

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi. org/10.1016/j.patcog.2012.11.006

http://hdl.handle.net/10251/80020

Elsevier

Albert Gil, FE.; García Fernández-Pacheco, D.; Aleixos Borrás, MN. (2013). New method to
find corner and tangent vertices in sketches using parametric cubic curves approximation.
Pattern Recognition. 46(5):1433-1448. doi:10.1016/j.patcog.2012.11.006.

 New Method to Find Corner and

Tangent Vertices in Sketches using
parametric cubic curves

approximation
F. Alberta, D.G. Fernández-Pachecob, N. Aleixosa*

a Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano (Universitat Politècnica
de València), Camino de Vera s/n, 46022-Valencia, España {fraalgi1,naleixos@dig.upv.es}

b DEG, Universidad Politécnica de Cartagena, 30202-Cartagena, España, daniel.garcia@upct.es

* Corresponding author: Nuria Aleixos, naleixos@dig.upv.es, Tel.: +34 387 95 14, Fax: +34 387 75 19

Abstract—Some recent approaches have been presented as simple and highly accurate corner finders in the

sketches including curves, which is useful to support natural human-computer interaction, but these in most cases

do not consider tangent vertices (smooth points between two geometric entities, present in engineering models),

what implies an important drawback in the field of design. In this article we present a robust approach based on the

approximation to parametric cubic curves of the stroke for further radius function calculation in order to detect corner

and tangent vertices. We have called our approach Tangent and Corner Vertices Detection (TCVD), and it works in

the following way.

First, corner vertices are obtained as minimum radius peaks in the discrete radius function, where radius is obtained

from differences. Second, approximated piecewise parametric curves on the stroke are obtained and the analytic

radius function is calculated. Then, curves are obtained from stretches of the stroke that have a small radius.

Finally, the tangent vertices are found between straight lines and curves or between curves, where no corner

vertices are previously located. The radius function to obtain curves is calculated from approximated piecewise

curves, which is much more noise free than discrete radius calculation. Several tests have been carried out to

compare our approach to that of the current best benchmarked, and the obtained results show that our approach

achieves a significant accuracy even better finding corner vertices, and moreover, tangent vertices are detected with

an Accuracy near to 92% and a False Positive Rate near to 2%.

Index Terms—corner and tangent vertices detection, hand-drawn and sketch segmentation, image object

recognition, natural interfaces

—————————— ——————————

*Manuscript
Click here to view linked References

2

1 INTRODUCTION

N order to achieve interfaces that support natural human -computer interaction, it is necessary

to develop intelligent techniques for the automatic recognition of sketches that allow users to

draw as they naturally would without any constraints, like introducing the sketches in a particu-

lar order or requiring a previous training by the user to learn a set of specified symbols or shapes.

Actually, sketching is an established part of the engineering culture, but current avai lable tools for

Computer Aided Sketching (CAS) supported by CAD (Computer Aided Design) applications are

not yet as usable as paper-and-pencil, owing to the lack of many necessary functionalities and

flexibility [1]. This work also shows the importance of sketching in conceptual design and

presents the current state of the art in CAS tools by describing the main features and outstanding

problems in this topic.

One important feature that should be considered by free-hand sketch systems deals w ith the

problem/ need/ restriction of drawing complex shapes in a single stroke. In order to support this

feature, it is necessary to split the stroke into its constituent primitives, what involves the deve l-

opment of techniques capable of finding vertices in the stroke. Once the vertices are found, the

stretches between vertices could be approximated to primitives’ straight lines or curves, hence,

user intent design could be captured maintaining the tangency between lines and curves or be-

tween curves.

The procedure to find vertices is so called finding corners or segmentation process, and a l-

though some works have been carried out to find vertices, the segmentation of sketched shapes

still remains unsolved because this is a very complex task, as stated by Company et al. [2].

Apart from sketch-based systems, poly-line corner find ing is a very powerful tool for other

types of applications, as Wolin et al. shows in [3]. In this work they developed an algorithm they

called ShortStraw to find corners in strokes and compared the obtained r esults to current baseline

corner finders. This algorithm was found to be highly accurate in both total correct corners and

all-or-nothing corner accuracy benchmarks in strokes containing straight lines. Later, this alg o-

rithm was improved by Xiong and La Viola [4], presenting a new corner finding algorithm, IS-

traw, that overcome some limitations and attempted to reduce the lacks while maintaining the

I

3

computational complexity. This algorithm also extended ShortStraw to deal with strokes contain-

ing curves and the obtained results showed significant improvements in all-or-nothing corner

accuracy compared to ShortStraw.

Although these works have developed algorithms that offer good results in detecting corners,

and have been presented as two of the most accurate and simple compared to other existing m e-

thods, they still present some drawbacks to be solved, as for instance the detection of tangent

vertices. A proposal that takes into account tangent vertices was presented by Pu and Gur [5].

This is a more complex m ethod compared to previous ones, and uses mathematical cu rves to

approximate the stroke, considering vertices as those being the minimum set of points that can be

used to reconstruct with high accuracy the stroke. This method presents two important inconve-

niences: first, it does not d istinguish between corner vertices and tangent vertices, what is a

drawback from the point of view of the continuity between parts of the stroke ; second , although a

high refinement post-process is done, the number of false positive in the detection of vertices is

very high.

But, why it is important to detect the tangent vertices (smooth transitions) in the strokes? The

main motivation for tangent-finding vertices is that the geometry of sketches has to be approx-

imated to their corresponding primitives in order to create the out -lined section to later generate

3D models, models that in most cases have tangent transitions between planar -curved surfaces or

curved-curved surfaces, what makes essential the detection of the designer in tention in the

sketches by means the finding of tangent vertices.

As we will see from related work, almost all methods presented find corner vertices but nearly

no method is capable of finding tangent vertices (smooth transitions) acceptably in sketches. The

aim of this article is to present a new approach, TCVD (Tangent and Corner Vertices Detection),

based on the rad ius function, calculated first from differences between stroke points (d iscrete

radius) and then from the stroke approximation to parametric cubic curves (analytic radius), to

find so corner vertices as tangent vertices in sketched shapes including curves, and to obtain a

recognised parametric equivalent stroke with the corresponding continuity in the tangent vertices

found. This method has been compared to some of the most successfu l ones in the state of the art

and aimed to the same objective or easily adapted , such as the already mentioned ShortStraw,

4

IStraw and the presented by Pu and Gur. The results of comparison show our technique as the

most accurate one, and with a few false positives in both corner and tangent vert ices.

This paper is organised as follows. In the next section we present an overview of the state of

the art in techniques to find corners and segmentation of sketches, includ ing a ju stification of the

methods chosen for comparison at the end of the section . A detailed description of the TCVD

method is covered in section 3. Section 4 describes the experimental work carried out and d is-

cusses this method against other three approaches, including results of the temporal cost of the

algorithm. Sections 5 and 6 show the conclusions and the expected further work in this field . Fi-

nally, at the end of this article, an appendix of the approximation by means of parametric cubic

curves is provided.

2 RELATED WORK

In short, the challenge of replacing conventional pencil and paper sketches with a d igital sketch-

ing environment exists. This new environment must be designed in such a way that it favors a

natural process that does not hinder the user, while also producing its output in the form of a

d igital design model that can be reused in the remaining phases of the design process.

Multiple techniques are used in sketch recognition to detect or classify regular geometric

shapes [6-8], handwriting characters [9, 10], fingerprints [11], electric circuits [12, 13], d iagrams

[14, 15], and other user command gestures. For instance, with a classic linear d iscriminator, Ru-

bine [16] calculated features in order to classify single-stroke sketches as d igits, letters and basic

commands introduced in a specific way. Also based on similar features Ayaj et al. [17] d istin-

guished five simple geometric shapes basing their classification on thresholds to the ratio filters

established. Gross [18] described a prototype for the recognition of glyphs, but his algorithm also

required sketching in a strict order. Other features that remain invariant with rotation, such as

convex hull, perimeter and area scalar ratios, were studied by Fonseca et al. [19], who used ratio

values in fuzzy sets to recognize a small set of shapes. Xiangyu et al. [20] and Zhengxing et al. [21]

recognized simple geometric shapes by calculating the average d istance from the vertices of the

preset shape to the vertices of the stroke. Willems et a l. [22] established d ifferent feature subsets

using features as length, average curvature, initial angle, absolu te curvature, number of crossings,

5

area, rectangularity, compactness, etc. up to a total of 48 global features, compiled from various

works from the literature and using Support Vector Machines (SVM), Multilayer Perceptrons

(MLP) and Dynamic Time Warping (DTW) classifiers in order to classify multi-stroke gestures

obtaining d ifferent performances depending on the subset used .

In most of these and similar works, the vertices of sketches have to be located , since it is an es-

sential key to recognize or interpret a sketched shape. If we search in literature, we can find works

aimed at find ing corner vertices, so called corners, in figures and sketches. For instance, for de-

tecting corners in d igital objects with curves, Zhang and Zhao [23] uses a boundary-constrained

morphological method for tilting closed curves into shapes, and after the morphological residues

are labeled as candidates of corner sets, the definitive corners can be obtained by redu cing the sets

to corresponding isolated points. The main d isadvantage of this method is that corners are not

detected in objects with large d ifferences in their corner sizes, and does not deal with finding

vertices in smooth transitions. One of the most wide used techniques is the Gaussian scalespace

[24, 25], where a set of progressively smoother versions of the shape is generated by a pplying

series of Gaussian filters with d ifferent standard . Using the same shapes in two previous works,

Neumann and Teisseron [26] detected corners in two steps after assigning support regions to the

shape: first, points having higher curvature than the estimated fluctuations over the support r e-

gion assigned are extracted as candidates; second, adjacent cand idates are merged and a final

elimination of corners on each region is performed . Like the previous work, this method neither

finds vertices in smooth transitions. Arrebola and Sandoval [27] proposed a method to characte-

rise a curve by means of a hierarchical computation of a multiresolu tion, that is, a successive low-

er resolu tion versions of the same shape, that is processed using a linked py ramid in order to

segment and detect contour features, but with many false positive, what makes this method u n-

suitable for the purpose stated in this article.

Sezgin et al. [28] search peaks in curvature and speed functions, and found real corners after

combining the candidate previously found as corners with high curvature and low speed valu es.

Although some authors as [4, 28, 29] also used time information to detect corners, its use is not

extended since the results are not d efinitive about the reliability of this information . Scale based

approaches have also been used to detect corners in strokes, as in the case of Sezgin and Davis

6

[30] who used scaled curvature data to remove noise and locate better the corners. Kim and Kim

[31] resampled the input to provide constant d istance along the stroke, that is, normalised the

stroke, then they calculated the curvature as the change of d irection at each point and other new

curvature metrics as local convexity and local monoticity to find corners . In both works the find-

ing of vertices in smooth transitions is not stated .

Yu and Hse et al. [32, 33] used both segmentation and primitive approximation to find d ivid ing

points. The segmentation of the stroke consists of breaking down the stroke into its constit uent

primitives, what implicitly removes the noise from the stroke. In the case of Yu the algorithm used

an iterative technique. It recursively tried to approximate the stroke to a pr imitive, and in the case

the approximation failed , the stroke was d ivided in stretches, repeating this procedure until all

the split stretches were approximated by a straight line or an arc. Other examples of finding ver-

tices can be found in [34] where a stroke is broken down and then its pr imitives can be recognized

with high accuracy, and after they are recombined using geometrical ru les [35, 36].

In segmentation of strokes, the process normally done is first identifying segmentation points,

then classifying the sub-strokes between each pair of adjacent segmentation points, and finally,

approximating them to primitives. Examples of works that first segment the strokes before facing

the corner finding are presented here. For instance, Sarkar et al. [37] used genetic algorithms to fit

d igital curves to line segments and circular arcs. In order to avoid noise in identifying segmenta-

tion points and to obtain a later homogeneous segmentation in sketches, Zhang et al. [38] first

extracted graphical primitives from a stroke by a connected segment growing from a seed -

segment and then u tilised relationships between the primitives to refine their control parameters .

Also with noisy curves, Nguyen and Debled -Rennesson [39] applied two methods, one based on

a fixed parameter that is the width of considered maximal blurred segments, and other one (d e-

duced from the previous one) based on a multi-width approach to obtain a non-parametric ap-

proach without thresholds. In this case the curves are always fitted to several lines what makes

this method just limited to find corners. Wolin et al. [3] built a simple and effective corner finder

for strokes composed only by straight lines. They called t his algorithm ShortStraw, which was

later modified by Xiong and La Viola [4] with their IStraw to allow the strokes containing curves.

Although none of the two methods are aimed to find smooth transitions, that is, tangent vertices,

7

their results in finding corners are highly satisfactory compared to the rest of works found in

literature, and the second one, IStraw, present results on sketches including curves. Besides, both

ShortStraw and IStraw can be easily implemented , what made us decide for comparing them to

our method.

Thus, Qin et al. [40] presented an on-line procedure based on heuristic adaptive thresholds (lo-

cal thresholds depending on drawing speed) used in all stages of the procedure, even in the su b-

sequent refinement processes. They first remove close points, then obtain corner vertices as max-

imums of d irectional deviation, later d ivide the stroke in spans or stretches between consecutive

corners, and finally obtain tangent vertices as changes in the sign of curv ature. Apart from using a

lot of thresholds, they do not avoid the noise effects and use for the evaluation a poor and limited

data set: only 22 sketches, without features of engineering drawings that include tangent vertices

between straight lines and curves, so there is not any ind icator to assess the method proposed.

As we have seen from this state of the art, m any research works ju st deal with polyhedral

models (i.e. [1]) or reconstruct 3D models from simple sketches of isolated lines or arcs (i.e. [41]),

because the main lack of obtaining curved models from sketches, necessary in most of engineer-

ing models, is that segmentation algorithms are not cap able of detecting smooth transitions from

straight lines to curves or between curves, and those that try to detect this kind of transition s are

not robust, mainly due to the bad results obtained or to the high number of false positives they

reach. In this respect, Pu and Gur [5] try to find this kind of smooth transition points in a reasona-

bly robust way using radial basis functions. The per formance of their algorithm is quite promis-

ing, but, as they say in their conclusions, further improvements and refinements have to be done

in order to reduce the false positive rate using other approaches because it still remains very high

(about 25%).

The new approach presented here intends to solve this problem, providing a high accuracy d e-

tection of this kind of vertices, with a low false positive ratio and without any refinement, so ca p-

turing the intent design of the user in order to allow the further creation of 3D models with tan-

gent surfaces. Given the impossibility of implementing all methods, and in order to give objective

results of the high accuracy of the presented method in the detection of vertices, it has been com-

pared to the current best benchmarked in finding corners and tangent vertices, selecting three

8

methods from the stated art presented here: ShortStraw, IStraw and Pu&Gur methods. Short-

Straw has been selected due to its high ratio of success in finding corners , and IStraw since it im-

proves the accuracy of ShortStraw in finding corners and also deals with shapes including curves.

Other advantage is that both methods are easy to implement and have simple complexity com-

pared to other existing ones. Pu&Gu, however, has a higher complexity, but is the only method

found aimed at finding tangent vertices. Its complexity is higher and so it has not been imple-

mented , thus the comparison is relative. In the next sub-sections the three methods selected are

described briefly.

2.1 ShortStraw

In 2008, Wolin et al. introduced ShortStraw [3], “a simple and effective corner finder for po ly-

lines” achieving a high accuracy finding corners in polyline strokes, that is, strokes without

curves. ShortStraw uses first a bottom -up approach to obtain the initial corner set, and then a top -

down approach to find missed corners and remove false positives. ShortStraw consists of several

steps. The first step is to resample the points of the stroke to be evenly spaced. The next step is to

obtain the “straws”. A straw for each resampled point ip is computed as:

WiWii ppstraw , (1)

Where W is a constant window set to 3, and the expression | pi-W,pi+W| is the Euclidean d istance

between the points pi-W and pi+W. Once the straws have been calculated , the initial corner set con-

sists of all the local minimums below a threshold based on the median straw value.

After obtaining the initial corner set, the top -down approach refines this set by means of a line

test: two corners at indices a and b pass the line test if their Euclidean d istance and their path

d istance (the sum of Euclidean d istances between the resampled points) are relatively equal.

This test is applied first to find missed corners: if the line test between two consecutive corners

fails, a new corner is added at the point with the minimum straw value between them. This

process is repeated until no more corners are added. After, this test is applied to remove false

corners: for each corner, if the line test between the two corners ad jacent to it i s positive, the cen-

tral corner is removed. This process is repeated until no more corners are removed.

9

2.2 IStraw

IStraw [4] was presented in 2009 by Xiong and La Viola as a review of ShortStraw and included

some improvements on it. These improvements were the addition of an extension for dealing

with strokes that contain curves, the use of speed information (because users slow down on co r-

ners) to find corners, and other improvements such as dynamic thresholds.

The main improvement of IStraw is the curve test to remove false corners that app ear in

curves. The curve test (Fig. 1 left) is based on the d ifferent angles between a wrong corner (C i)

located on a curve, and two pairs of resampled points (A-B and D-E). The indices of A , B, D and E

(determined empirically) are i-shift, i+shift, i-(shift/3) and i+(shift/3), where shift=min(15,Ci-Ci-1,Ci+1-

Ci), being Ci-1 and Ci+1 the previous and the following corners to Ci respectively. Ci is a correct cor-

ner if (-)<ta, where the threshold ta=10+800/ (+35º) depends on the angle (because - in-

creases if decreases) and it is determined empirically.

Figure 1. Difference between a false corner on a curve (left) and a correct corner between two

straight segments (right)

2.3 Pu and Gur method

Pu and Gur [5] presented in 2009 their method that uses some mathematical approach to the

stroke to obtain its vertices. These are the main features:

 First, they do an approximation by using “radial basis functions” (RBFs).

 The vertices are located at the points necessary for the RBFs to fit the stroke. For this rea-

son, they do not d istinguish between corners and tangent vertices (a very important key).

It is evident that neither straight lines nor curves are found and fitted to the stroke.

 Like ShortStraw and IStraw, performs an intensive post-process to refine the initial set of

vertices. Even though, the false positive ratio is very high.

10

3 THE TCVD METHOD

As mentioned in previous section [28, 31], a common way for finding corners in strokes consists

of looking for peaks of maximum curvature in absolu te value, where curvature is calculated as

the change of d irection at each point. Instead of using the curvature, we use the radius (which is

the inverse of the curvature). Although curvature has been widely used in recognition tasks, the

radius gives us an advantage over curvature: its meaning is more intu itive than the curvature,

and allows setting better the value of thresholds, that is, with radius we know better the meaning

of the threshold . Specifically in our case two thresholds have been fixed , a smaller one for corner

vertices and a larger for arcs or curves, as shown in Fig. 2.

Figure 2. Radio values of a sample of a shape (high values of radio are not represented)

However, both the d iscrete rad ius and the curvature are n ot stable in hand -drawn sketches.

Let’s analyze the noise due to raster effects. Fig. 3 shows, from top to bottom: a) the same stroke

in Fig. 2 with an arc and a corner vertex with coordinates obtained by arc and line analytic equ a-

tions; b) the d iscrete radius function obtained from the points of the stroke in integer coordinates

even with some smoothing; and c) the d iscrete radius function with the same smoothing from the

points of the stroke in real coordinates. As we can see, the corner vertex is a well defined peak of

minimum radius in both cases, but the d iscrete radius function for the arc has a lot of noise due to

aliasing raster effects (Fig. 3b).

a) b) c)

Figure 3. Raster effects in sketching: a) stroke with coordinates obtained from analytical form;

11

b) noise in the d iscrete rad ius function from points in integer coordinates from form above even

with some smoothing; and c) d iscrete radius function without noise from points in real coord i-

nates from analytical equations

To avoid noise due to aliasing raster effects and d iscontinuities in radius of curves (see Fig. 4),

we obtain a piecewise parametric curve approximation of the stroke, and calculate the radius

function from the mathematical expressions of the parametric curves in order to segment the

stroke (get the entities in the stroke keeping the points of tangency between them). This approxi-

mation is very similar to that performed by Bein et al. [42], but in this case they fit the stroke to

curves to describe best its shape in their 3D modeling system , and we use the approximation to

obtain the radius more precisely.

Figure 4. Difference between d iscrete radius obtained from differences with high smoothing

(red), and analytic radius obtained from mathematical expressions of parametric curves (blue) for

the arc of Fig. 2

On the other hand, is not recommendable to perform the approximation by means of param e-

tric cubic curves before to obtain the corner vertices, since the major error in approximation is

always for that kind of vertices (because we are obtaining smooth transitions for corners), d istort-

ing their radius values.

Previous to explaining in deep the method, the algorithm of the TCVD segmentation method is

presented (Fig. 5). This algorithm has six d ifferentiated parts (each inside a rectangle). On the

right side of the figure appear graphical examples to illustrate the process carried out in each part

of the algorithm.

12

Figure 5. The flowchart algorithm of the TCVD method and radius functions

Next appears an exhaustive explanation of the steps of the TCVD segmentation method that in-

13

cludes the input, the output, a short description and the implementation of each step . Later, table

2 shows a compilation of the parameters (and its optimized values) for the TCVD.

3.1 Computing the discrete radius function

Input: the sketched stroke as a list of m points at d ifferent d istances introduced by means of a

graphical input device.

Output: consists of a vector of n evenly spaced points, which will replace the original stroke from

now on, and a vector of n points with the radius calculated at each point, in an approximate way,

by d ifferences between neighbouring points.

Short description: first, the d igitised stroke is resampled so that all points are evenly spaced and

smoothed by a Gaussian filter to reduce the noise. After, the tangent vector at each point is

calculated from differences between coordinates of its neighboring points, then the curvature at

each point is obtained from differences of the tangent angle between neighboring points, and

finally the radius at each point is calculated as the inverse of the curvature.

Implementation:

In order to compute the d iscrete radius function, some steps have been carried out.

Like ShortStraw and IStraw, we resample the m points of the stroke where s (INTERSPAC-

ING_DISTANCE) is the d istance between resampled points. After resampling, the n resampled

points of the stroke are evenly spaced:

1,0,
,...,,
,...,,

110

110 ni
yyyy
xxxx

n

n (2)

The resampled points (xi,yi) are smoothed with a Gaussian filter (3) to reduce the effects of

noise in the following calculations of d irection, curvature and radius, where wf (FIL-

TER_WINDOW) is the window used for the filter.

wfwfhef wf
h

h ,,
2

2

2 (3)

The smoothed points (xfi,yfi) are obtained by d iscrete convolution of the resampled points with

the Gaussian filter, d ivid ing each point by the sum of filter values (4).

14

wf

wfh
h

wf

wfh
hih

iwf

wfh
h

wf

wfh
hih

i

f

yf

yf

f

xf

xf , (4)

The tangent at a point (xfi,yfi) is calculated from the d ifferences of coordinates between the end

points of a window, with wt (DIRECTION_WINDOW) size centered on it (5). The stroke d irec-

tion i at a point (xfi,yfi) is the computed tangent angle in (6).

swt
yfyfyf
swt

xfxfxf

wtiwti
i

wtiwti
i

2
'

2
'

 (5)

wtiwti

wtiwti

i

i
i xfxf

yfyf
xf
yf arctan

'
'arctan (6)

The tangent angle is in the range [-π,π] and can present d iscontinuities between consecutive

values due to the cyclic properties of angles, so a correction of angle values is done using prev ious

values:

 While [(αi - αi-1)<(-π)] do (αi αi + 2·π)

 While [(αi - αi-1)>(π)] do (αi αi - 2·π)

The curvature ci at a point is calculated from the d ifferences of d irection angles between the

end points of a window, with wc (CURVATURE_WINDOW) size centered on it (7). Finally, the

radius ri is the inverse of the curvature (8).

swc
c wciwci

ii 2
' (7)

i
ir '

1
 (8)

Figure 6 shows the d iscrete d irection, curvature and radius function of shape in Fig. 2.

15

Figure 6. From top to bottom: stroke d irection (corrected to avoid d iscontinuities), curvature

and radius d iscrete function from shape in Fig. 2

3.2 Detection of corner vertices

Input: a vector with a stroke of n evenly spaced points and a vector with the radius calculated at

such points.

Output: a vector of n points that will contain all the corner vertices, considering the first and the

last point of the stroke corners. This vector is called vector of entities and will contain the type of

entity for each point (straight line, curve, corner vertex and tangent vertex) at the end of the

process of the TCVD algorithm .

Short description: the corner vertices are located at points with local minima of the radius, and

with a radius sufficiently smaller than the points of its environment.

Implementation:

The corners are located at peaks of minimum radius in absolu te value, that is, in points with

the maximum curvature or maximum variation in stroke d irection. Those local minimums will be

(in absolu te value) below a parameter set to a maximum value (MAX_CORNER_RADIUS). These

points are corners if the minimum radius is much smaller than the radius located on its sides. We

obtain (only for radius with the same sign) the average radius in the NEIGHBORING_WINDOW

previous points, and the average radius in the same subsequent points. The ratio of both average

radius and the minimum rad ius must be greater than a specific value (MIN_RADIUS_RATIO).

Besides, the initial and end points of the stroke are always considered corners.

16

Figure 7. Corner vertices drawn in green: initial stroke point, obtuse angle, sharp angle and

end stroke point. Positive radio values for right turns and negative for left turns

3.3 Piecewise parametric curves approximation

Input: the vector of evenly spaced points and the vector of entities just containing the corner

vertices.

Output: several piece-wise cubic curves (the number of corner vertices minus one) that

approximate, each one, the points between pairs of corner vertices.

Short description: the resampled points between pairs of corners are approximated by means of

piece-wise cubic curves until the d istance from every approximated point to the resampled point

does not exceed a threshold . If the d istance is greater, the sequence of points is halved and the

process is subsequently applied to the two sides, forcing two curves to have the same tangent at

the common point (the central point when the previous sequence is d ivided).

Implementation:

The approximation of resampled points prj=(xrj,yrj), by means of parametric cubic curves has as

a main goal the more accurate calculation of radius values in order to obtain the stroke curves .

A parametric cubic curve consists of two polynomial equations of 3rd degree, for x and y coor-

d inates each. The two polynomial expressions have 4 coefficients each (in total 8 degrees of fre e-

dom) and depend on a parameter t, whose value is set to 0 at the beginning of the curve and to 1

at its end. The expressions of a parametr ic cubic curve and its first derivative are the following:

17

1,0 ,
32'
32'

 2

2

32

32

t
tdtcbty
tdtcbtx

tdtctbaty
tdtctbatx

yyy

xxx

yyyy

xxxx (9)

The curve must approximate as much as possible to each of the resampled points, that is, it is

expected that for each point prj=(xrj,yrj), exists a tj to accomplish:

jjyjyjyy

jjxjxjxx

yrtdtctba
xrtdtctba

32

32
 (10)

To avoid errors in corner vertices (as said in 4), we approximate resampled stroke points to p a-

rametric cubic curves between pairs of corner vertices. These curves have the constraints of pas s-

ing through initial and final corner vertices and approximating the points between them. In the

case that the approximated curve overcomes the parameter of maximum distance

(MAX_DISTANCE) to any of the resampled stroke points, the sequence of points to approximate

is then half d ivided and two constraints for the two approximated curves are added: 1) both

curves have to pass through the middle point; and 2) there must be first order continuity (equal

d irection of tangent in the middle point) in order to accomplish soft tra nsition.

As this process can be applied several times, we can obtain four d ifferent ways to approximate

a sequence of points by mean a parametric cubic curve (see Table 1), depending on the constraints

it must accomplish.

Table 1. Constraints to be accomplished by curves

The curve passes through The curve has the tangent at
Initial point Final point Initial point Final point

X X
X X X
X X X
X X X X

When a sequence of points to approximate is d ivided, the tangent in the midpoint (first deriv a-

tive) is calculated from the d iscrete stroke d irection in that point:

)sin('
)cos('

jj

jj

kyr
kxr (11)

Where k is the module of the tangent vector, which is leaved free in order to the least square

18

system obtains the value that bests su its the resampled points, for calculated value of tange nt.

In the appendix, the approximation process is described in detail.

As we can see in Fig. 8 (right), with the valued used for MAX_DISTANCE, the d ifference be-

tween the resampled points and the approximated points is worthless, and also noise has been

removed.

Figure 8. Resampled points of a stroke (red) and piece-wise parametric cubic curves approxi-

mation (blue). From left to right, with 1, 2 and 3 parametric cubic curves

3.4 Computing the analytic radius function

Input: the piece-wise cubic curves.

Output: a vector of n points with the radius, for each point of the stroke, calculated by means of

derivative of the piece-wise cubic curves.

Short description: the tangent vector at each point is calcu lated from derivative of piece-wise

cubic curves, then the curvature at each point is obtained from derivative of the tangent angle,

and finally the radius at each point is calculated as the inverse of the curvature.

Implementation:

The stroke d irection α(t) is the angle of the stroke tangent, where the tangent was obtained by

means the derivative in each point of the stroke with the corresponding parametric cubic curve

with the parameter tj:

2

2

32)('
32)('

 ,
)('
)('arctan)(

tdtcbty
tdtcbtx

tx
tyt

yyy

xxx (12)

Similar to the d iscrete case, the angle values of the α(t) function are corrected to avoid d isconti-

nuities.

The stroke curvature c(t) is the variation of the d irection in each stroke point, when the angle

changes greatly, the higher is the curvature value. The curvature is the quotient of the derivative

19

of the tangent by the corresponding parametric cubic curve length. α’(t) is the derivative of the

tangent angle to the stroke, obtained by means the derivative in each point of the stroke with the

parametric curve with the corresponding parameter tj.

sk
tx
ty

tx
txtytxty

sk
tx
ty

tx
ty

sk
tx
ty

sk
ttc

)1(
'
'1

)('
)('')(')(')(''

)1(
'
'1

'
'
'

)1(

'
'
'arctan

)1(
')(

2

2

2

(13)

Where (k-1)·s is the length of the parametric cubic curve, since s is the d istance between resam-

pled points and k is the number of resampled stroke points the curve approximates. So, the first

and second derivatives of the parametric curve are:

tdcty
tdctx

tdtcbty
tdtcbtx

yy

xx

yyy

xxx

62''
62''

32'
32'

2

2 (14)

The stroke radius r(t) is the inverse of the curvature. In order to get rid of d ivisions by zero,

when the absolu te value of the curve is lower than a minimal, the radius is set to a high value

sharing the curvature sign.

)(
1)(
tc

tr (15)

Fig. 9 shows the d ifference between d iscrete and analytic radius, and also the d ifference b e-

tween the centers of rotation for each stroke point. The centers of rotation are obtained perpe ndi-

cular to the d irection of the stroke at a d istance equal to the radius. As we can see, with analytic

functions, the rad ius values are smoother, and this can be seen clearer in the pos ition of centers.

20

Figure 9. Radius and centers of rotation for the same example in Fig. 8: a) d iscrete (red) and

analytic (blue) radius; b) centers of rotation (brown) for each point of the stroke calculated by

means of d iscrete d irection and rad ius; c) same as b) calcu lated by means of analytic d irection and

radius

3. 5 Detection of lines and curves

Input: the vector with the radius at each point, calculated from the piece-wise cubic curves, and

the vector of entities just containing the corner vertices.

Output: the vector of entities that contains for each point whether it belongs to a stright line or a

curve depending on its radio.

Short description: a point lies on a curve if the rad ius at that point is less than a threshold , other-

wise the point belongs to a straight line. Therefore, a sequence of consecutive curve points is

definitely a curve if the d istance between the points and the straight line from first sequence point

to last one is greater than a threshold .

Implementation:

The curves are located in stretches of stroke points whose radius values have the same sign

and their absolu te value is lower than a specific value (MAX_CURVE_RADIUS). Curves are con-

sidered as circle arcs for calculations, so the descriptors/ features for curves are the following:

21

 Curve: sequence of consecutive stroke points whose radius values (obtained from equ a-

tions of parametric cubic curves) are lower than MAX_CURVE_RADIUS.

 Radius: the median of the radius of curve points.

 Length: number of curve points multiplied by the interspacing d istance.

 Angle: Length / Radius.

 Distance from chord to arc (see Fig. 10): Radius·[1 – cos (Angle / 2)].

Figure 10. Distance from chord (red) to arc (blue)

The stretches candidate to be curves will be in the case their d istance from chord to arc was

higher than a specific value (MIN_DIST_CA). The stretches that are not curves are considered as

straight lines.

Figure 11. Shape with curves (blue) and straight lines (red) separated by corner vertices.

Curves are numbered from 1 to 4. The values of radius for curves are below

MAX_CURVE_RADIUS

22

3.6 Detection of tangent vertices

Input: the vectors with radius and entities at each point of the stroke.

Output: the vector of entities also containing the tangent vertices.

Short description: the tangent vertices are located at points of transition from straight lines to

curves (and vice versa), and at points of transition between curves of radius with d ifferent sign, if

corner vertices are not previously placed in such transitions.

Implementation:

After obtaining the corners, curves and straight lines, the tangent vertices can be located in

transitions (without corner vertices) between straight lines and curves, or between curves. But

first to location of tangent vertices, a brief consideration is done: the straight lines with a length

lower than a value (MIN_LINE_LENGTH) are converted to curves if they are besides a curve and

no corner vertex is in between. In the case that a line stretch has curves on both sides, it is equally

shared out between both curves.

Then the tangent vertices are located at (see Fig. 12):

 Changes from a lined stretch to a curved stretch, and from a curved stretch to lined

stretch, with no corner vertex in between.

 Changes from a curved stretch to another curved stretch with no corner vertex in b e-

tween. In this case the tangent vertex is located in an inflexion point (that is, in a point

where the sign of curvature and rad ius function changes) and it is usual to detect a small

straight line between the curves. As mentioned before, if this line is shorter than the men-

tioned threshold , it is added to the curves (half to each one) placing the tangent vertex in

the middle.

23

Figure 12.Tangent vertices (d rawn in cyan) between curves and straight lines, and between two

curves. The background of radius function is blue for curves and red for straight lines

4 EXPERIMENTAL WORK

In order to evaluate our method we have used a data set of 17 d ifferent shapes, which consists of

the 11 polyline strokes in [3] (Fig. 13), and 6 curve strokes (see Fig. 14) which contains features of

engineering drawings such as tangent vertices, that appear in 3 of them. All of them are open

shapes, and the first and last points of the stroke are always considered as corner vertices . Both

Fig. 3 and Fig. 4 show the out-lined models of the d ifferent shapes used .

Figure 13. Strokes with straight lines (drawn in red) and corner vertices (drawn in green)

24

Figure 14. Strokes with straight lines (drawn in red), curves (drawn in blue), corner vertices

(drawn in green) and tangent vertices (drawn in blue cyan)

We collected data from 8 d ifferent users, and each user d rew 6 times each shape (816 strokes).

Users were not given any indication about the accuracy, so each one drew the strokes on their

way. The sketched shapes collected are available in the following address:

http:/ / personales.upv.es/ maalbor/ Files/ Data-set.rar

The parameters used in TCVD were optimised by means of Simulated Annealing algorithm in

order to achieve best results, process that is explained in detail in a previous work [43]. Simulated

Annealing [44] is a well known optimization method, which allow s us tuning the parameters to

improve segmentation results (especially when the parameters depend on each other). The tuning

of parameters has been formulated as an optimization problem where the function cost is expressed as

the number of errors in the segmentation of the training set. The result of several processes

carried out by simulated annealing optimization shows the need for the Gaussian filter to remove

noise, although it adversely affects the corners (see figure 3). Should also be noted that the

maximum radius of the curves is directly dependent on the size of the drawing area (800x500 pixels in

our test application).

For the determination of the optimal parameters, a training data set with 136 strokes (8 per

shape) was used , and the remaining 680 were used as test data set. The training is an off line

process, so the temporal cost of the convergen ce of the algorithm does not affect the temporal cost

of the TCVD algorithm . This temporal cost has been of 10 ms per shape using a computer with an

Intel Core 2 Duo E8400 3.00GHz and Windows XP, where the 86 % is for the step 3 (piecewise

25

parametric curves approximation), the 11 % is for step 1 (computing the d iscrete radius function)

and the remaining 3 % is for the rest of the algorithm.

The optimised parameters are shown in table 2, and these values are d irectly set in the TCVD

algorithm:

Table 2. Parameters of the TCVD algorithm

TCVD Parameters Description Value
from SA

INTERSPACING_DISTANCE Interspacing d istance between resampled points 2
FILTER_WINDOW Window size for Gaussian filter 10
DIRECTION_WINDOW Window size for stroke d irection calculation 8
CURVATURE_WINDOW Window size for stroke curvature calculation 2
MAX_CORNER_RADIUS Maximum radius for corners 60
NEIGHBOURING_WINDOW Window size for corners neighbouring 10
MIN_RADIUS_RATIO Minimum ratio between radius of corners and its

neighbouring
1.4

MAX_DISTANCE Maximum distance between resampled points
and parametric curve approximation

5.0

MAX_CURVE_RADIUS Maximum radius for curves 400
MIN_CURVE_DIST_CA Minimum distance from chord to arc (curve) 10.6
MIN_LINE_LENGTH Minimum length of a straight line 45

As stated before, as almost all methods in literature do not find tangent vertices (smooth tran-

sitions), in order to evaluate our method we have chosen the three most relevant and recent m e-

thods in this subject, where properties of two of them are the simplicity and the high accuracy in

the corner vertices detection in sketches with curves (ShortStraw and IStraw methods), and the

third of them relative to tangent vertices (Pu and Gur m ethod).

Then, for comparison we tested an implementation of ShortStraw and IStraw, and also com-

pare results with Pu and Gur method. As the implementation of IStraw presented several draw-

backs with dealing to our test data set, we made some corrections to achieve best results, being

the most important one d ispensing with time info because the number of errors increases when

the initial corner set is made up of both, straws and time info.

The results can be found in Table 3 and 4 (only for the 440 strokes without curves) and Table 5,

6 and 7 (for all the 680 strokes in the test data set). These results are expressed in the same mea s-

ures than ShortStraw and IStraw: “Correct Corners Accuracy” and “All-or-Nothing Accuracy”,

the first is equal to the number of correct vertices found d ivided by the total number of vert ices,

and the second is equal to the number of correctly segmented strokes (without false positives or

26

false negatives) d ivided by the total number of strokes. The “All-or-Nothing Accuracy” measure

is the most significant because it takes false corners into account. In order to test separately the

importance of false positive, it has been added the “False Positive Rate” which is the number of

false positives d ivided by the total number of vertices.

Table 3. Accuracy results for 440 polyline strokes (without curves or tangent vertices)

 ShortStraw IStraw TCVD
False Positives 31 3 0
False Negatives 23 62 3
Correct Corners 3457 3418 3477
Total Corners 3480 3480 3480
Correct Corners Acc. 99.3% 98.2% 99.9%
False Positive Rate 0.9% 0.1% 0.0%

Table 4. All-or-nothing accuracy results for 440 polyline strokes (without curves or tangent ve r-

tices)

 ShortStraw IStraw TCVD
All-or-Nothing Acc. 89.8% 91.4% 99.3%

Table 5. Accuracy results for 680 polyline and curve strokes (corner vertices)

 ShortStraw IStraw TCVD
False Positives 1525 400 12
False Negatives 24 125 6
Correct Corners 4616 4515 4634
Total Corners 4640 4640 4640
Correct Corners Acc. 99.5% 97.3% 99.9%
False Positive Rate 32.9% 8.6% 0.3%

Table 6. Accuracy results for 680 polyline and curve strokes (tangent vertices)

 ShortStraw IStraw TCVD
False Positives --- --- 4
False Negatives 170 180 16
Correct Tangent Vertices 30 20 184
Total Tangent Vertices 200 200 200
Correct Tangent Vertices Acc. 15.0% 10.0% 92.0%
False Positive Rate --- --- 2%

Table 7. All-or-nothing accuracy results for 680 polyline and curve strokes

 ShortStraw IStraw TCVD
All-or-Nothing Acc. 58.1% 63.5% 96.6%

Finding corner vertices on polyline strokes, TCVD reaches higher all-or-nothing accuracy

27

(99%) than both ShortStraw and IStraw, which is already a good result (90%). ShortStraw is not

ready for dealing with curves and obviously the accuracy decreases when the strokes contain

curves (many false corners appear). The IStraw curve test removes many of these false corners but

also some correct corners, what makes the final results are not much better than ShortStraw, and

whereas accuracy remains high on TCVD (96%) largely because the number of false positives is

very low.

TCVD finds most of the tangent vertices (92%) including few false tangent vertices. Neither

ShortStraw nor IStraw look for tangent vertices, although they find some false corners near ta n-

gent points, because the tolerance of position must be high.

Relative to Pu and Gur method, they use complex shapes that are drawn either by hand or

with CAD applications. Only a very small set of 30 hand -drawn figures is u sed for their tests. It

must be noted that many of them are not able to be drawn at once, that is, there are complex

shapes that normally are drawn by a designer in several steps (or strokes), raising the pen when it

is needed and drawing again to get on with it. Moreover, our operating mode is on line, that is,

the recognition is performed while drawing, and not off line (like Pu and Gur that work with

scanned complete shapes), and therefore the comparison is relative.

Table 8 shows the results of this relative comparison. As Pu and Gur do not use the “All-or-

Nothing Accuracy”, these results are expressed in: “Correct Corners Accuracy” (number of co r-

rect vertices found d ivided by the total number of vertices) and “False Positive Rate” (number of

false positives d ivided by the total number of vertices).

Table 8. Percentage of correct and wrong vertices (corner and tangent altogether)

 Pu and Gur
(CAD)

Pu and Gur
(Hand-drawn) TCVD

Correct Vertices Acc. 99.2% 97.8% 99.5%
False Positive Rate 24.5% 24.5% 0.3%

According to the values in the Table 8, the Correct Vertices Accuracy is very similar, but TCVD

has a much better False Positive Rate. The high number of false positives has a negative effect in

All-or-Nothing Accuracy, what makes the m ethod powerless and causes a stressfu l effect on the

user. In addition, Pu and Gur do not d istinguish between corner and tangent vertices (what is an

important point), because they do not d istinguish between straight lines and curves. Besides it is

28

odd that the False Positive Rate is the same for CAD drawings and hand drawings. Finally, note

that like ShortStraw and IStraw, Pu and Gur method performs an intensive post -process.

On the other hand, analyzing TCVD, we can see that many missegmentations are due to the

users were not given any ind ication about the accuracy in drawing the shape, therefore some of

the strokes have poor quality and it is easy to confuse corner vertices with curves of small radius

(Fig. 15 a-row), and straight lines with curves of large radius (Fig. 15 b-row). For shapes in seg-

mentation column the straight lines are in red and curves in blue colour.

 Suggested shape Sketched shape Segmentation
a)

b)

Figure 15. Poorly segmented -drawn strokes

The limitation of this method remains dealing with the following aspects:

 The size of the straight lines and curves that contains the stroke should be sufficient. In

other words, strokes with small parts can be a problem.

 Curves with very large radius may be confused with straight lines. As mentioned before,

the maximum radius of the curves depends on the size of the drawing area.

 Like other methods, it should be advisable for the user to draw thinking about what

he/ she makes: stopping at corners (to change the d irection and to avoid confusion with

curves of small radius), not stopping at tangent vertices (to avoid changing the d irection

abruptly), and d rawing straight lines and curves where appropriate (for example, in Fig.

15 b-row we can see the suggested shape on the left, the drawn shape on the center -

29

where a curve has been extended to include a line- and on the right the segmentation

with a largest curve instead of a curve followed by a straight line).

5. CONCLUSIONS

TCVD is an important improvement in the field of free-hand sketches recognition , being the main

contribution of this method the detection of tangent vertices in strokes. The accuracy of TCVD

obtaining corner vertices is higher mainly because it has very few false positives, but also TCVD

is able to find curves and straight lines, which allows obtaining tangent vertices between curves

and between curves and straight lines, even with very few false positives.

As Fig. 16 shows, the conclusions of this method regarding to radius calculations and vertices

detection are mainly the following:

 The approximation of the stroke by parametric cubic curves allows obtaining analytically

the radius, eliminating most of the noise and keeping the shape of the stroke. The curv a-

ture radius stabilize and consequently so do the curvature centers (Fig. 16a,b,c,d left).

 The lack of continuity in the radius of parametric curve is due because in order to main-

tain the enough degrees of freedom for the curve to fit the stroke, just continuity of d ire c-

tion is fixed , so no curvature continuity is availed (Fig. 16a left).

 With respect other finding corners, which perform an intensive post-process, TCVD fo-

cuses on obtaining a good initial corner set by means of the radius function with no lon g-

er post-process.

 TCVD allows detecting the change in the radius of hand -draw arcs. If the arc is tangent to

straight lines, the radius is very high next to the straight line (which has an infinity r a-

d ius) and decreases as it approaches the center of the arc (see the centers position in Fig.

16c right). On the other hand , for isolated arcs, the radius increases as it approaches the

center of the arc (see the centers position in Fig. 16d right).

 Radius function Sample of sketch with its original
radius values Radius Calculation

30

a)

b)

c)

d)

Figure 16. Left column: radius function from original sketched points (red) and from appro x-

imated parametric cubic curves (blue); Central column: radius from original sketched points

represented (brown); Right column: radius from approximated parametric cubic curves

represented (brown), of d ifferent samples of sketches a), b), c) and d) respectively

TCVD also proves that sketch recognition can get a lot of good from the approximation to p a-

rametric cubic curves, since most of tangent vertices not found by other methods in literature, can

be found with a high accuracy, and consequently, the intent design of tangency can be captured

in order to out-line further the sketch into a parametric CAD application.

6. FUTURE WORK

The main improvement is to perform the necessary extensions to deal with closed shapes, detect-

31

ing when the first and last points of a stroke are very close, and considering that there is continu i-

ty between them.

A possible improvement could be to process multistrokes in order to have continuous shapes if

they match some cond itions, so further extrusions can generate intended 3D models. But a t this

stage the role of TCVD is just to segment single strokes. The multistroke processing is a task that

could be performed in higher levels by using TCVD.

Appendix. Approximation by means of parametric cubic curves using least squares

As mentioned in section 3.3, the curve must approximate as much as possible to each of the re-

sampled points, that is, it is expected that for each point prj=(xrj,yrj), exists a tj to accomplish (10).

Repeating the previous expressions for x and y coordinates of every resampled point, two li-

near equation systems are made, one for the x and other for the y coordinate. Each system has 4

unknown variables (the coefficients a, b, c and d) [45]. It is usual that the number of points to ap-

proximate is more than 4, so the systems are over-constrained and to solve them for the better

approximation solu tion to the m resampled points it is necessary to use the minimum least

squares method.

1
3

1
2

11

1
3
1

2
11

0
3
0

2
00

...

mmxmxmxx

xxxx

xxxx

xrtdtctba

xrtdtctba
xrtdtctba

 (16)

In a matrix form the expressions remains as following:

1

1

0

3
1

2
11

3
1

2
11

3
0

2
00

...
1

............
1
1

mx

x

x

x

mmm xr

xr
xr

d
c
b
a

ttt

ttt
ttt

 (17)

The values of the parameter tj for every resample point prj are unknown and are calculated on

an approximated way supposing that are proportional to the d istances between resampled points:

 Assign to the first resample point (pr0) a d istance: d0 = 0

 Assign to each other points (prj) the Euclidean d istance to its previous point (prj-1): dj =| |

prj- prj-1 | |

 Obtain the accumulate d istances (daj) of each prj to pr0: daj= d0 + d1 +...+ dj

32

 Obtain the parameter values proportionally to the d istances: tj= (daj / dam-1)

All the previous restrictions subtract freedom degrees to the parametric curves, that is, reduce

the number of param eters and in consequence, the number of unknown variables in the equation

systems. The restrictions are:

 The curve passes through the initial point (2 degrees of freedom are taken away, but we

can remove from the least squares system the equation of approximation to the initial

point):

00
32

00
32

0 000
 000

0
yrayrdcba
xraxrdcba

tt
yyyyy

xxxxx (18)

 The curve passes through the final point (2 degrees of freedom are taken away, but we

can remove from the least squares system the equation of approximation to the final

point):

11
32

11
32

1 111
 111

1
myyyymyyyy

mxxxxmxxxx
m yrdcbayrdcba

xrdcbaxrdcba
tt (19)

 The curve has the specified tangent (first derivative) in the initial point (xr0’,yr0’). This

constraint affects the d irection of the tangent, but not to its module, so ju st one degree of

freedom is removed:

'b '0302
'b '0302

0
0000

2
0000

2

0 yrkyrkdcb
xrkxrkdcb

tt
yyyy

xxxx (20)

 The curve has the specified tangent (first derivative) in the final point (xrm-1’,yrm-1’). This

constraint affects the d irection of the tangent, but not to its module, so ju st one degree of

freedom is removed:

'32b '1312
'32b '1312

1
1111

2
1111

2

1
mmyyymmyyy

mmxxxmmxxx
m yrkdcyrkdcb

xrkdcxrkdcb
tt (21)

Depending on the number of restrictions to apply, the linear equations will be d ifferent and

will have more or less d egrees of: from 4 (just with restrictions of passing through initial and final

points) down to 2 (with the matching points restrictions and equal d irections of tangents in initial

and final points).

33

Besides, equations for curves without initial and final tangent, just with initial tangent, jus t

with final tangent, and with initial and final tangent have been obtained. The final systems equ a-

tions remain as following:

The curve passes through the initial and final points

212002

212002

111001

2
3

22
2

2

2
3
22

2
2

1
3
11

2
1

212002

212002

111001

2
3

22
2

2

2
3
22

2
2

1
3
11

2
1

.........

,
.........

nnnn

n

n

y

y

nnnn

nnnn

n

n

x

x

nnnn

tytyyy

tytyyy
tytyyy

d
c

tttt

tttt
tttt

txtxxx

txtxxx
txtxxx

d
c

tttt

tttt
tttt

0

0

ya
xa

y

x

yyny

xxnx

dcyyb
dcxxb

01

01
And:

The curve passes through the initial and final points and has the specified tangent (first derivative) in the
initial point: X and Y are related by the initial tangent module k0

2
20102

2
20102

2
20102

2
20102

2
10101

2
10101

0

2
2

3
2

2
220

2
2

3
2

2
220

2
2

3
2

2
220

2
2

3
2

2
220

2
1

3
1

2
110

2
1

3
1

2
110

...

0'
0'
.........

0'
0'

0'
0'

nnn

nnn

n

n

n

n

y

x

nnnn

nnnn

tyyyy
txxxx

tyyyy
txxxx
tyyyy
txxxx

d
d
k

tttty
ttttx

tttty
ttttx

tttty
ttttx

0

0

ya
xa

y

x

'
'

00

00

ykb
xkb

y

x

yyny

xxnx

yny

xnx

dbyyc
dbxxc

dykyyc
dxkxxc

01

01

0001

0001

'
'

And:

The curve passes through the initial and final points and has the specified tangent (first derivative) in the final

point: X and Y are related by the final tangent module kn-1

0

0

ya
xa

y

xAnd:

2
20120102

2
20120102

2
20120102

2
20120102

2
10110101

2
10110101

1

3
2

2
222

2
21

3
2

2
222

2
21

3
2

2
222

2
21

3
2

2
222

2
21

3
1

2
111

2
11

3
1

2
111

2
11

2
2

...
2
2
2
2

20'
02'
.........

20'
02'

20'
02'

nnnnn

nnnnn

nn

nn

nn

nn

y

x

n

nnnnnn

nnnnnn

n

n

n

n

tyytyyyy
txxtxxxx

tyytyyyy
txxtxxxx
tyytyyyy
txxtxxxx

d
d
k

ttttty
tttttx

ttttty
tttttx

ttttty
tttttx

ynnny

xnnnx

dyyykb
dxxxkb

0111

0111

22'
22'

ynnny

xnnnx

dykyyc
dxkxxc

2'
2'

1101

1101

34

The curve passes through the initial and final points and has the specified tangent (first derivative) in the initial

and final points: X and Y are related by the initial and final tangent modules k0 and kn-1

0

0

ya
xa

y

x

And:

3
201

2
20102

3
201

2
20102

3
201

2
20102

3
201

2
20102

3
101

2
10101

3
101

2
10101

1

0

2
21

3
21

3
20

2
2020

2
21

3
21

3
20

2
2020

2
21

3
21

3
20

2
2020

2
21

3
21

3
20

2
2020

2
11

3
11

3
10

2
1010

2
11

3
11

3
10

2
1010

23
23

...
23
23
23
23

''''2'
''''2'

......
''''2'
''''2'
''''2'
''''2'

nnnnn

nnnnn

nn

nn

nn

nn

n

nnnnnnn

nnnnnnn

nn

nn

nn

nn

tyytyyyy
txxtxxxx

tyytyyyy
txxtxxxx
tyytyyyy
txxtxxxx

k
k

tytytytyty
txtxtxtxtx

tytytytyty
txtxtxtxtx
tytytytyty
txtxtxtxtx

'
'

00

00

ykb
xkb

y

x

ynnny

xnnnx

nnny

nnnx

bykyyc
bxkxxc

ykykyyc
xkxkxxc

2'3
2'3

'2'3
'2'3

1101

1101

001101

001101

0111

0111

010011

010011

2'
2'

2''
2''

yybykd
xxbxkd

yyykykd
xxxkxkd

nynny

nxnnx

nnny

nnnx

In order to solve linear equation systems we can use any least squares method, but in our pa r-

ticular case we have used the Householder method that is more stable numerically that the co n-

ventional method [46, 47]. In order to verify the performed approximation, we will check out that

the maximum distance between the resampled points (prj) and the approximated points (paj) by

means the cubic curve with the corresponding parameters tj is lower than the value

MAX_DISTANCE:

jjj

jyjyjyyjxjxjxxjjjj

paprd

tdtctbatdtctbapayrxrpr 3232 , ,, (22)

ACKNOWLEDGMENTS

Spanish Ministry of Science and Education and the FEDER Funds, through CUESKETCH (Ref.

DPI2007-66755-C02-01) and HYMAS projects (Ref. DPI2010-19457) partially supported this work.

REFERENCES

[1] P. Company, M. Contero, P.A.C. Varley, N. Aleixos, F. Naya. "Computer-aided sketching as a

tool to promote innovation in the new product development process". Computers in Industry

60(8): 592-603, 2009.

[2] P. Company, P.A.C. Varley, A. Piquer, M. Vergara, J. Sánchez-Rubio. “Benchmarks for Com-

puter-based Segmentation of Sketches”, In Pre-Proceedings of The Eighth IAPR International

Workshop on Graphics Recognition, GREC 2009, France, Ju ly 22-23, 2009, pp. 103-114.

35

[3] A. Wolin, B. Eoff, T. Hammond. “Shortstraw: A simple and effective corner finder for po ly-

lines”. In EURO-GRAPHICS 5th Annual Workshop on Sketch-Based Interfaces and Modeling,

2008, pp. 33–40.

[4] Y. Xiong and J.J. LaViola Jr. “Revisiting ShortStraw – Improving Corner Finding in Sketch-

Based Interfaces”, In EUROGRAPHICS 6th Annual Workshop on Sketch -Based Interfaces and

Modeling, 2009, pp. 101-108.

[5] J. Pu and D. Gur. “Automated freehand sketch segmentation using radial basis functions”.

Computer-Aided Design 41 (2009) 857-864.

[6] F. Mokhtarian, S. Abbasi, Robust automatic selection of optimal views in multi -view free-

form object recognition, Pattern Recognition 38 (2005) 1021-1031.

[7] S. Jaggi, W.C. Karl, S. G. Mallat, A.S. Willsky, Silhouette recognition using high -resolu tion

pursuit, Pattern Recognition 32 (1999) 753-771.

[8] S. Osowski, D.D. Nghia, Fourier and wavelet descriptors fro shape recogn ition using neural

networks – a comparative study, Pattern Recognition 35 (2002) 1949-1957.

[9] G.Y. Chen, T.D. Bui, A. Krzyzak, Rotation invariant pattern recognition using ridgelets, wav e-

let cycle-spinning and Fourier features, Pattern Recognition 38 (2005) 2314-2322.

[10] G. Chen, T.D. Bui, Invariant Fourier-wavelet descriptor for pattern recognition, Pattern Rec-

ognition 32 (1999) 1083-1088.

[11] C.H. Park, H. Park, Fingerprint classification using fast Fourier transform and non -linear

d iscriminant analysis, Pattern Recognition 38 (2005) 495-503.

[12] L. Gennari, L.B. Kara, T.F. Stahovich, K. Shimad. “Combining geometry and domain know-

ledge to interpret hand -drawn diagrams”. Computers & Graphics 29 (2005) 547–562.

[13] G. Feng, C. Viard -Gaudin, Z. Sun. “On-line hand-drawn electric circuit d iagram recognition

using 2D dynamic programming”. Pattern Recognition 42 (2009) 3215 – 3223.

[14] J. Mas, J. Llados, G. Sanchez, J.A.P. Jorge. A syntactic approach based on d istortion -tolerant

Adjacency Grammars and a spatial-d irected parser to interpret sketched d iagrams. Pattern

Recognition 43 (2010) 4148-4164.

[15] R. Arand jelovi’c, T.M. Sezgin. Sketch recognition by fusion of temporal and image-based

features. Pattern Recognition 44 (2011) 1225-1234.

36

[16] D.H. Rubine. “Specifying Gestures by Example”, Comp uter Graphics, 25 (4), 1991, pp. 329-

337.

[17] A. Ajay, V. Vo, T.D. Kimura. “RecognisingMultistroke Shapes: An Experimental Evaluation”,

ACM (UIST’93), Atlanta, 1993, pp. 121-128.

[18] M.D. Gross. “Recognising and Interpreting Diagrams in Design”, Proceedings of ACM

(AVI’94), Italy, 1994, pp.88-94.

[19] M.J. Fonseca and J. Jorge, “Using Fuzzy Logic to Recognise Geometric Shapes Interactively”,

9th IEEE Conference on Fuzzy Systems, 1, 2000, pp. 291-296.

[20] J. Xiangyu, L. Wenyin, S. Jianyong, Z. Sun, “On -Line Graphics Recognition”. Conference on

Computer Graphics and Applications, 2002, pp. 256-264.

[21] S. Zhengxing, W. Liu , P. Binbin, Z. Bin, S.Jianyong, “User Adaptation for Online Sketchy

Shape Recognition”, GREC 2003, 305-316.

[22] D. Willems, R. Niels, M. van Gerven, L. Vuurpijl. “Iconic and multi-stroke gesture recogni-

tion”. Pattern Recognition 42 (2009) 3303 – 3312.

[23] X. Zhang, D. Zhao. A parallel algorithm for detecting dom inant points on multiple d igital

curves. Pattern Recognition. Vol. 30, No. 2, pp. 239-244, 1997.

[24] B.K. Ray, K.S. Ray. Corner detection using iterative Gaussian smoothing with constant win-

dow size. Pattern Recognition, Vol. 28, No. 11, pp. 1765-1781, 1995.

[25] B.K. Ray, R. Pandyan. ACORD—an adaptive corner detector for planar curves. Pattern Rec-

ognition 36 (2003) 703-708.

[26] R. Neumann, G. Teisseron. Extraction of dominant points by estimation of the contour fluct u-

ations. Pattern Recognition 35 (2002) 1447-1462.

[27] F. Arrebola, F. Sandoval. Corner detection and curve segmentation by multiresolu tion chain -

code linking. Pattern Recogn ition 38 (2005) 1596-1614.

[28] T. Sezgin, T. Stahovich, R. Davis. “Sketch based interfaces: Early processing for sketch unde r-

standing”, In Workshop on Perceptive User Interfaces, 2001.

[29] T. Stahovich. “Segmentation of pen strokes using pen speed”. In Proceedings 2004 AAAI Fall

Symposium on Making Pen-Based Interaction Intelligent and Natural, 2004.

[30] T. Sezgin and R. Davis. “Scale-space based feature point detection for d igital ink”. In SIG-

37

GRAPH ’06: ACM SIGRRAPH 2006 Courses, NY USA, 2006, ACM, p. 29.

[31] D. Kim and M-J. Kim. “A curvature estimation for pen input segmentation in sketch -based

modelling”. In Computer-Aided Design, 2006, 38, pp. 238-248.

[32] B. Yu. “Recognition of freehand sketches using Mean Shift”. In IUI ’03: Proceedings of the 8th

international conference on Intelligent user interfaces, 2003, ACM, pp. 204-210.

[33] H. Hse, M. Shilman, A.R. Newton. “Robust sketched symbol fragmentation using templa tes”.

In IUI’04: Proceedings of the 9th international conference on Intelligent user interfaces, 2004,

pp. 156-160.

[34] B. Paulson and T. Hammond . “Paleosketch: Accurate primitive sketch recognition and bea uti-

fication”. In IUI ’08: Proceedings of the 13th international conference on Intelligent user inter-

faces, 2008, pp. 1-10.

[35] C. Alvarado and R. Davis. “Sketchread: a multi-domain sketch recognition engine”. In UIST

’04: Proceedings of the 17th annual ACM symposium on User interface software and techno l-

ogy, NY USA, 2004, ACM Press, pp. 23-32.

[36] T. Hammond and R. Davis. “Ladder, a sketching language for user interface developers”.

Elsevier, Computers and Graphics, 28 (2005), pp. 518-532.

[37] B. Sarkar, L.K. Singh, D. Sarkar, Approximation of d igital curves with line seg ments and cir-

cular arcs using genetic algorithms, Pattern Recognition Lett. 24 (15) (2003) 2585–2595.

[38] X. Zhang, J. Song, G. Dai, M. R. Lyu. “Extraction of Line Segments and Circular Arcs From

Freehand Strokes Based on Segmental Homogeneity Features”. IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL

2006.

[39] T.P. Nguyen, I. Debled -Rennesson. A d iscrete geometry approach for dominant point detec-

tion. Pattern Recognition 44 (2011) 32-44.

[40] S-F. Qin, D.K. Wright, I.N. Jordanov. On-line segmentation of freehand sketches by know-

ledge-based nonlinear thresholding operations. Pattern Recognition 34 (2001) 1885-1893.

[41] M. Masry, D. Kang, H. Lipson. “A freehand sketching interface for progressive construction of

3D objects”. Compu ters & Graphics 29 (2005) 563–575.

[42] M. Bein and S. Havemann, A. Stork, D. Fellner. “Sketching Subdivision Surfaces”. EURO-

38

GRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009)

[43] D. G. Fernández-Pacheco, F. Albert, N. Aleixos, J. Conesa, M. Contero. “Automated tuning of

parameters for the segmentation of freehand sketches”. Proceedings of the International Co n-

ference on Computer Graphics Theory and Applications (GRAP 2011), 2011, pp. 321-329.

[44] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi. “Optimization by simulated annealing”, Science, vol.

220 (1983), no. 4598, pp. 671-680.

[45] G. Farin. “Curves and surfaces for CAGD. A practical guide”. Academic Press Ltd ., San D i-

ego, 1993.

[46] R. L. Burden, J. D. Faires. “Análisis numérico”. Grupo Ed itorial Iberoamérica, 1985.

[47] J. L. Goldberg. “Matrix Theory with Applications”. McGrawHill, 1991.

F. Albert is Associate Professor of Engineering Graphics, CAD, and 3D animation and Graphic

Design with the Engineering Design Department at Polytechnic University of Valencia. His fields

of interest are focused on graphic pattern analysis, reconstruction and design, and development

of spatial abilities using new technologies.

D.G. Fernández-Pacheco is Assistant Professor of Engineering Graphics and CAD with the

Graphical Expression Department at Polytechnic University of Cartagena. H is fields of interest

are focused on geometric modeling, computer vision, multi-agent systems, sketch recognition and

calligraphic interfaces.

N. Aleixos received an award for her Ph.D, and worked for private companies and at the Public

Research Institu te IVIA developing machine vision systems. She is Associate Professor at Poly-

technic University of Valencia. Her fields of interest are focused on computer vision systems,

image analysis, multi-agent systems, sketch recognition and natural interfaces.

