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Abstract

The estimation of fecundity and reproductive cells (oocytes) development dynamic is essential for an

accurate study of biology and population dynamics of fish species. This estimation can be developed using

the stereometric method to analyse histological images of fish ovary. However, this method still requires

specialized technicians and much time and effort to make routinary fecundity studies commonly used in

fish stock assessment, because the available software does not allow an automatic analysis. The automatic

fecundity estimation requires both the classification of cells depending on their stage of development and

the measurement of their diameters, based on those cells that are cut through the nucleous within the

histological slide. Human experts seem to use colour and texture properties of the image to classify cells,

i.e. colour texture analysis from the computer vision point of view. In the current work, we provide an

exhaustive statistical evaluation of a very wide variety of parallel and integrative texture analysis strategies,

giving a total of 126 different feature vectors. Besides, a selection of 17 classifiers, representative of the

currently available classification techniques, was used to classify the cells according to the presence/absence
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of nucleous and their stage of development. The Support Vector Machine (SVM) achieves the best results for

nucleous (99.0% of accuracy using colour Local Binary Patterns (LPB) feature vector, integrative strategy)

and for stages of development (99.6% using First Order Statistics and grey level LPB, parallel strategy)

with the species Merluccius merluccius, and similar accuracies for Trisopterus luscus. These results provide

a high reliability for an automatic fecundity estimation from histological images of fish ovary.

Keywords: Histological image, fish ovary, fecundity, stereology, classification, colour texture analysis, pyramid decompo-

sition, multiresolution analysis, fractal analysis, local binary patterns, wavelets, coocurrence matrix, sum and difference

histogram, support vector machine, statistical classifiers, ensembles, neural networks.

1 Introduction

The description of the reproductive strategies and the assessment of fecundity are fundamental topics in the

study of biology and population dynamics of fish species. Fecundity is also important as an indicator of stock

production and a reference point for management and sustainable fisheries [1]. The importance of determining

fecundity has led to many research efforts to provide easier, faster and low cost methods since many years

ago [2]. Stereometry [3] is one of the most precise and accurate method to estimate fecundity from histological

images, however it is very time-consuming and it needs specialized technicians, which difficults its use routinely.

It is based on the stereological method, which relates tridimensional parameters of a structure (in our case the

fish ovary) with bidimensional measures obtained from sections of the structure. This allows to estimate the

number of ovary cells (called oocytes) belonging to each category from histological sections, which are routinely

elaborated in the laboratory. Figure 1 shows some histological images of fish species Merluccius merluccius (in

English, European hake). The fecundity estimation implies the measurement and classification of cells in the

histological images. Specifically, the diameter of matured cells with nucleous must be measured, so that the

cells must be classified according to the presence and absence of nucleous (classes With Nucleous, labeled as

WN, and Without Nucleous, labeled as WTN, respectively). Besides, the areas of cells in the different stages of

development must be calculated, which requires to classify the cells in three stages of development defined by

the experts: Cortical Alveoli (labeled as AC), Hydrated (HID) and Vitellogenic/Atretic (V/AT). Unfortunately,

the routinary fecundity estimation using stereometry is rarely developed, because it still requires much work

and time of specialized technicians, even with the currently available software. In order to improve this support

to technicians, we recently proposed a publically available software tool called Govocitos1 which automatically

estimates fecundity from histological images of fish ovary [4]. Our software includes the following modules: 1)

unsupervised and supervised detection of matured cells in the histological image; 2) unsupervised classification

of matured oocytes according to the presence/absence of nucleous and to its development stage: the experts can

easily modify or supervise the unsupervised detection or classification of oocytes using the graphical interface;

3) automatic fecundity estimation using the matured oocytes which have been recognized and classified. The

information required and calculated by Govocitos is supported by either local or web-based databases and XML

1https://forxa.mancomun.org/projects/govocitos
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files, which allows to check the fecundity estimations in a later time. In this paper we only focus on the design

and evaluation of the classification module, developing an exhaustive statistical evaluation which compares a

wide variety of different colour texture techniques and classifiers for the two classification problems (nucleous

and stages). The paper is organised as follows. Section 2 briefly overviews the related work on microscopic

image analysis and colour texture analysis. Sections 3 and 4 describe the applied texture feature extractors

and classifiers respectively. Section 5 discusses the experimental results, and section 6 summarizes the major

outcomes.

Figure 1: Examples of histological images of fish species Merluccius merluccius. The cell outlines were manually

annotated by experts using Govocitos. The continuous (resp. dashed) line are cells with (resp. without)

nucleous. The green, red, blue and black cell outlines represent respectively the Hydrated, Cortical Alveoli,

Vitellogenic and Atretic stages of development.
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2 Related work

The selection of an appropriate set of features is a fundamental challenge in pattern recognition problems [5].

In our problems of nucleous and stages classification, texture and colour seem to be relevant for the human

expert perception. Nevertheless, while the ability of humans to distinguish different colour textures is clear,

their automated description and recognition have been proven to be quite complex. Colour texture analysis

relates the chromatic and textural properties of images. The approaches combining colour and texture can be

grouped into parallel, sequential and integrative [6]. The parallel aproach joins the grey level texture features

of the image to colour ones, and they are mainly used for image retrieval applications [7]. The sequential

approaches use colour analysis to partition the image, followed by the processing of grey level texture of each

region [8]. However, we already start from the image partitioned in regions (cells), so this approach is not

interesting to our problem. The integrative methods, in their simplest version, use the union of the grey

level texture features of each colour channel. The more sophisticated integrative methods imply the collective

analysis of colour and texture properties. This analysis require vectorial computations, that are more complex

and less intuitives than their scalar equivalents. Consequently, the majority of published works compute the

texture features on grey level images [9, 10], or analyse grey level textures for each colour channel [11].

Grey level texture descriptors model the spatial relationship of a pixel and its neighbours, which provide

information of the image structure (properties such as smoothness, coarseness and regularity). Experiments

in colour texture analysis [9] conclude that the use of colour improves the performance of standard grey level

texture analysis. However, most of the published works only use texture features [12, 13, 14, 15, 16]. Other

examples of texture classification in computer vision applications are: fabric defect detection [12], quality

evaluation and inspection of food [17, 18, 19], medical image analysis [20, 14] and remote sensing [21]. Texture

features are also used to clasify objects in microscopical images [13, 22], and specifically in images of biological

tissues (histological images) [14, 10]. However, in spite of the research done, we are no aware of any research

that automatically analyses histological images of fish ovary.

In relation to colour space, Palm [6] achieved similar results comparing RGB and LUV colour spaces,

using parallel and integrative approaches. Therefore, considering that most devices acquire RGB images, and

that the colour conversion to LUV would require additional overhead, we choose the RBG colour space for

our experiments. In the other hand, we combine texture features belonging to different families, following the

recommendation of [23], which finds significant improvements in image segmentation when texture methods from

multiple families are integrated. In the current work, we investigate the influence of the image properties (colour

and texture), of the strategy to combine colour and texture features (integrative and parallel approaches), and

of the classifier for nucleous and stages classification of cells in histological images of fish ovary. The cell shape

is irregular, but many texture features like wavelet or Gabor transform must be applied on squared images with

side power of two. In a preliminary work [24], we proved that the computation of texture features on irregular

shapes instead on squared shapes significantly improves the accuracy of nucleous and stages classification. The

following section describes the methods that we use in our experiments to extract colour and texture features,
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adapted to be computed on irregular regions.

3 Feature extraction

Colour texture analysis can be tackled from different perspectives: simple colour features, grey level texture

analysis, multiscalar (multiresolution or pyramid) grey level texture analysis and integrative colour texture

analysis. Parallel approaches are directly derived as the union of colour and grey level texture analysis. The

simplest integrative colour texture analysis is also derived as the union of the grey level texture features for each

colour channel. This section is organized to briefly describe the most popular methods in each group adapted to

operate on irregular regions. Let G = {0, . . . , Ng − 1}, be the set of Ng quantized grey levels, S a finite subset

of indexes specifying a region to be analysed (in our case, the cell of fish ovary), and I(x, y) ∈ G the grey level

in the pixel (x, y) ∈ S.

3.1 Statistical colour features

Let B = {r, g, b} be the colour channels of a colour RGB image and let Ip(x, y) ∈ G be the grey level in the

pixel (x, y) ∈ S of the channel p ∈ B. The histogram of an region S is the probability of a pixel (x, y) ∈ S

obtaining a certain value i ∈ G, and it is denoted as P (i). It is normalized [25] dividing by the total number

of pixels of region S. From the histogram for each channel P p(i), p ∈ B, the following colour descriptors are

derived:

• CM (Colour Mean): Mean value on each colour channel: CM = {µr, µg, µb} (3 features) and µp =
∑Ng−1

i=0 iP p(i), p ∈ B.

• FOS (First-Order Statistics): Provide information about the distribution of the grey levels that fall inside

the region S. They are the simplest features to characterize images, with interesting properties such as

invariance to geometric transformations. The vector FOS includes five statistics on each colour channel

p ∈ B (15 features in total): mean grey level (µp), variance (σp), third (mp
3) and four (mp

4) statistical

moments, and entropy (Hp).

µp =
∑

i

iP p(i) (1)

σp =

√

∑

i

(i− µp)2P p(i) (2)

mp
q =

∑

i

(i− µp)qP p(i) q ∈ {3, 4} (3)

Hp = −
∑

i

P p(i) log[P p(i)] (4)

where i = 0, . . . , Ng − 1.
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• HFD (Histogram Fourier Descriptors): The Fourier descriptors [26] of the histogram for each colour

channel (9 features).

Since all these features are based on histograms, they are very sensitives to changes in illumination.

3.2 Grey level texture descriptors

These methods caracterize the local structure of a texture, being based on several local measurements like the

relationship between the values of neighbouring pixels.

3.2.1 COMS (Co-Ocurrence Matrix Statistics)

The Grey Level Coocurrence Matrix (GLCM) of the image is based on the estimation of the second-order

joint probability density function [27]. This matrix conveys information like the simultaneous occurrence of

two values in a certain relative position. For the construction of a rotational invariant co-ocurrence matrix we

consider all pairs of pixels that have a fixed distance (or scale) d from each other. Such Ng ×Ng-order matrices

C(d) are only parametrised by d, and we have as many matrices as different distances or scales we choose. The

element Cij(d) is the total number of pairs with values i, j ∈ G at distance d from each other identified in the

irregular region S:

Cij(d) =
∑

z∈S

∑

|n|=1

δ[i− I(z)]δ[j − I(z+ dn)] (5)

where z ≡ (x, y), n is the unit vector pointing to a chosen direction, I(z + dn) is a grey value of another

pixel that is at distance d from pixel z and the orientation defined by unit vector n. In the above expresion

δ(a− b) = 1 if a = b and δ(a− b) = 0 otherwise. In practice, we create a list of pixels that are within a distance

d ± 0.5 from a given starting pixel. The number of neighbours for distances d = 1, . . . , 8 are 8, 12, 18, 32, 28,

40, 40 and 48 respectively. When the image is scanned in a raster way, from top left to bottom right, only half

of the pixels need to be visited. The probability density function Pd(i, j) for each d is obtained dividing all

elements of C(d) by the number of co-occurences for each d. This probability Pd(i, j), i, j = 0, . . . , Ng − 1, is

commomly characterized by the following features: energy, correlation, entropy, contrast and homogeneity:

Energy =
∑

i

∑

j

Pd(i, j)
2 (6)

Correlation =
1

σxσy

∑

i





∑

j

i j Pd(i, j) − µxµy



 (7)

Entropy = −
∑

i

∑

j

Pd(i, j) log[Pd(i, j)] (8)

Contrast =
∑

i

∑

j

(i− j)2Pd(i, j)

(Ng − 1)2
(9)

Homogeneity =
∑

i

∑

j

Pd(i, j)

1+ | i − j |
(10)
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where µx =
∑

i i
∑

j Pd(i, j), µy =
∑

j j
∑

i Pd(i, j), σx =
∑

i(i−µx)
2
∑

j Pd(i, j) and σy =
∑

j(j−µy)
2
∑

i Pd(i, j).

All the sums over i, j are for i, j = 0, . . . , Ng − 1. The vector COMS includes the 5 features in eqs. 6-10 for

d = 1.

3.2.2 GLRLS (Grey Level Run Length Statistics)

A set of consecutive pixels in the image having the same grey level value is called grey level run [28], and the

number of pixels is the run length. Once the run length matrix is calculated, the following features are derived:

SRE (Short Run Emphasis), LRE (Long Run Emphasis), GLNU (Grey Level NonUniformity), RLN (Run

Length Nonuniformity) and RP (Run Percentage). Tang [29] proposed also the following ones: LGRE (Low

Grey Level Run Emphasis), HGLRE (High Grey Level Run Emphasis), SRLGE (Short Run Low Grey Level

Emphasis), SRHGE (Short Run High Grey Level Emphasis), LRLGE (Long Run Low Grey Level Emphasis)

and LRHGE (Long Run High Grey Level Emphasis). The run length matrix was also normalized by the number

of runs in the region S. The vector GLRLS includes 11 features.

3.2.3 NGLDS (Neighbouring Grey Level Dependence Statistics)

This method considers the relationship between an element and all its neighbouring elements at one time. It is

based on the calculation of a Neighbouring Grey Level Spatial Dependence Matrix (NGLDM) of the image [30].

The vector NGLDS includes 5 features derived from NGLDM: SNE (Small Number Emphasis), LNE (Large

Number Emphasis), NNU (Number NonUniformity), SM (Second Moment) and ENT (Entropy).

3.2.4 SDH (Sum and Difference Histograms)

They were introduced by Unser [31] as an alternative to the usual co-occurrence matrices used for texture

analysis with the advantage of decreasing the computation time and memory storage. Let zk = (xk, yk) ∈ S

and zk+d ∈ S be two pixel elements separated by a distance d with grey levels I(zk), I(zk+d) ∈ G. For a relative

displacement d, the sum and difference are define as sk = I(zk)+I(zk+d) and dk = I(zk)−I(zk+d) respectively.

The normalized sum and difference histograms are defined as Ps(i) = hs(i)/N and Pd(j) = hd(j)/N , where

hs(i) = Card{zk ∈ S : sk = i}, hd(j) = Card{zk ∈ S : sd = j}, N = Card{S} =
∑

i hs(i) =
∑

j hd(j), where

i = 0, . . . , 2Ng − 2, and j = −Ng + 1, . . . , Ng − 1. The resulting two vectors, Ps = {Ps(0), . . . , Ps(2Ng − 2)}

and Pd = {Pd(−Ng + 1), . . . , Pd(Ng − 1)} have dimension 2Ng − 1. Although these vectors can be directly

used as texture descriptors, it may be necessary to reduce their dimensionality in order to use as an input for

many classifiers. Statistical information can be extracted from the histograms by computing quantities as the

mean, variance, statistical moments and entropy (equations 1-4) on both histograms Ps and Pd. Unser also

proposed a set of statistical features, which are equivalent to the most widely used features computed from the

coocurrence matrices (see equations 6-10) as:
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Energy =
∑

i

Ps(i)
2
∑

j

Pd(j)
2 (11)

Correlation =
1

2





∑

i

(i− 2µ)2Ps(i) −
∑

j

j2Pd(j)



 (12)

Entropy = −
∑

i

Ps(i) log[Ps(i)] −
∑

j

Pd(j) log[Pd(j)] (13)

Contrast =
∑

j

j2Pd(j) (14)

Homogeneity =
∑

j

Pd(j)

1 + j2
(15)

where i = 0, . . . , 2Ng − 2; j = −Ng + 1, . . . , Ng − 1, and µ =
∑

i iPs(i)/2. We test the performance of two

feature vectors called SDH and SDHC. The former constains 10 features defined in eqs. 1-4 on histograms hs

and hd. The SDHC vector encloses the 5 features defined in eqs. 11-15.

3.2.5 LBP (Local Binary Patterns)

Texture analysis using LBP was first proposed by Ojala et al. [32]. Local Binary Patterns extract local structures

of images by comparing each pixel with its neighbours. At central pixel zc = (xc, yc), each neighbouring pixel is

assigned a binary label, which can be either 0 or 1, depending on whether the center pixel has higher intensity

value than the neighbouring pixels (angularly evenly distributed sample points over a circle with radius R

centered at the center pixel). The rotation invariant LBP label LBP ri
R,P (zc) for that center pixels zc, given the

radius R and the number of involved neighbours P , is given by:

LBP ri
P,R(zc) = min

0≤n<P

{

P−1
∑

i=0

u(∆I)2(i+n)%P

}

(16)

where ∆I = I(zi) − I(zc), zi is the i-th neighbouring pixel, i = 0, . . . , P − 1, I(zi) is the grey level in pixel

zi and u(x) = 1 for x ≥ 0, u(x) = 0 otherwise. The symbol % denotes the remainder operation. In our

implementation, R = 1 and P = 8. Rotating an image causes the circular shifting effect of the binary labels

at locations z0, . . . , zP−1. This shift effect is removed by finding the minimum value among all the possible

values of n in eq. 16. For P = 8, this minimum value only takes the following 36 rotation invariant patterns:

LBP ri={0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 43, 45, 47, 51, 53, 55, 59, 61, 63, 85, 87,

91, 95, 111, 119, 127}. We use as texture descriptors the following vectors: i) The normalized histogram of the

LBP ri patterns for pixels zc ∈ S, denoted by LBP ri
h (36 features); and ii) From the original grey level image

I(x, y), we compute the image Iri(x, y) with the rotation invariant LBP, over which we calculate the grey level

coocurrence matrix. The vector, called LBP ri
c , includes the five texture features calculated in subsection 3.2.1

considering Iri(x, y) as input image.

Ojala [32] uses a subset of these patterns, called uniform patterns, LBP riu. The uniform LBP refers to the

patterns which have limited transitions from 0 to 1 or vice versa, lower or equal than two, in the circular binary

representation. In [32], the uniform patterns account for around 90% of all patterns in a R = 1 and P = 8

neighbourhood, but [33] demostrated that this does not hold for all kind of images. Similarly to rotation invariant
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patterns, we use as texture descriptors the normalized histogram of LBP riu and the statistics calculated from

the coocurrence matrix of LBP riu image. The resulting texture vectors are called LBP riu
h (10 features) and

LBP riu
c (5 features) respectively.

Given that in the LBP, rotation invariant or uniform, we simply calculate differences between the central

pixel and its neighbourhood, LBP ri or LBP riu characterize the local image structure and they are not affected

by any monotonic transformation of the grey scale. It is an excellent measure of the spatial pattern but, by

definition, it discards contrast. Ojala et al. [32] propose to use the local variance as a measure of contrast:

v =
1

P

P−1
∑

i=0

[I(zi)− µ]2 µ =
1

P

P−1
∑

i=0

I(zi) (17)

For each original grey level image, we calculate an image of real numbers containing the variance at each

pixel. We define the vector LBP v
s (5 features), which encloses the mean, variance, third and fourth statistical

moment and entropy of the variance image. Besides, we define the image Iv(x, y) as the variance image equalized

to Ng grey levels. On the pixels (x, y) ∈ S of Iv(x, y), we calculate the statistics on the coocurrence matrix

described in subsection 3.2.1. This texture vector is called LBP v
c (5 features).

3.2.6 FA: Fractal Analysis

The fractal dimension is a useful metric for the analysis of images with self-similar content such a textures [34].

For images with limited resolutions and size, the fractal dimension D is related with the concept of self-similarity

at some scales. Many methods exist to aproximate the fractal dimension of a grey-level or binary image, whose

basis can be summarized in three steps: 1) Measure the quantities of the object using various step sizes; 2) Plot

log(measured quantities) versus log(step sizes) and fit a least-squared regression line through the data points;

and 3) Estimate D as the slope of the regression line. The most wide-spread literature methods can be grouped

in three families: box-counting methods, fractional Brownian motion methods (which are not suitable for

fractal analysis of irregular regions because they are based on Fourier spectrum analysis) and area measurement

methods. Independently of the estimation method, the scale L over which we compute the estimation verifies

1 ≤ L ≤ δmin(S), where δmin(S) is the minimum diameter of region S. Obviously, the number of scales to

use influences the running time of the estimator. For all the fractal estimators, it is generally assumed that

the pixel intensity z = I(x, y) is considered as a point (x, y, z) in three dimensions, i.e. the image is a surface.

The box counting method [35] counts the number of boxes which contain at least one pixel of the surface.

Let us consider the image surface in a cube of size length(S) × width(S) × Ng. This volume is divided into

boxes with volume L×L×L. Let Nb(L) be the number of boxes which contain at least one point lying on the

surface. This value is counted for different box sizes Lk, where k ∈ {1, 2, . . . , ⌊log2(δmin(S))− 1⌋}. The fractal

dimension D is estimated from the relation Nb(L) ∝ L−D. For the probability method [36], let P (m,L)

be the probability that there are m surface points within a box of size L × L × L centered about an arbitrary

point of the region surface. For any value of L we have
∑Np

m=1 P (m,L) = 1, and Np = L2 is the number of

possible points in the box. The number of boxes with size L needed to cover the whole region is computed as
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Nb(L) =
∑Np

m=1 P (m,L)/m. Again, D is estimated from Nb(L) ∝ L−D. The blanket method [37] estimates

the area of the surface by first covering it with a blanket of thickness 2ǫ. This volume is then divided by 2ǫ to

get an estimation of the area. The upper blanket uǫ(z) and lower blanket bǫ(z) are defined as:

uǫ(z) = max

{

uǫ−1(z) + 1, max
|m−z|≤1

{uǫ−1(m)}

}

(18)

bǫ(z) = min

{

bǫ−1(z) − 1, min
|m−z|≤1

{bǫ−1(m)}

}

(19)

for ǫ = 1, 2, . . . . Initially u0(z) = b0(z) = I(z). The volume vǫ is computed as vǫ =
∑

z∈S [uǫ(z) − bǫ(z)].

The area is computed as A(ǫ) = (vǫ − vǫ−1)/2. The fractal dimension D is estimated from A(ǫ) ∝ ǫ2−D. In

either method the fractal texture is parametrised by only a scalar number, which it is not enough for a good

characterization of the texture. Actually, most fractal based approaches describe the texture by only a few

numbers, which are normally: 1) the fractal dimension of modified versions of the original image; or 2) the

logarithmic texture parameters at multiple scales.

3.3 Multiscalar grey level texture features

One of the major developments in texture classification is the use of multiscalar features. Multiscalar analysis can

be made by using neighbourhoods of different sizes (multiresolution) [32] or by using pyramid and multichannel

transform algorithms such as Gabor filters or wavelet transforms [15]. Since Gabor filters use the Fast Fourier

Transform (FFT) they are not suitable for irregular regions of interest. Combining pyramid decompositions with

grey level texture features (section 3.2), we can also compute multiscalar features. In the following subsections,

we describe the wavelet transform, and the multiscalar features.

3.3.1 Wavelet Transform

The dyadic wavelet transform is the most useful technique for multiscalar image analysis [38]. In practice, it

is carried out using two channel filter banks composed of a low-pass (L) and a high-pass (H) filter and each

filter bank is then sampled at a half rate (1/2 down sampling) of the previous frequency. By repeating this

procedure, it is possible to obtain wavelet transforms of any order. With images, the wavelet transform is

implemented in a separable way by filtering the rows and columns. The original image is transformed into

four sub-images, namely low-low (LL), low-high (LH), high-low (HL) and high-high (HH). Wavelet transforms

of any order are obtained repeating this process on the LL sub-image of previous order. Since our support

region is irregular, we must adapt the general wavelet formulation to work with irregular regions. We extract

the minimum power-of-two squared region that encloses S from the original image and we apply the wavelet

transform on that squared region. The mean, variance and energy of the multiresolution transform coefficients

for each subband at each decomposition level can be used for texture classification. Denoting by Iij(x, y) the

j-th sub-image of the i-th level of decomposition, i = 1, . . . , Nl, being Nl the number of decomposition levels

and j = {LL,LH,HL,HH}, the resulting features are: µij = 1
NSi

∑

(x,y)∈Si
| Iij(x, y) |, vij = 1

NSi

∑

(x,y)∈Si
|
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Iij(x, y) − µij |2 and Eij = 1
NSi

∑

(x,y)∈Si
| Iij(x, y) |2, where NSi

is the number of pixels of region Si (i.e.,

region S at decomposition level i). Besides, µij , σij and Eij are respectively the mean, variance and energy

for the i-th decomposition level in the j-th sub-image. We define the feature vectors EWTAll, VWTAll and

MWTAll as the energy, variance and mean respectively, computed on all sub-images (LL, LH, HL and HH) for

each level of decomposition (vectors with 12 features for Nl = 3 levels of decomposition). We also define the

feature vectors EWTLH, VWTLH and MWTLH as the energy, variance and mean respectively on the LL and

HH sub-images for each level of decomposition (vectors with 6 features for 3 decomposition levels).

3.3.2 Multiresolution features

For the Co-Ocurrence Matrix Statistics (COMS) and Sum and Difference Histograms (SDHC) methods (see

sections 3.2.1 and 3.2.4), the distance d between two points in the image describes the scale. The COMS and

SDHC features are computed for different scales. The main problem is to choose the appropiate set of scales that

effectively captures the structural information of the texture keeping a reasonable computational cost. These

feature vectors are called MCOMS and MSDHC respectively (both with 4 scales, summing up 20 features).

For fractal analysis, we compute the logaritmic parameters (in the box counting method), the area parameters

(in the blanket method) and the number of boxes (in the probability method) for different scales. Again, the

main problem is to choose the appropiate set of scales. We carried out some experiments varying the scales to test

its influence on the classification accuracy, selecting the following scales: 1) the box size L = {3, 5, 7, 9, 11, 13}

pixels for the probability method (vector MFDP, 6 features); 2) in the box counting method, the box size

L = {2, 4, 8, 16, 32, 64, 128} pixels (MFDBC, 7 features); 3) in the blanket method, ǫ = 1..20 (vector MFDB

with 20 features).

3.3.3 Pyramidal features

LBP can be extended to multiple scales in order to capture larger scale variations in texture patterns. Ojala et

al. [32] propose the multiresolution LBP by the union of LBP descriptors using neighbours of different sizes (in

particular, they use radius R = 1, 2, 3, and neighbourhood P = 8, 16, 24, respectively). Qian et al. [39] propose

to represent local binary patterns in spatial pyramid domain (PLBP) archieving the bests results representing

pyramid image by low-pass filters of wavelet transform. In order to apply PLBP to irregular regions, the lowest

power-of-two squared region contaning the irregular region is extracted. We apply wavelet decomposition to this

squared region and we calculate LBP on the down sampled irregular region of the LL sub-image for each level

of decomposition. So, the texture feature vectors mentioned in section 3.2.5, LBP ri
h , LBP ri

c , LBP riu
h , LBP riu

c ,

LBP v
s and LBP v

c , are also applied on the Low-Low (LL) sub-image of the pyramid wavelet decomposition,

resulting in the vectors PLBP ri
h , PLBP ri

c , PLBP riu
h , PLBP riu

c , PLBP v
s and PLBP v

c . Finally, although we

do not known any study about the use of pyramid decomposition with the grey level texture features COMS

and SDHC (described in sections 3.2.1 and 3.2.4), we also define the texture vectors PCOMS and PSDHC,

which are respectively COMS and SDHC features calculated on the down sampled irregular region in the LL
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sub-image of the pyramid decomposition.

3.4 Integrative colour texture analysis

As mentioned, many colour texture analysis perform the analysis on each colour channel independently, and then

join the texture features for each channel. But only a very few approaches study the relationship between colour

channels altogether. Ivanovici and Richard [34] propose a colour version of the probability method to compute

the fractal dimension of a grey level image. A colour image is an Euclidean hyper-space where each pixel is

considered a 5-D vector (x, y, r g, b) in the RGB colour space. A direct extension of the fractal probability

method (section 3.2.6) to colour images would count the pixels F = f(x, y, r g, b) for which the Euclidean

distance to the center Fc = f(xc, yc, rc gc, bc) of the hyper-cube is smaller than the box size L. Given that

the Euclidean distance in the RGB space does not correspond to the perceptual distance between colours, the

authors use the Minkowski infinity distance instead, defined by |F − Fc| = maxi=1,...,5{|fi − fci|} ≤ L. Given

that the fractal dimension (one scalar) is not enough for a good texture characterization, we use a vector (called

CMFP) with the number of boxes for the scales 3, 5, 7, 9, 11 and 13 pixels (6 features), as for the grey level

version.

4 Classification

In the following subsections, we describe the different statistical, neural and ensemble classifiers which we use

to classify cells in histological images of fish ovary. The colour texture feature vector of each cell is an input

pattern, and it must be assigned to the class WN or WTN (for nucleous classification), and to the class AC,

HID, or V/AT (for stages classification). In the following, n, N and M denote the number of inputs, training

patterns and classes respectively. Besides, Ni, πi ≡ Ni/N , P (i|x) and P (x|i) denote the number of training

patterns, a priori and a posteriori probabilities, and probability density function, of class i respectively.

4.1 Statistical classifiers

The Linear Discriminant Analysis (LDA) [40] is derived from the Bayes rule assuming that patterns

belonging to class i, follow a normal (Gaussian) distribution with mean ~µi and non-singular covariance matrix

Σ common to all the classes. Under these hypotheses, the Bayes rule assigns a test pattern x to the class i with

the highest posterior probability P (i|x), given by:

−2log[P (i|x)] = (x− ~µi)
TΣ−1(x− ~µi)− 2logπi + log|Σ| (20)

(where |Σ| is the determinant of Σ), or, equivalently, to the class i which maximizes the linear function Li(x) =

2~µT
i Σ

−1x − ~µT
i Σ

−1~µi + 2logπi. The matrix Σ is approximated by the within-class covariance matrix W =

(X−GM)T (X−GM)/(n−M) where X is the N×n-order training set matrix, M is the M×n matrix with the

class means, and G is the N ×M -order matrix of class indicators (Gij = 1 when the training pattern xi belongs
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to class j, and zero otherwise). We use the lda function (package MASS) in R, which employs a covariance B

matrix weighted by the class prior probilities {πi}
M
i=1. We tried different methods for the mean and variance

estimations: MOMENT, MLE, MVE and T, achieving similar results.

TheQuadratic Discriminant Analysis (QDA) [40] assigns a test pattern x to the class i which maximizes

the quadratic function Qi(x) = (x − ~µi)
TΣ−1

i (x − ~µi) + log|Σi| − 2logπi. This function is the posterior

probability P (i|x) = πiP (x|i)/P (x) by the Bayes rule, when each class i is normal multivariate with mean

~µi and covariance matrix Σi (different for each class, as opposed to LDA). We use the qda function (package

MASS) in R. In the stages classification QDA was not able to classify some feature vectors because some classes

had few training patterns, leading to singular covariance matrices. The Flexible Discriminant Analysis

(FDA) [41] estimates non-linear class boundaries using multivariate non-parametric regresion. We use the fda

function (package mda) in R, which uses by default linear regression, but we also tried Multivariate Adaptive

Regression Splines (MARS) [42] and Additive Spline Model by Adaptive Backfitting (BRUTO) [43], without

improvements in the results. The Mixture Discriminant Analysis (MDA) [44] estimates the parameters

of a FDA using the Expectation-Maximization (EM) method. We consider that each class i is composed by Ri

subclasses {cir}
Ri

r=1. The subclass means ~µir are estimated initially using K-Means or LVQ, and the probability

P (cir|xj , i) of subclass cir is initialized as 1 if ~µir is the closest centroid to xj , and 0 otherwise. Afterwards, the

EM method iteratively updates the means, probabilities and covariance matrix according to:

P (cir|xj , i) =
Pire

−D(xj ,~µir)

2

Ri∑

k=1

Pike
−D(xj ,~µik)

2

, ~µir =

∑

dj=i

xjP (cir |xj , i)

∑

dj=i

P (cir|xj , i)
(21)

Σ =
1

N

M∑

i=1

N∑

dj=i

Ri∑

r=1

P (cir|xj , i)(xj − ~µir)(xj − ~µir)
T (22)

where D(xj , ~µir) = (xj − ~µir)
TΣ−1(xj − ~µir) and Σ is the covariance matrix (common to all the classes).

Besides, Pir ∝
∑N

dj=i P (cir |xj , i) (subclass probabilities) and
∑Ri

r=1 Pir = 1, i = 1, . . . ,M . The updating

finishes when Σ does not change any more. According to the Bayes rule, the MDA classifier assigns an input

pattern x to the class i which maximizes P (i|x) = πiP (x|i) = πi

∑Ri

r=1 Pire
−D(xj,~µir)/2. We use the mda

function (package mda) in R, with default values for the number of subclasses (Ri = 3, i = 1, . . . ,M) and for

the model dimension (K = 5). A Generalized Linear Model (GLM) [40] describes the classifier output

y as a statistic distribution of the mean µ. We use the function glm (package stats) in R, with a Binomial

model and logit link function for nucleous classification (because it is a two-class problem). The density is

given by log[f(y)] = y log
(

µ
1−µ

)

+ log(1 − µ) + log
(

1
y

)

, or equivally f(y) =
(

1
y

)

µy(1 − µ)1−y. For stages

classification (three classes), we use a Poisson model with logarithmic link function, whose density is given

by log[f(y)] = y logµ − µ − log(y!). The Multinomial Log-Linear Model (MLM) is an extension of the

binomial model for multinomial distributions (suited for both two- and multi-class problems). We use the

multinom function (nnet package) in R, which uses a Multi-Layer Perceptron neural network, with the inputs

scaled in the range [0, 1]. The K-Nearest Neighbours (KNN) classifier is applied using the knn function
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(package class) in R, tuning the number k of neighbours with 25 values in the range 1 ≤ k ≤ 40.

4.2 Neural Networks

The Multi-Layer Perceptron (MLP) is implemented using the nnet function (package nnet) in R, tuning the

number H of hidden neurons in the range 3 ≤ H ≤ 15 (6 values), and trying 10 random weight initializations.

We use the C++ interface of LibSVM [46] to implement the Support Vector Machine (SVM) [45], with

a Gaussian kernel whose spread γ tuned in the range {2i}2i=−20 (23 values), and tuning the regularization

parameter C in the range {2i}14i=−5 (20 values). Other kernel types were not tried because the Gaussian kernel

usually provides the best results. The Radial Basis Function (RBF) [47] neural network assigns a test

pattern x to the class i which maximizes
∑H

j=1 wjie
−|x−ci|

2/γ2

, where H is the number of hidden neurons and

the weights wij are trainable parameters. We use the newrb function of the Matlab Neural Network Toolbox,

which adds hidden neurons until sum-squared error reduces below a goal (0.1 in our case) or a maximum number

(100) of hidden neurons is reached. We try 25 values for the Gaussian spread γ of the radial basis function in the

range 1 ≤ γ ≤ 70. The Learning Vector Quantization (LVQ) [48] is a nearest-neighbour method whose Np

prototypes or codebooks mi, i = 1, . . . , Np, are learnt using K-means and taking into account the desired class

di for xi and the class associated to each prototype. The LVQ output for a test pattern is the class associated to

its nearest prototype. We use several LVQ implementations (functions lvq1, olvq1, lvq2 and lvq3) included

in the package class in R, achieving the best results with lvq1. We also tried the LVQ implementation of the

Matlab Neural Network Toolbox, achieving much poorer results than the R version. The Probabilistic Neural

Network (PNN) [49] assigns a test pattern x to the class i which maximizes
∑N

dj=i e
(xT

j x−1)/γ2

, being N the

training set size and γ the spread of the Gaussian neuron activation. We use the newpnn function included in

the Matlab Neural Network Toolbox, tuning the values of γ in the range 0.01 ≤ γ ≤ 10 (21 values).

The Extreme Learning Machine (ELM) [50] is a recent and promising single-layer feed-forward neural

network whose output y ∈ IRM for an input pattern x ∈ IRn is defined as y(x) =
∑H

i=1
~βif(w

T
i x+ bi), being H

the number of hidden neurons, ~βi ∈ IRM the output weights, f() the non-linear activation function (which must

be infinitely differentiable), and {wi, bi}
H
i=1 the weight vectors and biases of the H hidden neurons, randomly

generated. The H ×M -order matrix B = [~βT
1 , . . . ,

~βT
H ]T is given by B = F†G, where G is the class indicators

matrix (see the LDA paragraph), the N ×H-order matrix F has elements Fij = f(wT
j xi+ bj), i = 1, . . . , N ; j =

1, . . . , H , and F† denotes the Moore-Penrose pseudo-inverse of F. There is no training in ELM, because {wi, bi}

are randomly generated and B is calculated analytically from the pseudo-inverse of F. Given that the numbers

H and M of hidden neurons and classes respectively is always low, the computational cost of this inversion is

not high, so that the ELM is very fast. We use a Matlab implementation of ELM freely available2, tuning the

number H of hidden neurons in the range 18 ≤ H ≤ 200 (16 values). We tried the following functions: hardlim

f(x) = 1 for x ≥ 0 and f(x) = 0 otherwise, sigmoid (1 + e−x)−1, sinus sin(x), triangular basis f(x) = 1 + x

for x ∈ [−1, 0] and f(x) = 1− x for x ∈ (0, 1], f(x) = 0 otherwise, and radial basis e−x2

. The best results were

2http://www.ntu.edu.sg/home/egbhuang.
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achieved using the sigmoid function.

4.3 Ensemble and decision tree classifiers

TheRecursive Partitioning (RPART) classification tree [51] is a binary tree which partitions the input space

in regions assigned to the available classes. We use the rpart function (package rpart) in R with the class

splitting function, with parameters minsplit = 20 (minimum number of training patterns to split a node),

complexity cp = 0.01 (minimum reduction in the training error to avoid discard a splitting) and minbucket =

7 (minimum number of patterns to avoid node removal). This function runs a 10-fold cross-validation in order

to average and raise the reliability of the resulting tree. RPART is the base classifier for some of the following

ensemble approaches. Bagging (BG) [52] reuses and selects training data to improve a classifier ensemble. Each

base classifier is trained on a bootstrap sample of the training set, composed by N ′ < N training patterns, some

of which are repeated to achieve a training sample of N patterns (sampling with replacement). A voting is used

to classify a test pattern. Bagging can improve the accuracy of unstable classifiers (e.g., RPART trees), which

strongly varies with small changes in the data, achieving poor improvements with stable classifiers (e.g., KNN).

We use the bagging function (package ipred) in R, with 100 bootstrap replications and the same parameters as

RPART. A Boosting (BT) [53] ensemble is composed by an odd number of classifiers, with accuracy slightly

better than the random classification, in order to achieve improvements with respect to a single classifier.

Each classifier is trained using a bootstrap sample of the training set (without replacement) including patterns

correctly and incorrectly classified by the previous classifiers in the ensemble. Each training sample must have

similar size, and all the training patterns must be used at least for one sample. We use the LogitBoost [54]

function (package caTools) in R, which uses a quasi-Newton method to fit an additive symmetric logistic model

by maximum likelihood, using decision stumps (one node decision trees) as base classifiers, with 200 training

iterations. Adaboost (AB) [55] is one the most popular versions of Boosting. The patterns appear in the

training set according to their weight, which is updated during training, being larger for the difficult patterns.

The classifier output is a voting among the ensemble classifiers, weighted according to its training error. We

use the boosting function (package adabag in R), which implements Adaboost.M1 [56], with an ensemble of

100 trees. Using the Freund and Zhu [57] variants for the classifier weights we did not achieve better results

than using the Breiman method (which is the default). Finally, Random Forest (RF) [58] learns an ensemble

of classification trees, trained with different bootstrap samples of the training set. Each tree grows without

pruning, selecting the best splits among mtry variables randomly selected, instead of choosing the best split

among all the input variables as in RPART. The classifier output for a test pattern is selected by voting among

the trees. The out-of-bag error (an estimation of the test error) is calculated aggregating the tree errors for the

training patterns outside their bootstrap samples. We use the rforest function (package RandomForest) in R,

with 500 trees and mtry = n (the number of inputs).
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Table 1: Notation used for feature vectors.
Method #Feat. Description

Statistical colour features

CM 3 Mean value of each RGB channel

FOS 15 First-order statistics (eqs. 1-4) for each channel

HFD 9 Fourier descriptors of each colour-channel histogram

Grey texture descriptors with distance d = 1 and 8 neighbours

COMS 5 Statistics from coocurrence matrix (eqs. 6-10)

GLRLS 11 Grey level run length statistics

NGLDS 5 Neighbouring grey level dependence statistics

SDH 10 First-order statistics of sum and difference histog.

SDHC 5 Features defined in eqs. 11-15

LBPri
h

36 Histogram of rotation invariant LBP

LBPri
c 5 COMS of rotation invariant LBP

LBPriu
h

10 Uniform rotation invariant LBP

LBPriu
c 5 COMS of uniform rotation invariant LBP

LBPv
s 5 First-order statistics of local variance

LBPv
c 5 COMS of local variance

Multiresolution grey texture methods

MCOMS 20 Union of COMS features with distances d = 1, 2, 4, 8

MSDHC 20 Union of SDHC features with distances d = 1, 2, 4, 8

MFDBC 7 Multifractal Dimension: Box Counting with L = 7

MFDP 6 Multifractal Dimension: Probability with L = 6

MFDB 20 Multifractal Dimension: Blanket with ǫ = 20

Pyramidal grey texture methods with Nl = 3 levels of decomp.

XWTAll 12 Statistic X on each sub-image of wavelet decomp.

X=E for energy,V for variance and M for mean

XWTLH 6 Equal to XWTAll but only for image LL and HH

PCOMS 20 Union of COMS features on the pyramid decomp.

PSDHC 20 Union of SDHC features on the pyramid decomp.

PLBPi
j 4x All pyramid LBP: x = #features of LBPi

j

Integrative colour features

CMFP 6 Colour Multi-Fractal Probability

LBP = Local Binary Patterns (section 3.2.5).

5 Results and discussion

In the first place, we describe the image collection and experimental settings (subsection 5.1). Afterwards, we

compare the texture features described in section 3 for our data set. Given that there are 126 different feature

vectors and 17 classifiers, we did not consider to apply every classifier on every vector. Instead, we developed

a previous selection (subsection 5.2), classifying all the vectors with the same classifier, and discarding those

vectors for which the classifier achieved very poor accuracy. We decided to use the Support Vector Machine

(SVM), because it is considered a reference classifier for a variety of applications. The selected feature vectors are

classified using the whole set of classifiers in order to find the best feature vector and classifier for nucleous and

stages of development (subsection 5.3). Finally, further improvements to the experimental work are described

in section 5.4.

5.1 Experimental settings

The fish ovaries in different maturity stages are embedded and sectioned with standard histological procedures.

The sections are stained with Haematoxylin–Eosin, which produces a wide range of stained structures enhancing

the image contrast. The images are obtained from the histological sections with a LEICA DRE research

microscope connected to a LEICA DFC320 digital camera using LEICA IM50 software. The camera resolution
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is 3.3 Mpixels (2088× 1550 pixels), using squared pixels of 1.09 µm. The exposure time and colour balance are

set automatically. In the evaluation, we use 47 histological images from 12 individuals of species Merluccius

merluccius. For the experiments, the outline of cells were manually drawn and classified by human experts

using the software Govocitos and saved in XML files. The available data set includes 1022 cells (aproximately

22 cells per image ranging from 9 to 47 cells). Their distribution per class is: 337 cells with nucleous (33% of

the total) and 685 without nucleous (67%); for stages of development, 259 cells are in stage AC (25.3% of the

total), 61 cells are HID (6.1%) and 702 cells (68.6%) are in V/AT. Note that a classifier which assigns all the

patterns to the most populated class achieves 67% of accuracy for nucleous and 68.6% for stages. We built 10

groups of data sets using these patterns. Each group contains one training set, including 817 patterns (80% of

the total), one validation set (102 patterns, 10%) and one test set (103 patterns, 10%), randomly selected. All

of them were selected keeping the class and stage distribution: i.e., each training/validation/test set has about

33% and 67% for patterns with and without nucleous respectively, and analogously for stages (this constraint

requires different training sets for nucleous and stages). We used a high percentage of training patterns (80%) in

order to increase the significance of the training set. Each classifier was trained 10 times, once for each training

test. For those classifiers which have some tunable pattern (e.g., the number H of hidden neurons on ELM and

MLP, or the Gaussian spread γ for SVM, RBF and PNN), the selected value for each parameter was the one

which maximized the average accuracy over the 10 validation sets. The validation sets were not used for those

classifiers without tunable parameters. Each trained classifier was tested on its corresponding test set, reporting

the average accuracy (in %), confusion matrix and class sensitivity and specificity over the 10 test sets.

5.2 Comparison among colour texture features

We compare the discrimination power of texture features described in section 3 on the data set described above

using the SVM classifier. The colour texture classification on the original RGB histological images may be

done using five strategies: 1) only colour descriptors; 2) only grey level texture descriptors; 3) the union of

grey level texture and colour descriptors (parallel approach); 4) the union of the grey level texture descriptors

for each colour channel (simple integrative approach); and 5) colour-texture descriptors (integrative approach).

Table 1 shows these methods, their number of features and a brief description of the feature vectors used in the

evaluation.

Table 2 shows the classification accuracy of the SVM using the texture vectors (see Grey texture descriptors

in table 1) for nucleous and stages. The columns named “Grey level” are the grey level texture features, where

only the intensity of the images is considered. In the columns named “Colour”, the colour feature vectors are

formed as the union of the grey level texture features for each colour RGB channel. In this case, the number of

features is three times the number of features showed in table 1. Colour vectors achieve higher accuracies (for

nucleous and stages) than grey level texture vectors (in average the difference is 3.7% for nucleous and 2.3% for

stages). The best acuracies are achieved by the sum and difference of histograms method (vector SDH) using

colour texture analysis (84.7% for nucleous and 93.4% for stages).
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Table 2: Classification accuracy of SVM using grey level and colour texture vectors.
Method Nucleous Stages

Grey level Colour Grey level Colour

GLRLS 78.6 78.6 88.9 90.6

NGLDS 74.3 79.7 89.9 91.5

COMS 75.2 83.2 91.4 92.3

SDH 76.5 84.7 90.5 93.4

SDHC 77.2 82.3 88.7 91.9

LBPri
h 74.8 71.6 90.0 90.2

LBPri
c 69.2 75.0 88.1 91.8

LBPriu
h 76.5 77.7 90.8 90.3

LBPriu
c 71.7 78.1 83.1 89.5

LBPv
s 70.8 74.3 87.3 92.7

LBPv
c 69.4 77.6 89.6 93.2

µ ± σ 74.5 ± 3 78.2 ± 4.3 89.6 ± 1.3 91.9 ± 1.2

Table 3: Classification accuracy of SVM with multiscalar methods using grey level and colour texture vectors.
Method Nucleous Stages

Grey-level Colour Grey-level Colour

Wavelet pyramid analysis

EWTAll 71.1 71.0 89.3 90.7

EWTLH 71.7 74.0 89.4 90.9

MWTAll 68.5 72.8 80.4 83.4

MWTLH 68.3 72.8 78.6 84.6

VWTAll 73.0 78.8 87.1 89.9

VWTLH 73.0 79.2 87.2 90.0

Multi-fractal analysis

MFDBC 67.0 69.7 84.0 88.2

MFDP 74.8 79.4 89.1 91.7

MFDB 69.9 77.2 87.2 91.7

Multiscalar coocurrence methods

MCOMS 80.3 85.1 91.6 93.1

MSDHC 75.1 82.5 89.1 93.0

PCOMS 79.0 84.4 90.2 92.2

PSDHC 79.4 83.6 91.2 91.1

Piramidal LBP

PLBPri
h 73.2 77.1 91.9 90.6

PLBPri
c 75.5 79.2 92.6 92.4

PLBPriu
h 79.2 82.1 92.6 93.0

PLBPriu
c 76.4 80.5 90.5 92.0

PLBPv
s 74.7 78.6 89.0 92.9

PLBPv
c 80.2 83.6 89.6 93.7

µ ± σ 74.2 ± 4.2 78.5 ± 4.6 88.4 ± 3.8 90.8 ± 2.8

Multiscalar analysis can be made by using neighbourhoods of different sizes (multiresolution methods) or

by using a unique neighbourhood size in a spatial pyramid image decomposition (table 1 lists both types of

strategies). All pyramid images are generated by low-pass filters of wavelet transform using Nl = 3 levels of

decomposition. Higher number of levels is not possible because some matured cells are quite small (minimum

diameter is about 100 µm). Multiresolution methods are also applied to four scales (given by distances d =
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Figure 2: Classification accuracies in stages vs. in nucleous problems for grey level texture (left panel) and

colour texture (right) from tables 2 and 3. The nomenclature used is: DP (vectors with spatial dependences

among pixels: SDH, SDHC, COMS, GLRLS, NGLDS), MDP (vectors with multiscalar versions of DP: MSDHC,

MCOMS, PSDHC and PCOMS), LBP (local binary patterns), PLBP (pyramid LBP), WT (wavelet transforms

vectors) and FA (fractal features with vectors MFDBC, MFDP and MFDB). The use of colour texture features

(right panel) raises the accuracy by 5% for nucleous and 1% for stages with respect to the left panel (grey level

texture).

1, 2, 4, 8) selected in order to compare with pyramid approaches. Table 3 shows the accuracy of SVM using

multiscalar texture vectors (see multiresolution and pyramid methods in table 1). As in table 2, the study is

done on grey level and colour images for both problems. The tables 2 and 3 exhibit the same behaviour: the

colour texture analysis achieves the best results for both classifications (85.1% for nucleous using colour MCOMS

and 93.7% for stages using colour PLBPv
c). The average improvement between colour and grey texture analysis

is 4.3% for nucleous and 2.4% for stages. Comparing multiscalar and non-multiscalar texture vectors (tables 2

and 3), the results are similar on average. Nevertheless, all wavelet variants provide rather low accuracies, which

are always superior when only the LL and HH sub-images are used instead of all sub-images. The reason may

be that our textures do not exhibit any directionality. The best accuracy using wavelets is 79.2% for nucleous

and the variance statistic (vector VWTLH), and 90.9% for stages using the energy (vector EWTLH). So, if we

do not consider the wavelet and fractal families and we only calculate the difference between the multiscalar

texture vector with its non-multiescalar equivalents (i.e. MCOMS or PCOMS with COMS), the improvement is

significant only for nucleous classification (7.6% for grey level textures and 3.6% for colour texture in average),

but not for stages. However, although the accuracy provided by wavelet vectors is not too high, they are

computational fast and they will be combined with other texture families, following the suggestions of [23].

In order to report the best feature vector for both problems, figure 2 plots the accuracies for stages vs.

nucleous, where texture vectors are grouped by families in: 1) DP: spatial dependences among pixels, which

encloses the vectors SDH, SDHC, COMS, GLRLS, NGLDS; 2) MDP: multiscalar versions of DP; 3) LBP:
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Table 4: Classification accuracies of SVM using combinations of grey level texture and colour descriptors

(parallel approaches).
A B C D E F G H I J

SDH SDHC COMS MCOMS PSDHC LBPriu
h

PLBPriu
h

LBPv
c PLBPv

c MFDP

Keys Vector #Feat. 10 5 5 20 20 10 40 5 20 6

Nucleous classification

1 76.5 77.2 75.2 80.3 79.4 76.5 79.2 69.4 80.2 74.8

2 FOS 15 81.8 83.9 83 85.1 84.6 84.4 82.6 84.5 83.7 84.2

3 FOS + EWTLH 21 83.6 86.6 85 83.8 85 85 81.8 85.8 82.9 85.7

4 FOS + MFDP 21 85.7 85.7 85.7 85.6 84.6 84 81.4 85.7 84.6 –

5 FOS + EWTLH + MFDP 27 86.6 86.3 87.2 85 84.4 84.4 82.1 85.5 84.2 –

Stages classification

6 90.5 88.7 91.4 91.6 91.2 90.8 92.6 89.6 89.6 89.1

7 FOS 15 91.1 92.3 93.2 93.8 92.6 93.2 91.7 93.6 94 94.8

8 FOS + EWTLH 21 92.4 92.4 93.5 93.4 93.1 92.6 93 93.2 94.7 92.4

9 FOS + MFDP 21 93.5 92.2 92.7 93.6 93.2 93 92.5 93.6 94.1 –

10 FOS + EWTLH + MFDP 27 93.2 93.4 92 93.6 94 92.9 92.3 92.7 94.9 –

differents variants of local binary patterns; 4) PLBP: pyramid LBP; 5) WT: vectors based on wavelet transforms;

and 6) FA: vectors based on fractal analysis. The left and right panels of figure 2 show respectively the grey

level texture and colour texture classification (tables 2 and 3). The best features are in the upper right corner

and the worst ones are closer to the lower left corner. In both panels, the WT and FA vectors are clearly the

worst ones. Multiscalar techniques (MDP and PLBP) are the best features for grey level texture classification,

but for colour texture analysis some DP vectors provide comparable performance. Comparing both plots, we

can conclude that colour texture analysis (right plot) provides higher performances than grey level texture (left

panel). The superiority is clear for nucleous classification, where the highest accuracy grows up from 80.3%

for grey level vector MCOMS to 85.1% for colour MCOMS. In the stages classification, the accuracy grows up

only from 92.6% for grey level LBPri
c to 93.7% for colour PLBPv

c . This fact leads to conclude that the colour

is an important property for all the texture features analysed in both classification problems, but specially for

nucleous. On average, the performance improvement achieved comparing colour and grey level analysis are 4%

and 2.4% for nucleous and stages respectively.

Although not included in any table, we also developed experiments using only colour feature vectors (sec-

tion 3.1), with the following results:

• CM: achieves 71.1% and 85.5% for nucleous and stages respectively.

• FOS: 79.1% and 92.6% of accuracy for nucleous and stages respectively using RGB colour space. This

colour space is not uniform, and it is more sensitive to illumination than uniform colour spaces like L*a*b*.

We also used FOS features on chromatic coordinates a*b* (10 features), achieving 69.0% and 85.1% for

nucleous and stages respectively. These worse results may be due to microscopy illumination is quite

constant in the acquisition process.

• HFD: achieves 78.4% and 88.3% for nucleous and stages respectively. This vector includes three Fourier

descriptors for each colour channel. Experiments with higher number of Fourier descriptors did not

improve the results.
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Table 5: Classification accuracies of SVM using grey texture and colour descriptors (parallel approaches).

No. Combination of methods #Feat. Nucl. Stag.

11 SDHC + LBPv
c + FOS 25 85.2 93.5

12 MCOMS + LBPv
c + FOS 40 85.9 92.2

13 SDHC + LBPv
c + EWTLH + FOS 31 85.5 93.7

14 SDHC + LBPv
c + MFDP + FOS 31 84.7 93.6

15 MCOMS + LBPv
c + MFDP + FOS 46 87.1 94.1

16 SDHC + LBPv
c + EWTLH + MFDP + FOS 37 85.9 92.6

17 SDHC + PLBPv
c + EWTLH + MFDP + FOS 52 84.6 95.3

Table 6: Classification accuracies of SVM using combinations of two colour texture methods (integrative ap-

proaches).
K L M N O P Q R S T U V

SDH SDHC MCOMS LBPriu
h

PLBPriu
h

LBPv
c PLBPv

c CMFP MFDP EWTLH VWTLH

Key Vector #Feat. → 30 15 60 30 120 15 60 5 15 18 18

18 93.4 91.9 93.6 90.3 93 93.2 93.7 86.9 91.7 90.9 90

19 SDH 84.7 - - - 92.1 88.9 93.3 94 92.5 92.6 92.7 92.4

20 SDHC 82.3 - - - 90.6 93.4 93.5 91.7 93 92.9 92.5 92.8

21 MCOMS 85.1 - - - 91.3 93.8 93.2 93.5 93.5 93 93.6 93.2

22 LBPriu
h

77.7 83.7 84.1 84.4 – – 90.7 92.9 90.9 90.8 91.9 91.1

23 PLBPriu
h

82.1 75.7 81.4 82.5 – – 93.4 94.3 93.3 92.9 93 93.2

24 LBPv
c 77.6 85.1 84.9 83.9 80.2 81.6 – – 92.2 93.2 92.5 92.3

25 PLBPv
c 83.6 84 83.5 84.5 81.9 83.4 – – 93.8 94 92.2 91.4

26 CMFP 66 84.7 84 84.4 79.4 81.7 78.8 83.1 – – 91.8 92.2

27 MFDP 79.4 85.5 85.6 84.9 80.9 81.6 81.6 82.7 – – 92.5 92.4

28 EWTLH 74 82.6 84.6 83.5 78.6 81.9 81 82.6 74.7 81.9 – –

29 VWTLH 79.2 82.7 82.3 84.2 82.8 82.4 82.6 82.9 81 81.7 – –

Upper (resp. lower) triangular matrix for stages (resp. nucleous) respectively.

The performance achieved only by colour information is comparable to colour texture analysis for the stages

classification and FOS vector (92.6% against 93.7%), but it is much lower for the nucleous classification (79.1%

against 85.1%). This comparison confirms that colour texture analysis is necessary. Table 4 shows the accuracies

of different parallel approaches for both problems. The rows 1 and 6 are the performance for differents grey

texture vectors (columns A to J) for nucleous and stages respectively. The criteria used to choose the texture

descriptors to be combined were a trade-off among: 1) its performance with both problems; 2) its computational

complexity or number of features; and 3) whether the joint texture descriptors belong to different families [23],

e.g., spatial dependences among pixels (SDH, SDHC and COMS features) and their multiscalar versions, local

binary patterns (LBPi
j and PLBPi

j), fractal and wavelets. Due to the last criterion, we choose to combine

vectors MFDP (fractal family) and EWTLH (wavelet family) despite of their low accuracies. The best perfor-

mances in table 4 are 87.2% for nucleous and 94.8% for stages with vectors COMS+FOS+EWTLH+MFDP

and MFDP+FOS respectively. The concatenation of colour information to grey texture always improves the

results (compare rows 1 and 2 for nucleous, and rows 6 and 7 for stages in table 4). This improvement is higher

for nucleous (7.9% in average) than for stages (3.2%). If we add the wavelet analysis (EWTLH vector, compare

rows 3 and 2 for nucleous and rows 8 and 7 for stages), the average results improve in 1.3% for nucleous, but no

improvement is observed for stages. It is important to emphasize the discrimination power of fractal features
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Figure 3: Classification accuracies of SVM in stages vs. in nucleous problems comparing parallel and inte-

grative colour texture approaches. Red points are accuracies of colour texture features of table 6. Green

(multiscalar methods) and blue lines are accuracies of the union of grey level texture and colour features

in table 4. The first points of each lines are Grey Level Texture (GLT) classification, the seconds ones are

GLT+FOS, the third ones are GLT+FOS+EWTLH, the fourth ones are GLT+FOS+MFDP and the last ones

are GLT+FOS+EWTLH+MFDP. The lower right plot shows the results in table 5.

when they are combined with other techniques. For intance, the MFDP (fractal) + FOS vector achieves the

highest score for stages problem (94.8%, line 7 of table 4) and a quite good score for nucleous problem (84.2%,

line 2 in table 4) with only 21 features, much better than its grey level or colour texture accuracies (74.8% and

79.4% with grey and colour for nucleous, 89.1% and 91.7% with grey and colour for stages, in the line MFDP

of table 3). Table 5 shows the accuracies of other combinations of texture and colour descriptors joining LBP

and DP (dependences among pixels) families. The results do not improve for nucleous and they only increase in

0.5% for stages, reaching 95.3% with the vector SDHC + PLBPv
c + EWTLH + MFDP + FOS, which is much

more complex than MFDP + FOS.

Table 6 shows the performance of different colour texture descriptors (selected vectors of the columns named

“colour” of tables 2 and 3) and the union of two vectors for both problems. The upper (resp. lower) triangle

in the table 6 include results for stages (resp. nucleous). The column K and the row 18 are the accuracies for

nucleous and stages using only one colour texture vector, and the rest of the table values are the accuracies

for the union of two colour texture vectors. For stages classification, the best performance (94.3%) is achieved

by the combination of PLBPriu
h and PLBPv

c , only 0.5% better than PLBPv
c (93.7% in line 18 of table 6). For

nucleous classification, the best score is 85.6%, only 0.5% better than MCOMS (85.1%, column K). We tested
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some combinations of three vectors, but they did not improve the performance. Both for nucleous and stages,

the performance achieved using these integrative approaches is lower than the parallel aproaches, which achieve

87.2% for nucleous and 95.3% for stages.

In order to compare the integrative and parallel approaches, figure 3 shows the classification accuracies in

stages vs. in nucleous for differents feature vectors. The green, blue and black symbols represent feature vectors

in the parallel approach, which are the union of one or various grey level texture vectors and colour features,

and the red symbols are colour feature vectors (see table 6). For the left and middle plots, the green symbols are

the multiscalar version of the method (the non-multiscalar version is represented by blue symbols). Excepting

for PLBPriu
h , the second points of the green or blue lines are placed upper and righter than the first ones, which

means that the accuracy of the grey level texture features increases when are joint with the colour information

(FOS). We want to emphasize the behaviour of fractal analysis (vector MFDP), which increases the accuracies

in 5.7% for stages (from 89.1% to 94.8%) and 9.4% for nucleous (from 74.8% to 84.2%). The union of wavelet

features (EWTLH vector) to GLT+FOS (second and third points in the lines) improves the accuracies for the

simple methods SDHC, COMS and SDH. For LBP vectors, the union of EWTLH increases the accuracy for

nucleous, but not for stages. For multiscalar vectors, the union of EWTLH decreases the accuracy. The reason

may be that EWTLH provides multiscalar information, which is already implicit in the multiresolution/pyramid

methods. The union of fractal information (MFDP vector) to GLT+FOS (the seconds and fourths line points)

is not relevant for the majority of vectors analysed. In general, the multiresolution/pyramid vectors (green line)

increase the accuracies with respect to their non-multiscalar versions (blue line) for stages, but decrease the

accuracies for nucleous. Comparing the acuracies for colour texture vectors (red points), the multiscalar vectors

improve the results (compare the squares to triangles in the left and middle plots): the best performance is

achieved by MCOMS with accuracies of 85.1% for nucleous and 93.6% for stages. Many vectors in the parallel

strategy achieve similar performances: 85.1% for nucleous and 93.8% for stages for MCOMS + FOS; 85.6% and

93.6% for MCOMS + FOS + MFDP; 85.7% and 93.6% for LBPv
c + FOS + MFDP; 85.3% and 93.6% for SDHC

+ LBPv
c + FOS + MFDP; and 86.9% and 94.1% for MCOMS + LBPv

c + FOS + MFDP. Almost all include

the fractal analysis (vector MFDP). Overall, the highest accuracies are 87.2% for nucleous and vector SDHC +

FOS + MFDP + EWTLH and 95.3% for stages and vector SDHC + PLBPv
c + FOS + MFDP + EWTLH.

5.3 Comparison among classifiers

The results achieved by SVM in the previous subsections are compared with other popular classifiers briefly

described in section 4. We chose for comparison 25 feature vectors from tables 4, 5 and 6, in which SVM achieved

the highest accuracies with moderate complexity or number of features. Table 7 shows the results comparing the

accuracy of 17 classifiers over these 25 feature vectors for nucleous and stages problems, including the average

accuracy for each classifier and vector, and the Friedman test ranking [59] for each classifier (decreasing with

its accuracy). The best rank, accuracy, average accuracy, classifier and vector for both problems are in bold.

The first column identifies the texture features: vectors from 2B to 5C belong to table 4, vectors from 11 to 17
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Table 7: Classification accuracy for nucleous and stages using different classifiers and vectors.
Vector AB BG BT ELM FDA GLM KNN LDA LVQ MDA MLM MLP PNN QDA RBF RF SVM Avg.

Classification of nucleous

2B 78.3 76.8 77.5 80.3 78.3 79.3 71.7 77.5 73.7 74.9 80.6 78.3 72.5 70.0 83.9 77.1 83.9 77.3

2C 78.0 77.0 77.0 80.8 79.1 80.2 71.7 78.4 72.4 78.0 82.4 80.0 72.8 71.0 82.0 78.0 83.0 77.8

2D 80.7 77.5 77.6 80.1 80.3 82.5 74.4 79.5 75.8 80.5 85.1 80.0 75.1 74.9 84.4 79.3 85.1 79.6

2F 79.3 77.5 78.1 80.0 75.3 75.8 75.0 75.6 74.7 75.4 77.1 75.0 73.6 73.1 82.0 78.7 84.4 77.1

2H 77.0 76.7 75.0 79.3 77.7 78.6 70.1 77.4 71.8 77.6 79.1 76.9 71.0 74.2 84.0 78.1 84.5 77.0

2J 80.3 78.6 79.0 80.7 81.7 75.9 72.8 76.2 74.3 75.1 77.9 78.2 73.0 73.1 84.5 78.3 84.2 77.9

3B 78.9 77.3 76.6 79.8 80.0 79.5 72.1 78.3 71.0 77.4 79.9 79.2 71.7 73.4 85.2 77.5 86.6 77.9

3D 79.5 77.9 78.4 81.3 80.5 83.1 73.0 79.8 73.8 80.8 85.0 80.4 73.4 75.5 84.7 79.5 83.8 79.4

3H 75.0 76.7 76.1 78.8 79.0 79.8 71.0 78.9 70.5 77.4 79.9 77.0 69.2 75.7 84.8 77.5 85.8 77.2

4B 78.3 76.9 79.7 81.1 78.4 78.9 73.3 78.1 73.6 76.6 81.1 80.0 73.6 74.3 84.7 78.6 85.7 78.4

4D 83.2 78.7 80.9 80.3 79.9 82.2 73.9 79.7 75.7 80.6 85.0 79.6 73.9 77.2 84.5 81.5 85.6 80.1

5B 79.9 76.1 77.7 80.7 79.5 79.8 71.4 79.2 71.9 78.8 81.8 80.1 72.4 74.4 84.5 78.0 86.3 78.4

5C 78.6 77.7 76.4 80.7 80.8 81.7 72.4 80.3 72.5 78.8 84.3 80.7 72.7 77.0 85.3 78.3 87.2 79.1

11 78.8 77.3 76.5 81.9 78.6 79.8 71.6 78.5 72.1 76.6 81.4 77.7 72.4 71.4 85.6 78.6 85.2 77.9

12 80.3 77.9 79.7 80.3 80.0 82.0 74.9 78.8 75.2 79.2 84.1 81.3 75.4 75.7 85.5 80.2 85.9 79.8

14 79.3 77.5 78.2 81.1 80.2 82.0 72.0 79.0 71.8 78.3 83.2 80.5 73.6 75.0 84.9 78.5 84.7 78.8

15 83.3 80.0 79.4 80.5 81.1 82.1 73.9 80.7 74.7 80.1 84.2 79.6 74.9 78.3 84.8 82.1 87.1 80.4

16 78.9 78.1 79.0 78.5 80.7 81.9 72.9 79.7 71.0 79.0 83.1 78.8 72.5 78.5 85.0 78.5 85.9 78.9

17 80.5 80.4 78.3 76.6 80.8 82.9 71.3 79.3 72.5 81.3 82.6 78.6 73.6 79.0 83.1 79.1 84.6 79.1

19K 76.8 76.8 75.2 76.6 79.8 80.9 72.3 79.7 71.2 77.2 82.8 76.1 73.6 74.4 83.0 78.4 84.7 77.6

20K 81.0 79.6 82.1 81.0 78.8 80.1 75.8 78.3 77.2 78.3 82.3 80.4 78.1 64.7 82.7 79.5 82.3 79.0

21K 81.2 80.7 81.3 80.2 83.2 84.0 77.0 79.7 77.8 82.5 85.5 81.9 77.0 69.1 85.4 81.9 85.1 80.8

25K 80.5 78.9 75.7 78.4 79.7 80.7 76.8 75.3 76.7 80.6 82.9 78.2 78.6 66.7 82.0 80.6 83.6 78.6

25P 84.7 83.5 78.2 77.9 78.5 77.1 76.0 73.6 72.4 78.9 79.9 78.9 76.0 72.3 81.7 84.7 83.4 78.7

27M 81.9 81.2 78.0 81.9 79.1 81.2 73.7 78.4 75.5 77.9 81.6 80.0 75.3 73.5 84.3 80.7 85.6 79.4

Avg. 79.8 78.3 78.1 80.0 79.6 80.5 73.2 78.4 73.6 78.5 82.1 79.1 73.8 73.7 84.1 79.3 85.0 –

Rank. 7.2 10.7 10.7 6.8 7.2 5.6 15.9 9.9 15.4 9.4 3.5 8.8 15.0 14.9 2.1 8.3 1.5 –

Classification of stages

2B 92.9 90.2 92.7 92.0 90.6 75.0 89.9 89.9 87.7 90.7 91.1 91.5 91.3 87.3 82.7 91.8 92.3 89.4

2C 93.0 90.3 93.2 91.9 91.7 74.0 90.5 91.7 87.3 91.5 91.6 90.7 91.4 88.3 81.4 91.7 93.2 89.6

2D 92.7 90.7 92.2 92.6 93.2 74.8 88.9 91.7 86.8 91.9 92.2 91.1 90.9 90.6 80.1 92.4 93.8 89.8

2F 93.7 91.3 92.9 92.0 91.9 74.6 89.6 91.5 88.3 91.2 91.7 90.4 91.6 88.2 82.5 93.0 93.2 89.9

2H 91.7 90.3 91.3 92.2 93.1 72.6 89.7 92.8 86.2 92.0 91.7 91.4 91.7 89.3 81.9 91.6 93.6 89.6

2J 92.3 91.1 92.3 93.2 91.1 74.4 89.2 91.1 87.9 91.9 92.0 90.1 91.1 88.7 81.7 92.3 94.8 89.7

3B 92.3 91.1 92.3 93.4 91.1 74.4 90.1 91.9 87.9 91.9 92.0 90.9 89.5 88.6 85.1 92.3 92.4 89.8

3D 91.5 90.8 92.3 92.9 93.6 75.7 88.7 92.5 87.4 92.9 92.4 91.1 91.3 90.7 80.4 92.0 93.4 90.0

3H 91.7 90.5 92.4 92.9 93.5 74.1 88.2 93.1 85.5 93.3 92.0 91.6 90.8 89.7 81.7 91.8 93.2 89.8

4B 92.3 90.2 92.8 91.7 91.2 76.8 88.7 91.5 86.5 91.6 91.7 90.8 90.9 89.0 80.4 92.5 92.2 89.5

4D 83.5 90.7 92.8 92.8 93.2 76.9 89.2 92.1 86.8 92.8 91.7 92.0 90.8 89.8 81.8 91.8 93.6 89.5

5B 91.8 90.7 92.4 92.8 91.9 76.4 88.8 91.3 85.9 91.6 92.4 90.3 90.5 88.8 80.9 92.2 93.4 89.5

5C 92.0 90.5 92.7 92.7 92.4 78.7 89.0 92.7 86.7 91.8 92.1 91.6 72.7 89.2 82.0 92.4 92.0 88.9

11 92.1 90.4 92.4 92.9 92.4 75.9 89.3 91.8 86.8 91.9 91.6 91.4 91.1 89.6 82.6 92.1 93.5 89.9

12 91.7 90.9 92.2 92.8 93.2 76.2 89.1 92.1 87.3 92.3 91.7 91.8 91.8 90.5 81.3 92.3 93.2 90.0

14 91.9 90.5 91.3 91.5 92.7 77.1 88.6 92.7 86.2 92.1 92.1 91.9 91.0 89.6 82.6 92.1 93.6 89.9

15 92.9 90.9 93.0 92.3 93.5 77.3 88.7 92.4 87.2 92.2 91.7 90.4 91.5 88.1 80.4 92.0 94.1 89.9

16 92.1 90.4 91.9 93.1 93.6 77.9 89.2 92.9 86.7 93.1 92.4 91.5 91.7 86.0 81.8 92.1 92.6 89.9

17 93.9 91.1 93.2 92.6 94.5 77.2 89.8 94.3 87.4 94.6 93.7 91.4 91.5 – 82.2 91.9 95.3 90.9

19K 92.6 90.4 93.7 92.3 92.3 75.7 89.7 92.2 87.7 90.9 91.7 91.5 90.5 87.7 82.1 92.4 93.2 89.8

20K 90.8 90.5 91.9 92.3 89.5 69.6 88.6 89.5 85.5 88.7 91.3 90.1 88.3 86.4 79.4 90.4 91.9 87.9

21K 90.6 89.3 91.4 91.8 93.3 77.5 88.9 91.5 85.5 92.9 93.4 91.0 90.8 – 81.5 91.1 93.6 89.6

25K 90.9 90.0 91.0 90.8 94.3 77.3 90.2 93.6 86.1 94.0 91.1 90.6 91.3 – 82.3 90.6 93.7 89.9

25P 93.6 91.8 93.9 90.5 94.4 80.3 91.2 94.2 89.0 94.3 87.4 91.0 76.0 – 80.7 92.4 94.3 89.7

27M 90.8 90.5 91.9 91.7 90.1 76.2 88.3 90.5 85.2 87.9 91.6 90.1 75.3 87.8 79.8 90.1 92.9 87.7

Avg. 91.8 90.6 92.3 92.4 92.5 75.5 89.3 92.0 86.8 92.1 92.0 91.1 91.0 88.8 81.7 91.9 93.4 –

Rank. 6.1 10.9 4.8 4.4 4.4 16.9 12.9 6.3 14.5 6.4 6.7 9.9 10.7 13.8 15.8 6.3 2.1 –

belong to table 5, and vectors from 19K to 27M belong to table 6.

Analyzing the nucleous classification, the SVM achieves the highest accuracy (87.2%) for the vector 5C

(FOS + EWTLH + MFDP + COMS, 32 features, table 4). Besides, SVM also achieves the highest average

accuracy (85.0%) and the lowest ranking (1.5), being the best for 18 of 25 vectors, and achieving accuracies

not more than 2.6% below the best on the remaining 7 vectors. The RBF is the second best classifier (ranking

2.1, 84.1% of average accuracy, being the best in 4 vectors), and the MLM is the third (ranking 3.5, 82.1%

accuracy, it is the best for 2 vectors). There is a group of four classifiers (GLM, ELM, Adaboost and FDA)

with similar results (accuracy about 80% and rankings about 5-7). Random Forest (which achieves the best

accuracy for vector 25P), MLP, MDA, LDA, Bagging and Boosting achieve intermediate results (accuracies

about 78%, rankings about 8-10), while KNN, LVQ, PNN and QDA are the worst ones (about 73%, ranking

about 14-15). Comparing feature vectors, 5C and 15 (MCOMS + LPBv
c + MFDP + FOS, 46 features, table 5)
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provide the best accuracies (87.2% and 87.1%, achieved by SVM), and there are important differences between

vectors: e.g., the SVM ranges 5% between the lower (82.3%, for vector 20K) and the highest accuracy; besides,

the average accuracy varies in the range 77.2%-80.9% (about 4%) among vectors.

With respect to stages classification, again the best accuracy is achieved by SVM (95.3%), in this case

using the feature vector 17 (SDHC + PLBPv
c + EWTLH + MFDP + FOS, 52 features, table 5). In the average,

SVM achieves 93.4% of accuracy (ranking 2.1). The following classifiers are ELM, FDA and Boosting (ranking

between 4.4-4.8, accuracy about 92%), and Adaboost, LDA, MDA, MLM (about 92%, ranking 6). Another

group of classifiers includes Bagging, MLP and PNN (about 91%, ranking 10). Finally, the worst classifiers

(accuracy below 90%, ranking above 12) are KNN, QDA, LVQ, RBF (despite its good result for nucleous) and

GLM. The average accuracy over classifiers for stages range from 87.7% to 90.9% (3.2%), which is narrower

than for nucleous. The vector 5C (the best for nucleous) achieves 3% less (92% with SVM). Conversely, the

vector 17 for nucleous achieves 84.6% (2.6% less than 5C). We can conclude that none feature vector is the best

both for nucleous and stages, and that vectors both 5C and 17 are required in order to achieve a good accuracy.

In order to evaluate the complexity of feature vectors for nucleous and stages classification, we calculated

some of the complexity measures proposed in [60] including: F1: inverse of the maximum Fisher discriminant

ratio for each pair of classes; F2: minimum class overlap for each dimension, over all the classes; F3: inverse

of the maximum feature efficiency (defined as the fraction of the patterns separable by a feature); N2: ratio

between the average within- and between-class; N3: error of a 1-Nearest Neighbour classifier; N4: non-linearity

of a 1-NN classifier (1-NN error for an artificial set where each pattern is a linear interpolation of two training

patterns of the same class); T1: inverse of the average order of the pattern adherence; T2: ratio between the

number of features and patterns. In order to compare nucleous and stages classification, we averaged these

complexity measures over the 25 feature vectors for nucleous and stages: the measures for nucleous are clearly

higher for F1 (21.7 vs 0.17), F2 (0.53 vs. 0.29), F3 (24.4 vs. 3.4)), N3 (0.29 vs. 0.11) and N4 (0.3 vs. 0.08),

which confirms that nucleous classification is harder than stages classification. However, comparing complexity

and classification accuracy (e.g., using the SVM), the data set with the lowest average complexity (25P both

for nucleous and stages) does not provide the best accuracy (achieved by vectors 5C and 17 for nucleous and

stages respectively). Besides, there are low correlations between the complexity measures and the SVM errors

for the different feature vectors.

Comparing nucleous and stages classification, all the classifiers achieve worse results in the former

problem, which is clearly harder than the latter. The fig. 4 plots the stage vs. nucleous average accuracy for

each classifier, where the SVM is placed on the top right corner (the highest accuracy for both problems).

However, the classifier which are slightly worse for nucleous (RBF) is much worse for stages, and conversely

the classifier which is slightly worse than SVM for stages (MLM) is much worse for nucleous (82% vs. 85%

with SVM). The remaining classifiers are clearly distributed in two groups. The first one includes ELM, FDA,

Adaboost, Random Forest, MDA, LDA, MLP, Boosting and Bagging. They are much worse than SVM for

nucleous: about 78-80%, 5% below SVM (85%), but only slightly worse for stages (90%-92% for stages, vs.

25



93.4% for SVM). The second group (middle left of the plot) includes PNN, KNN, QDA and LVQ, with bad

accuracies for stages (86%-90%) and very bad for nucleous (bellow 74%). It is surprising that popular classifiers

as MLP, LVQ, KNN, LDA and QDA worked very bad for nucleous compared to other less-known classifiers

(MLM, ELM, FDA, Adaboost, Bagging and Boosting). The RBF and GLM achieved very bad results for stages

(about 81% and 75%), and GLM also worked poorly for nucleous (about 80%).

Considering the classifier nature (fig. 4), among the ensemble classifiers Adaboost (79.8%) and Random

Forest (79.3%) are better than Bagging (78.3%) and Boosting (78.1%) for nucleous. For stages Boosting (92.3%),

Adaboost (91.8%) and Random Forest (91.9%) work similarly well and Bagging (90.6%) is the worst. We also

tested the single RPART classification tree, achiving results clearly worse (73.8% and 88.6% average accuracy

for nucleous and stages respectively) than the RPART ensembles, so that it was not included in the table 7.

Excepting the SVM, the best neural network was the ELM, which was worse than RBF, MLP and Boosting

for nucleous, but it was the second better for stages (alongside with FDA). The RBF was good for nucleous

and very bad for stages. The MLP was worse than ELM for both problems, and finally PNN and LVQ were

among the worst classifiers. Considering the statistical classifiers, MLM was the best, with good results for

nucleous and stages, followed by FDA, which was good for stages (92.5%) and very bad for nucleous (79.6%).

LDA and MDA achieved equal results, slightly worse than FDA for nucleous, despite of being MDA a mixture

of FDA classifiers. Finally, KNN, QDA and GLM were the worsts, the two formers mainly for nucleous and the

latter mainly for stages.
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Figure 4: Average accuracies in stage vs. in nucleous classification for each classifier (statistics in blue, neural

in red, ensembles in green).

5.4 Further experimentation

In order to find out the cause of the lower accuracies for nucleous classification, we develop some non-exhaustive

experiments. Particulary, we detect that for some cells the classifier systematically fails, which suggests that
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Table 8: SVM accuracy after the expert data revision.
Nucleous Stages

Vector #Feat. CV LOO CV LOO

2B 20 89.0 89.6 94.3 96.2

2C 20 89.5 89.0 95.0 96.5

2D 35 90.2 93.7 95.3 95.4

2F 25 89.8 92.6 93.8 99.6

2H 20 90.0 92 94.8 95.7

2J 21 90.5 91.0 95.8 97.7

3B 26 91.0 92.8 94.5 97.3

3D 41 90.7 92.0 95.1 96.2

3H 26 89.3 94.4 94.6 97.8

4B 26 91.5 92.1 94.4 96.5

4D 41 92.0 93.4 95.0 95.7

5B 32 91.0 94.2 94.5 97.4

5C 32 91.4 93.3 94.9 96.7

11 25 90.2 93.9 94.9 96.2

12 40 91.6 92.8 95.1 95.1

14 31 91.3 91.8 95.4 95.7

15 46 91.9 92.7 95.0 95.3

16 37 90.0 94.0 95.2 96.9

17 52 88.6 90.8 95.2 98.4

19K 30 88.0 94.5 94.5 96.3

20K 15 87.8 89.7 93.8 94.7

21K 60 91.0 91.2 94.5 94.9

25K 60 87.8 92.0 95 96.4

25P 180 85.8 99.0 95.5 96.4

27M 30 91.5 92.7 93.8 95.0

Avg. – 90.0 92.6 94.8 96.5

the human experts made some mistakes annotating the cell class. To prove our hyphotesis, a more expertise

technician checks the category of the whole data set and save in new XML files the changes. The category of

41 out of 1022 cells were changed, 31 for nucleous (2 from WN to WTN and 29 from WTN to WN) and 10 for

stages (2 from V/AT to AC and 8 from AC to V/AT). These changes affect aproximately to the 1% and 3%

of cells for stages and nucleous respectively. Additionally, given that the accuracy achieved in subsection 5.3

(classifier comparison) may be conditioned by the significance of the training set (related to the percentage

of the patterns used for training, 80%), we also develop an experiment using the Leave-One-Out (LOO)

validation, not conditioned because all the patterns except one are used for training in each trial. We run the

SVM with the revised dates and the same feature vectors as in table 7, tuning its parameters C and γ using the

same methodology as in the previous section (which will be called Cross Validation, CV). The results, and their

averages over feature vectors, are reported in table 8, using CV and LOO. The CV column is devoted to see the

change in accuracy due to expert revision, comparing with its corresponding value in table 7. The LOO column

offers an accuracy measure which we think is more realistic than CV, limited by the training set significance.

Regarding to nucleous classification, after the expert revision the best CV accuracy is 92.0% (vector 4D, 41

features), 5% higher than in table 7 (87.2%, vector 5C). This behavior is not limited to vector 4D, because the
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average CV accuracy in table 8 is 90.0%, 5% above the value in table 7 (85.0%, column SVM of line “Avg”).

This improvement (5%) is higher than the percentage of patterns (3%) modified by the expert revision: the

reason may be that this revision removes contradictory information in the training set, which facilitates the

learning and makes the SVM more reliable. With respect to LOO validation, the average accuracy is 2% higher

than CV (92.6% vs. 90.0%): this means that, as suspected, CV is too pessimistic, probably due to the limited

significance of the training set. Remarkably, the SVM achieves the “almost perfect” classification using LOO

(99% of accuracy with vector 25P, 180 features). The fact that the whole data set is almost correctly classified

using LOO, while CV achieves only 92% of accuracy, suggests that the random selection of the training set

in Cross Validation is not adequate (despite of using 80% of the available patterns), and that the reduced

test set (103 patterns) may not be representative enough to evaluate the classifier quality. Regarding to stages

clasification, the best accuracies are 95.8% (vector 2J, 21 features) and 99.6% (vector 2F, 25 features) using CV

and LOO respectively. Again, the SVM classifies almost correctly the whole data set using LOO, 4% more than

CV, so the previous comments about CV and LOO are also valid. In this case, the expert revision only raises the

average CV accuracy about 1% (94.8% in table 8 against 93.4% in table 7), similar to the percentage of patterns

with stage revised by the experts. Therefore, both for nucleous and stages the SVM achieves 99% of accuracy

with vectors 25P (PLBPv
c + PLBPriu

h , 180 features) and 2F (FOS + LBPriu
h , 25 features) respectively, which

can be considered a very reliable classification. The table 9 shows the confusion matrix and class sensitivities

and specificities achieved by SVM with LOO. For nucleous (vector 25P), both classes WN (with nucleous) and

WTN (without nucleous) exhibit sensitivities and specificities above 98%, with a small number of patterns

missclassified (10 of 1022). For stages (vector 2F), the class HID is correctly classified (100% of sensitivity)

despite of its low population, and only classes AC and V/AT are slightly mixed (4 missclassified against 252

and 705 patterns well classified) with sensitivies of 99.6%. In fact, given that the cell stage evolves in time

from AC to V/AT, the domain experts agree that the border between the two stages is not clear, and that the

discrimination criterion may change among experts. The Area Under Curve (AUC) values are also very high:

0.945 for nucleous and values above 0.986 for stages. The three pairs of stages were analized separately, because

the LibSVM tool3 used for ROC (Receiver Operating Characteristic) analysis only allows two-class problems.

Table 9: Accuracy (in %), confusion matrices, class sensitivity and specificity (in %), and Area Under Curve

(AUC) achieved by SVM for nucleous and stages classification (species Merluccius, LOO validation).
Nucleous (vector 25P) Acc: 99.0% Stages (vector 2F) Acc: 99.6%

WN WTN Se (%) Sp (%) AUC AC HID V/AT Se (%) Sp (%) AUC

WN 360 5 98.2 98.6 0.945 AC 252 0 1 99.6 98.8 AC-HID 0.998

WTN 5 652 99.2 99.2 HID 0 61 0 100 100 AC-V/AT 0.986

V/AT 3 0 705 99.6 99.8 HID-V/AT 0.998

The above results are refered to individuals of species Merluccius merluccius. In order to test the portability

of these results to other species, we develop experiments with the species Trisopterus Luscus (a species of

flatfish). Particularly, we use 31 histological images from 8 individuals of this species, summing up 912 cells

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/#roc curve for binary svm
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(aproximately 30 cells per image ranging from 14 to 63 cells). Their distribution per class is: 385 cells with

nucleous (42.2% of the total) and 527 without nucleous (57.8%); for stages of development, 525 cells are in

stage AC (57.6% of the total), 14 cells are HID (1.5%) and 373 cells (40.9%) are in V/AT. Using the same

methodology, we applied the SVM classifier to the 25 texture vectors of table 8 for the species Trisopterus

luscus. The average results achieved are 91.6% for nucleous (resp. 96.3% for stages) using the CV, and 96.3%

for nucleous (resp. 98.5% for stages) using LOO validation. The best LOO accuracies are achieved by vector

2F for nucleous (99.8%) and vectors 5B and 25P for stages (100%). The AUC values are also very high both

for nucleous (0.914) and stages: 0.989 between AC and HID, 0.959 between AC and V/AT, and 0.941 between

HID and V/AT. These results are even better than for species Merluccius merluccius, which confirms that this

methodology reports certain grade of robustness with differents species, and that it is accurate enough to allow

automatic classification for the species of interest typically considered.

6 Conclusions

The study of oocyte development dynamics and the automatic fecundity estimation in fisheries management

requires the measurement of cells (subsequently the detection of nucleous), and the evaluation of the stage of

development of cells in histological images of fish ovary. Both tasks lead to classification problems with two

and three classes respectively (With/Without Nucleous, and Cortical Alveoli, Hydrated, Vitellogenic/Atretic).

This analysis is performed over colour texture features extracted from the images. We developed an exhaustive

comparison of colour texture features and classification methods in order to predict the presence/absence of

nucleous and the stage of development. We tested a very wide variety of grey level and colour texture features

belonging to different families: spatial dependences among pixels, Local Binary Patterns (LBP), wavelet texture

analysis and texture fractal analysis. We compared colour texture features using parallel (the union of colour

and grey level texture features) and integrative (the union of grey level texture over each colour channel)

strategies, giving a total of 126 feature vectors. Additionally, the methods for calculating these features were

modified to operate on irregular regions (cells) in the image. These vectors were used for both classification

problems (nucleous and stages), covering the whole range of currently available classification techniques with

a wide variety of approaches: statistical classifiers (LDA, QDA, FDA, MDA, GLM, MLM and KNN), neural

networks (MLP, SVM, RBF, LVQ, PNN and ELM) and ensembles (Bagging, Boosting, Adaboost and Random

Forest) of classification trees, up to 17 classifiers. For the species Merluccius merluccius, the SVM achieves the

best results for almost all the feature vectors, reaching 87.2% and 93.4% of accuracy for nucleous and stages

respectively using Cross Validation. However, further insights into the SVM results suggested us the presence

of some labeling errors in the data set. An new expert revision confirmed these errors, changing the labels of

about 3% and 1% of the patterns, and raising the SVM accuracies to 92.0% and 95.8%, for nucleous and stages

of development respectively. Another factor what limits the SVM accuracy is the training set significance.

In fact, SVM with Leave-One-Out validation achieves 99.0% and 99.6% of accuracy using vectors PLBPv
c +
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PLBPriu
h (colour LBP, 180 features, integrative method) and FOS + LBPriu

h (colour statistics and grey level

LBP, 25 features, parallel method) for nucleous and stages respectively. These good results are also achieved

with species Trisopterus luscus (99.8% for nucleous and 100% for stages), being accurate enough to allow an

automatic fecundity estimation from histological images of fish ovary. Future work includes: 1) to develop

further experiments with the other 13 species used in the daily work in the Institute of Marine Research-CSIC;

2) to evaluate the best colour texture features in a real enviroment using the software Govocitos; and 3) to

experiment with uniform colour spaces.
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