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Abstract

Contemporary high-throughput technologies provide measurements of very large numbers of 

variables but often with very small sample sizes. This paper proposes an optimization-based 

paradigm for utilizing prior knowledge to design better performing classifiers when sample sizes 

are limited. We derive approximate expressions for the first and second moments of the true error 

rate of the proposed classifier under the assumption of two widely-used models for the uncertainty 

classes; ε-contamination and p-point classes. The applicability of the approximate expressions is 

discussed by defining the problem of finding optimal regularization parameters through 

minimizing the expected true error. Simulation results using the Zipf model show that the 

proposed paradigm yields improved classifiers that outperform traditional classifiers that use only 

training data. Our application of interest involves discrete gene regulatory networks possessing 

labeled steady-state distributions. Given prior operational knowledge of the process, our goal is to 

build a classifier that can accurately label future observations obtained in the steady state by 

utilizing both the available prior knowledge and the training data. We examine the proposed 

paradigm on networks containing NF-κB pathways, where it shows significant improvement in 

classifier performance over the classical data-only approach to classifier design. Companion 

website: http://gsp.tamu.edu/Publications/supplementary/shahrokh12a.
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1. Introduction

In recent years, phenotypic classification based on genomic data has confronted the pattern 

recognition community with very small samples. There can be tens of thousands of potential 

features (gene expressions) but the sample sizes tend to be small, typically under 100 and 

often less than 50. This makes classification problematic. A promising approach to alleviate 

the problem is the use of prior knowledge. For example, the usual procedure for classifier 

design is to apply a classification rule to a set of features and sample data with the result 

being a designed classifier that will be applied to the population (all future observations). 

Prior knowledge can play a role in deciding upon the nature of the data and the original list 

of features. Knowledge may also be used in choosing a classification rule based on the 

nature of physical characteristics. The salient point from our perspective herein is that, once 

the features, sampling procedure, and classification rule are decided upon, from that point on 

the typical classification rule proceeds without operational knowledge concerning the 

features. In particular, no assumptions are made regarding the feature-label distribution 

(population) from which the sample data have been drawn. It is in this regard that the 

classification procedure is said to be “model-free.” If knowledge concerning the feature-

label distribution is available, then it can be used in classifier design.

A good bit of attention has been paid to the difficulty of error estimation in such 

circumstances. This has led to the incorporation of prior knowledge in error estimation, for 

instance, sample-size requirements based on an uncertainty class of feature-label 

distributions [1] and minimum-mean-square-error (MMSE) error estimation based on a prior 

distribution over an uncertainty class of feature-label distributions [2, 3].

Here the issue is incorporation of prior knowledge into the design of the classifier itself, not 

the estimation of its error. A number of recent studies have proposed various methods that 

can enhance classifiers by incorporating prior knowledge. For example, to improve 

classification performance, several studies have proposed to interpret the gene expression 

data at the level of functional modules (i.e., pathways), instead of at the level of individual 

genes, by utilizing available pathway knowledge [4, 5]. These pathway-based methods try to 

infer the activity level of a given pathway by analyzing the expression of its member genes, 

which is then used as a potential feature. These studies have shown that such “pathway 

markers” are generally more reproducible compared to “gene markers” and that they lead to 

better classification performance. Another example is the network-based classification 

approach [6, 7], which has been gaining interest in recent years. These network-based 

methods try to identify “subnetwork markers” by overlaying the gene expression data on a 

large-scale PPI (protein-protein interaction) network, where each gene is mapped to the 

corresponding protein, and searching for differentially expressed subnetwork regions. It has 

been shown that these subnetwork markers often yield more accurate classification results 

and have better reproducibility compared to both gene and pathway markers. Considering 

that pathways are partial representations of the gene regulatory network and that the PPI 

network provides a skeleton of the biological network underlying cells, the aforementioned 

methods can be viewed as attempts to construct better classifiers by integrating partial 

network knowledge with measurement data. A Bayesian approach to using prior knowledge 

for classification has been taken by defining a prior distribution on an uncertainty class of 

Esfahani et al. Page 2

Pattern Recognit. Author manuscript; available in PMC 2015 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature-label distributions and deriving a classifier that is optimal with respect to the 

posterior distribution resulting from utilizing sample data in conjunction with the prior 

distribution [8, 9]. This approach has been applied to classify the mammalian cell cycle as 

normal or mutated [10].

Although recent advances in pathway-based and network-based classification have 

demonstrated the potential for utilizing prior knowledge to improve genomic classification, 

currently available methods mostly rely on heuristics. In this paper, we propose a general 

paradigm for classification that incorporates prior knowledge along with the data in the 

context of an optimization procedure. We address optimal discrete classification where prior 

knowledge is restricted to an uncertainty class of feature distributions absent a prior 

distribution on the uncertainty class, a problem that arises directly for biological 

classification using pathway information.

In our case, the application in mind is phenotype classification based on gene (or protein) 

expression measurements in the steady-state of a biological network. This “biomarker 

problem” is perhaps the most active area of research in genomics owing to the potential for 

disease diagnosis and prognosis. Rather than depend only on expression data, one can use 

classical genetic pathway information to provide prior knowledge and augment classifier 

design. The example laid out in this paper involves the following chain: {pathways} → 

{class of networks} → {class of steady-state distributions}. Prior knowledge in the form of 

a set of pathways constrains the possible behaviors of the dynamical system to an 

“uncertainty class” of networks consistent with the pathway information [11]. Each of these 

possesses a steady-state distribution, thereby yielding an uncertainty class of steady-state 

distributions. Figure 1 shows an illustrative view of this process chain. Detailed description 

of this figure is given in Section 6. Hence, rather than assume nothing is known about the 

feature-label distribution than what can be extracted from the data during classifier design, 

we can impose the constraint that the feature distribution belongs to the uncertainty class of 

steady-state distributions shown by a box in the middle of Figure 1. Put simply, a classifier 

is designed based on the uncertainty class of steady-state distributions, denoted by Π0 and 

Π1 in Figure 1, and the steady-state data.

We emphasize that while the particular application motivating our interest involves the 

generation of a steady-state uncertainty class from genetic pathway information, the 

theoretical content of this paper lies solely within classification theory – classifier design 

assuming an uncertainty class of feature distributions. In line with that focus, we provide 

analytic characterization of the first and second moments of the true error for two well-

known uncertainty models, ε-contamination and p-point uncertainty classes, under the 

assumption of stratified sampling. Characterization of these moments is basic to 

understanding the behavior of a classification rule and has a long history in pattern 

recognition, most commonly with stratified sampling [1],[13]-[29]. Recently, the issue of 

true-error moments has been addressed in the context of the joint distribution of the true and 

estimated error moments, in this case the most important moment being the second-order 

mixed moment between the true and estimated errors because this mixed moment is critical 

to characterizing the accuracy of the error estimate [1, 13, 18, 30].
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The paper is organized in the following manner. In Section 2, we introduce our proposed 

paradigm. True error statistics for the stratified sampling case are derived in Section 3. 

Section 4 contains a brief discussion on the regularization parameter defined and used 

throughout the paper. Simulation results are shown in Sections 5 and 6 where we show the 

improvement of the designed classifier over the histogram rule in synthetic and biologically 

inspired cases, respectively. Finally, Section 7 contains concluding remarks.

We use the following notation and abbreviations. Boldface lower case letters denote column 

vectors. The cardinality of the set, Π is denoted by |Π|. π(k) and πT denote the k–th element 

and the transpose of the vector π, respectively . Pr(A) denotes the probability of event A. The 

binomial distribution is shown by bin(n, p). bin(n, p) = x is used to denote the binomial 

random variable having value x. The trinomial distribution is shown by trin(n, p1, p2). Thus,

To show the comparison between two vectors, we use π1 ⪯ π2 meaning that the vector π1 is 

element-wise less than or equal to π2. The notation Ex(g(x)) is used to denote taking 

expectation of g(x) with respect to the subscript x. The indicator function for the event A is 

shown by IA.

2. Regularized maximum-likelihood

In this section, we propose an optimization paradigm for classifier design that utilizes both 

an uncertainty class (from prior knowledge) and the available training data. Let 

 be the true conditional distribution of the feature X = k ∈ {1, …, b} 

given the class label y ∈ {0, 1}, and let cy = Pr(Y = y) be the prior distribution of the class 

label. We can build a classifier by first finding label conditional probabilities π̂y(k) that 

estimate the true probabilities  and then defining

(1)

This can be viewed as using the “plug-in rule” in the Bayes classifier 

. In the absence of prior knowledge, the label-conditional 

distribution  is estimated solely based on the training data by solving 

the following maximum log-likelihood problem:

(2)

where  is the number of sample points at state k with label y and e is the all-one column 

vector. The solution to (2) is
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(3)

where ny is the number of sample points with label y.

We now assume we have uncertainty classes, , y = 0, 1, e.g., see 

Figure 1, conveying the prior network knowledge of the label-y conditional distribution, . 

We adapt (2) to form the following weighted-sum optimization problem for the class labels 

y = 0, 1, which includes a term contributed by the uncertainty class:

(4)

The regularization parameter λy ∈ [0, 1] reflects the uncertainty of the labeled training data 

compared to the total amount of uncertainty in our prior knowledge and 

, where b is the standard unit (b − 1)–simplex and  is any 

uncertainty class containing |Πy| b–dimensional distributions, is a nonnegative function to 

measure the dissimilarity between a given πy and the uncertainty class.

If the objective function in (4) is a convex function, then the optimization problem can be 

solved efficiently. Since the log-likelihood of the multinomial distribution is concave (i.e., 

the negative log-likelihood function for πy(k), k = 1, …, b, given the sample, is convex), it is 

sufficient to use a convex function for ℓ (i.e., the regularizer term) in (4) to make it a convex 

programming problem. We use

(5)

where  is the Kullback Leibler (information) distance (KL-

distance).

Lemma 1 (RML Classifier). Suppose that the dissimilarity function ℓ is defined as (5). Then, 

the solution to the regularized maximum-likelihood (RML) problem in (4) is obtained bin-

wise as

(6)

where π̅y(k) is the probability of the k—th bin obtained from the average of , i = 1, 2, …, |

Πy| in the corresponding uncertainty class Πy, y ∈ {0, 1}. The corresponding RML classifier 

can be found by plugging  and  in equation (1).
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Proof. Please refer to Appendix A.

Consider the following two special cases:

1. Suppose the uncertainty in the information extracted from the training data is much 

less than that in the prior network knowledge. In the limiting case, λy → 0 and

(7)

This is consistent with our expectation: if there is infinite amount of training data 

(hence no uncertainty therein), the classifier can be perfectly estimated from the 

data.

2. Suppose we have very good prior network knowledge, so that the uncertainty in 

this knowledge is much smaller compared to that extracted from the data. In the 

limiting case, λy → 1 and

(8)

If we have perfect knowledge of the steady-state distribution, then we do not need 

training data.

In this paper we consider two models having finite uncertainty classes:

2.0.1. ε-contamination uncertainty class

The ε-contamination class has been used for modeling uncertainty in a wide range of 

applications, including robust hypothesis testing [31], robust Wiener filtering (uncertainty 

about the spectral density) [32, 33], Bayesian robust optimal linear filter design [34], robust 

decision making problems [35], and minimax robust quickest change detection (with the 

application in intrusion detection in computer networks and security systems) [36]. In [32]-

[34], the ε-contamination class contains all the power spectral densities (PSD) in the vicinity 

of the nominal PSD. In [31] and [36], the ε-contamination contains all the probability 

densities in the vicinity of the nominal one.

Here, we use ε-contamination to model the uncertainty about the label-conditional 

probabilities. We define the ε-contamination class of multinomial distributions associated 

with each label as the class containing the distributions in the form of

(9)

where εy ∈ [0, 1) is the degree of contamination and π is one of a finite number of randomly 

chosen densities from b. Increasing εy corresponds to increasing the variance of prior 

knowledge about the true distribution. We assume a uniform distribution for the 

contamination part whose domain is the relative interior of the volume under the (b − 1)-
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simplex. Since our application of interest is related to steady-state classifiers, we assume that 

in the simplex the corners and axes have measure zero.

2.0.2. p-point uncertainty class

The p-point uncertainty class has been used to model uncertainty in rate distortion problems, 

detection problems, robust Wiener filter design, and robust non-stationary signal estimation 

[33],[37]-[42]. In our application of interest, we often only know that the cell, in its steady 

state, spends a specific portion of time in a subset of states but know nothing about the 

details of these states individually. Hence, to model this prior knowledge, we can see the 

problem as a partitioning scenario: if we partition the state space, then the amount of time 

that the cell spends in each subset in the partition is known. Therefore, we can say that the 

label-conditional distributions belong to an uncertainty class of distributions satisfying the 

following constraints:

(10)

where  is the actual steady-state distribution ,  form a partition of the state 

space denoted by y, and π ∈ b is any density function.

We will use the following notation throughout the paper for the probability mass cumulated 

in each partition:

(11)

Moreover, we define the following mapping from state space to the partition:

(12)

In the extreme case, my = 1 means that we only know that the label-conditional probabilities 

for the bins sum up to 1, which corresponds to a minimal amount of prior knowledge. On the 

other hand, my = b, i.e. , for any p ∈ {1, …, my}, y ∈ {0, 1}, means that we are certain 

about the label-conditional distributions, because we are given all bin probabilities – hence 

minimal variance in the uncertainty class (for more details refer to Section 1 of the 

supplementary materials on the companion website).

3. Moments for the true error

For a classifier ψn trained on the sample data Sn, the probability of error is defined as εdata = 

Pr(ψn(X) ≠ Y |Sn). The overall performance of the classification rule can be evaluated by the 

expected classification error, E(εdata) = ESn [Pr(ψn(X) ≠ Y |Sn)], over all samples of size n. 

When prior knowledge (denoted by “uc” for uncertainty class) is incorporated into classifier 

design, we rewrite the probability of error as
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In this section we provide analytic representation of the first and second moments for the 

error in the ε-contamination and p-point uncertainty models under stratified sampling, in 

which sampling is performed from classes 0 and 1 in accordance with their prior 

probabilities. Since we incorporate prior knowledge, the moments are computed relative to 

all samples of size n and the uncertainty-class space. They take the form

(13)

(14)

We derive tight approximations for these moments for λy ∈ (0, 1). The cases λy ∈ {0, 1} can 

be handled with a slight modification to the proof.

Theorem 1 (First-Order Moment of the True Error: ε−Contamination Class). Suppose that 

the uncertainty classes, Π0 and Π1, come from ε0− and ε1 − contamination classes, 

respectively. Then, the first-order moment of the true-error of the RML classifier defined in 

Lemma 1 is given by

(15)

where the random variables , k = 1, …, b, ∀ly = 0, .., ny; y ∈ {0, 1}, approximately have 

the following probability mass function (pmf):

(16)

Φ(.) being the standard normal distribution. In equation (16) we have

(17)

where y̅ denotes 1 − y and
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(18)

Proof. Please refer to Appendix B.

Theorem 2 (First-Order Moment of the True Error: p–Point Class). Let the uncertainty 

classes, Π0 and Π1, be modeled by the p–point model with partition probabilities  and 

with p = 1, …, my for labels 0 and 1, respectively. Then, the first-order moment of the true-

error of the RML classifier defined in Lemma 1 can be written as in equation (15) in which 

the random variables , k = 1, …, b, for any ly = 0, .., ny, approximately have the pmf as 

defined in equation (16), whereas assuming the definitions in equation (18), we have

(19)

where the mapping Py(.) is defined in equation (12).

Proof. Please refer to Appendix B.

Theorem 3 (Second-Order Moment of the True Error). The second-order moment of the 

true-error of the RML classifier defined in Lemma 1 can be decomposed as

(20)

where A0 := ESn[I{ψ(X=k)=0}] and A1 := ESn[I{ψ(X=k)=1}] can be found similarly as in 

Theorem 1. B0, B1, C0, and C1 are computed as follows:
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(21)

Proof. Please refer to Appendix C.

The joint distribution of  and  (similarly for  and ) and the joint 

distribution of  and  (similarly for  and ), which depend on the 

uncertainty classes, are given in Appendix D for ε–contamination and p–point classes.

4. The regularization parameter

The regularization parameter λy in (4) should be adjusted based on the relative uncertainty 

between the training data and the prior knowledge. We propose three approaches for tuning 

the regularization parameter.

4.1. Minimizing the expected true error

The optimal value of the regularization parameter, based on expected true error, can be 

found by solving the following optimization problem:

(22)

where λ = [λ0, λ1], 1 = [1, 1], 0 = [0, 0] and E(εRML) is given in equation (15). In (15), the 

only parameters affected by λ are Pr , y ∈ {0, 1}, approximated in Theorems 1 and 

2. (22) is a constrained non-linear programming problem whose global minimum is not 

guaranteed to be found by classic gradient-based methods.

4.2. SURE-tuning of regularization parameter

One way to evaluate the performance of the estimator in Lemma 1 is to use the mean-

squared error (MSE) of the estimator. In the problem of multinomial distribution estimation, 

the MSE can be expanded as follows
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(23)

where we drop the subscript RML and instead use the regularization parameter λy to show 

that the estimate depends on λy. One strategy to find the regularization parameter is to 

minimize MSEy in (23) [43, 44]; however, MSEy depends on the parameter for estimating 

. We use an approach called SURE (Stein's Unbiased Risk Estimator) [45], proposed for 

the i.i.d. Gaussian model. Here, an unbiased estimate of the MSE of the designed estimator 

is found and then one can do optimization to find the required parameters of the estimator. 

For the sake of simplicity, in the following lemma we omit the superscript y.

Lemma 2. Let the uncertainty class, Π, be given and fixed. Denoting the RML estimator of 

πac in Lemma 1 using λ as the regularization parameter by π̂
λ, an unbiased estimate of the 

MSE of the estimate in Lemma 1 is given by

(24)

where  and .

Proof. Please refer to Appendix E.

Minimizing the SURE-estimate of the MSE with respect to the regularization parameter λ 

yields the following result for case of n ≥ 2.

Corollary 1 (SURE-Optimal Regularization Parameter). The SURE-optimal regularization 

parameter of the estimator defined in Lemma 1 is given by

(25)

in which we have .

Proof. The corollary results from equating the derivative of (24) (with respect to λ) to zero, 

while considering the boundary of the feasible region of the λ (the SURE estimate in 

equation (24) is continuous in [0, 1]).

Fixing the uncertainty class, as n → ∞, we obtain
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(26)

in which ∥x∥2 denotes the ℓ2–norm of vector x.

To illustrate the effects of different sample sizes and different amounts of uncertainty on 

, we have run a simulation assuming an ε–contamination uncertainty class and that the 

actual distribution follows a Zipf model with parameter a = 1 (a detailed description of the 

Zipf model will be provided in Section 5). We observe the behavior of 

 using Monte-Carlo expectation over 4000 training data sets (for 

each fixed sample size) and 500 uncertainty classes. We consider different values for ε ∈ [0, 

1) and sample size n. Figure 2 shows the 3-D figure with n as the x-axis and ε as the y-axis. 

As ε → 1 (uncertainty is increased), for a fixed sample size, λ̅
SURE decreases as in equation 

(26).

4.3. A heuristic approach

Although one can use a stochastic algorithm to solve (22) (which is not necessarily 

guaranteed to achieve the global minimum), or use the result in Corollary 1, we can take a 

heuristic approach for specifying λy. Suppose |Π0| and |Π1| are the sizes of the uncertainty 

classes for labels 0 and 1, respectively. Proceeing heuristically and denoting the ith 

distribution with label y as , we form a network-based estimate, , by averaging the 

, i = 1, …, |Πy|. A data-based estimate, , is obtained from (3). Under this setting, we 

can estimate the relative uncertainty by

(27)

where

(28)

In (28), the variance of the training data is independent of the uncertainty class model and 

can therefore be analytically computed by

(29)

The variance of the uncertainty class depends on the underlying model of the uncertainty 

class. We obtain
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(30)

for a ε–contamination class and

(31)

for a p–point uncertainty class (please refer to Section 1 of the supplementary materials on 

the companion website).

5. Numerical experiments

In this section, we evaluate the performance of the classifiers designed using the proposed 

optimization paradigm. Let εRML denote the error of the RML classifier designed via (4) 

using the estimated probabilities given in Lemma 1. Let εhist denote the error of the 

traditional histogram rule obtained by designing the classifier as in (1) using the data-based 

estimate  given in (3). The exact expression for E(εhist) is given in [18].

We use both the approximation in (15) as well as Monte Carlo simulations for assessing 

E(εrml). In the Monte-Carlo estimation, based on the given assumption for the structure of 

the uncertainty classes, we generate T pairs of uncertainty classes denoted by , l = 1, 

…, T. Then for each pair, based on the given model for the true distributions , y = 0, 1, 

we generate M sample sets with size n denoted by , m = 1, …, M. For each sample , 

we estimate the conditional probabilities using Lemma 1. The estimates  (k) are then 

used to construct the classifier, as defined in (1). The error of the classifier designed using 

(i.e., mth sample set generated for the lth pair) is then computed analytically using the 

actual distribution  which was used to generate the sample. We denote this error by . 

The first- and the second-order moments of the true error are approximated by

(32)

(33)

via Monte Carlo simulation. We estimate the variances,  and  in (27) as

(34)
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(35)

5.1. Performance assessment using a Zipf model

We first assume that the true label-conditional distributions (i.e., , y = 0, 1) follow a Zipf 

model,

(36)

where ξ is a normalizing constant. The Zipf distribution, originally introduced by G.K. Zipf 

to model the frequency of words in common text [46], is a well-known power-law discrete 

distribution, encountered in many applications. In particular, it has been used as a model to 

study the moments of error estimators for discrete classifiers [18]. As a → 0, both 

conditional distributions (y ∈ {0, 1}) tend to become uniform. Hence the classification 

problem becomes more difficult, resulting in a larger Bayes error. We assume cy = 0.5; y ∈ 

{0, 1} are known. We consider b = 8 (which corresponds to the number of states in a three-

gene Boolean network when modeling genomic regulatory networks [47]). We evaluate the 

proposed framework under two different scenarios. First, we examine the accuracy of our 

approximate expressions by comparing them with the Monte-Carlo simulation while one has 

access to the exact regularization parameters defined by applying (29)-(31). The motivation 

is to test the accuracy of our approximation when the regularization parameters are found 

off-line, independent of the given sample data. In the second scenario, we assume one has to 

estimate the regularization parameters based on the given data and uncertainty classes using 

equations (34)-(35). Depending on the underlying assumption for the uncertainty classes, for 

each size n and each set of model parameters (e.g., ε0, ε1, or partitions in the p–point class), 

we generate T = 1000 different pairs of uncertainty classes, , l = 1, …, 1000, for 

which we generate M = 2,000 samples, , l = 1, …, 1000;m = 1, …, 2000, for estimating 

the first- and the second-order moments of the true error, E(εRLM) and . For the 

approximate second-order moments, where there are double-integrals, we use the adaptive 

Simpson algorithm for approximating the integral values. Some results for the various 

experiments are shown in Figure 3 for, ε-contamination, b = 8, and uncertainty class size |

Πy| = 250 for y = 0, 1 (more results, including those for p-point uncertainty, are shown in 

Section 2 of the supplementary materials on the companion website). In the figure, the 

Bayes error corresponding to the optimal classifier is denoted as εBayes.

We use the algorithm proposed in [48] for generating the contaminating distribution 

generated uniformly under a unit-simplex. Figure 3(a) shows the results for the first 

scenario. Three cases are considered for the pair: (ε0, ε1): (0.3, 0.9), (0.4, 0.6), and (0.1, 

0.95). The expected true error of the proposed scheme is smaller than that of the histogram 

rule in all cases. Moreover, the results from the Monte-Carlo simulations are very close to 

those obtained from our approximations in (15), shown by “Approx” in the legends of plots. 
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The expected true error for the case (0.4, 0.6) is significantly smaller than the others for 

small sample sizes. This is due to the reliable prior knowledge compared to other cases, for 

small samples. However, when the sample size increases, (0.1, 0.95) outperforms (0.4, 0.6). 

Owing to a small contamination degree ε0 in (0.1, 0.95), the proposed RML framework 

provides a good estimate of  for any sample size. Furthermore, by increasing the sample 

size, we achieve a better estimate of , making the designed classifier perform close to the 

optimal classifier. Therefore, it outperforms (0.4, 0.6), which has less accurate estimates of 

the two conditional distributions for these sample sizes.

Figure 3(b) shows the results for the data-dependent regularization parameter, where one can 

see that our approximation and the Monte-Carlo simulations are slightly different. This 

happens only for small sample sizes, owing to having a poor estimate of λy; y = 0, 1, defined 

in (29)-(30). Figures 3(c) and 3(d) correspond to Figures 3(a) and 3(b) for the second-order 

moment.

6. Performance assessment using networks containing NF-κB pathways

While the theoretical development of the paper pertains to uncertainty classes of 

distributions for classification, as stated at the outset, our original motivation for the theory 

comes from our desire to apply prior pathway knowledge in biological network steady-state 

classification.

In this section, we use prior pathway knowledge and an associated cellular context in order 

to improve the performance of a classifier which discriminates between biologically relevant 

states of a biological system. More specifically, a biological system can be modeled by a 

discrete, dynamical system that is subject to external stimuli and behaves according to 

interactions amongst its constitutive components. These interactions between components 

are often referred to as pathways and are time invariant in most biological processes. It is 

instead the varying cellular context that activates or deactivates pathways in order for a cell 

to respond to the demands of life. For many classification problems of interest and this 

example here, these pathways will be identical in each class and it is the cellular context of 

available nutrients, signaling proteins, or other agents that are of interest. However, the 

general method can be used with differing pathways if the goal is to discriminate against 

such things as the presence of mutations, separate organisms, or cancer. In all of these 

examples, we would expect the two classes to have different pathways through differing 

genetics.

To set up the classification example, we use a single set of pathways describing our 

biological system of interest, and choose two different cellular contexts which describe the 

biological phenomena we are interested in classifying. Then for each (context, pathways) 

tuple we generate an intermediate class of dynamical systems that have behavior described 

by the the biological pathways under this context. These classes represent all possible 

dynamical systems that can behave according to the constraints of the pathways and cellular 

context. Each dynamical system in these two classes possesses a unique steady-state 

distribution, and we can therefore obtain two classes of steady state distributions from our 

two tuples of (context, pathways).
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6.1. The NF-κB system

Nuclear factor-κB (NF-κB) is a family of transcription factors that control the expression of 

over 100 genes. Its primary role is in the immune system as a central regulator of 

inflammation. This makes it important in cancer research as inflammation contributes to the 

reduction of apoptosis and increased angiogenesis in the tumor microenvironment [49].

Biologically the NF-κB transcription factor can be activated through several parallel 

signaling pathways. In this paper we use a model containing three stimulating external 

inputs which are shaded in Figure 4. When a bacterial infection occurs, the 

lipopolysaccharide (LPS) molecule present in the cell wall of the bacteria binds to TLR4 

receptors in immune cell membranes and initiates a strong NF-κB response [50]. Tumor 

necrosis factor α (TNFα) is a cytokine produced primarily by macrophages to induce an 

endogenous inflammatory response by binding to the TNFR receptor. And finally, NF-κB 

responses can be initiated through the ‘alternative pathway’ with the lymphotoxin β receptor 

(LTβR). Once activated, each of these inputs initiates a downstream signaling cascade 

activating the NF-κB system. As there is no feedback from the system back onto these three 

external signaling molecules, their state is constant once chosen and helps determine the 

behavior of the other nine genes.

6.2. NF-κB classification

In a biological system, we are often unable to directly measure or quantify the cellular 

context which controls the behavior of some cells of interest. We consider such a scenario as 

a classification problem. Given two possible cellular contexts and some data samples of the 

9 proteins whose behaviors are constrained by the context, determine which context the 

samples were taken from. In Figure 5 we graphically depict the two contexts (or classes) in 

three such classification problems (or configurations). The presence of an input indicates 

activation, absence indicates inactivation, and a shaded input indicates the input may either 

be active or inactive.

Qualitatively the three configurations in Figure 5 can be described in the following manner: 

configuration 1 considers an endogenous macrophage induced inflammatory insult in class 0 

versus inflammation as a result of bacteria and the response of immune cells in class 1 [50]. 

Configuration 2 considers an inflammatory insult resulting from bacteria and immune cells 

in class 0 versus an endogenous inflammatory insult arising from many types of immune 

cells signaling in class 1. Configuration 3 compares inflammation resulting from a bacterial 

infection (either in the early stage with no immune cells present or late stage after immune 

cells have arrived) in class 0 versus an inflammatory injury with immune cells present 

(possibly resulting from a bacterial infection in class 1).

In these three configurations we measure the ability for the classifier to distinguish the 

underlying context for an inflammatory response. The classification problem is of 

significant medical and translational science import.
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6.3. Modeling the NF-κB system

Previously, we have used pathways collected from the literature to develop and validate a 

discrete-time, finite-state Markov chain model of the NF-κB system [12]. This method was 

then generalized in [51] to generate a parameterized class of Markov chains from the 

pathway knowledge instead of a single Markov chain.

The pathways which define the NF-κB model (which can be seen in [52]) constrain the 

possible behaviors and interactions of the nine genes. As these pathways are incomplete and 

sometimes conflicting, the evolution of the Markov chain in some states is often uncertain. 

We model these uncertainties as independent Bernoulli random variables in the state 

transition graph with unknown parameters. We then consider the collection of these 

parameters in the vector θ = {θ1, θ2, …, θn}, where θi ∈ [0, 1], in order to parameterize the 

uncertainty class of system behavior.

In the NF-κB model, there are only three uncertainties that arise from the pathways. These 

determine the parameterization of the uncertainty class via the vector θ ∈ [0, 1]3. Choosing θ 

gives a single well-defined Markov chain from the uncertainty class. For a small example 

see the companion website (Section 3 of the supplementary materials) and for more details 

we refer to [12] and [51]. For the true network, we choose a network from [12]. It is at the 

center of the parameter space, θac = (0.5, 0.5, 0.5). From the standpoint of classification this 

network is unknown; it is chosen here to generate samples. A priori we only know that the 

true network exists inside our uncertainty class.

6.4. Results

To utilize this modeling technique with the proposed RML framework we define two 

uncertainty classes of models for each configuration by fixing the inputs according to Figure 

5. Since the RML framework requires finite uncertainty classes, we discretize the 

continuous [0, 1]3 space as explained in the companion website. Then, adding a perturbation 

probability p = 10−3 in our simulations to each network, we obtain a class of ergodic 

irreducible Markov chains and, accordingly, a class of steady-state distributions [47]. The 

perturbation probability for the true model is set to p = 10−5. We generate data from the true 

network in each class. These two data sets along with the two uncertainty classes allow us to 

compare the RML classification framework with the classical histogram rule. Figure 6 

shows the results for the histogram-rule and proposed method for different configurations. In 

configuration 3, the error of the classifier briefly increases as a function of the sample size at 

the beginning. The regularization parameter is set according to Corollary 1, denoted by 

λSURE. Both the histogram and RML classifiers converge to the Bayes errors as n → ∞. In 

all cases, the RML approach outperforms the histogram-rule, illustrating the benefit of prior 

knowledge, if available.

6.4.1. Comparison to MAP—Designing the RML classifier begins with the assumption 

of having finite uncertainty classes of feature distributions, in the absence of a prior 

distribution governing these classes, i.e., no prioritization of any uncertainty class member 

in favor of the others. Nonetheless, one would still solve the maximum a posteriori (MAP) 

to find the most likely multinomial distribution existing in the uncertainty class and build the 
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“plug-in rule” classifier according to equation (1). Hence, using the log-likelihood function 

in equation (2), we define the MAP distribution as

(37)

Thereafter, we define the MAP classifier by plugging the estimates  in equation (1). In 

Figure 7, we compare performance of the RML given in Lemma 1 with that of MAP given 

in equation (37) by plotting the difference between the corresponding expected true errors, 

i.e., ESn [εMAP − εRML] as a function of sample size for the three configurations considered 

in Figure 6. Figure 7 illustrates that for configurations 1 and 2 the RML classifier performs 

always better than the MAP. For category 3, the MAP classifier performs better than the 

RML in some range, but then, the RML classifier outperforms the MAP after increasing the 

sample size.

7. Conclusion

We have proposed a novel classifier design paradigm that allows us to design enhanced 

classifiers by incorporating available prior knowledge of the process generating the 

observation data. As shown in our simulations, such knowledge can significantly improve 

the performance of the designed classifier, especially, when the sample size is small. Having 

laid the theoretical groundwork for enhancing steady-state classifier design via the use of 

prior process knowledge, our plan is to apply the methodology to developing better 

biomedical classifiers in the presence of partial knowledge of the underlying genetic 

regulatory network. More generally, given the ubiquity of large feature sets and relatively 

small sample sizes now common in many disciplines, including medicine, material science, 

environmental science, and transportation, there will no doubt be an increasing number of 

methods proposed for using prior knowledge in classifier design. We believe it is important 

to provide analytic performance characterization of the classifiers on standard models, as we 

have done in this paper, so that their behavior can be understood.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Proof of Lemma 1

Plugging (5) in (4), we obtain
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(A.1)

The solution to this problem can be obtained using a Lagrangian multiplier similar to (2), 

which leads to the label conditional probabilities in (6).

Appendix B. Proof of Theorems 1 and 2

In this appendix, we prove Theorems 1 and 2 for y = 0. The case y = 1 can be handled 

similarly. Let the inner expectation in (13), ESn [Pr(ψn,∏0,∏1(X) ≠ Y |Sn)], be denoted by 

EXP1. Then

(B.

1)

in which we apply ; y = 0, 1. We denote the average distribution by π̅
y; y = 0, 

1 which can be computed by , where π̅ is the average of contaminating 

distributions. Now, for y = 0, 1, define

(B.2)

Equation (B.1) can be written as

(B.3)

(B.

4)

were
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(B.5)

In (B.4), we have two random variables  and  depending on the uncertainty classes 

Π0 and Π1, respectively. We present the distributions of these random variables for the 

uncertainty class models described in Section 2 in the following subsections:

Appendix B.0.2. ε–contamination class

We first show that the contaminating part π(k) in (9) has a Beta distribution B(1, b − 1), 

where b is the number of states. Suppose that the contaminating distributions come from a 

uniform distribution on a (b − 1)- simplex. Thus, as Δx → 0,

(B.

6)

where Vol(.) denotes volume under the specified argument and b−1 and  are the unit 

(b − 1)−simplex and (b − 2)−simplex with corners on 1 − x, respectively. (B.6) can be 

written as a density function according to

(B.7)

which is a Beta distribution with parameters 1 and b−1 whose mean and variance are  and 

, respectively. Using the Edgeworth expansion to approximate the cumulative 

density function of π̅(k), [53], we obtain

(B.8)

where , and we have

(B.9)

In (B.9), according to the Edgeworth expansion, we have

(B.10)
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Considering (B.9) and (B.10), one can conclude that R|Π0| → 0 for large enough uncertainty 

classes. Therefore, for large uncertainty classes, we will approximately have 

. Hence, considering the last line of equation (B.2), we get the 

following result:

(B.11)

Thus, since p0(k) and p1(k) are independent random variables, we get

where ,  are defined in (17). It is now straightforward to find the distribution of 

(and similarly ) using equation (B.5).

Appendix B.0.3. p–point class

From the mapping defined in 12, we know that state k belongs to  and  under 

labels zero and one, respectively. Considering class Π0, similar to (B.6), one can show that

(B.12)

which is equivalent to the random variable  with Y ˜ Beta . Therefore, 

similar to (B.11), we obtain

from which we obtain , whereas
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(B.

13)

Now, one can find the distribution of  according to (B.5). The distribution of  can be 

found similarly. Afterwards, we obtain equation (15).

Appendix C. Proof of Theorem 3

The second-order moment of the true error of the RML classifier can be written as

(C.1)

For simplicity, we drop the subscript of ψn,Π0,Π1, noting that the classifier depends Sn and 

Π0, Π1. The proof has two parts shown in two appendices. First, we take the expectation 

with respect to the training data, Sn. Later, we will see that the dependency of the second-

order moment on the uncertainty classes manifests itself in the indices of the double-

summations (found from combinatorial parts). In the next section, then we find the 

distribution of those indices, knowing that the randomness comes from the uncertainty 

classes. Let us start the proof by expanding equation (C.1):

(C.

2)

In (C.2), parts A0 and A1 can be found similarly as in Appendix 1. In the following, 

whenever we sum over ; y ∈ {0, 1} we implicitly consider  and . 

Furthermore, for any pair of  with , we have
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Hence, for the B1, we may write

(C.

3)

Similarly, we can get

(C.4)

Next, we can obtain C1

(C.

5)

Similarly, we obtain

(C.6)

In (C.5)-(C.6), we have

(C.7)

In order to take the last expectation in (C.2) with respect to the uncertainty classes, we need 

to find the joint distribution of  and  (similarly for  and ), and the joint 
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distribution between  and  (similarly for  and ). These distributions are 

found in Appendix D.

Appendix D. Joint distributions

To find the joint distribution of , we need to approximate the joint distribution 

of (p0(k1), p0(k2)) defined in equation (B.2). We do this by a (zero-order) Edgeworth 

expansion. Thus, similar to the single variate case in (B.11), for the multivariate case we 

have , whereas we find the parameters for different 

uncertainty classes in the following subsections.

Appendix D.1. ε–contamination class

From the definition of the joint probability distribution, for x1, x2 > 0, x1 + x2 ≤ 1, we have

(D.1)

Since we are going to use the zero-order Edgeworth expansion, we only need to find the 

mean vector and the covariance matrix of these random variables. The variances are already 

found in the previous section of the Appendix. Therefore, we only find the covariance 

between these variables. Specifically,

(D.2)

where in (D.2) we used integration by parts. Hence, considering our definitions in (B.2) for 

p0(k1) and p0(k2), we obtain the following for the normal distribution statistics:

(D.3)

(D.4)

Similarly, we can write for the joint distribution of (p1(k1), p1(k2)).
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Appendix D.2. p–point class

Since we have partitions in this model, we need to know whether two states belong to the 

same partition or not. First, suppose that P0(k1) ≠ P0(k2). Then,

(D.5)

from which we get

(D.6)

(D.

7)

Now, suppose P0 (k1) = P0 (k2) = mk1k2. Then

(D.8)

and we have

(D.9)

(D.

10)

In the following, Pr(p0(k1) = α, p0(k2) = β) and Pr(p1(k1) = α, p1(k2) = β) will be denoted by 

 and , respectively. Now, we start by computing the pmf of 

. After quite some computation we obtain

Esfahani et al. Page 25

Pattern Recognit. Author manuscript; available in PMC 2015 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D.11)

(D.12)

Furthermore, we have

(D.

13)

(D.

14)

In equations (D.11)-(D.14) we use the following definitions (the notation ∫. is used to denote 

.)

(D.

15)

Table D.1 shows the parameters used in equations (D.11)- (D.14).
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Appendix E. Proof of Lemma 2

Although we took a standard approach to find the unbiased estimator of the MSE, in this 

part, for simplicity, we only show that E(MŜE) = MSE (it is sufficient for the proof), where 

MSE can be expanded as follows

The first and the second terms in the right summation do not need any manipulation. 

Therefore, in the remainder of the proof, we focus on the last term in the right summation. 

Using the definitions of δλ and θλ (k), and the fact that E(uk) = nπac(k), we have

Now, we return to the MŜE in Lemma 2 and take the expectation of the last term in the 

summation (the term multiplied by 2). We obtain

(E.

1)

in which we used the terms for the first and second-moments of the multinomial distribution. 

Some simplification completes the proof.
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Figure 1. 
An illustrative example of the chain: {pathways} → {class of networks} → {class of steady-

state distributions}. In this schematic view, an intermediate step is applied to construct a 

class of dynamical systems whose behaviors are consistent with the given pathways, for 

example, see the methods in [11] and [12]. Two uncertainty classes are shown by Π0 and Π1 

for labels zero and one, respectively. These classes will be employed as the prior knowledge 

in the classifier design.
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Figure 2. 

Illustrating the expected value of  for different amount of uncertainty and sample sizes. 

The result is for ε–contamination classes. The uncertainty class size, |Π| is set to 50.
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Figure 3. 
The first- and second-moments of the true error of the RML classifier and Histogram rule 

with ε–contamination uncertainty classes with size, |Π0| = |Π1| = 250. Steady-state 

distributions with b = 23 states are considered. In (a) and (c) the regularization parameters, 

are exact as in (29)- (30). In (b) and (d), they are estimated as in (34)-(35).
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Figure 4. 
The interactions between members of this model are shown using directed edges where an 

edge from species A to species B indicates that species A regulates species B. Pointed edges 

represent promoting influences while tee edges represent down regulating influences. LPS, 

TNFα, and LTβR are shaded indicating their role as external stimuli to the cell. These three 

inputs provide the cellular context for the model as described in [12].
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Figure 5. 
The three classification problems (configurations) considered in this paper are defined by a 

pair of biologically interesting cellular contexts. For each configuration we attempt to 

classify samples as coming from class 0 or class 1 given measurements of the 9 downstream 

signaling proteins. The presence of an input indicates activation, absence indicates 

inactivation, and a shaded input indicates the input may either be active or inactive.
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Figure 6. 
Performance comparison between the Histogram-rule and the RML framework. The x axis 

shows the number of samples n, with n = n0 + n1, n0 = n1. We have εBayes = 0.193, εBayes = 

0.299, and εBayes = 0.371 for Configurations 1, 2, and 3, respectively.
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Figure 7. 
Performance comparison between the RML and MAP classifier defined in Lemma 1 and the 

one designed using estimates in equation (37), respectively. The x axis shows the number of 

samples n.
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