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Abstract

Graphs possess a strong representational power for many types of patterns. How-

ever, a main limitation in their use for pattern analysis derives from their difficult

mathematical treatment. One way of circumventing this problem is that of trans-

forming the graphs into a vector space by means of graph embedding. Such an

embedding can be conveniently obtained by using a set of “prototype” graphs and

a dissimilarity measure. However, when we apply this approach to a set of class-

labelled graphs, it is challenging to select prototypes capturing both the salient

structure within each class as well as inter-class separation. In this paper, we in-

troduce a novel framework for selecting a set of prototypes from a labelled graph

set taking their discriminative power into account. Experimental results showed

that such a discriminative prototype selection framework can achieve superior re-

sults in classification compared to other well-established prototype selection ap-
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proaches.
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1. Introduction

Although the vast majority of pattern recognition algorithms rely on vecto-

rial data representations, more and more effort is now rendered in various re-

search fields on graph based representations [1]. Unlike the vectorial representa-

tion which ignores the dependencies between observations, graphs preserve these

dependencies and relations. To phrase it more generally, the main merits of a

graph-based representation are: i) the number of nodes and edges in the graph is

not fixed a priori; rather, it adjusts to the complexity of the target object, and ii)

graphs are capable of encapsulating the object’s structure not merely by storing

the object’s features, but by also explicitly modeling the relations amongst such

features (beyond simple co-statistics).

Leveraging on these appealing properties, many approaches have used graphs,

for instance, for human action recognition [2, 3], bioinformatics and chemoinfor-

matics [4, 5, 6], web content analysis and data mining [7, 8, 9], classifying images

from various fields [10, 11, 12], symbol and character recognition [13, 14, 15] and

computer network analysis [16, 17].

However, object representations given in terms of graphs suffer from a number

of severe drawbacks when compared to feature vectors. One major limitation is

the significantly increased complexity of many algorithms. For instance, the com-

parison of two feature vectors for identity can be accomplished in linear time with

respect to the length of the two vectors. For the equivalent operation on graphs,
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i.e. testing two graphs for isomorphism, only exponential algorithms are known

to date. Another major drawback of graph-based representations is that even ba-

sic mathematical operations such as sums and products cannot be performed on

graphs, making them unsuited for conventional pattern recognition approaches.

As a consequence of these general limitations, the lack of algorithmic tools for

graph-based pattern recognition appears obvious.

One way of circumventing this problem is graph embedding in a real vec-

tor space. By this approach, we can benefit from the wide range of statistical

pattern recognition methods while retaining the universality of graphs for pattern

representation. Various approaches have been proposed in the literature to embed

graphs in a vector space. In [11], for instance, features derived from the eigen-

decomposition of graphs are exploited. Another approach uses an “edit distance”

to compute the matrix of distances between any two graphs in a set and then use

it to embed the graphs into a vector space by means of multidimensional scaling

[18]. In [19], the authors turn to the spectral decomposition of the Laplacian ma-

trix. They show how the elements of the spectral matrix for the Laplacian can be

used to construct symmetric polynomials. In order to encode a graph as a vector,

the coefficient of these polynomials are used as graph features. Another approach

for graph embedding has been proposed in [20]. The authors use the relationship

between the LaplaceBeltrami operator and the graph Laplacian to embed a graph

onto a Riemannian manifold.

The present paper follows another approach of graph embedding where a

graph is embedded into a point in the vector space by means of a template set and

a dissimilarity measure. This approach is primarily based on the idea proposed

in [21, 22], where a dissimilarity representation over vectors was first introduced,
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and then extended in [23] to map strings onto vector spaces and finally general-

ized to graphs in [24, 25]. The key idea of this graph embedding approach is to

convert a graph into an n-dimensional feature vector by way of a set of “proto-

type” graphs P and a dissimilarity measure such that the feature vector consists of

the dissimilarity between the graph and each prototype. Intuitively, the prototype

set should be distributed over the graph domain in a uniform way. However, this

is difficult to ensure in principle since uniformity over a graph domain is a vague

concept.

Let us assume to be given a training set, C, of class-labelled graphs from

N different classes, C1, ..., CN . Various approaches have been proposed to date

for selecting informative prototypes from C. In [25], all available elements from

the training set are used as prototypes P = C, and then feature extraction algo-

rithms, e.g. principal component analysis (PCA) [26], are applied to the embed-

ded graphs in the vector space. Although by this approach the authors bypass the

difficult problem of selecting adequate prototypes, it is obvious that it may prove

computationally too expensive for large datasets and that its run-time cost on a

new graph may be too high. To overcome this limitation, in [27], the authors pro-

posed different heuristic approaches based on the distances between the graphs

in C. The authors distinguish between unlabelled and labelled selection. The

unlabelled selection is executed over the whole training set at once ignoring the

class labels, while the labelled selection selects prototypes separately for each of

the N classes, C1, ..., CN . In general, labelled approaches have reported higher

classification accuracy than unlabelled methods.

Labelled prototype selection can be likened to the training of class likelihoods

in generative classifiers, where each likelihood is estimated based on only the
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samples from that class. Conversely, discriminative classifiers, choose parame-

ters based on the information from multiple classes at once, maximizing objec-

tive functions such as the class margin, Fisher discriminants, mutual information

and others, and often proving more accurate than their generative counterparts.

Inspired by discriminative approaches, in this paper we propose various discrimi-

native prototype selection methods where the prototype set is chosen by weighing

intra-class compactness and inter-class separation and demonstrate their ability to

outperform previous methods. We have also recently become aware of another

proposal for discriminative prototype selection from Raveaux et al. [28]. In [28],

the authors propose to conduct the search for prototypes in the exponential space

of possible selections by way of a genetic algorithm. While this is certainly an

attractive strategy, we believe that the tradeoffs we propose between intra-class

compactness and inter-class separation offer a more immediate interpretive frame-

work.

The remainder of this paper is organized as follows: in the next section we

define basic concepts and introduce our notation. The proposed approaches are

then described in Section 3. In Section 4, we present an experimental evaluation

of the proposed methods on a diverse range of publicly available datasets. Finally,

we give concluding remarks and a discussion of possible extensions in Section 5.

2. Basic concepts and notations

This section briefly conveys the key terminology and some concepts used in

this paper.
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2.1. Graph

Different definitions for a graph can be found in the literature based on the

considered applications. The following one provides a versatile definition of graph

which is sufficiently flexible for a large variety of tasks.

Definition 1. A graph, g, is a four-tuple g = (V,E, α, β), where

• V is the finite set of vertices (or nodes),

• E ⊆ (V × V ) is the set of edges,

• α : V → LV is the vertex labeling function, and

• β : E → LE is the edge labeling function.

LV and LE are finite or infinite label sets of vertices and edges, respectively.

The labeling functions (α and β) in this definition are unconstrained, thus they

can easily handle arbitrarily structured graphs. For instance, the vertices and edges

of graph g can get labels from the set of integers L = {1, 2, ...}, the vector space

L = Rn, or a set of symbolic labels L = {ρ, σ, κ, ...}. Given that the vertices

and/or the edges are labelled, these graphs are referred to as attributed graphs.

2.2. Graph Edit Distance

With a graph-based object representation, the concept of similarity in pattern

recognition turns into that of graph (dis)similarity. Evaluating the dissimilarity

of a pair of graphs is commonly referred to as graph matching (for an extensive

review of graph matching techniques and application, the reader is referred to [1]).

Graph matching measures the dissimilarity of arbitrarily structured and arbitrarily
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labelled graphs and it is flexible thanks to its ability to cope with any kind of

structural errors.

One of the most widely used methods for graph matching is the graph edit

distance (GED) [29]. The main idea of the graph edit distance is that of finding

the dissimilarity of two graphs by the minimum amount of distortion required to

transform one graph into the other. The underlying distortion model is composed

of six types of edit operations: insertion, deletion and substitution for both nodes

and edges. A sequence of edit operations (e1, ..., eK) that transforms g1 into g2

is called an edit path from g1 to g2. Figure 1 shows an example of an edit path

between g1 and g2 consisting, in step order, of three edge deletions, one node

deletion, one node insertion, two edge insertions, and two node substitutions.

Figure 1: An example edit path between g1 and g2 (node labels are represented by different shades

of grays)

Based on the above definition, every graph can be transformed into another

by applying a sequence of edit operations or edit path. Clearly, for every pair of

graphs, there exists an infinite number of different edit paths. Thus, to select the

best edit path between each pair of graphs, an edit cost function is introduced to

assign a cost to each edit operation. Then, given a set of edit paths and an edit cost

function, the dissimilarity of a pair of graphs is defined as the minimum-cost edit

path in the set.

Definition 2. Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2) be a pair of
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graphs in a set. The graph edit distance of such graphs is defined as:

d(g1, g2) = min
(e1,...,eK)∈E(g1,g2)

K∑
k=1

C(ek) (1)

where E(g1, g2) denotes the set of edit paths between the two graphs, C denotes

the edit cost function and ek denotes the individual edit operation.

As it turns out, given a set of edit costs (which can be assigned heuristically

or learned from a set of sample graphs [30, 31, 32]), the dissimilarity between

each pair of arbitrarily structured and arbitrarily labelled graphs can be measured

by means of the graph edit distance. Furthermore, a certain degree of robustness

against various graph distortions can be expected.

Among various methods [29, 33, 34, 35], the bipartite approach proposed in

[33] was chosen to compute the graph edit distance in this paper. This method

is based on a fast bipartite optimization procedure mapping local substructures of

one graph to local substructures of another graph. The main advantage of this

method is that it is much less computationally demanding than other approaches

which are based on combinatorial search procedures (e.g. [29]).

2.3. Graph Embedding Via Dissimilarity Measures

An embeddings performs an injective transformation of high-dimensional vec-

tors or non-vectorial objects onto a vector space of suitable dimensionality. Graph

embedding is a specific transformation for graphs. Its motivation is that of trying

to take advantage of the rich space of statistical pattern recognition techniques,

yet retaining the spatial representational power of graphs. This approach should

not be confused with graph node embedding where each node of a graph is indi-

vidually transformed into a point in vector space while attempting to preserve the

nodes’ mutual distances (e.g., [11]).
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Definition 3. LetG = {g1, g2, ..., gm} be a set of graphs, P = {p1, p2, ..., pn} be a

set of prototypes with n < m (see details in subsection 3), and d be a dissimilarity

measure. For graph embedding, dissimilarity measure dji of graph gj ∈ G to

prototype pi ∈ P is computed. Then, an n-dimensional real vector (dj1, ..., djn)

is obtained by computing the n dissimilarities, dji = d(gj, pi),∀i. Formally, the

mapping tP : G→ Rn is defined as the following function:

tP (g)→ (d(g, p1), ..., d(g, pn)) (2)

where d(g, pi) is a dissimilarity measure between graph g and prototype pi.

Based on the above definition, this embedding approach can transform any

graph g from an arbitrary graph set (e.g. a training, a validation or a test set of

a classification problem) into a vector of real numbers. Moreover, this approach

can flexibly use any dissimilarity measure on graphs, including an edit distance. A

comprehensive review of the graph embedding by means of dissimilarity measures

can be found in [21, 24].

3. Prototype selection

Selecting informative prototypes from the underlying graph domain plays a

vital role in graph embedding [36]. In order to obtain a meaningful as well as

class-discriminative vector representation in the embedding space, a set of se-

lected prototypes P = {p1, p2, ..., pn} should be adequately distributed over the

whole graph domain, at the same time avoiding redundancies in terms of selection

of similar graphs [21, 24, 37].

Let us assume that the graphs in the graph domain can be classified into N

different classes, c1, ..., cN . Given a labelled training set, C, we note as C1, ..., CN
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the N subsets spanned by the classes, such that C =
⋃N

n=1Cn. We then cate-

gorise the prototype selection methods into labelled and unlabelled approaches.

In the former, the selection is performed individually for each class, while the

latter determines all prototypes from the whole training set, C, ignoring the class

label information. As shown in [27], labelled selection approaches tend to deliver

higher classification accuracy than corresponding unlabelled approaches. Yet, la-

belled selection methods choose the class’ prototypes based solely on the graphs

in the class. This is in a way similar to generative classifiers, where a class’ model

is learned based on only the samples from that class. Conversely, discriminative

classifiers use information from samples from multiple classes jointly and have

been in the spotlight thanks to their reported accuracy (e.g. [38], [39]). Based

on a similar rationale, we propose discriminative approaches for the selection of

prototypes which maximize a function of the inter- and intra-class distances. In

this way, we elicit prototype selection strategies imposing that the selected pro-

totypes for the class be well-distributed within the class, yet being discriminative

with respect to the graphs in the remaining classes.

3.1. Learning discriminative prototypes

The ultimate goal of prototype selection for classification is to identify the

most discriminative graphs in the training set , C. In this paper, similar to [40],

each of the selection algorithms in section 3.2 is learned in two different ways. If

the prototypes are chosen for a class to discriminate well against all other classes,

they form a one-vs-all prototype set. Similarly, if the selection strategy tries to

maximize this discrimination between the selected class and the closest class, it

obtains a one-vs-nearest prototype set.
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Definition 4. Let Cn = {gn1, .., gni, .., gn|Cn|} and Cm = {gm1, .., gmj, .., gm|Cm|}

be the subsets of C for classes cn and cm, respectively. We adopt the following

definition for the class distance between cn and cm:

dclass(cn, cm) =

∑|Cn|
i=1

∑|Cm|
j=1 d(gni, gmj)

|Cn||Cm|
(3)

where d(u, v) is the distance between graphs u, v and |Cn| and |Cm| are the

total number of graphs in Cn and Cm, respectively. Alternative definitions are also

possible.

Definition 5. Based on Definition 4, the nearest class cnnear to class cn is the class

which has the minimum class distance to cn, formally defined as:

cnnear = argmin
n=1...N,n6=n

dclass(cn, cn) (4)

3.2. Discriminative prototype selection algorithms

As stated in section 2.3, an appropriate choice of the prototype set, P , plays

a critical role in graph embedding as it impacts the classification accuracy. The

six deterministic algorithms used to select the discriminative prototypes in this

paper are described below. In the selection of these discriminative prototypes,

different objective functions are proposed which not only provide high intra-class

compactness, but also consider inter-class separation. The part influencing the

intra-class compactness is weighted by a weight, Wc, and the part controlling the

inter-class separation is weighted byWs where {Wc,Ws} ∈ [0, 1] and Wc+Ws =

1. Each of these algorithms is an extension of an existing labeled algorithm. All

these objective functions allow selecting an arbitrary number, K, of prototypes

from each class.
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3.2.1. Discriminative Center Prototype Selection

In discriminative center prototype selection (d-cps), a prototype set, Pn =

Pn(1:K) = {pn1, ..., pnk, ..., pnK}, is generated from each Cn subset, with each

pnk prototype simultaneously located near the “center” of the graphs from Cn,

and away from the graphs of the remaining classes, Cn. Prototypes are selected

incrementally, with each prototype pnk determined as a graph gnj ∈ Cn which is

not already selected as prototype and such that the difference between the sum

of distances between gnj and all other graphs in its class, excluding the already

selected prototypes, and the sum of distances between gnj and all other graphs in

Cn is minimal:

pnk = argmin
gnj∈Cn,gnj /∈Pn(1:k−1)

[Wc ·
∑

gni∈Cn,i 6=j,
gni /∈Pn(1:k−1)

d(gnj, gni)−Ws ·
∑

gni∈Cn

d(gnj, gni) ]
(5)

This objective function promotes class discrimination. However, it may suffer

from redundancy as it tends to select multiple prototypes from the center of the

class. Moreover, it should be noted that because the number of graphs in Cn is

usually much lower than that in Cn, the objective function in (5) usually takes

negative values. However, this has no impact on the minimisation.

3.2.2. Discriminative Border Prototype Selection

The idea of discriminative border prototype selection (d-bps) is to choose the

prototype set, Pn, such that each pnk prototype be situated near the border of its

class. The rationale for this selection is that of having prototypes which are simul-

taneously mutually spread apart and distant from the graphs in the other classes.
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Prototypes are selected incrementally, with each prototype pnk determined as a

graph gnj ∈ Cn which is not already selected as prototypes and such that the total

sum of the sum of distances between gnj and all other graphs in Cn, excluding the

already selected prototype, and Cn is maximal:

pnk = argmax
gnj∈Cn,gnj /∈Pn(1:k−1)

[Wc ·
∑

gni∈Cn,i 6=j,
gni /∈Pn(1:k−1)

d(gnj, gni) +Ws ·
∑

gni∈Cn

d(gnj, gni) ]
(6)

In contrast to the previous prototype selector, where many prototypes could

be structurally similar, this selection procedure prevents redundancy. However, it

lacks prototypes from the inner region of the class and this may lead to poorly

discriminative embedded vectors for graphs located in such regions.

3.2.3. Discriminative Repelling Prototype Selection

In order to overcome the inherent limitations of both previous approaches,

discriminative repelling prototype selection (d-rps) chooses the set of prototypes

of each Cn subset based on the following procedure: the first prototype, pn1, is

selected by means of d-cps. To select any additional prototype, pnk, k = 2, ...K,

we pick a graph gnj from the class’ graphs not already selected as prototypes so

as to minimize the following equation:
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pnk = argmin
gnj∈Cn,gnj /∈Pn(1:k−1)

[Wc ·
∑

gni∈Cn,i 6=j,
gni /∈Pn(1:k−1)

d(gnj, gni) −

Ws · (
∑

gni∈Cn

d(gnj, gni) ·
∑

gni∈Pn(1:k−1)

d(gnj, gni)) ]

(7)

This objective function is similar to that in (5), but encourages pnk to be also

distant from all previously selected prototypes, Pn(1:k−1) = {pn1, ..., pn(k−1)} (“re-

pelling” component). This favors mutual separation amongst the class’ prototypes

and their more uniform distribution within the class.

3.2.4. Discriminative Spanning Prototype Selection

Along a similar rationale, discriminative spanning prototype selection (d-sps)

selects each prototype with the following iterative procedure: the first prototype,

pn1, is selected by d-cps. Each additional prototype, pnk, k = 2, ...K, is the graph

in Cn that preserves the following conditions: be the farthest graph from the al-

ready selected prototypes, Pn(1:k−1), as well as all graphs in the other classes, Cn:

pnk = argmax
gnj∈Cn,gnj /∈Pn(1:k−1)

[Wc ·
∑

gni∈Pn(1:k−1)

d(gnj, gni) +Ws ·
∑

gni∈Cn

d(gnj, gni)]
(8)

Compared to (7), this objective function ignores the compactness term and

composes the other two terms in an additive rather than multiplicative scale.
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3.2.5. Discriminative Targetsphere Prototype Selection

In discriminative targetsphere prototype selection (d-tps), the first and second

prototypes, {pn1,pn2}, for Cn are selected by means of d-cps and d-bps, respec-

tively. These two prototypes represent the center and farthest boundary of the

class. Then, the distance between these two prototypes, dmax = d(pn1, pn2), is

computed and each other prototype, pnk, k = 3, ...K, is selected as the graph clos-

est to a distance of (k − 2)dmax/(K − 1) from pn1 and furthest away from the

graphs in the other classes, Cn. This procedure is called “targetsphere” as it is

reminiscent of the evenly-spaced divisions of a shooting target circle:

pnk = argmin
gnj∈Cn,gnj /∈Pn(1:k−1)

[Wc ·
∣∣∣∣d(gnj, pn1)− (k − 2) · dmax

(K − 1)

∣∣∣∣−Ws ·
∑

gni∈Cn

d(gnj, gni)]
(9)

3.2.6. Discriminative k-Center Prototype Selection

They key idea of discriminative k-center prototype selection (d-kcps) is to

select the prototypes of each class by a procedure similar to k-medoids clustering,

at the same time maintaining separation from the graphs in the remaining classes,

Cn [41]. The six steps of this method are:

1. Select an initial set of K prototypes, Pninitial
= {pn1, .., pnk, .., pnK}, by

means of any of the previous prototype selectors.

2. Construct K sets, with each set containing one of the initial prototypes:

S1 = {pn1}, .., Sk = {pnk}.., SK = {pnK}.

3. For each other graph g ∈ Cn, g /∈ Pninitial
, find its nearest prototype in

terms of a distance between elements and add g to the corresponding set.
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As a result of this, we attain a partition on Cn with K disjoint subsets and

Cn =
⋃K

k=1 Sk.

4. For each set Sk, find its center graph ck by means of d-cps. This retains the

discriminative aspect of the selection.

5. For each set Sk, if its center ck is not equal to prototype pnk, replace pnk by

ck.

6. If any replacement has occurred, return to step 2; otherwise, select the cen-

ters of the K disjoint sets, {c1, ..., cK}, as the set of prototypes, Pn.

4. Experiments

This section provides the experimental evaluation of the proposed methods

and shows the benefits of using discriminative prototype selection approaches

compared to existing methods. To this aim, several classification tasks are carried

out over a wide number and variety of datasets including letters, digits, drawings,

fingerprints, HTML webpages, molecular compounds, and proteins.

4.1. Datasets

For extensive testing of the proposed approaches, we have chosen a total of 10

different graph datasets from the publicly available IAM graph database repository

[42]. These datasets are significantly varied in nature and differ in terms of number

of classes, number of graphs per classes and typical size of graphs (Table 1).

The first three datasets are the Letter datasets, which represent distorted letter

drawings. Starting from a manually constructed prototype of every of the 15 Ro-

man alphabet letters that consist of straight lines only, different degrees of distor-

tion are applied: low, medium and high. Each ending point of a line is represented
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by a node of the graph and labelled with its (x,y) coordinates. The edges represent

the existing lines in the letters linking the corresponding nodes. The Digit dataset

contains graphs representing different handwritten digits [43]. The digits were

originally acquired by recording the pen position at constant steps of time. The

sequences of (x,y) coordinates compose the set of nodes of the graphs and their

corresponding labels, while the edges are given by the links between consecutive

nodes.

The GREC dataset consists of graphs representing symbols from 22 classes of

architectural and electronic drawing under different levels of noise [44]. Depend-

ing on the level of noise, different morphological operations are applied to the

symbols until lines of one pixel width are obtained. Intersections and corners of

such lines constitute the set of nodes, which are labelled with a two-dimensional

attribute encoding their position.

The next set of graphs is the Fingerprint dataset. It consists of graphs that

are obtained from a subset of the NIST-4 fingerprint image database [45] by

means of particular image processing operations. Ending point and bifurcations

of the skeleton of the processed images constitute the (x,y) attributed nodes of

the graphs, plus some nodes that are inserted between these points. All points

connected through a ridge in the image skeleton are connected with an unlabelled

edge. Unlike the previous datasets, this dataset is not balanced in the number of

samples per class.

The AIDS dataset represents molecules [46]. Each molecule is converted into

a graph in a straightforward manner by representing its atoms as nodes and the

covalent bonds as edges. Nodes are labeled with the number of the corresponding

chemical symbol and edges by the valence of the linkage. While this dataset is
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not visual and does not suffer from acquisition noise, it has a larger average graph

size and is not balanced across classes.

Similar to the AIDS dataset, the Mutagenicity dataset follows the same ap-

proach of converting molecular compounds into attributed graphs [47]. However,

the average graph size is even larger, and typical recognition rates are the lowest

amongst all the 10 datasets. An equally challenging dataset is the Protein dataset,

consisting of graphs representing proteins [5]. The graphs are constructed from

the Protein Data Bank [48] and labeled with their corresponding enzyme class

from the BRENDA enzyme database [49]. The proteins are converted into graphs

by representing the structure, the sequence, and chemical properties of a protein

by nodes and edges.

Finally, the Webpage dataset contains graphs representing various web doc-

uments from [7]. Each node represents a word in the web document and is at-

tributed with the word itself and its frequency in the document. A directed edge

connects a pair of consecutive words in the documents and is labeled by the corre-

sponding word section label. This dataset has the largest average graph size (over

a hundred nodes and a hundred edges per graph) amongst the selected datasets.

For the sake of accuracy evaluation, each of these datasets has been divided

into three disjoint subsets which have been used for training, validation and test-

ing. A summary of the datasets is reported in Table 1 showing the subsets’ size,

number of classes, average and maximum number of nodes and edges, and the

balanced/unbalanced attribute.

4.2. Experimental setup and results

The aim of the experimental evaluation described in this section is to em-

pirically verify the power and applicability of the feature vectors extracted by
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Dataset Size(tr, va, te) # Cls ∅ |V | ∅ |E| max|V | max|E| Balanced

Letter low 750, 750, 750 15 4.7 3.1 8 6 Y

Letter medium 750, 750, 750 15 4.7 3.2 9 7 Y

Letter high 750, 750, 750 15 4.7 4.5 9 9 Y

Digit 1000, 500, 2000 10 8.9 7.9 17 16 Y

GREC 836, 836, 1628 22 11.5 12.2 25 30 Y

Fingerprint 500, 300, 2000 4 5.4 4.4 26 24 N

AIDS 250, 250, 1500 2 15.7 16.2 95 103 N

Mutagenicity 500, 500, 1000 2 30.3 30.8 417 112 Y

Protein 200, 200, 200 6 32.6 62.1 126 149 Y

Webpage 780, 780, 780 20 186.1 104.6 834 596 N

Table 1: Summary of graph data set characteristics, e.g. the size of the training (tr), the validation

(va) and the test set (te), the number of classes (# Cls), the average and max number of nodes and

edges (∅ |V |, max|V |, ∅ |E|, max|E|), and whether the graphs are uniformly distributed over the

classes or not (balanced).

the discriminative prototype selection approaches compared to those obtained by

other methods, e.g. [27]. For the sake of comparison, the following settings are

identically applied in all experiments.

For graph embedding, the graph edit distance is computed by means of the

suboptimal algorithms introduced in [33]. This approach shows superior perfor-

mance in time and accuracy compared to other suboptimal algorithms. The clas-

sification task of the vector space embedded graphs is carried out by employing

the support vector machine, or SVM for short [50]. Although any other statistical

classifier could be used for this purpose, SVM enjoys a theoretical characteri-

zation as well as a remarkable empirical performance [51]. In our experiments,

we make use of an SVM with the Radial Basis Function (RBF) kernel [52]. In

[24], this kernel was reported more accurate than linear and polynomial kernels

for classifying graphs embedded in a vector space. The number of prototypes per
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class, k, and the SVM parameters are tuned using a training and a validation set,

and the accuracy on the test set is then measured “blindly” by using the parame-

ters selected on the validation set, without any further tuning. All our experiments

were performed on a personal computer with an Intel(R) Core(TM)2 Duo CPU

(E8500, 3.16GHz) and 4GB RAM using Matlab R2009b. As software, we have

used the LIBSVM toolbox for Matlab [53].

4.2.1. Comparison between the discriminative and labeled approaches

In order to assess the individual contribution of the two learning approaches

described in section 3.1, we have first conducted experiments with feature vectors

extracted with different prototype selection methods, learned with one-vs-all and

one-vs-nearest approaches (Table 2). All results for each dataset are then com-

pared and the best accuracy per dataset is displayed in bold face. According to

Table 2, 16 out of the top 27 prototype selectors were obtained with the one-vs-all

approach rather than the one-vs-nearest. In most cases, the differences are very

limited.

In the literature, graph embedding by means of prototype selection has re-

ported higher classification accuracy than alternative methods such as K-NN clas-

sification directly in the graph domain and SVM classification over similarity ker-

nels [54, 25]. Moreover, labeled prototype selectors have reported higher clas-

sification accuracy compared to unlabeled approaches [27]. Thus, we limit our

comparison to the proposed discriminative approaches, existing labeled prototype

selectors and, as a term of reference/baseline approach, using all the graphs in the

training set as prototypes (Table 4).

We first evaluate the discriminative selection approaches (d-cps, d-bps, d-sps,

d-tps and d-kcps) in comparison with corresponding labeled prototype selectors
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One-Vs-All One-Vs-Nearest

Dataset d-cps d-bps d-drps d-sps d-tps d-kcps d-cps d-bps d-rps d-sps d-tps d-kcps

Letter low 99.5 99.5 99.5 99.5 99.5 99.5 99.4 99.6 99.4 99.5 99.5 99.4

Letter medium 94.4 95.6 94.0 95.4 95.4 95.4 95.4 95.4 95.2 95.2 95.4 95.0

Letter high 92.2 92.8 93.0 93.4 93.0 92.8 92.6 92.3 91.8 92.7 92.3 92.8

Digit 98.6 98.6 98.6 98.7 98.5 98.6 98.5 98.6 98.4 98.7 98.6 98.6

GREC 92.0 92.0 92.0 92.5 92.0 92.2 91.9 92.1 92.1 92.1 92.2 92.2

Fingerprint 81.2 80.6 81.1 81.6 80.9 81.4 81.2 81.0 81.6 81.6 80.8 81.5

AIDS 98.0 98.0 98.0 98.2 98.2 98.1 98.0 98.0 98.0 98.2 98.2 98.1

Mutagenicity 71.1 71.1 69.9 71.5 71.1 70.6 71.1 71.1 69.9 71.5 71.1 70.6

Protein 75.0 72.0 72.0 73.0 75.0 61.0 75.0 72.0 72.0 73.0 75.0 62.0

Webpage 82.4 82.4 82.4 82.4 82.4 82.4 82.3 82.3 82.3 82.3 82.4 82.4

Table 2: Classification accuracy (%) of SVM-RBF applied to graphs embedded using different

learning approaches (One-Vs-All and One-Vs-Nearest). The best result per dataset is displayed in

bold face.

(l-cps, l-bps, l-sps, l-tps and l-kcps) [27, 54]. These labeled prototype selectors

are defined as 3.2.1-6 with weights Wc = 1 and Ws = 0. In other word, each of

the labeled approaches is equivalent to the corresponding discriminative approach

without the inter-class term in its objective function. Table 3 shows that the dis-

criminative selection strategy has increased the classification accuracies in 42 out

of 50 cases over all datasets.

Next, we report the full accuracy over the various selectors and datasets in

Table 4 (best values are highlighted in bold face). We observe that there is only one

dataset (AIDS) where the classification accuracy with the best labeled approach is

as high as that of the best discriminative approach. For all other datasets, using a

discriminative approach significantly outperforms all labeled methods. Moreover,

narrowing our comparison to the discriminative prototype selectors alone, we note

that d-sps generally outperforms the other methods and achieves the best accuracy
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Dataset cps bps sps tps kcps

Letter low +0.4 +0.4 0.0 +0.1 +7.3

Letter medium +0.6 +0.8 +1.0 +0.8 +1.2

Letter high +0.4 +0.4 +0.8 +0.8 +0.8

Digit +0.3 +0.1 +0.1 +0.2 +0.1

GREC +0.8 +0.4 +0.1 +0.8 -0.2

Fingerprint +0.2 +0.6 +0.8 +1.2 +1.4

AIDS +0.9 -0.1 0.0 +0.2 0.0

Mutagenicity +5.1 -0.1 +1.9 +2.8 +0.5

Protein +4.5 -0.5 0.0 +3.5 +1.5

Webpage +0.1 +0.1 +0.1 +0.1 +0.1

Table 3: Increment of classification accuracy (%) with discriminative prototype selectors

Labeled Prototype Selectors Discriminative Prototype Selectors

Dataset All l-cps l-bps l-sps l-tps l-kcps d-cps d-bps d-rps d-sps d-tps d-kcps

Letter low 99.4 99.1 99.2 99.5 99.4 99.2 99.5 99.6 99.5 99.5 99.5 99.5

Letter medium 95.0 94.8 94.8 94.4 94.6 94.2 95.4 95.6 95.2 95.4 95.4 95.4

Letter high 92.3 92.2 92.4 92.6 92.2 92.0 92.6 92.8 93.0 93.4 93.0 92.8

Digit 98.4 98.3 98.5 98.6 98.4 98.5 98.6 98.6 98.6 98.7 98.6 98.6

GREC 92.1 91.2 91.7 92.4 91.4 92.4 92.0 92.1 92.1 92.5 92.2 92.2

Fingerprint 81.0 81.0 80.4 80.8 79.7 80.1 81.2 81.0 81.6 81.6 80.9 81.5

AIDS 98.2 97.1 98.1 98.2 98.0 98.1 98.0 98.0 98.0 98.2 98.2 98.1

Mutagenicity 67.6 66.0 71.2 69.6 68.3 70.1 71.1 71.1 69.9 71.5 71.1 70.6

Protein 73.0 70.5 72.5 73.0 71.5 60.5 75.0 72.0 72.0 73.0 75.0 62.0

Webpage 82.3 82.3 82.3 82.3 82.3 82.3 82.4 82.4 82.4 82.4 82.4 82.4

Table 4: Classification accuracy (%) of SVM-RBF applied to graphs embedded using all the graphs

in the training set (All), the labeled prototype selectors and the discriminative prototype selectors.

The best result per dataset is displayed in bold face.

in 8 out of 10 datasets.
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Studying the optimal number of prototypes, i.e. the dimensionality of the

embedding vector space, is also of interest. For the results reported in Tables 4

and 2, we have set an equal number of prototypes for each class with the balanced

datasets and proportionally equal with the unbalanced datasets in all experiments.

Then, we have followed the usual training-validation-test protocol to identify the

optimal number of prototypes. In addition, Figure 2 reports the classification

accuracy on the test set as a function of the number of selected prototypes per

class. The discriminative approaches almost invariably achieve better accuracy

than their labeled counterparts at a parity of number of prototypes, or the same

accuracy with fewer. Thus, from a computational point of view, the proposed

selection strategy is also preferable to a labeled strategy as it requires a smaller

number of prototypes to deliver equivalent accuracy. This translates into fewer

graph edit distances to be computed for transforming each graph, with shorter

training and run-time computational times.

Considering the aforementioned definitions and explanations, the labeled ap-

proaches are the same as the discriminative ones but with Wc = 1 and Ws = 0.

Thus, studying the optimal value of weights as well as their influence on the clas-

sification accuracy is also of interest. In our experiments, a grid search is used

to optimize the weights. Based on the definition Wc +Ws = 1, thus Ws is the

only free parameter, making a grid search easily feasible (the values explored

range between 0.01 and 1 in 0.01 step). Table 5 shows the Ws value in correspon-

dence with the accuracies reported in Table 2. Furthermore, Figure 3 presents the

classification accuracy on the test set as a function of the value of Ws for two

exemplary cases. Figure 3.a shows a desirable case where the cross-validation

accuracy is highly insensitive to the tuning of the Ws parameter. Figure 3.b shows
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Figure 2: Accuracy with various prototype selection approaches and datasets as a function of the

number of prototypes per class. (a) Letter High, l-sps vs d-sps; (b) Digit, l-sps vs d-sps; (c) Grec,

l-cps vs d-cps; (d) Letter Medium, l-bps vs d-bps; (e) Letter Low, l-tps vs d-tps; (f) Mutagenecity,

l-sps vs d-sps.
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instead a case where this empirical dependence is stronger. However, there still is

an interval of values over which the cross-validation accuracy is unaffected.

One-Vs-All One-Vs-Nearest

Dataset d-cps d-bps d-rps d-sps d-tps d-kcps d-cps d-bps d-rps d-sps d-tps d-kcps

Letter low 0.11 0.01 0.10 0.53 0.01 0.06 0.54 0.22 0.37 0.01 0.04 0.03

Letter medium 0.10 0.60 0.01 0.93 0.05 0.05 0.28 0.31 0.05 0.38 0.16 0.09

Letter high 0.13 0.14 0.01 0.79 0.01 0.12 0.39 0.03 0.18 0.01 0.01 0.31

Digit 0.24 0.01 0.06 0.04 0.03 0.56 0.81 0.04 0.03 0.08 0.03 0.13

GREC 0.24 0.06 0.01 0.09 0.03 0.14 0.02 0.17 0.29 0.18 0.08 0.81

Fingerprint 0.02 0.27 0.15 0.20 0.02 0.15 0.01 0.22 0.05 0.20 0.03 0.95

AIDS 0.46 0.46 0.01 0.42 0.01 0.03 0.46 0.46 0.01 0.42 0.01 0.03

Mutagenicity 0.82 0.19 0.30 0.15 0.01 0.04 0.82 0.19 0.30 0.16 0.01 0.04

Protein 0.04 0.01 0.05 0.01 0.01 0.01 0.24 0.01 0.14 0.01 0.04 0.03

Webpage 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 5: The Ws value of the best classification accuracy (%) reported in Table 2. The Ws value

which returns the best result per dataset is displayed in bold face.

Figure 3: Accuracy with various prototype selection approaches and datasets as a function of

the value of Ws (The reported Ws value is multiplied by 100). (a) Letter Medium, d-bps; (b)

Mutagenicity, d-sps;.

25



4.3. Discussion

Many common data types can be seen as special cases of graphs. For exam-

ple, from an algorithmic perspective both strings and trees are simple instances of

graphs. A string is a graph in which each node represents one character, and con-

secutive characters are connected by an edge. A tree is a graph in which any two

nodes are connected by exactly one path. Obviously, also a feature vector x ∈ Rn

can be represented as a graph, whereas the contrary, i.e. finding a vectorial descrip-

tion for graphs, is highly non-trivial. In other words, dissimilarity embedding can

be applied to any objects which allow a distance, but they are most urgent in the

domain of graphs as there are no classifiers directly available, other than nearest

neighbors and those based on graph kernels. Therefore, in the case of graphs, the

availability of an embedding method is of crucial importance. This motivates and

justifies the search for well performing embedding methods and shows that the

selection of prototypes is very important for dissimilarity embedding of graphs.

Hence, we have proposed novel, discriminative approaches for selecting proto-

types from a class-labeled collection of graphs and achieved superior results in

classification compared to other well-established prototype selection approaches.

Although our present focus is on graphs, it would be very interesting to investigate

whether or not these methods are beneficial with other data structures.

5. Conclusion

In this paper, we have presented novel, discriminative approaches for selecting

prototypes from a class-labeled collection of graphs. The proposed approaches se-

lect prototypes based on a trade off between intra-class compactness, intra-class

uniform spread and inter-class separation. Experiments were carried out over a
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range of datasets as diverse as letters, digits, drawings, fingerprints, antiviral com-

pounds, mutagenicity, proteins and web pages. From the experimental results, it

is possible to draw the following conclusions:

• the proposed discriminative prototype selectors have increased the classifi-

cation accuracy over the corresponding labeled prototype selector in 42 out

of 50 cases, with increases comprised between 0.1% and 5.1% (Table 3);

• the best discriminative prototype selector has outperformed the best com-

pared selector in all cases except one in which they scored equal accuracy,

with increases comprised between 0.1% and 2.0% over the range of datasets

(Table 4);

• training in a one-vs-all manner has achieved higher accuracy than one-vs-

nearest training in the majority of cases (Table 2);

• the accuracy for the proposed discriminative approaches has proved almost

invariably the highest for any tested number of prototypes per class (1 to

15) (Figure 2).

The overall conclusion brought forward by this paper is that prototype selec-

tion operated in a class-discriminative manner is an ideal approach for selecting

effective prototypes for the ensuing classification task. Application is possible

with any type of graphs including spatial, structural, temporal, spatio-temporal

and others and therefore suits a wide range of classification tasks.
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