sizes are required for the ensemble
predictions to stabilize. Finally, when the required ensemble size for a given classifica-
tion problem is large, the dynamic pruning methods described in [16, 17] can be used to
reduce the number of classifiers that have to be queried for classification.

Regarding future work, the current analysis can be extended to consider sequential
ensembles, such as boosting [36], or combination schemes different from majority voting,
such as weighted majority voting, or averages of the estimated probabilities of observing
the different class labels at a given input location [27].

Appendix A.

In this appendix we derive an approximation of the asymptotic behavior of P(T ⋆(α, π1) >
T ) as T → ∞. Let F (π1) be the cumulative distribution function of π1 (see Figure 1).
In terms of this distribution, P(T ⋆(α, π1) > T ) can be estimated as the fraction of the
instances whose value of π1 is in the interval

[
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(
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where π1 = I−1
1−α

(

⌊T
2 ⌋+ 1, T − ⌊T

2 ⌋
)

is the inverse of the incomplete beta function de-
scribed in (7). That is,
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Taking the limit T → ∞
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where we have used the same approximation of the incomplete beta function as in (11)
and f(π1 = 1/2) > 0 has been assumed.

Appendix B.

In this appendix we derive an approximation of the asymptotic behavior of P(ŷT 6=
ŷ∞|T ) as T → ∞. This probability is defined as

P(ŷT 6= ŷ∞|T ) =
∫ 1

0

P(ŷT 6= ŷ∞|π1, T )f(π1)dπ1, (B.1)

where f(·) is the probability density function that an arbitrary test instance has a fixed
associated value of π1, and P(ŷT 6= ŷ∞|π1, T ) = 1 − P(ŷT = ŷ∞|π1, T ), with P(ŷT =
ŷ∞|π1, T ) defined in (7). For large T , P(ŷT 6= ŷ∞|π1, T ) can be approximated using (11)
as

P(ŷT 6= ŷ∞|π1, T ) ≈ Φ
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Substituting (B.2) into (B.1) and taking the limit T → ∞ gives
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where we have used two changes of variables π1 = x + 1/2 and z = 2
√
Tx, and C is

a positive constant such that Φ(−2ω) ≈ 0, ∀ω > C (e.g. C = 10). We also assume
f(π1 = 1/2) > 0.
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