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Abstract

Model based methods to marker-free motion capture
have a very high computational overhead that make them
unattractive. In this paper we describe a method that im-
proves on existing global optimization techniques to track-
ing articulated objects. Our method improves on the state-
of-the-art Annealed Particle Filter (APF) by reusing sam-
ples across annealing layers and by using an adaptive para-
metric density for diffusion. We compare the proposed
method with APF on a scalable problem and study how the
two methods scale with the dimensionality, multi-modality
and the range of search. Then we perform sensitivity analy-
sis on the parameters of our algorithm and show that it tol-
erates a wide range of parameter settings. We also show re-
sults on tracking human pose from the widely-used Human
Eva I dataset. Our results show that the proposed method
reduces the tracking error despite using less than 50% of the
computational resources as APF. The tracked output also
shows a significant qualitative improvement over APF as
demonstrated through image and video results.

1. Introduction

Tracking an articulated object like a human body with
many degrees of freedom is an active research area in the
vision community. A large body of research on human pose
tracking and estimation suitable to different application ar-
eas is found in the literature [ | 2]. The model-based genera-
tive method to tracking humans [14, 5, 6, 16, 3, 13, 17, 8] is
a critical method with applications in animation, sports and
medical motion analysis. Relying on a kinematic model to
support the tracked hypothesis it remains one of the most
accurate ways to track a human. However the accuracy
comes with a significant computational overhead.

Model based generative methods model a human by a
kinematic tree controlled by a fixed set of parameters. The
imaging process is modeled by a projection operation and
pose estimation is formulated as a state estimation problem
that aims to minimize the disparity between the actual ob-
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servation and the generated image as a function of the pa-
rameters of the kinematic model. Every evaluation of the
disparity function incurs a significant computational over-
head which can be considered to be of the order of the res-
olution and the number of cameras used for tracking.

Existing literature on the method either approach the
problem as that of a Bayesian filtering problem [4] or as
an optimization problem. Since the observation is not a
random vector correlated with the hidden state, as is the
case in filtering problems, Bayesian methods either resort
to local optimization [3, 16] to recover and track the modes
or choose a nonparametric method like particle filter [14].
In practice, however, both these methods need a significant
number of evaluations of the disparity function, resulting in
a high computational overhead to track.

Alternate approaches [8, |3, 7] formulate the problem as
a search for the global mode of the likelihood assuming the
disparity to be the negative log likelihood. This line of tech-
niques originate from the Annealed Particle Filter (APF)
[7]. APF is a generic procedure applicable to several types
of input data including silhouettes from video streams and
3D reconstructions of human. Moreover it does not rely on
learned prior dynamics [15], hence it remains an attractive
algorithm and is largely considered to be the state-of-the-art
in model-based human pose tracking.

APF reveals that annealing can be a powerful tool when
applied to high dimensional multi-modal problems. How-
ever, we observe that the full potential of annealing is not
realized by the APF. Since the cost of each likelihood eval-
uation is very high, there is a need to extract as much infor-
mation as possible from each sample. Our procedure, which
we refer to as parametric annealing (PA), is aimed at reduc-
ing the total number of samples by reusing samples across
annealing layers and by using an adaptive parametric den-
sity to generate new samples. Our experiments show that it
is capable of tracking more accurately with less than 50%
of the number of samples required by APF. In this paper,
we study various properties of our method including how it
scales with the number of modes and dimensions, and also
examine its sensitivity to parameter settings. A preliminary
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Figure 1: The plots shows the effect of annealing on a Mix-
ture of Gaussians as the temperature T is varied from oo to
0. Annealing temperature is displayed below the plot.

version of our paper appears in [10].

The rest of the paper is organized as follows. Section
2 provides a background introduction to annealed particle
filters. Section 3 highlights the problems with APF and mo-
tivates the need for our method. Section 4 provides a de-
tailed description of our method. Section 5 compares the
proposed method with APF on a simple scalable problem
and performs sensitivity analysis on the parameters of our
method. Following that, we provide a summary of the track-
ing results using data from Human Eva I dataset. Section 6
indicates the future work and concludes the paper.

2. Background

In this section we review the background of annealed
particle filters to motivate the need for our method and to
enable the exposition of it.

Particle filter [9] is a well-known technique in computer
vision for tracking. It propagates the uncertainty about the
tracked object non parametrically using a set of weighted
samples. Let z; and 2, be random variables corresponding
to the state of the object and observation at time . Let ¢ be
the set of N samples z; and their corresponding normalized
weights 7; that represent the distribution of x;. The notation
2.1 1s used to indicate the set of observations till time t.
Formally

N
plalzens ) = > mid(w — ;) (D
=1

Applying the first order Markov and the sensor assumptions
[9] one can obtain the posterior at time ¢ + 1 by multiplying
the likelihood with the prior, where the prior is obtained
by convolving posterior from time ¢ with the motion prior.
Assuming the motion prior p(x;41|z;) to be a combination
of a function f(xz;) and Gaussian uncertainty of covariance
., results in a prior density shown below

N
p@rslzens ) = Y mN(f(x:); D) )
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Particle filters use the prior density as a proposal density
for importance sampling[! ] from the likelihood. Multi-
plying the likelihood by the prior provides the posterior at

time ¢ + 1. This results in a four step procedure for track-
ing i.e. re-sample, drift, diffuse and evaluate[9]. The first
three steps can be shown to generate samples from the prior
density (2), and the last step can be shown to perform im-
portance sampling and the necessary multiplication to ob-
tain the posterior. The algorithm hinges on the critical as-
sumption that the prior density has a good overlap with the
likelihood for the importance sampling to be effective.

Annealing has the effect of transforming any distribution
from a uniform distribution to a delta function in the global
maximum as the temperature is changed from oo to 0. Fig-
ure 1 shows the effect of annealing on a multimodal distri-
bution. Formally, the process of annealing can be expressed
as below

f(@,T) o pla) T 3)

where p(z) : R? + R, is a non-negative function with a
finite integral and T is the annealing temperature.

APF[7] incorporates annealing into particle filtering by
exploiting the fact that a distribution at a higher temperature
effectively has a wider support (as can be observed in Figure
1), and hence could be used as a proposal distribution for
importance sampling from the same distribution at a lower
temperature. Hence in a single iteration (that corresponds to
a time interval ?), it performs several particle filtering steps
referred to as layers. It assumes f () to be z; in successive
layers (since the distribution is not translated by annealing)
and the variance to be gradually decreasing by a fraction o™
(where m is the annealing layer and a < 1) to account for
the narrow and peaked objective that results from annealing
(see Figure 1). Annealing is performed by a simple sched-
ule by controlling the number of unique resampled particles
to be approximately half of that which exist in the previous
layer. Consequently, at the end of a fixed number of layers,
the set of samples that represented a multimodal density in
the start represent a delta distribution in the end. Hence the
expected state of the set of samples approximates the global
maximum with high accuracy. The high level steps done in
APF are as follows.

1. N samples z;,i € {1,..., N} are obtained by sam-
pling from N (&; X), where &, is the estimate of the
state in last iteration.

2. The likelihood y; is evaluated at sample x;.

3. A suitable annealing temperature 7, that ensures only
50% samples will survive resampling is estimated.

4. Normalized sample weights are obtained. m; =
v/ SN, yim, where By, = /T,

5. N new samples are %?nerated by sampling (resample
and diffuse) from ) ;" m; N (x;; ™).

6. Repeat from step 2 for a fixed number of layers.
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Figure 2: Test demonstrating effects of reusing samples.
The subfigures a, b and c correspond to the configuration
that discards samples, the one that retains them and the one
that retains along with a deep annealing schedule. It can
be observed that reusing makes the search less effective (b),
which is overcome by augmenting it with a deep annealing
schedule (c).

7. The global maximum is estimated as the expected state
of the weighted samples.

The critical aspect of APF is that it is capable of track-
ing with significantly fewer number of samples. Studies
done on human pose tracking show that APF is capable of
tracking with 1000 [15] samples in comparison to 10,000
samples that are required by particle filters [ 14].

3. Motivation

The APF algorithm generates N new samples in each
layer. However, samples from previous layers are dis-
carded. Since the evaluation of likelihood incurs a signif-
icant overhead, one would want to retain the relevant sam-
ples from previous layers. The most natural way to do this
would be to simply retain the samples x; along with the
corresponding likelihoods y;, and raise them to a new an-
nealing temperature 7,,, for the layer before normalization.
However, this does not work well in practice.

To demonstrate the effect of simply reusing, we con-
ducted an experiment. We considered the log likelihood to
be a quadratic, f%xT:c, where 2 € R3Y. To verify how
well APF searches through the state space we started from
a fixed state and searched for the optimum. We compared
two configurations of APF: the original configuration that
discards samples, and a second configuration which retains
them by raising the likelihood to the appropriate (3,,, for the
layer before normalization. To measure how effectively the
methods locate the optimum, we obtained the distribution of
the L2 norm of the state estimated by APF. The histograms
of the L2 norm are shown in Figure 2a & 2b. It can be ob-
served that when samples are discarded, the state estimate
is closer to the true optimum.

The test demonstrates the problems with retaining sam-
ples. The critical insight, however, is that the problems
with reusing samples are more than overcome by choos-
ing a “deep” annealing schedule that consistently reduces
the annealing temperature, rather than a simple schedule
which ensures 50% samples survive resampling. The pre-
cise formulation of a deep annealing schedule as a power
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Figure 3: Example demonstrating the effect of anneal-
ing(color). It can be seen how annealing shifts the proba-
bility mass towards regions that improve the objective.

law, which is a novel aspect of our method, is given in Sec-
tion 4. The improvement is shown in the histogram in Fig-
ure 2¢ which augments retaining samples with our proposed
deep annealing schedule. The result can be best explained
by analyzing another simple example. Figure 3a shows a 1D
Gaussian density in blue. A set of weighted samples were
obtained by diffusing samples around x = 3. The sam-
ples are shown in red and the kernel density approximated
by the samples using a Gaussian kernel is shown in green.
If the samples were to be re-sampled and diffused with the
same Gaussian kernel, it is equivalent to generating samples
from the density shown in green. Figure 3b shows the ef-
fect of annealing on the kernel density. It can be observed
that annealing effectively shifts the kernel density mass to-
wards regions that improve the search objective. Conse-
quently, when enabled with a suitable annealing schedule,
new samples are generated in areas of the state-space that
improve the objective. Expressed differently, a good an-
nealing schedule ensures that the worthless samples which
end up in areas of the state-space with poor objective don’t
adversely impact the search process by quickly driving their
normalized weights to zero in successive layers.

In addition, one would expect to have a slow annealing
schedule when tracking articulated objects since their like-
lihoods are multimodal and fast annealing is known to con-
verge to local optima. APF can be interpreted as generating
new samples from a kernel density with a Gaussian kernel
of gradually reducing noise covariance. It is well-known
that the kernel density approximated by a set of samples is
highly sensitive to the type of kernel. Therefore such a fixed
diffusion schedule is very sensitive to the parameters, more
so when the annealing is slow and longer. This is evident
from the two-fold reduction [6] in the number of samples
needed to track when using an adaptive kernel. We take
the idea of adaptive diffusion density a step further, and use
an intermediate parametric form which is inferred from the
set of samples to act as a substitute for the kernel density
i.e. instead of resample and diffuse with a kernel, new sam-
ples are generated from a parametric model. The motivation
is that, with an intermediate parametric form, the density
would adapt even better.

Inferring an intermediate parametric form has an added
advantage when the set of samples in the last layer of an-
nealing still represent a multimodal density. Such a scenario
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Figure 4: Example demonstrating the effect of a paramet-
ric form on the state estimate. The samples are shown in
red, and an inferred parametric form is shown in green. The
expected state of all samples, and the maximum of the para-
metric form, are shown in black and cyan respectively. It
can be seen how the expected state is a worse estimate of
the true optimum at -1.

can be observed in Figure 4, it shows a set of samples in the
last layer of annealing in red. A parametric density inferred
from the set of samples is shown in green. The paramet-
ric density shows that the samples represent a multimodal
density. It can be observed that the expected state of such a
sample set deviates from the global maximum, and a better
estimate is obtained from the parametric form. These con-
siderations motivate the need for an improved procedure,
which we refer to as parametric annealing. We describe our
method in detail in the next section.

4. Parametric Annealing

Let P(z) (x € R?) be a general multi-modal distribu-
tion, and let ¢ be the set of N weighted samples (z;, 7;)
that represent P(z). Formally,

N
P(z) ~ p(z;¢) = Z T 6(z — ;) 4)

Let g(x; 0) be a Mixture of Gaussians (MoG), parametrized
by 6 that approximates p(z; v). We estimate the parameters
of q(x; 0) using Expectation Maximization (EM) adapted to
include the sample weights ;. Formally,

q(x;0) ~ p(x;7) = P(x) 5)

With this terminology, the high level steps done in each
iteration of our algorithm are now described. Subsequently,
the steps are compared to the APF, and the differences are
highlighted.

1. N°samples z;,i € {1,..., N"} are obtained by sam-
pling from N(#;; X)), where & is the estimate of the
state in last iteration.

2. The likelihood y; is evaluated for new samples x;.

3. A suitable annealing temperature 7, is estimated us-
ing a deep annealing schedule.

4. Normalized sample weights 7" = y/m™ /SN yPm,
where (3,, = 1/T,, are estimated.

5. A parametric MoG approximation g(x; ™) is inferred
from the weighted samples 1 using one EM iteration.

6. C new samples x; are generated from the parametric
model and combined with old samples.

7. Repeat from step 2 for M layers to simulate a very
slow annealing.

8. The global maximum is estimated from the parametric
model.

The main novelty of our procedure over APF is twofold.

* We don’t discard samples in step 6, and moreover,
we use a deep annealing schedule to enable effective
search in step 3.

* We use a parametric model in steps 5 & 6 instead of the
kernel diffusion density, and obtain the estimate from
the parametric form in step 8.

Below, we provide details of the method, which may be
skipped by those readers who want to consider the results
in the next section.

The high level steps above include some of the parame-
ters of the algorithm. The superscript m in any parameter
indicates that it is a function of the layer, m € (1,..., M),
where M is the number of annealing layers. The parame-
ter N represents the total number of samples in layer m.
As opposed to APF where the number of samples in each
layer remain fixed, the number of samples in our method
grows in successive layers since we don’t discard samples.
As we introduce C new samples in a layer and we start with
N samples, the number of samples in each layer N™ is
N° + m(, bringing the total number of samples for an it-
eration to N° + MC.

We fix the number of mixture components in the MoG
q(z;0) to C, which is also the number of new samples in-
troduced in a layer. Consequently, the parameters 8™ is
the set of C' means (u7"), covariances (X7*) and the mix-
ture weights (¢7*). The subscript ¢ and the superscript m
indicates that these parameters are dependent on the spe-
cific mixture component c and the layer m. The “E & M”
steps [1] in the EM algorithm are well known. A regularizer
&m /¢ in included in the M step update for £ to ensure that
the covariance matrices are full rank. Since we are also an-
nealing the samples while inferring the parametric form we
find that a gradually reducing regularizer is more effective
than a fixed regularizer.

The annealing schedule is a critical part of our algorithm.
We use a measure similar to particle survival rate « defined
in [7] to control the annealing schedule. The parameter 7,



which is the annealing temperature for the layer m can be
estimated from a predefined sequence of ., by any local
optimization technique. The parameters a.,, and &, (regu-
larizer) define the annealing schedule. We define these pa-
rameters by the following power law

Em = amgg/awu Oy = T]>\m (6)
Where € is a d x d diagonal matrix with each diagonal el-
ement equaling half the maximum change in state estimate
along that dimension. The significant difference between
our schedule and that used by APF is that APF sets the pa-
rameter o, to 0.5 for all m. Thus n € (0,1), A € (0,1),
NO M and C are the external parameters used by our
method. These parameters are dependent upon the state
space dimension d and the density P(z).

5. Analysis and comparison
5.1. Scaling properties

In this section we analyze how our method scales with
the dimensionality, multi-modality and the range of search
by comparing it with APF on a simple scalable problem.
The problem used for the comparison is to let the two
stochastic procedure search for the optimum state in a MoG.
Inspired by [2], we used a generative method to model the
MoG used as the search objective. We assume the search
objective 6 (which is a MoG) to be a random draw from a
distribution P(©). The distribution P(©) is sampled us-
ing a generative method i.e., the mixture weights are drawn
from a Dirichlet distribution of uniform prior, the inverse
covariances are drawn from a Wishart distribution with d di-
mensional identity as scale matrix and the mean vectors are
drawn from a d dimensional Gaussian with a scaled identity
matrix (by scale s) as covariance and zero mean.

The variable d, the number of mixture components k
and the scale of the covariance s control the dimensionality,
multimodality and search range of the objective. We made
both the procedures start from the origin of the euclidean
space R? and search for the optimum. We considered the
difference in the log likelihood between the end state and
the start state to be a random variable I (for improvement
in the log likelihood) that acts as an indicator of how well
the procedure performs. Since the procedures are stochas-
tic in nature we ran the procedure several times on different
samples from P(©) and considered the mean and standard
deviation of I to be indicative of the performance.

Figure 5 plots the scaling properties of the proposed
method in comparison to the APF. We compared our
method to two configurations of APF. The configurations
are APF 1000 (M = 5, N = 200) and APF 500 (M =
5, N = 100), where M and N are annealing layers and
particles per layer respectively. Our method was configured
with 438 samples (438 = NO + M x C = 150 + 24 x 12).
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Figure 5: Scaling properties of the PA (blue) in compari-
son to the APF 1000 (green) and APF 500 (red). The plots
shows the mean (top row) and deviation (bottom row) of
improvement in log likelihood for different values of di-
mension d, number of components k and range parameter s
respectively. It can be observed that our method improves
the likelihood more than APF, and that the deviation in im-
provement is almost the same.

The mean and standard deviation of the random variable I is
plotted against various values of dimension d, components
k and scale factor s. Higher mean value of I and lower devi-
ation are better. The result might seem to show that all pro-
cedures somehow perform better in higher dimensions and
as the range increases, but this is not true. It is caused by
the vast change in the log likelihood in higher dimensional
Gaussian mixtures and over long search ranges. However,
it can be observed that, in all three tests, our method im-
proves the log likelihood better than APF despite using less
than 50% of the samples. It either performs as good as or
slightly better than APF with regards to the deviation of im-
provement.

5.2. Sensitivity analysis

Both our method, as well as APF, have quite a number
of parameters. A standard set of parameters proposed in
[7] is used in most studies involving APF [15]. However,
how these parameters affect the tracking performance has
not been studied. This motivated us to perform sensitiv-
ity analysis on the parameters of our own algorithm since
it would provide insight into how those parameters affect
tracking. We performed this study in the same objective as
the previous experiment. The test was performed by vary-
ing each parameter 1, A, N°, M and C around a small range
from the default parameter used in previous test and observ-
ing the mean and deviation of the variable I. Figure 6 shows
the results of sensitivity analysis. It can be observed that our
algorithm is largely insensitive to the initial number of sam-
ples NO. In fact, it slightly improves as the initial number
of samples reduce, which may be understood by analyzing
Figure 3. When the initial number of samples are higher, the
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Figure 6: The plot shows the mean improvement and deviation for various settings of the parameters of our procedure. The
parameters N°, M and C refer to initial number of samples, number of annealing layers and the number of new samples
introduced per layer respectively. The parameters 1 and A define the power law used to control the rate of annealing.

search is ineffective since the samples hold back the search
procedure until they are annealed to a suitable temperature.
Similar observations were made with human pose tracking,
suggesting one might reduce the initial number of samples
without losing performance.

An increase in the number of annealing layers M im-
proves the performance, this justifies our choice of slow an-
nealing. However it can be observed the deviation shows a
slight decreasing trend as the number of layers reduce. We
believe this is due to the cumulative effect of the random-
ness introduced in every layer. Hence a suitable trade-off
between the two is necessary. An increase in the number of
new samples C' introduced in a layer improves the perfor-
mance, this is expected since when there are more samples
the search should be better. A decrease in the parameters
1 and \ that define the annealing schedule shows an im-
provement in performance, indicating that the deeper the
annealing, the better the performance of the search proce-
dure. This is expected since, as shown in Section 3, a deep
annealing schedule is necessary to ensure that the new sam-
ples search the state space effectively.

5.3. Tracking Results

We compared the proposed method with two configura-
tions of APF. a) 1000 particle configuration with 200 parti-
cles per layer and 5 layers b) 500 particle configuration with
100 particles per layer and 5 layers. Our method was con-
figured with 438 samples (N° = 150, M = 24,C = 12).
We used data from the Human Eva I dataset for the com-
parison. We review the overall results here which will be
presented in detail elsewhere. Table 1 presents the results
of the comparison from 6 different video sequences. Each
tracking method was executed 10 times on a sequence and
the time and ensemble average of the tracking error and the
deviation are shown in the Table. We observe that, for all
videos except one, our method has the lowest tracking er-
ror. Furthermore, the difference is significant for jogging
sequences. It is notable that our method reduce despite the
fact that it uses half the number of sample, and requires half
the runtime as APF 1000.

Figure 7 shows the tracked model from all three meth-

ods superimposed on images used for tracking. We used
the Subject 1 jogging sequence for the figure since, as ev-
ident from Table 1 it is the sequence that by a large extent
discriminates the three configurations. It can be observed
that the tracked output from our method is visibly closer to
the Subject.

6. Conclusion & Future Work

In this paper we described a procedure that improves on
APF for tracking a human from a video sequence. Using
synthetic examples we demonstrate the critical problems
with APF and show how they are overcome by the novel as-
pects of our procedure, which include reusing samples with
a suitably deep annealing schedule, and also by inferring
a parametric form from the samples. We then compared
the proposed method to APF in a simple scalable problem
and show that our method consistently performs better than
APF. This was followed by sensitivity analysis showing that
our algorithms’ performance is largely insensitive to the pa-
rameter settings. Finally, we present human pose tracking
results using data from the Human Eva I dataset that show
the benefit of using our algorithm. We plan to explore tech-
niques to optimally estimate the parameters for tracking and
to understand how various attributes like the frame rate and
the articulated motion affect the tracking performance.
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