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Abstract

The use of alternative measures to evaluate classifier performance is gain-
ing attention, specially for imbalanced problems. However, the use of these
measures in the classifier design process is still unsolved. In this work we
propose a classifier designed specifically to optimize one of these alternative
measures, namely, the so-called F-measure. Nevertheless, the technique is
general, and it can be used to optimize other evaluation measures. An algo-
rithm to train the novel classifier is proposed, and the numerical scheme is
tested with several databases, showing the optimality and robustness of the
presented classifier.
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1. Introduction

Evaluation measures have a crucial role in classifier analysis and design.
Accuracy, Recall, Precision, F-measure, Kappa, ACU [Garćıa et al. (2012)]
and some other new proposed measures like Informedness and Markedness
[Powers (2011)] are examples of different evaluation measures. Depending on
the problem and the field of application one measure could be more suitable
than another. While in the Behavioral Sciences, Specificity and Sensitivity
are commonly used, in the Medical Sciences, ROC analysis is a standard for
evaluation. On the other hand, in the Information Retrieval community and
fraud detection, Recall, Precision and F-measure are considered appropriate
measures for testing effectiveness.

In a learning design strategy, the best rule for the specific application will
be the one that get the optimal performance for the chosen measure.

Looking for the best decision rule, in a Bayesian framework, implies to
minimize the overall risk taking into account the different misclassification
cost [Duda et al. (2001)]; in an equal misclassification cost problem we can
find this optimal solution, with maximum accuracy, selecting the class that
has the maximum a posteriori probability.

However, finding a decision rule that looks for minimum error rate or
maximum accuracy in an imbalanced domain gives solutions strongly biased
to favor the majority class, getting poor performance.

This problem is particularly important in those applications where the
instances of a class (the majority one) heavily outnumber the instances of
the other (the minority) class and it is costly to misclassify samples from the
minority class. For example in information retrieval [Manning et al. (2008)],
nontechnical losses in power utilities [Di Martino et al. (2012); Muniz et al.
(2009); Nagi and Mohamad (2010)] or medical diagnosis [Fiori et al. (2010,
2012)].

Identifying these rare events is a challenging issue with great impact re-
garding many problems in pattern recognition and data mining. The main
difficulty in finding discriminatory rules for these applications, is that we have
to deal with small data sets, with skewed data distributions and overlapping
classes. A range of classifiers that work successfully for other applications
(decision trees, neural networks, support vector machines (SVMs), etc.) get
a poor performance in this context [Sun et al. (2009)]. For example, in a de-
cision tree the pruning criterion is usually the classification error, which can
remove branches related with the minority class. In backpropagation neural
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networks, the expected gradient vector length is proportional to the class
size, and so the gradient vector is dominated by the prevalent class and con-
sequently the weights are determined by this class. SVMs are thought to be
more robust to the class imbalance problem since they use only a few support
vectors to calculate region boundaries. However, in a two class problem, the
boundaries are determined by the prevalent class, since the algorithm tries to
find the largest margin and the minimum error. A different approach is taken
in one-class learning, for example one class SVM, where the model is created
based on the samples of only one of the classes. In [Raskutti and Kowalczyk
(2004)] the optimality of one-class SVMs over two-class SVM classifiers is
demonstrated for some important imbalanced problems.

Recently, great effort has been done to give better solutions to class im-
balance problems (see [Sun et al. (2009); Garćıa et al. (2007); Guo et al.
(2008)] and references therein). In most of the approaches that deal with
an imbalanced problem, the idea is to adapt the classifiers that have good
accuracy in balanced domains. A variety of ways of doing this have been
proposed: changing class distributions [Chawla et al. (2002, 2003); Kolez
et al. (2003)], incorporating costs1 in decision making [Batista et al. (2004);
Barandela and Garcia (2003)], and using alternative performance metrics in-
stead of accuracy in the learning process with standard algorithms [Garćıa
et al. (2012)].

In this work we propose a different approach to this problem, design-
ing a classifier based on an optimal decision rule that maximizes a cho-
sen evaluation measure, in this case the F-measure [van Rijsbergen (1979)].
More specifically, if Ω is the feature space, we are looking for the classifier
u : Ω→ R that maximizes the F-measure. Here, given the feature vector x,
the classifier (or decision function) u assigns the class ω+ if u(x) > 0, and
class ω− if u(x) < 0. We address this problem by proposing an energy E[u]
such that its minimum is achieved for the optimal classifier u (in the sense of
the F-measure). We solve this optimization problem using a gradient descent
flow, inspired by the level-set method [Osher and Sethian (1988)]. Although
the analysis is made for F-measure, it could be extended to other measures.
In the particular case when the chosen measure is the accuracy the proposed
algorithm is equivalent to the Bayes approach.

We also show that, in contrast with common solutions, the proposed al-

1The missclassification cost can be set by experts or learned Sun et al. (2009).
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gorithm does not need to change original distributions or arbitrarily assign
misclassification costs to find an appropriate decision rule for severe imbal-
anced problems. Although there is consensus about the need of using suitable
evaluation measures for classifier design, to the best of our knowledge no tech-
nique has been proposed that optimizes these alternative measures over all
decision frontiers.

The rest of the paper is organized as follows. In Section 2 the optimal
classifier for the F-measure is proposed, and a numerical scheme to obtain it
is presented. Experimental results are shown in Section 3, and we conclude
in Section 4.

2. Proposed Classifier Formulation

In this paper we assume that there are two classes, one called here the
negative class, that represents the majority class, usually associated to the
normal scenario, and the other called the positive class that represents the
minority class. We define C = {ω+, ω−} as the set of possible classes, being
TP (true positive) the number of x ∈ ω+ correctly classified, TN (true neg-
ative) the number of x ∈ ω− correctly classified, FP (false positive) and FN
(false negative) the number of x ∈ ω− and x ∈ ω+ misclassified respectively.
Let us also recall some related well know definitions:

Accuracy: A = TP+TN
TP+TN+FP+FN

Recall: R = TP
TP+FN

Precision: P = TP
TP+FP

F-measure: Fβ = (1+β2)RP
β2P+R

Precision and Recall are two important measures to evaluate the performance
of a given classifier in an imbalance scenario. The Recall indicates the True
Positive Rate, while the Precision indicates the Positive Predictive Value.
The F-measure combines them with a parameter β ∈ [0,+∞). With β = 1,
Fβ is the harmonic mean between Recall and Precision, meanwhile with
β � 1 or β � 1, the Fβ approaches the Recall or the Precision respectively.
A high value of Fβ ensures that both Recall and Precision are reasonably
high, which is a desirable property since it indicates reasonable values of
both true positive and false positive rates. The best β value for a specific
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application depends on which is the adequate relation between Recall and
Precision for each particular problem (Manning et al., 2008).

The task of finding a classifier consists in defining the regions Ω+ and
Ω− of Ω, such that if x belongs to Ω+/Ω−, it will be classified as belonging
to the positive/negative class. To train the classifier to maximize a given
performance measure, we must therefore find the regions Ω+ and Ω− that
give maximal performance measure for the available data set.

In order to find the classifier that maximizes a given performance measure,
we must be able to express the quantities FN , FP and TP in terms of Ω+

and Ω−. These can be calculated by computing which points of the training
data set belong to the regions Ω+ and Ω−. However, for the realization of the
proposed algorithm, we will estimate these quantities in terms of probability
densities for the positive and negative classes. To this end, we suppose that
we have estimates for certain density functions, f+(x) and f−(x), such that
in terms of these functions, we have the following approximations for the
quantities FN , FP ,TP and TN :

FN = P

∫
Ω−

f+(x)dx (1)

FP = N

∫
Ω+

f−(x)dx (2)

TP = P

∫
Ω+

f+(x)dx (3)

TN = N

∫
Ω−

f−(x)dx (4)

where P and N are the number of positive and negative instances in the
training database, and the distribution functions f+(x) and f−(x) satisfy∫

Ω

f±(x)dx = 1 (5)

If these functions are known, the task of finding the optimal classifier consists
in finding the regions Ω+ and Ω− that maximize the chosen measure. As was
mentioned before, this choice depends on the particular problem or applica-
tion considered. In this paper we have chosen F-measure as the evaluation
measure, and in the next subsection we present an algorithm to determine
the optimal boundaries for this measure. However, the framework is general,
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and the generalization to other evaluation measures that combine FN,FP,TN
and TP is straightforward.

2.1. Optimal boundary determination for F-measure

It can be seen that maximizing F-measure is equivalent to minimizing the
quantity:

ε =
β2FN + FP

TP
. (6)

The quantities FN , FP , and TP can be expressed in terms of the functions
f±(x), as was defined in the previous section. Therefore the task of training
a classifier that maximizes F-measure (and minimizes ε) can be approached
as finding the regions Ω+ and Ω− that minimize

E =
k
∫

Ω−
f+(x)dx+

∫
Ω+
f−(x)dx∫

Ω+
f+(x)dx

, (7)

where

k = β2 P

N
. (8)

The extent to which the quantity E given by (7) is representative of the
quantity ε depends on the extent to which the densities available, given by
the functions f±(x) defined in the previous section, represent the distribution
of points in the training data. We will not focus in this work on the task
of finding appropriate probability densities, and for the sake of this paper
we suppose that they are indeed available so that the quantity E is a good
approximation of the quantity ε calculated directly from the available data
set.

To perform the minimization of the quantity E, we express the problem
in terms of an auxiliary function u(x), defined so that u(x) > 0 if x ∈ Ω+

and u(x) < 0 if x ∈ Ω−. For instance, the signed distance to the boundary
between Ω+ and Ω− is commonly used in the implementation, since it has
proven to give good results. The boundary between the regions Ω+ and
Ω− is therefore given by the surface which satisfies the equation u(x) = 0.
Definition (7) may be thus expressed as a functional of u(x),

E[u] =
k
∫
Hε(−u(x))f+(x)dx+

∫
Hε(u(x))f−(x)dx∫

Hε(u(x))f+(x)dx
, (9)
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where Hε(y) is a smoothed Heavyside function and the domains of integration
are now all Ω. In these terms, the task of training the classifier consists in
finding a function um(x) which minimizes this functional. To this end, we
must find the function um(x) that cancels the first variation of the functional
E[u], which can be written in terms of the functional derivative of E[u].
Calculating this functional derivative we have:

E ′[u(x)] =
1∫

Hε(u)f+(x)dx
δε(u(x))[f−(x)− (k + E[u])f+(x)] (10)

where δε(y) is the derivative of Hε(y), that is, a smoothed Dirac delta func-
tion. To solve the minimization problem, we must now find the classifier
function um(x) that satisfies

E ′[um(x)] = 0 (11)

2.2. Implementation

The classical gradient descent flow method is used in order to solve the
Euler-Lagrange equation (11). Specifically, the following PDE (Partial Dif-
ferential Equation) is solved with a certain initialization u0 :{

∂u(x,t)
∂t

= −E ′[u(x, t)]
u(x, 0) = u0(x)

(12)

When the steady estate of this PDE is reached, equation (11) is satisfied
(see [Sapiro (2001)] for more details). Since equation (11) is to be solved
numerically, in principle any sufficiently regular densities f(x) are allowed,
and therefore the proposed algorithm does not depend on the particulars of
the density estimation process.

The introduction of the auxiliary function u(x) is motivated by the Level
Set Method [Osher and Sethian (1988)], and although it is not the same
kind of curve evolution, these approaches share some known implementation
details that must be taken into account. For instance, in order to guarantee
stability, it is usual to reinitialize (after a certain amount of iterations) the
function u(x) in order to keep it as a distance function. The only relevant
information of u(x), in terms of the evaluation of the functional E[u], is the
partition (Ω+,Ω−) that u(x) defines. Therefore, it is possible to reinitialize
the function u(x) to the signed distance function to the zero-level set, since
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this keeps the sign of u(x) unchanged, and therefore the classifier and the
energy E[u] remain unchanged. For the explicit scheme and more details see
[Sussman et al. (1994)].

Another usual practice is to add a regularization term ∆u to the flow (12)
(corresponding to a Tikhonov term in the functional [Tikhonov and Arsenin
(1977)]). This latter is a minor detail that does not significantly affect the
resulting function u.

The resulting numerical scheme to solve (11) is then:

un+1 = un −∆tG

where

G = δε(u
n)(f2−β2f1)

∫
Ω

f1Hε(u
n)dx− δε(un)f1

∫
Ω

[f2Hε(u
n) + β2f1Hε(−un)]dx+ λ∆u

and ∆t is the time step. This iterative algorithm is repeated until con-
vergence (i.e. the difference between un and un+1 is small).

At each time t, the zero level set of u(x, t) is the decision frontier of the
classifier. In Figure 1, the evolution of this frontier is shown, from the initial
u0 to the final u(x, T ), for a certain database (described in the next section).
The densities of the positive and negative classes are represented in green
and red respectively.

Although we have no rigorous proof on the existence of a solution to
the equation provided, we have exhaustive empirical evidence that if the
zero level set of the initialization u0 includes or intersects all the connected
components of the support of either one of the densities, then the gradient
descent flow converges to the global optimum.

The code is available at www.fing.edu.uy/~matiasdm.

3. Experimental Results

3.1. Synthetic Data

3.1.1. Data description

For the experimental validation, we used the four different databases
shown in Figure 2. Database 1 has a negative class with a Gaussian dis-
tribution while the positive samples has a ring distribution (Figure 2(a)).
In this particular case there are 5000 samples of the negative class and the
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(a) Initialization (b) After 100 iterations. (c) After 600 iterations.

(d) After 700 iterations. (e) After 800 iterations. (f) After 1200 iterations.

Figure 1: Evolution of the zero level set of u (decision frontier).

same amount of the positive class. Database 2 has a multimodal distribu-
tion for both the positive and negative samples. For this database there are
10000 samples of the negative class and 1000 samples of the positive class.
The third database has a horseshoe distribution with 10000 samples of the
majority class and 1000 samples of the minority class. The last database has
the same distributions as database 1, but with 10000 negative samples and
1000 positive samples.
The selected databases do not play any particular role, the idea was to
consider different scenarios such as: imbalance (Databases 2-4) and balance
(Database 1), and also evaluate a wide variety of shapes for the classes dis-
tributions. In these experimental comparisons, a classical kernel density esti-
mation technique was used to infer the densities of the positive and negative
classes (Wand and Jones, 1994).
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(a) Database 1 (b) Database 2 (c) Database 3 (d) Database 4

Figure 2: Databases

3.1.2. Numerical results

We compare the proposed algorithm, from now on called OFC (acronym
for Optimal F-measure Classification), with One Class SVM (with and with-
out kernel), the C45 tree and the traditional Naive Bayes classifier. The
parameters for each algorithm were chosen to maximize the F-measure (per-
forming 10-fold cross validation). In the next subsection we will briefly ex-
plain why we chose those algorithms and what considerations must be taken
into account before the performance comparison.

Table 1 shows in detail the results obtain for the Database 4. Each
algorithm was run 10 times (and for each execution 10-fold cross validation
was performed), using β = 1 and ε = 10−5. As it can be seen, the best
F-measure was obtained for OFC (as expected) followed by the One Class
SVM classifier.

Classifier: Fβ Acc Rec Pre
OFC 33.67± 0.14 71.98± 0.10 78.25± 0.44 21.45± 0.09
C45 18.64± 0.79 87.89± 0.17 15.26± 0.73 23.98± 0.99

OSVM 25.30± 0.50 62.13± 0.62 70.58± 2.41 15.41± 0.27
OSVM+ker 31.97± 0.68 67.17± 1.63 84.76± 1.77 19.71± 0.60

N. Bayes 1.54± 0.42 90.61± 0.02 0.81± 0.23 16.37± 2.99

Table 1: Performance values (%) over 10 executions of each algorithm using database 4.
β = 1

It is worth mentioning the Naive Bayes performance. It is the algorithm
with the best accuracy, which is expectable, but with the poorest F-measure.
This is the typical behavior of those classifiers which are designed for minimiz-
ing the classification error in problems were the classes are highly overlapped
and unbalanced. To illustrate this point we consider a 1-D problem with
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Gaussian distributions for both the negative and positive classes, with means
1 and 3 respectively, and the unitary variance. The number of samples is 1000
for the positive class and 50000 for the negative class. The decision prob-
lem (i.e. the determination of the regions Ω+ and Ω−) in this toy example
amounts to choosing a decision threshold τ which sets the frontier between
the classes in the real line, so that Ω− = {−∞, τ} and Ω+ = {τ,∞}. So for
different values of τ , one would get different values of the Accuracy, Recall,
Precision and F-measure. Figure 3 shows these dependencies as a function
of this decision threshold. We can see that the OFC solution is the one that
gives the best F-measure, with a good tradeoff between recall and precision
(consistent with the β = 1 chosen) and a loss of approximately 0.5% of Ac-
curacy compared with the optimal accuracy that could be obtained by the
Naive Bayes solution (τ = 3.96). Getting a better Accuracy or Precision,
but very bad recall, could be a bad solution when the positive class is the
relevant one (cancer lesion, fraud samples). We can also see from this figure
that setting the threshold away from the optimal F-measure point it is possi-
ble to get a better value of Precision, sacrificing the value of the Recall, and
conversely. This is consistent with the result found for OSVM+ker shown in
Table 1, which has slightly lower F-measure than OFC, getting in this way
a higher Recall yet lower Precision.

In Figure 4 the mean Fβ values obtained over 10 executions using databases
1-4 are shown. The standard deviations were under 1% in all cases. As was
explained above, when the classes have similar amounts of samples, or sep-
arable distributions (databases 1-2), the differences between the traditional
algorithms (C4.5 - NB) and those designed for imbalance problems (OSVM
- OFC) is not so important, while in the other cases (databases 3-4) the
difference became more significant.

Finally the Figure 5 shows an additional experiment that illustrates the
robustness of the algorithm when varying β (which changes the weight of the
Recall and Precision in the Fβ definition). For this experiment, database 3
was used.

3.2. Experiment with skin segmentation data

To conclude this section, we present an additional experiment with skin
segmentation data [Bhatt and Dhall (2010)] from the UCI Machine Learning
Repository. The skin dataset was collected by randomly sampling R,G,B
(red, green, blue) values from face images of various age groups (young, mid-
dle, and old), race groups (white, black, and asian), and genders obtained
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Figure 3: Performance measures for several values of the decision threshold τ , for the
unidimensional problem with β = 1. F-measure in blue (solid), Recall in green (decreasing
dashed), Precision in black (increasing dashed) and Accuracy in red (dash-dot).

from FERET database and PAL database. Total sample size is 245057 sam-
ples; out of which 50859 correspond to skin samples and 194198 to non-skin
samples. The results are shown in Figure 6, where OFC and OSVM are com-
pared for several values of β. One class SVM2 achieves the highest Recall but
with a poor Precision, therefore obtaining a low F-measure, while our ap-
proach outperforms OSVM in terms of F-measure as expected. Observe that
for values β � 1, maximizing the F-measure is equivalent than maximizing
the Recall, and therefore both approaches (OSVM and OFC) are practically
equivalent. In addition, the time required for OFC was approximately ten
times lower than for OSVM.

3.3. Analysis and considerations

In the previous subsection the results for different databases were pro-
vided, showing that the proposed algorithm is suitable for imbalanced prob-
lems. Even though in this work we include the results obtained for the

2As in the previous experiments OSVM parameters were set using cross validation
selecting those parameters that gives the highest F-measure
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Figure 4: Fβ values for different classifiers using databases 1-4

algorithms C45, Naive Bayes and One Class SVM (with and without kernel)
for the sake of completeness, we consider that the performance comparison
should be done with One Class SVM, since the other algorithms are not
designed for imbalanced problems.

The results of Naive Bayes and C45 reinforce the well-know behavior: tra-
ditional approaches have good performance in the most common (balanced)
problems, but they are not adequate for imbalanced problems.

On the other hand, several techniques are proposed in the literature to
improve the performance of this type of algorithms in unbalanced scenarios,
such as SMOTE, ADABOOST, SMOOTEbost among others (see Chawla
et al. (2002, 2003); Masnadi-Shirazi and Vasconcelos (2007); López et al.
(2012); Guo et al. (2008); Garćıa et al. (2006); Garćıa et al. (2007, 2012)
and references therein for more details). However, all these methods are pre
or post-processing techniques that use the base classifiers as black boxes,
and the main point of this section is to compare these base classifiers by
themselves.

In terms of the computational performance of the algorithm proposed,
through the examples studied it was found that the algorithm (as imple-
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Figure 5: Fβ performance of the different classifiers, for several values of β.
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Figure 6: Algorithm comparison using skin segmentation data. F-measure for OFC (in
black) and One Class SVM (in blue)
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mented for the tests realized) runs very efficiently in low dimensions, for
instance running much faster than the OSVM algorithm used to compare
performances in the example using skin segmentation data. However, it
must be noted that the memory storage of our implementation depends on
the size of the grid used to compute the decision function u(x). Neverthe-
less, efficient solutions to this problem are available, for instance allowing to
evaluate the kernel density estimation at m evaluation points from n sample
points in O(n+m) Raykar et al. (2010).

4. Conclusions and Future Work

We have proposed a new framework for classification in imbalanced prob-
lems, and classifier design in general. We presented the optimality conditions
for the decision frontier to maximize the F-measure, and a numerical scheme
to solve the problem.

The technique is general, in the sense that it can be used to obtain optimal
classifiers with respect to other evaluation measures (in addition to the F-
measure).

The analysis is supported by experimental results, which show the poten-
tial and practical use of the proposed scheme.

There are other important properties and experiments to consider, mak-
ing it interesting to further study the proposed framework. For instance,
the feasibility and convenience of using kernels with the proposed classifier is
subject of future research, as well as the combination of the proposed frame-
work with other techniques used to improve traditional classifiers (such as
SMOTEboost or ADABOOST).

The application of the optimal Fβ classifier to other very important prob-
lems, such as fraud detection (Di Martino et al. (2012)) and polyp detection
Fiori (2011) is part of future work as well.
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