
Variational Learning of a Dirichlet Process of GeneralizedDirichlet Distributions
for Simultaneous Clustering and Feature Selection

Wentao Fana, Nizar Bouguilab,∗

aDepartment of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada, H3G 1T7
bThe Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, Canada, H3G 1T7

Abstract

This paper introduces a novel enhancement for unsupervisedfeature selection based on generalized Dirichlet (GD)
mixture models. Our proposal is based on the extension of thefinite mixture model previously developed in [1]
to the infinite case, via the consideration of Dirichlet process mixtures, which can be viewed actually as a purely
nonparametric model since the number of mixture componentscan increase as data are introduced. The infinite
assumption is used to avoid problems related to model selection (i.e. determination of the number of clusters) and
allows simultaneous separation of data in to similar clusters and selection of relevant features. Our resulting model
is learned within a principled variational Bayesian framework that we have developed. The experimental results
reported for both synthetic data and real-world challenging applications involving image categorization, automatic
semantic annotation and retrieval show the ability of our approach to provide accurate models by distinguishing
between relevant and irrelevant features without over- or under-fitting the data.

Keywords: Infinite mixture models, Dirichlet process, generalized Dirichlet, feature selection, clustering, images
categorization, image auto-annotation.

1. Introduction

As the amount of multimedia information available increases, powerful approaches for analyzing, managing and
categorizing these data become crucial. Clustering plays an important role in exploratory analysis of data. It provides
principled means of discovering heterogenous groupings (i.e. clusters) in data and has been the topic of extensive
research in the past [2, 3, 4, 5, 6, 7]. Data clustering is known to be a challenging task in modern knowledge discov-
ery and data mining. This is especially true in high-dimensional spaces mainly because of data sparsity [8, 9] and
a crucial step in this case is the selection of relevant features [10, 11, 12, 1]. Finite mixture models are well suited
for clustering due to their simple structure and flexibilitywhich offer a principled formal approach to unsupervised
learning [13, 14]. In the classic approach to mixture modelsimplementation, the density components are usually
chosen as Gaussian and the number of components is supposed to be finite. Many methods for selecting the optimal
number of clusters can be found in the literature (see, for instance, [15, 16, 17]). These approaches can be classified
into two groups namely deterministic and Bayesian. The majority of both deterministic and Bayesian previous model
selection approaches have to consider all possible values of the number of mixture components up to a certain max-
imum value and then choose the optimal one according to a certain criterion which is unfortunately computationally
prohibitive (i.e. the learning algorithm have to be run for different choices of the number of mixture components) and
may cause over- and under-fitting problems. A significant contribution that overcomes these drawbacks was made
in [18] through the development of infinite mixture models which constitute an interesting extension of the typical
finite mixture models approach by allowing the number of mixture components to increase as new data arrive. Infinite
mixture models are based on the notion of Dirichlet processes which is one of the most popular Bayesian nonpara-
metric models and is defined as a distribution over distributions [19, 20, 21]. Thanks to the the recent development
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of Markov Chain Monte Carlo (MCMC) techniques [22], infinitemixture models have been widely and successfully
used in various applications (see, for instance, [23, 24, 25, 26, 27, 28]) by embodying the well-known Occam’s Razor
principle [29]. Concerning feature selection, although a lot of attention has been devoted to supervised feature se-
lection (see, for instance, [30, 31, 32]), some unsupervised feature selection techniques have been proposed recently
[33, 34, 35, 36, 37, 38, 39]. And some of these unsupervised techniques have been based on finite mixture models,
but generally suppose that each per-component density is Gaussian with diagonal covariance matrix (i.e. the features
are supposed independent)1 [41, 42, 43].
Recently a nonparametric Bayesian unsupervised feature selection approach has been proposed in [44]. The main
idea was the consideration of the infinite generalized Dirichlet (GD) mixture model, which offers high flexibility and
ease of use, for simultaneous clustering and feature selection. One of the main advantages of this approach is that the
structural properties of the GD allows it to be defined in a space where the independence of the features becomes a fact
and not an assumption as shown for instance in [1]. The authors in [44] have proposed a fully Bayesian treatment of
the unsupervised feature selection approach that they havepreviously introduced in [1] in order to overcome problems
related to deterministic learning. The learning approach in [44] was based on the introduction of prior distributions
over the mixture parameters. These parameters have been then estimated using a typical MCMC approach based on
both Gibbs sampling and Metropolis-Hastings algorithms. MCMC techniques are effective for parameters estimation,
but are unfortunately computationally very demanding and it can be very hard to diagnose their convergence. This
is especially true in the case of high-dimensional data which involve the integration over a large number of model
parameters. The accurate evaluation of such high-dimensional integrals has been the topic of extensive research.
Recently, variational approaches, known also as ensemble learning [45, 46, 47], have been proposed as an efficient
alternative to MCMC techniques. Motivated by the good results obtained recently using variational techniques for
modeling mixture models, in this article we extend the learning approach in [44] by developing a variational alterna-
tive. The contribution of this paper is three-fold. First, we extend the finite GD mixture model with feature selection
to the infinite case using a stick-breaking construction [48] such that the difficulty of choosing the appropriate number
of clusters can be solved elegantly. Second, we propose a variational inference framework for learning the proposed
model, such that the model parameters and features saliencies are estimated simultaneously in a closed form. In
particular, conjugate priors are developed for all the involved parameters. Last, we apply the proposed approach to
solve two challenging problems involving visual scenes categorization, and image automatic semantic annotation and
retrieval. An appealing feature of the proposed variational approach is that it allows avoiding over-fitting by finding
a compromise between generality and the number of parameters by implicitly providing a model order selection cri-
terion [49, 46, 50]. Readers unfamiliar with Bayesian learning and the variational Bayes framework are referred to
[45, 51].
The paper is organized as follows. In Section 2 we present ourinfinite feature selection model. In Section 3 we
develop a practical variational approach to learn the parameters of this model. Section 4 is devoted to experimental
results of using our approach. This is followed, in Section 5, by a discussion of our findings and conclusions.

2. The Infinite GD Mixture Model for Feature Selection

In this section, we describe our main unsupervised infinite feature selection model. We start by a brief overview
of the finite GD mixture model. Then, the extension of this model to the infinite case and the integration of feature
selection are proposed. Finally, we present the conjugate priors that we will consider for the resulting model learning.

2.1. The Finite GD Mixture Model

Consider a random vector~Y = (Y1, . . . ,YD), drawn from a finite mixture of GD Distributions withM components
[52] as

p(~Y|~π, ~α, ~β) =
M∑

j=1

π jGD(~Y|~α j , ~β j) (1)

1However, it is well-known that the independence assumptionis infrequently met in practice [40].
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where~α = {~α1, . . . , ~αM}, ~β = {~β1, . . . , ~βM}, ~α j and~β j are the parameters of the GD distribution representing component
j with ~α j = {α j1, . . . , α jD} and~β j = {β j1, . . . , β jD}, and~π = {π1, . . . , πM} represents the mixing coefficients which are
positive and sum to one. A GD distribution is defined as

GD(~Y|~α j , ~β j) =
D∏

l=1

Γ(α jl + β jl )

Γ(α jl )Γ(β jl )
Y
α jl−1
l

(
1−

l∑

k=1

Yk

)γ jl

(2)

where
∑D

l=1 Yl < 1 and 0< Yl < 1 for l = 1, . . . ,D, α jl > 0, β jl > 0, γ jl = β jl − α jl+1 − β jl+1 for l = 1, . . . ,D − 1, and
γ jD = β jD − 1.
Now, let us consider a set ofN independent identically distributed vectorsY = (~Y1, . . . , ~YN) assumed to arise from a
finite GD mixture. Following the Bayes’ theorem, the probability that vectori is in cluster j conditional on having
observed~Yi (also known asresponsibilities) can be written as

p( j|~Yi) ∝ π jGD(~Yi |~α j , ~β j) (3)

In our work, we exploit an interesting mathematical property of the GD distribution previously discussed in [52, 1] to
redefine the responsibilities as

p( j|~Yi) ∝ π j

D∏

l=1

Beta(Xil |α jl , β jl ) (4)

whereXi1 = Yi1 andXil = Yil /(1−
∑l−1

k=1 Yik) for l > 1 and Beta(Xil |α jl , β jl ) is a Beta distribution defined with parameters
(α jl , β jl ). Thus, the clustering structure for a finite GD mixture model underlying data setY can be represented by a
new data setX = (~X1, . . . ~XN) using the following mixture model with conditionally independent features

p(~Xi |~π, ~α, ~β) =
M∑

j=1

π j

D∏

l=1

Beta(Xil |α jl , β jl ) (5)

It is noteworthy that this property plays a critical role forthe GD mixture model, since the independence between the
features becomes a fact rather than an assumption as considered in previous unsupervised feature selection Gaussian
mixture-based approaches [41, 42].

2.2. Infinite GD Mixture Model With Feature Selection

The Dirichlet process (DP) [20] is a stochastic process whose sample paths are probability measures with probabil-
ity one. It can be considered as a distribution over distributions. The infinite GD mixture model with feature selection
proposed in this paper is constructed using the DP with a stick-breaking representation. Stick-breaking representation
is an intuitive and straightforward constructive definition of the DP [48, 53, 54]. It is defined as follows: given a
random distributionG, it is distributed according to a DP:G ∼ DP(ψ,H) if the following conditions are satisfied:

λ j ∼ Beta(1, ψ), Ω j ∼ H, π j = λ j

j−1∏

s=1

(1− λs), G =
∞∑

j=1

π jδΩ j (6)

whereδΩ j denotes the Dirac delta measure centered atΩ j , andψ is a positive real number. The mixing weightsπ j are
obtained by recursively breaking an unit length stick into an infinite number of pieces.
Assuming now that the observed data set is generated from a GDmixture model with a countably infinite number of
components. Thus, (5) can be rewritten as

p(~Xi |~π, ~α, ~β) =
∞∑

j=1

π j

D∏

l=1

Beta(Xil |α jl , β jl ) . (7)

Then, for each vector~Xi , we introduce a binary latent variable~Zi = (Zi1,Zi2, . . .), suchZi j ∈ {0, 1} andZi j = 1 if ~Xi

belongs to componentj and 0, otherwise. Therefore, the likelihood function of theinfinite GD mixture with latent
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variables, which is actually the conditional distributionof data setX given the class labelsZ = (~Z1, . . . , ~ZN) can be
written as

p(X|Z, ~α, ~β) =
N∏

i=1

∞∏

j=1

( D∏

l=1

Beta(Xil |α jl , β jl )
)Zi j

(8)

It is worth mentioning that all the features{Xil } in the previous model are assumed to be equally important forthe
task of clustering which is not realistic in practice since some of the features might be irrelevant and do not contribute
to the clustering process [1]. In order to take this fact intoaccount the authors in [41] have supposed that a given
featureXil is generated from a mixture of two univariate distributions: The first one is assumed to generate relevant
features and is different for each cluster; the second one is common to all clusters (i.e. independent from class labels)
and assumed to generate irrelevant features. This idea has been extended in [1] where the irrelevant features are
modeled as a finite mixture of distributions rather than a usual single distribution. In this work, we go a step further
by modeling the irrelevant features with an infinite mixturemodel in order to bypass the difficulty of estimating the
appropriate number of components for the mixture model representing irrelevant features. Therefore, each featureXil

can be approximated as

p(Xil ) ≃
(
Beta(Xil |α jl , β jl )

)φil
( ∞∏

k=1

Beta(Xil |σkl, τkl)Wikl

)1−φil

(9)

whereWikl is a binary variable such thatWikl = 1 if Xil comes from thekth component of the infinite Beta mixture for
the irrelevant features.φil is a binary latent variable, such thatφil = 1 indicates that featurel is relevant and follows
a Beta distribution Beta(Xil |α jl , β jl ), andφil = 0 denotes that featurel is irrelevant and supposed to follow an infinite
mixture of Beta distributions independent from the class labels:

p(Xil ) =
∞∑

k=1

ηkBeta(Xil |σkl, τkl) (10)

whereηk denotes the mixing probability and also implies the prior probability thatXil is generated from thekth
component of the infinite Beta mixture representing irrelevant features.
Thus, we can write the likelihood of the observed data setX following the infinite GD mixture model with feature
selection as

p(X|Z,W, ~φ, ~α, ~β, ~σ,~τ) =
N∏

i=1

∞∏

j=1

[ D∏

l=1

Beta(Xil |α jl , β jl )φil ×

( ∞∏

k=1

Beta(Xil |σkl, τkl)Wikl

)1−φil
]Zi j

(11)

whereW = ( ~W1, . . . , ~WN) with ~Wi = ( ~Wi1, ~Wi2, . . .) and ~Wik = (Wik1, . . . ,WikD). ~φ = (~φ1, . . . , ~φN) contains elements
~φi = (φi1, . . . , φiD). ~σ = (~σ1, ~σ2, . . .) and~τ = (~τ1, ~τ2, . . .) are the parameters of the Beta mixture representing irrelevant
features which comprise elements~σk = (σk1, . . . , σkD) and~τk = (τk1, . . . , τkD), respectively. The main idea of the
unsupervised feature selection method in our work is shown in Figure 1. The merits of adopting this feature selection
technique shall be demonstrated through experiments in Section 4. For more details about this unsupervised feature
selection model, the reader is referred to [41, 1].

2.3. Prior Distributions of The Proposed Model

We shall follow a variational Bayesian approach for learning our model, thus each unknown parameter is given a
prior distribution. In our work, we choose conjugate priorsfor the unknown random variablesZ,W, ~φ, ~α, ~β, ~σ and~τ.
The consideration of conjugate prior distributions is motivated by the fact that it may lead to a considerably simplified
Bayesian analysis in which the posterior distributions have the same functional forms as the priors. More importantly,
the whole variational inference process becomes tractableand closed form solutions for updating optimal factors can
be obtained when using conjugate priors in conjunction withthe factorization assumption, as we shall see in the next
section. The prior distributions ofZ andW given the mixing coefficients~π and~η can be specified as

p(Z|~π) =
N∏

i=1

∞∏

j=1

π
Zi j

j (12)
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Figure 1: The unsupervised feature selection method: whenφil = 1, featureXil is relevant and follows a Beta distribution Beta(Xil |α jl , β jl ); when
φil = 0, featureXil is irrelevant and follows an infinite mixture of Beta distributions:Σ∞k=1ηkBeta(Xil |σkl, τkl).

p(W|~η) =
N∏

i=1

∞∏

k=1

D∏

l=1

ηWikl

k (13)

According to the stick-breaking construction of DP as stated in (6),~π is a function of~λ. We rewrite it here for the sake
of clarity

π j = λ j

j=1∏

s=1

(1− λs) (14)

Similarly,~η can be defined as a function of~γ, such that

ηk = γk

k−1∏

s=1

(1− γs) (15)

Therefore, we can rewrite (12) and (13) as

p(Z|~λ) =
N∏

i=1

∞∏

j=1

[
λ j

j−1∏

s=1

(1− λs)
]Zi j p(W|~γ) =

N∏

i=1

∞∏

k=1

D∏

l=1

[γk

k−1∏

s=1

(1− γs)]
Wikl (16)

where~λ = (λ1, λ2, . . .) and~γ = (γ1, γ2, . . .). The prior distributions of~λ and~γ follow the specific Beta distribution
given in (6) as

p(~λ|~ψ) =
∞∏

j=1

Beta(1, ψ j) =
∞∏

j=1

ψ j(1− λ j)
ψ j−1 (17)

p(~γ|~ϕ) =
∞∏

k=1

Beta(1, ϕk) =
∞∏

k=1

ϕk(1− γk)ϕk−1 (18)

To add more flexibility, another layer is added to the Bayesian hierarchy by introducing prior distributions over the
hyperparameters~ψ = (ψ1, ψ2, . . .) and~ϕ = (ϕ1, ϕ2, . . .). Motivated by the fact that the Gamma distribution is conjugate
to the stick lengths [47], Gamma priors are placed over~ψ and~ϕ as

p(~ψ) = G(~ψ|~a, ~b) =
∞∏

j=1

b
aj

j

Γ(a j)
ψ

aj−1
j e−bjψ j p(~ϕ) = G(~ϕ|~c, ~d) =

∞∏

k=1

dck

k

Γ(ck)
ϕck−1

k e−dkϕk (19)

where hyperparameters~a = (a1, a2, . . .), ~b = (b1, b2, . . .), ~c = (c1, c2, . . .) and ~d = (d1, d2, . . .) are subject to the
constraintsa j > 0, b j > 0, ck > 0 anddk > 0 to ensure that these two prior distributions can be normalized. The prior
distribution for the feature relevance indicator variable~φ is defined as

p(~φ|~ǫ) =
N∏

i=1

D∏

l=1

ǫ
φil

l1
ǫ

1−φil

l2
(20)
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where eachφil is a Bernoulli variable such thatp(φil = 1) = ǫl1 and p(φil = 0) = ǫl2. The vector~ǫ = (~ǫ1, . . . , ~ǫD)
represents the features saliencies (i.e. the probabilities that the features are relevant) such that~ǫl = (ǫl1 , ǫl2) and
ǫl1 + ǫl2 = 1. Furthermore, a Dirichlet distribution is chosen over~ǫ as [55]

p(~ǫ) =
D∏

l=1

Dir(~ǫl |~ξ) =
D∏

l=1

Γ(ξ1 + ξ2)
Γ(ξ1)Γ(ξ2)

ǫ
ξ1−1
l1

ǫ
ξ2−1
l2

(21)

where the hyperparameter~ξ = (ξ1, ξ2) is subject to the constraint (ξ1, ξ2) > 0 in order to ensure that the distribution
can be normalized. Next, we need to define the prior distributions for parameters~α, ~β, ~σ and~τ of Beta distributions.
Although Beta distribution belongs to the exponential family and has a formal conjugate prior [46], it is analytically
intractable and cannot be used within a variational framework as shown for instance in [56]. Thus, the Gamma
distribution is adopted to approximate the conjugate prior, as suggested in [56], by assuming that parameters of Beta
distributions are statistically independent:

p(~α) = G(~α|~u,~v) =
∞∏

j=1

D∏

l=1

v
ujl

jl

Γ(u jl )
α

ujl−1
jl e−v jlα jl (22)

p(~β) = G(~β|~p, ~q) =
∞∏

j=1

D∏

l=1

q
pjl

jl

Γ(p jl )
βpjl−1e−qjl β jl (23)

p(~σ) = G(~σ|~g, ~h) =
∞∏

k=1

D∏

l=1

hgkl

kl

Γ(gkl)
σgkl−1e−hklσkl (24)

p(~τ) = G(~τ|~s, ~t) =
∞∏

k=1

D∏

l=1

tskl

kl

Γ(skl)
τskl−1e−tklτkl (25)

where all the hyperparameters~u = {u jl }, ~v = {v jl }, ~p = {p jl }, ~q = {q jl }, ~g = {gkl}, ~h = {hkl}, ~s = {skl} and~t = {tkl}

of the above conjugate priors are positive. In our work, we defineΘ = {Z,W, ~φ, ~α, ~β, ~σ,~τ, ~λ, ~ψ, ~γ, ~ϕ,~ǫ} as the set of
unknown random variables. After defining the priors for all the unknown variables in the proposed model, the joint
distribution of all the random variables is given by

p (X,Θ) = p(X|Z,W, ~φ, ~α, ~β, ~σ,~τ)p(Z|~λ)p(~λ|~ψ)p(~ψ)p(W|~γ)p(~γ|~ϕ)p(~ϕ)p(~φ|~ǫ)p(~ǫ)p(~α)p(~β)p(~σ)p(~τ)

=

N∏

i=1

∞∏

j=1

{ D∏

l=1

[
Γ(α jl + β jl )

Γ(α jl )Γ(β jl )
X
α jl−1

il (1− Xil )
β jl−1
]φil [ ∞∏

k=1

( Γ(σkl + τkl)
Γ(σkl)Γ(τkl)

Xσkl−1
il (1− Xil )

τkl−1
)Wikl
]1−φil }Zi j

×

N∏

i=1

∞∏

j=1

[
λ j

j−1∏

s=1

(1− λs)
]Zi j ×

∞∏

j=1

ψ j (1− λ j)
ψ j−1

∞∏

j=1

b
a j
j

Γ(aj)
ψ

a j−1
j e−b jψ j ×

N∏

i=1

∞∏

k=1

D∏

l=1

[γk

k−1∏

s=1

(1− γs)]
Wikl

×

∞∏

k=1

ϕk(1− γk)
ϕk−1 ×

∞∏

k=1

dck
k

Γ(ck)
ϕ

ck−1
k e−dkϕk

N∏

i=1

D∏

l=1

ǫ
φil
l1
ǫ

1−φil
l2
×

D∏

l=1

Γ(ξ1 + ξ2)
Γ(ξ1)Γ(ξ2)

ǫ
ξ1−1
l1

ǫ
ξ2−1
l2

×

∞∏

j=1

D∏

l=1

[ v
u jl

jl

Γ(ujl )
α

u jl−1
jl e−v jl α jl

q
p jl

jl

Γ(pjl )
βp jl−1e−q jl β jl

] ∞∏

k=1

D∏

l=1

[ hglk
kl

Γ(gkl)
σgkl−1e−hklσkl

tskl
kl

Γ(skl)
τskl−1e−tklτkl

]
(26)

A directed graphical representation of this model is illustrated in Figure 2.

3. Variational Inference

In this section, a variational framework for learning the infinite GD mixture model with feature selection is pro-
posed. The main idea in variational learning is to find an approximation for the posterior distributionp(Θ|X) as well
as for the model evidencep(X) [50]. First, the log marginal probability lnp(X) can be decomposed as

ln p(X) =
∫

Q(Θ) ln
p(X,Θ)
Q(Θ)︸                   ︷︷                   ︸

L(Q)

dΘ −
∫

Q(Θ) ln
p(Θ|X)
Q(Θ)

dΘ
︸                      ︷︷                      ︸

KL(Q(Θ)‖p(Θ|X))

(27)
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Figure 2: Graphical model representation of the infinite GD mixture model with feature selection. Symbols in circles denote random variables;
otherwise, they denote model parameters. Plates indicate repetition (with the number of repetitions in the lower right), and arcs describe conditional
dependencies between variables.

whereQ(Θ) is an approximation to the true posterior distributionp(Θ|X). The second term on the right hand side
of (27) is the Kullback-Leibler (KL) divergence betweenQ(Θ) and the posterior distributionp(Θ|X). In order to
verify the decomposition in (27), we can use the fact that lnp(X,Θ) = ln p(Θ|X) + ln p(X). After we substitute this
decomposition of lnp(X,Θ) into the expression ofL(Q) in (27), then we can have two terms: one of which cancels
KL(Q(Θ) ‖ p(Θ|X)) while the other results in the required log likelihood lnp(X). Since KL(Q(Θ)||p(Θ|X)) ≥ 0 (with
equality if, and only ifQ(Θ) = p(Θ|X)), it is obvious thatL(Q) ≤ ln p(X). Therefore,L(Q) can be considered as
a lower bound for lnp(X) [57]. Obviously, this lower bound is maximized when the KL divergence vanishes, that
is whenQ(Θ) equals the true posterior distributionp(Θ|X). Nevertheless, in practice the true posterior distribution
is normally computationally intractable and cannot be directly adopted in variational inference. Thus, in this work,
we exploit a factorization assumption which is known asmean field theoryfor restricting the form ofQ(Θ). This
approximation framework has been used efficiently for variational inference by several researchers in the past [51, 50].
Under this assumption, the posterior distributionQ(Θ) can be factorized into disjoint tractable distributions such that
Q(Θ) = Πi Qi(Θi). It is worth mentioning that this assumption is imposed purely to achieve tractability. Moreover,
this is the only assumption about the distribution, and no restriction is placed on the functional forms of the individual
factorsQi(Θi). To maximize the lower boundL(Q), we need to make a variational optimization ofL(Q) with respect
to each of the factor distributionsQi(Θi) in turn. Indeed, for a specific factorQs(Θs) in a standard variational inference
framework, the general expression for its optimal solutionis given by [51, 58, 50]

Qs(Θs) =
exp〈ln p(X,Θ)〉i,s∫
exp〈ln p(X,Θ)〉i,sdΘ

(28)

where〈·〉i,s denotes an expectation with respect to all the distributionsQi(Θi) except fori = s. In variational inference,
all factorsQi(Θi) need to be suitably initialized first, then each individualfactor is updated in turn with a revised
value obtained by (28) using the current values of all the other factors. Furthermore, we truncate the stick-breaking
representation for the infinite GD mixture model at a value ofM as

λM = 1 , π j = 0 when j > M ,

M∑

j=1

π j = 1 (29)

Moreover, the infinite Beta mixture model for the irrelevantfeatures is truncated at a value ofK such that

γK = 1 , ηk = 0 whenk > K ,

K∑

k=1

ηk = 1 (30)

Note that, the truncation levelsM andK are variational parameters which can be freely initializedand will be op-
timized automatically during the learning process. By employing the factorization assumption and the truncated
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stick-breaking representation for the proposed model, we then obtain

Q(Θ) =

[ N∏

i=1

M∏

j=1

Q(Zi j )

][ M∏

j=1

Q(λ j)Q(ψ j )

][ N∏

i=1

K∏

k=1

D∏

l=1

Q(Wikl)

][ K∏

k=1

Q(γk)Q(ϕk)

][ N∏

i=1

D∏

l=1

Q(φil )

][ D∏

l=1

Q(~ǫl)

]

×

[ M∏

j=1

D∏

l=1

Q(α jl )Q(β jl )

][ K∏

k=1

D∏

l=1

Q(σkl)Q(τkl)

]
(31)

By applying (28) to each factor of the variational posterior, we then acquire the following optimal solutions (details
of the variational inference are given in Appendix I)

Q(Z) =
N∏

i=1

M∏

j=1

r
Zi j
i j , Q(~λ) =

M∏

j=1

Beta(λ j |θ j , ϑ j) (32)

Q(~ψ) =
M∏

j=1

G(ψ j |a
∗
j , b
∗
j ) , Q(W) =

N∏

i=1

K∏

k=1

D∏

l=1

(mWikl
ikl ) (33)

Q(~γ) =
K∏

k=1

Beta(γk|ρk, ̟k) , Q(~ϕ) =
K∏

k=1

G(ϕk|c
∗
k, d
∗
k) (34)

Q(~φ) =
N∏

i=1

D∏

l=1

f φil
il (1− fil )

(1−φil ) , Q(~ǫ) =
D∏

l=1

Dir(~ǫl |~ξ
∗) (35)

Q(~α) =
M∏

j=1

D∏

l=1

G(α jl |u
∗
jl , v
∗
jl ) , Q(~β) =

M∏

j=1

D∏

l=1

G(β jl |p
∗
jl ,q

∗
jl ) (36)

Q(~σ) =
K∏

k=1

D∏

l=1

G(σkl|g
∗
kl,h

∗
kl) , Q(~τ) =

K∏

k=1

D∏

l=1

G(τkl|s
∗
kl, t
∗
kl) (37)

where we have defined

r i j =
r̃ i j∑M
j=1 r̃ i j

, fil =
f (φil )
il

f (φil )
il + f (1−φil )

il

, mikl =
m̃ikl∑K

k=1 m̃ikl

(38)

r̃ i j = exp
{ D∑

l=1

〈
φil
〉
[R̃ jl + (ᾱ jl − 1) ln Xil + (β̄ jl − 1) ln(1− Xil )] + 〈ln λ j〉 +

j−1∑

s=1

〈ln(1− λs)〉
}

(39)

m̃ikl = exp
{〈

1− φil
〉[
F̃kl + (σ̄kl − 1) lnXil + (τ̄kl − 1) ln(1− Xil )

]
+ 〈ln γk〉 +

k−1∑

s=1

〈ln(1− γs)〉
}

(40)

f (φil )
il = exp

{ M∑

j=1

〈
Zi j
〉[
R̃ jl + (ᾱ jl − 1) ln Xil + (β̄ jl − 1) ln(1− Xil )

]
+ 〈ln ǫl1〉

}
(41)

f (1−φil )
il = exp

{ K∑

k=1

〈
Wikl
〉
[F̃kl + (σ̄kl − 1) lnXil + (τ̄kl − 1) ln(1− Xil )] + 〈ln ǫl2〉

}
(42)

R̃ = ln
Γ(ᾱ + β̄)

Γ(ᾱ)Γ(β̄)
+ ᾱ[Ψ(ᾱ + β̄) −Ψ(ᾱ)](

〈
lnα
〉
− ln ᾱ) + β̄[Ψ(ᾱ + β̄) − Ψ(β̄)](

〈
ln β
〉
− ln β̄)

+ 0.5ᾱ2[Ψ′(ᾱ + β̄) −Ψ′(ᾱ)]
〈
(lnα − ln ᾱ)2〉 + 0.5β̄2[Ψ′(ᾱ + β̄) −Ψ′(β̄)] ·

〈
(ln β − ln β̄)2〉

+ ᾱβ̄Ψ′(ᾱ + β̄)(
〈
lnα
〉
− ln ᾱ)(

〈
ln β
〉
− ln β̄) (43)

F̃ = ln
Γ(σ̄ + τ̄)
Γ(σ̄)Γ(τ̄)

+ σ̄[Ψ(σ̄ + τ̄) −Ψ(σ̄)](
〈
lnσ
〉
− ln σ̄) + τ̄[Ψ(σ̄ + τ̄) −Ψ(τ̄)](

〈
ln τ
〉
− ln τ̄)

+ 0.5σ̄2[Ψ′(σ̄ + τ̄) −Ψ′(σ̄)]
〈
(lnσ − ln σ̄)2〉 + 0.5τ̄2[Ψ′(σ̄ + τ̄) − Ψ′(τ̄)]

〈
(ln τ − ln τ̄)2〉

+ σ̄τ̄Ψ′(σ̄ + τ̄)(
〈
lnσ
〉
− ln σ̄)(

〈
ln τ
〉
− ln τ̄) (44)
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u∗jl = ujl +

N∑

i=1

〈
Zi j
〉〈
φil
〉
ᾱ jl
[
Ψ(ᾱ jl + β̄ jl ) −Ψ(ᾱ jl ) + β̄ jlΨ

′(ᾱ jl + β̄ jl )(〈ln β jl 〉 − ln β̄ jl )
]

(45)

p∗jl = pjl +

N∑

i=1

〈
Zi j
〉〈
φil
〉
β̄ jl
[
Ψ(ᾱ jl + β̄ jl ) −Ψ(β̄ jl ) + ᾱ jlΨ

′(ᾱ jl + β̄ jl )(
〈
lnα jl

〉
− ln ᾱ jl )

]
(46)

g∗kl = gkl +

N∑

i=1

〈
1− φil

〉〈
Wikl
〉
σ̄kl
[
Ψ(σ̄kl + τ̄kl) −Ψ(σ̄kl) + τ̄klΨ

′(σ̄kl + τ̄kl)(
〈
ln τkl
〉
− ln τ̄kl)

]
(47)

s∗kl = skl +

N∑

i=1

〈
1− φil

〉〈
Wikl
〉
τ̄kl
[
Ψ(σ̄kl + τ̄kl) − ψ(τ̄kl) + σ̄klΨ

′(σ̄kl + τ̄kl)(
〈
lnσkl

〉
− ln σ̄kl)

]
(48)

v∗jl = vjl −

N∑

i=1

〈
Zi j
〉〈
φil
〉

ln Xil , q∗jl = qjl −

N∑

i=1

〈
Zi j 〉
〈
φil 〉 ln(1− Xil ) (49)

h∗kl = hlk −

N∑

i=1

〈
1− φil

〉〈
Wikl
〉

ln Xil , t∗kl = tkl −

N∑

i=1

〈
1− φil

〉〈
Wikl
〉

ln(1− Xil ) (50)

θ j = 1+
N∑

i=1

〈Zi j 〉 , ϑ j = 〈ψ〉 +

N∑

i=1

M∑

s= j+1

〈Zis〉 , a∗j = aj + 1 (51)

b∗j = bj − 〈ln(1− λ j)〉 , ρk = 1+
N∑

i=1

D∑

l=1

〈Wikl〉 , c∗k = ck + 1 (52)

̟k = 〈ϕk〉 +

N∑

i=1

K∑

s=k+1

D∑

l=1

〈Wisl〉 , d∗k = dk − 〈ln(1− γk)〉 (53)

ξ∗1 = ξ1 +

N∑

i=1

〈φil 〉 , ξ∗2 = ξ2 +

N∑

i=1

〈1− φil 〉 (54)

whereΨ(·) is the digamma function and defined as:Ψ(a) = d lnΓ(a)/da. The expected values in the above formulas
are given by

ᾱ jl =
u∗jl
v∗jl

, β̄ jl =
p∗jl
q∗jl

, σ̄kl =
g∗kl

h∗kl

, τ̄kl =
s∗kl

t∗kl

(55)

〈ψ j〉 =
a∗j
b∗j

, 〈ϕk〉 =
c∗k
d∗k

, 〈Zi j 〉 = r i j , 〈Wikl〉 = mikl (56)

〈
φil
〉
= fil ,

〈
1− φil

〉
= 1− fil ,

〈
lnα
〉
= Ψ(u∗) − ln v∗ (57)

〈ln β〉 = Ψ(p∗) − ln q∗ , 〈lnσ〉 = Ψ(g∗) − ln h∗ , 〈ln τ〉 = Ψ(s∗) − ln t∗ (58)
〈
ln λ j
〉
= Ψ(θ) − Ψ(θ + ϑ) ,

〈
ln(1− λ j)

〉
= Ψ(ϑ) −Ψ(θ + ϑ) (59)

〈
ln γk
〉
= Ψ(ρ) −Ψ(ρ +̟) ,

〈
ln(1− γk)

〉
= Ψ(̟) − Ψ(ρ +̟) (60)

〈
ln ǫl1

〉
= Ψ(ξ∗1) −Ψ(ξ∗1 + ξ

∗
2) ,

〈
ln ǫl2

〉
= Ψ(ξ∗2) −Ψ(ξ∗1 + ξ

∗
2) (61)

〈
(lnα − ln ᾱ)2〉 = [Ψ(u∗) − ln u∗]2 + Ψ′(u∗) (62)
〈
(ln β − ln β̄)2〉 = [Ψ(p∗) − ln p∗]2 + Ψ′(p∗) (63)
〈
(lnσ − ln σ̄)2〉 = [Ψ(g∗) − ln g∗]2 + Ψ′(g∗) (64)
〈
(ln τ − ln τ̄)2〉 = [Ψ(s∗) − ln s∗]2 + Ψ′(s∗) (65)

Since the solutions to each variational factor are coupled together through the expected values of other factors, the
optimization of the model can be solved in a way analogous to the EM algorithm. In the variational equivalent of
the E-step, we optimize the moments using the current model parameters through (55)∼(65). Then, in the subsequent
variational equivalent of the M-step, we keep the values of those moments fixed and use them to re-estimate the
variational distributions by (32)∼(37). These two steps are repeated until convergence. The complete learning process
is summarized in Algorithm 1.2

2The complete source code is available upon request.
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Algorithm 1 Variational learning of infinite GD mixtures with feature selection
1: Choose the initial truncation levelsM andK.
2: Initialize the values for hyper-parametersu jl , v jl , p jl , q jl , gkl, hkl, skl, tkl, a j, b j, ck, dk, ξ1 andξ2.
3: Initialize the values ofr i j andmikl by K-Means algorithm.
4: repeat
5: The variational E-step: Estimate the expected values in (55)∼(65), use the current distributions over the model

parameters.
6: The variational M-step: Update the variational solutions for each factor by (32)∼(37) using the current values

of the moments.
7: until Convergence criteria is reached.
8: Compute the expected value ofλ j as〈λ j〉 = θ j/(θ j + ϑ j) and substitute it into (14) to obtain the estimated values

of the mixing coefficientsπ j .
9: Compute the expected value ofγk as〈γk〉 = ρk/(ρk +̟k) and substitute it into (15) to obtain the estimated values

of the mixing coefficientsηk.
10: Calculate the expected values of the features saliencies by〈ǫl〉 = ξ

∗
1/(ξ

∗
1 + ξ

∗
2) = (ξ1 +

∑N
i=1〈φil 〉)/(ξ1 + ξ2 + N).

11: Detect the optimal number of componentsM andK by eliminating the components with small mixing coefficients
close to 0.

4. Experimental Results

In this section, we evaluate the effectiveness of the proposed variational infinite GD mixture model with feature
selection (InFsGD) through synthetic data and two challenging applications namely unsupervised image categoriza-
tion and image annotation and retrieval. In all our experiments, we initialize the truncation levelsM andK to 15 and
10, respectively. The initial values of hyperparametersu, p, g ands of the Gamma priors are set to 1, andv, q, h, t
are set to 0.01. The hyperparametersa, b, c andd are set to 1, whileξ1 andξ2 are set to 0.1. Our simulations have
supported these specific choices.

Table 1: Parameters of the generated data sets.N denotes the total number of elements,Nj denotes the number of elements in clusterj. α j1, α j2,
β j1, β j2 andπ j are the real parameters. ˆα j1, α̂ j2, β̂ j1, β̂ j2 andπ̂ j are the estimated parameters by the proposed algorithm.

Nj j α j1 β j1 α j2 β j2 π j α̂ j1 β̂ j1 α̂ j2 β̂ j2 π̂ j

Data set 1 200 1 10 15 21 12 0.50 10.12 14.59 20.38 11.73 0.501

(N = 400) 200 2 25 18 35 40 0.50 23.67 18.65 36.18 41.26 0.499

Data set 2 200 1 10 15 21 12 0.25 9.81 15.89 20.51 12.10 0.253

(N = 800) 200 2 25 18 35 40 0.25 25.77 18.32 36.03 41.68 0.249

400 3 18 35 10 25 0.50 17.35 34.29 10.72 26.65 0.498

Data set 3 200 1 10 15 21 12 0.25 10.09 15.57 21.33 11.54 0.247

(N = 800) 200 2 25 18 35 40 0.25 24.13 17.28 35.15 38.66 0.251

200 3 18 35 10 25 0.25 18.61 34.19 9.71 25.08 0.248

200 4 33 27 45 13 0.25 31.95 26.83 43.89 12.27 0.254

Data set 4 200 1 10 15 21 12 0.20 9.34 14.50 20.18 12.35 0.197

(N = 1000) 200 2 25 18 35 40 0.20 26.07 18.16 34.49 39.12 0.199

200 3 18 35 10 25 0.20 17.31 36.53 10.76 24.22 0.203

200 4 33 27 45 13 0.20 31.52 26.35 47.03 13.98 0.204

200 5 20 10 42 38 0.20 19.88 10.94 41.14 36.67 0.197
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4.1. Synthetic data

The purpose of the synthetic data is to investigate the accuracy of the proposed algorithm in terms of parame-
ters estimation and model selection. The performance of theInFsGDwas evaluated through quantitative analysis on
four ten-dimensional (two relevant features and eight irrelevant features) synthetic data. The relevant features were
generated in the transformed space from mixtures of Beta distributions with well-separated components, while irrel-
evant ones were from mixtures of overlapped components. Table 1 illustrates the real and estimated parameters of
the distributions representing the relevant features for each data set using the proposed algorithm. According to this
table, the parameters of the model, representing relevant features, and its mixing coefficients are accurately estimated
by theInFsGD. Although we do not show the estimated values of the parameters of the mixture models representing
irrelevant features (the eight remaining features), accurate results (in terms of both parameters estimation and model
selection) were obtained by adopting the proposed algorithm.
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Figure 3: Mixing probabilities of components,π j , found for each synthetic data set after convergence. (a) Data set 1, (b) Data set 2, (c) Data set 3,
(d) Data set 4.
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Figure 4: Features saliencies for synthetic data sets with one standard deviation over ten runs. (a) Data set 1, (b) Data set 2, (c) Data set 3, (d) Data
set 4.

Figure 3 shows the estimated mixing coefficients of the mixture components, in each data set, after convergence.
By removing the components with very small mixing coefficients (close to 0) in each data set, we obtain the correct
number of components for the mixtures representing relevant features. Furthermore, we present the results of the
features saliencies of all the 10 features for each data set over ten runs in Figure 4. It obviously shows that features 1
and 2 have been assigned a high degree of relevance, which matches the ground-truth. Furthermore, we have tested
the numerical complexity of the proposed variational algorithm, in terms of overall computation time and number of
iterations before convergence. The corresponding resultsare shown in Table 2.

4.2. Visual Scenes Categorization

In this experiment, a challenging problem namely images categorization is highlighted. It is a fundamental task
in vision and has recently drawn considerable interest and has been successfully applied in various applications such
as the automatic understanding of images, object recognition, image databases browsing and content-based images
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Table 2: Run time (in seconds) and number of iterations required before convergence using the proposed algorithm.

Data set Run time No. iterations

1 6.27 362

2 11.51 419

3 12.35 433

4 16.82 467

suggestion and retrieval [59, 60]. As the majority of computer vision tasks, a central step for accurate images cate-
gorization is the extraction of good descriptors (i.e. discriminative and invariant at the same time) to represent these
images. Recently local descriptors have been widely and successfully used [61, 62] mainly via the bag of visual
words approach [63, 64, 65] which has allowed the development of many models inspired from text analysis such as
the probabilistic latent semantic analysis (pLSA) model [66]. Recently, it has been shown that the performance of
visual words-based approaches to images categorization can be significantly improved by adopting multiple image
segmentations instead of considering the entire image as a way to utilize visual grouping cues to generate groups of
related visual words [65, 67].
The methodology that we have adopted for categorizing images can be summarized as follows: First, we compute
multiple candidate segmentations for each image in the collection using Normalized Cuts [68]1. Following that,
Gradient location-orientation histogram (GLOH) descriptors [69] are extracted from each image using the Hessian-
Laplace region detector [70]2. Note that, the GLOH descriptor is an extension of the SIFT descriptor, and is shown
to outperform SIFT [69]. PCA is then used to reduce the dimensionality to 128. Next, a visual vocabularyV is
constructed by quantizing these feature vectors into visual words usingK-means algorithm and each image is then
represented as a frequency histogram over the visual words.Based on our experiments, the optimal performance can
be obtained whenV = 800. Then, we apply the pLSA model to the bag of visual words representation which allows
the description of each image as aD-dimensional vector of proportions whereD is the number of aspects (or learnt
topics). Finally, we employ the proposedInFsGDas a classifier to categorize images by assigning each test image to
the class which has the highest posterior probability according to Bayes’ decision rule.
In our experiment, two challenging data sets have been employed: First, we have considered four object classes from
the Caltech data set [71] which include: “airplane”, “face”, “car”, and “motorbike”; The second data set is the UIUC
sports event data set [72] containing 8 categories of sportsscenes: rowing (250 images), badminton (200 images),
polo (182 images), bocce (137 images), snow boarding (190 images), croquet (236 images), sailing (190 images), and
rock climbing (194 images). Thus, the data set contains 1,579 images in total. Sample images from these two data
sets are displayed in Figures 5 and 6. Each of the two data setsis randomly divided into two halves: one for training
(constructing the visual words) and the other for testing. We evaluated the performance of the proposed algorithm by
running it 20 times. For comparison, we have applied the infinite GD mixture model using Gibbs sampling algorithm
(denoted asGiInGD) proposed in [24] and four other mixture models that are learned using variational inference:
the finite GD mixture model with feature selection (FsGD), the infinite GD mixture model without feature selection
(InGD), the infinite Gaussian mixture model (InGau) proposed in [47] and the Gaussian mixture model with feature
selection (FsGau) as learned in [42].
The performance of the proposed approach for image categorization was first evaluated on the Caltech data set. First,
multiple segmentations for each image are performed. Some sample segments for images from each category in this
data set are shown in Figure 7. The categorization accuracies using the different tested approaches are presented in
Table 3. According to the results in this table, the proposedInFsGDprovides the best performance among the tested
algorithms in terms of the highest classification rate and the most accurately estimation of the number of categories. It
is noteworthy that the variational approach (InGD) provides comparable performance as the one using Gibbs sampling
(GiInGD) according to Table 3. However, the major advantage of usingvariational inference algorithm is its compu-
tational efficiency. According to our experiment,InGD is almost four times faster thanGiInGD for this application.

1Source code of the Normalized Cuts segmentation is available at: http://www.seas.upenn.edu/∼timothee/software/ncut/ncut.html
2Source code: http://www.robots.ox.ac.uk/∼vgg/research/affine/
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Face Airplane Car Motorbike

Figure 5: Sample images from the four categories of the Caltech data set.

Rowing Badminton Polo Bocce Snow boarding Croquet Sailing Rock climbing

Figure 6: Sample images from the UIUC sports event data set.

Additionally, the number of components for the mixture model representing irrelevant features was estimated as 2
using the proposedInFsGD. Furthermore, we have tested the evolution of the classification accuracy with different
number of aspects as shown in Figure 8 (a). Based on this figure, the highest classification accuracy can be obtained
when we set the number of aspects to 40. The corresponding feature saliencies of the 40 aspects obtained byInFsGD
are illustrated in Figure 8 (b). As shown in this figure, it is clear that the features have different relevance degrees
and then contribute differently to images categorization. Next, we evaluate the effectiveness and the efficiency of the

Table 3: The average classification accuracy and the number of categories (̂M) computed by different algorithms for the Caltech data set.

InFsGD FsGD InGD GiInGD InGau FsGau

M̂ 3.90 3.75 3.85 3.85 3.80 3.70

Accuracy (%) 90.21 88.64 88.03 88.59 84.19 81.75

proposed approach on categorizing the UIUC sports event data set. The confusion matrix for this data set calculated
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Face Airplane Car Motorbike

Figure 7: Sample segmentation results from the four categories of the Caltech data set.
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Figure 8: Caltech data set: (a) Classification accuracy vs. the number of aspects; (b) Feature saliency for each aspect.

by theInFsGD is shown in Figure 9. The average categorization accuraciesand the average numbers of categories
obtained by the different algorithms are shown in Table 4. As we can see from this table, our algorithm provides the
highest accuracy while detecting the number of categories more accurately. In this experiment, the optimal number

Table 4: The average classification accuracy and the number of categories (̂M) computed by different algorithms for the UIUC sports data set.

InFsGD FsGD InGD GiInGD InGau FsGau

M̂ 7.85 7.60 7.75 7.80 7.70 7.60

Accuracy (%) 74.13 72.08 71.76 71.83 68.37 65.51

of aspects is 50 as shown in Figure 10 (a). The saliencies of the 50 aspects calculated byInFsGDare illustrated in
Figure 10 (b). Obviously, different features are assigned with different degrees of importance. For instance, there
are six features (features number 10, 16, 23, 31, 33 and 46) that have saliencies lower than 0.5, and then provide
less contribution to clustering. By contrast, nine features (features number 2, 9, 12, 17, 28, 38, 41, 48 and 49) have
high relevance degrees with saliencies greater than 0.9. Finally, we have compared the proposed method with two
traditional and widely used classifiers: k-nearest neighbors (KNN) and support vector machines (SVM). These two
classifiers have shown their effectiveness in scene categorization task with bag of visual words framework previously
in [64, 73]. In our work, an Euclidean distance function was used forKNN (with K = 10) as in [64] while an Euclidean
exponential kernel was adopted forSVMas in [73]. The corresponding results are shown in Table 5. According to
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Figure 9: Confusion matrix obtained byInFsGD for the UIUC sports data set.
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Figure 10: UIUC sports data set: (a) Classification accuracyvs. the number of aspects; (b) Feature saliency for each aspect.

the results, it is clear that our method outperforms bothKNN andSVM in terms of classification accuracy for both
data sets. This is due to the fact that eitherKNN or SVMconsiders all aspects with “equal” importance. However, as
shown in Figures 8 (b) and 10 (b), these aspects may contribute with different degrees in discriminating the image cat-
egories. Thus, higher classification accuracies can be obtained by usingInFsGDwhich allows to identify and discard
the aspects without discrimination power.

Table 5: The average classification accuracy (%) computed bydifferent algorithms for the Caltech and the UIUC sports data sets.

Data set InFsGD KNN SVM

Caltech 90.21 84.32 88.46

UIUC sports 74.13 68.55 72.38
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4.3. Image Auto-Annotation

4.3.1. Methodology
Many images carrying extremely rich information are now archived in large databases. A challenging problem

is then to automatically analyze, organize, index, browse and retrieve these images. A lot of approaches have been
proposed to address this problem. In particular, semantic image understanding and auto-annotation have been the
topic of extensive research in the past [74, 75, 76, 77, 78, 79, 80]. The main goal is to extract high-level semantic
features in addition to low level features to bridge the gap between them and to enhance visual scenes interpretation
abilities [81, 82, 83]. Automatic annotation approaches can be divided into two main groups of approaches [84, 85].
The first group deals directly with the annotation problem byproviding labels to the complete image or its different
regions (see, for instance, [81, 82]). The second group tackles this problem via two independent steps where the
first step categorizes the images and the second one affects labels to them using the top ranked categories (see, for
instance, [76, 85]). Approaches in this second group have shown promising results recently. Thus, the goal of this
subsection is to develop an annotation-driven image retrieval approach, based on the work in [85], via categorization
results obtained with the proposedInFsGDin a bag of visual key words representation. Our aim is to build an efficient
annotation-retrieval approach to handle the problem of image search under three challenging scenarios as stated in
[85]: 1) use a tagged image or a set of keywords as query to search images on the untagged portion of a partially tagged
image database; 2) use an untagged image as query to search images on the tagged portion of a partially tagged image
database; 3) use an untagged image as query to search images on an untagged image database. The methodology
that we have adopted for this experiment can be divided into three sequential steps namely: images categorization,
annotation, and retrieval.
In the categorization stage, the proposedInFsGD is integrated with the pLSA model to categorize images through
a bag of key visual words representation. First, interest points are detected using the Difference-of-Gaussian (DoG)
detector [70]. Then, we use PCA-SIFT descriptor3 [86], computed on detected keypoints of all images and resulting
on 36-dimensional vector for each keypoint. Subsequently,the K-Means algorithm is used to construct a visual
vocabulary by quantizing these PCA-SIFT vectors into visual words. In our experiments, we set the vocabulary size
to 1000. Each image is then represented as a frequency histogram over the visual words. Then, the pLSA model
is applied to the obtained histograms to represent each image by a 50-dimensional proportional vector where 50 is
the number of latent aspects. Finally, ourInFsGD is deployed to cluster the images. The categorization results in
the previous stage are exploited to perform image annotation. Here, we follow an approach proposed in [85] which
considers the problem of image annotation from three phases: 1) the frequency of occurrence of potential tags based
on the categorization results; 2) saliency of the given tags; 3) the congruity of a word among all the candidate tags.
Assume that we have a training image data set that contains several categories. Each category is annotated by 4 to
5 tags where common tags may appear in different categories. At the beginning, we collect all the tags from each
category. The total number of categories in the data set is denoted asC and the number of categories that have each
unique tagt is represented asF(t). Then, tag saliency can be evaluated similarly as for inverse document frequency
in the field of document retrieval. For a test image, a ranked list of predicted categories is generated according to the
Bayes’ decision rule in the classification. Then, the top 5 predicted categories are chosen and the union of all involved
unique tags denoted asU(I ) forms the set of candidate tags. Thus, we definef (t|I ) as the frequency of the occurrence
of each unique tagt among the top 5 predicted categories. We follow the idea proposed in [85] to determine the word
congruity using WordNet [87] with the Leacock and Chowdrow measure [88]. WordNet is a large lexical database
of English which groups English words into sets of cognitivesynonyms called synsets. Hence, the congruity for a
candidate tagt can be calculated by [85]:

G(t|I ) =
dtot(I )

dtot(I ) + |U(I )|
∑

x∈U(I ) dLCH(x, t)
(66)

We adopt the same settings fordLCH and rLCH as in [85], such that the distance between two tagst1 and t2 is:
dLCH(t1, t2) = exp(−rLCH(t1, t2) + 3.584)− 1. In addition,dtot(I ) evaluates the pairwise semantic distance among
all candidate tags and is defined as:dtot(I ) =

∑
x∈U(I )

∑
y∈U(I ) dLCH(x, y). By having all the three annotation factors on

3Source code of PCA-SIFT: http://www.cs.cmu.edu/∼yke/pcasift
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hand, we can compute the overall score for a candidate tag as

A(t|I ) = a1 f (t|I ) +
a2

ln C
ln(

C
1+ F(t)

) + a3G(t|I ) (67)

wherea1 + a2 + a3 = 1 represents the degree of importance of the three factors. Then, a tagt is chosen for annotation
only if its score is within the topε percentile among the candidate tags. According to our experimental results, we set
a1 = 0.5, a2 = 0.2, a3 = 0.3, andε = 0.7. For retrieving images, we use automatic annotation and the WordNet-based
bag of words distances as introduced in [85]. The core idea isthat if tags were missing in the query image or in our
database, automatic annotation is then performed and the bag of words distances between query image tags and the
database tags are calculated. This distance is used to rank the degree of relevance of the images in the database and
then to perform images search accordingly (more details anddiscussions can be found in [85]).

4.3.2. Results
We test out approach using a subset of LabelMe data set [89] which contains both class labels and annotations.

First, we use the LabelMe Matlab toolbox4 to obtain images online from 8 outdoor scene classes: “highway”, “inside
city”, “tall building”, “street”, “forest”, “coast”, “mountain” and “open country”. We randomly choose 200 images
from each categories. Thus, we have 1600 images in total. Each category is associated with 4-5 tags. We randomly
divide the data set into two partitions: one for training, the other for testing. First, we have performed categorization
using the proposedInFsGD with bag of visual key words representation as described previously. We compare our
approach with other five well-defined approaches: the variational infinite GD mixture model without feature selection
(InGD), the infinite GD mixture model using Gibbs sampling algorithm (GiInGD), the variational infinite Gaussian
mixture model (InGau), the combination of a structure-composition model and a Gaussian mixture model (we denote
it as SC-GM) as proposed in [85] and the variational Gaussian mixture model with feature selection (FsGau). The
categorization result of the 8 outdoor scene images is illustrated in Table 6. According to this table, we can observe that
the proposedInFsGDoutperforms other five approaches in terms of the highest classification accuracy rate (75.1%).
The obtained result from the categorization is then exploited by the annotation stage. The performance of annotation

Table 6: The average classification accuracy computed by different algorithms.

Method Accuracy (%)

InFsGD 75.1

InGD 74.7

GiInGD 74.8

InGau 73.6

SC-GM 71.8

FsGau 70.2

is evaluated by precision and recall which are defined in the standard way: the annotation precision for a keyword is
defined as the number of tags correctly predicted divided by the total number of predicted tags. The annotation recall
is defined as the number of tags correctly predicted, dividedby the number of tags in the ground-truth annotation. In
our experiments, the average number of tags generated for each test image is 4.05. Table 7 shows the performance
evaluation of the automatic annotation approach accordingto the categorization result obtained by using different
methods. It is clear that, annotation with the categorization result obtained byInFsGDprovides the best performance.
Table 8 presents some examples of the annotations produced by usingInFsGDcategorization method. In the last step,
we perform image retrieval under the three scenarios as described in the previous subsection. For the first scenario
in which the database is not tagged and query may either be keywords or tagged image, the retrieval is performed
by first automatically annotating the database through categorization and annotation steps. Then, image retrieval is

4http://labelme.csail.mit.edu/
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Table 7: Performance evaluation of the automatic annotation system based on different categorization methods.

Method Mean Precision (%) Mean Recall (%)

InFsGD 31.5 43.6

InGD 30.4 42.3

GiInGD 30.3 42.5

InGau 29.8 40.2

SC-GM 27.1 38.7

FsGau 26.3 36.8

Table 8: Sample annotation results by usingInFsGDclassification method.

Our labels car, road, mountain car, sidewalk, window sky, building, tree human, car, tree

LabelMe
labels

truck, car, sky, road,
mountain

building, car, window,
sidewalk, human

building, tree, car, sky person, car, sidewalk,
building, tree

Our labels sea water, tree, sky sand, tree, sea water forest, sky, cloud cloud, field, mountain,
tree

LabelMe
labels

tree, forest, mountain,
cloud, sky

sea water, sand, sky,
cloud

mountain, sky, field,
tree

sky, sand, field, moun-
tain, car

Table 9: The comparison of image retrieval performances.

Scenario 1 Scenario 2 Scenario 3

Method Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

InFsGD 51.5 58.9 45.3 50.2 47.5 56.6

InGD 49.7 56.6 42.5 49.3 46.6 54.1

GiInGD 49.9 56.5 42.8 49.7 46.5 54.3

InGau 48.6 56.3 41.4 48.7 45.9 52.8

SC-GM 46.2 55.7 38.6 45.6 41.7 53.5

FsGau 43.8 52.1 37.1 43.4 38.3 51.0
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performed according to the bag of words distances between query tags and our annotation. In this experiment, we use
40 pairs of query words that are randomly chosen from all the candidate tags. In the second scenario, the database is
tagged and the query is an untagged image. Thus, the first stepis to automatically annotate the query image. Then,
the database is ranked according to the bag of words distances. In the third scenario, neither the image database nor
the query is tagged. Therefore, both the image database and the query images have to be annotated automatically
first. Subsequently, image retrieval is applied once again using the bag of words distance evaluation. We choose 100
images randomly as the set of query images in this experiment. The performance of semantic retrieval was evaluated
by measuring precision and recall. In this case, precision is defined as the proportion of retrieved images that are
relevant, and recall denotes the proportion of relevant images that are retrieved. An image is considered relevant if
there is an overlap between the original tags of the query image or query word and the original tags of the retrieved
image. Since categorization is the baseline of our annotation-driven image retrieval approach. We have also tested the
impact of using different categorization algorithms on annotation-driven image retrieval performance and illustrates
the corresponding result in Table 9 on retrieving the top 10 relevant images. As we can observed form this table, using
InFsGDas the categorization method provides the best performancefor all three scenarios which indicates that the
categorization algorithm is a significant influence factor for the annotation-driven image retrieval scheme that we have
applied.

5. Conclusion

Until recently, feature selection approaches based on mixture models were almost exclusively considered in the
finite case. The work proposed in this paper is motivated by anattempt to overcome this limitation via the extension of
the simultaneous clustering and feature selection approach based on finite generalized Dirichlet mixture models, pre-
viously proposed in [1], to the infinite case via Dirichlet processes with a stick-breaking representation. The proposed
technique drives much of its power from the flexibility of thegeneralized Dirichlet mixture, the high generalization
accuracy of Dirichlet processes, and the advantages of the variational Bayesian framework that we have developed
to learn our model. Our method has been successfully tested in several scenarios and our experimental results using
synthetic data and real-world applications namely visual scenes categorization, auto-annotation and retrieval have
shown advantages derived from its adoption. The model developed in this paper is also applicable to many other
problems which involve high-dimensional data clustering such as gene microarray data sets analysis, text clustering
and retrieval, and object recognition.

Appendix A. Proof of Equations (32)∼(37)

Based on (28), the general expression for the variational solution Qs(Θs) can be written as

ln Qs(Θs) =
〈
ln p(X,Θ)

〉
i,s + const. (A.1)

where any terms that are independent ofQs(Θs) are absorbed into the additive constant. Next, we need to calculate
the logarithm of the joint distribution (26) as

ln p(X,Θ) =
N∑

i=1

∞∑

j=1

Zi j

{ D∑

l=1

φil

[
ln
Γ(α jl + β jl )

Γ(α jl )Γ(β jl )
+ (α jl − 1) lnXil + (β jl − 1) ln(1− Xil )

]
+

D∑

l=1

∞∑

k=1

(1− φil )Wikl

[
ln
Γ(σkl + τkl)
Γ(σkl)Γ(τkl)

+(σkl − 1) ln Xil + (τkl − 1) ln(1− Xil )
]}
+

N∑

i=1

∞∑

j=1

Zi j
[
ln λ j +

j−1∑

s=1

ln(1− λs)
]
+

∞∑

j=1

[
lnψ j + (ψ j − 1) ln(1− λ j)

]
+

∞∑

j=1

[
(aj − 1) lnψ j − bjψ j

]

+

N∑

i=1

∞∑

k=1

D∑

l=1

Wikl
[
ln γk +

k−1∑

s=1

ln(1− γs)
]
+

∞∑

k=1

[
lnϕk + (ϕk − 1) ln(1− ϕk)

]
+

∞∑

k=1

[
(ck − 1) lnϕk − dkϕk

]
+

N∑

i=1

D∑

l=1

[
φil ln ǫl1 + (1− φil ) ln ǫl2)

]

+

D∑

l=1

[
(ξ1 − 1) lnǫl1 + (ξ2 − 1) lnǫl2

]
+

∞∑

j=1

D∑

l=1

[
(ujl − 1) lnα jl − vjlα jl + (pjl − 1) lnβ jl − qjlβ jl

]

+

∞∑

k=1

D∑

l=1

[
(gkl − 1) lnσkl − hklσkl + (skl − 1) lnτkl − tklτkl

]
+ const. (A.2)
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In the following variational inference process, we truncate the stick-breaking representation for the infinite GD
mixture model at a value ofM, and the infinite Beta mixture model for the irrelevant features is truncated at a level of
K.

Appendix A.1. Variational Solution to Q(~φ)

We can compute the logarithm of the variational factorQ(φil ) as

ln Q(φil ) =
〈
ln(p(X,Θ))

〉
Θ,φil
= φil

{ M∑

j=1

〈Zi j 〉
[
R jl + (ᾱ jl − 1) ln Xil + (β̄ jl − 1) ln(1− Xil )

]
+ 〈ln ǫl1〉

}

+(1− φil )
{ K∑

k=1

〈Wikl〉
[
Fkl + (σ̄kl − 1) ln Xil + (τ̄kl − 1) ln(1− Xil )

]
〈ln ǫl2〉

}
+ const. (A.3)

where
ᾱ = 〈α〉 , β̄ = 〈β〉 , σ̄ = 〈σ〉 , τ̄ = 〈τ〉 (A.4)

and we define

R jl =

〈
ln
Γ(α jl + β jl )

Γ(α jl )Γ(β jl )

〉

α jl ,β jl

, Fkl =

〈
ln
Γ(σkl + τkl)
Γ(σkl)Γ(τkl)

〉

σkl ,τkl

(A.5)

Note that the expectations in (A.5) are analytically intractable, thus, the standard variational inference can not be
applied directly. To tackle this problem, we can apply a lower bound approximation, such as second-order Taylor
series expansion, to the intractable function to obtain a closed-form expression [51, 56]. In our work, we adopt the
second-order Taylor series expansion to approximateR jl andFkl usingR̃ jl (43) andF̃kl (44) as proposed in [56]. By
substituting the lower bounds (43) and (44) into (A.3), we then obtain

ln Q(φil ) =
〈
ln(p(X,Θ))

〉
Θ,φil
= φil

{ M∑

j=1

〈Zi j 〉
[
R̃ jl + (ᾱ jl − 1) ln Xil + (β̄ jl − 1) ln(1− Xil )

]
+ 〈ln ǫl1〉

}

+(1− φil )
{ K∑

k=1

〈Wikl〉
[
F̃kl + (σ̄kl − 1) ln Xil + (τ̄kl − 1) ln(1− Xil )

]
〈ln ǫl2〉

}
+ const. (A.6)

We can find that (A.6) has the same logarithmic form of (20) except for the normalization constant. Therefore, we
can acquire the variational solution as

Q(~φ) =
N∏

i=1

D∏

l=1

f φil

il (1− fil )(1−φil ) (A.7)

where fil is defined in (38). Then, from the Bernoulli distributionQ(~φ) (A.7), it is straightforward to have

〈
φi j
〉
= fi j and

〈
1− φi j

〉
= 1− fi j (A.8)

Appendix A.2. Variational Solution to Q(Z)

The logarithm of the variational factorQ(Zi j ) is calculated as

ln Q(Zil ) = Zi j

{ D∑

l=1

〈φil 〉[R̃ jl + (~α jl − 1) lnXil + (~β jl − 1) ln(1− Xil )] + 〈ln λ j〉 +

j−1∑

s=1

〈ln(1− λs)〉
}
+ Const. (A.9)

where we have substituted̃R jl for R jl . By analyzing (A.9), it is obvious that the variational solution to Q(Z) has the
logarithmic form of (12) except for the normalization constant. Therefore, we can rewrite (A.9) as

ln Q(Z) =
N∑

i=1

M∑

j=1

Zi j ln r̃ i j + const. (A.10)
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where ˜r i j is defined in (39). By taking the exponential of both sides of (A.10), we then have

Q(Z) ∝
N∏

i=1

M∏

j=1

r̃
Zi j

i j (A.11)

SinceZi j are binary and
∑M

j=1 Zi j = 1, (A.11) can be normalized as

Q(Z) =
N∏

i=1

M∏

j=1

r
Zi j

i j (A.12)

wherer i j is given in (38). Sincer i j is nonnegative and sum to one, for the multinormial distribution Q(Z) we can
obtain 〈

zi j
〉
= r i j (A.13)

wherer i j are playing the role of responsibilities as in the conventional EM algorithm.

Appendix A.3. Variational Solution to Q(~λ)
For the variational factorQ(~λ), its logarithm form is obtained by

ln Q(λ j) = ln λ j

N∑

i=1

〈
Zi j
〉
+ ln(1− λ j)

( N∑

i=1

M∑

s= j+1

〈Zis〉 + 〈ψ j〉 − 1
)
+Const. (A.14)

We can observe that (A.14) has the logarithmic form of a Beta distribution as its conjugatae prior distribution (17).
By taking the exponential of its both sides, we obtain

Q(~λ) =
M∏

j=1

Beta(λ j |θ j , ϑ j) (A.15)

whereθ j andϑ j are defined in (51).

Appendix A.4. Variational Solution to Q(~ψ)
The logarithm form of the variational factorQ(~β) is given by

ln Q(ψ j) = lnψ ja j + ψ j(
〈
ln(1− λ j)

〉
− b j) + Const. (A.16)

By taking the exponential of the both sides of (A.16), we can obtain

Q(~ψ) =
M∏

j=1

G(ψ j |a
∗
j , b
∗
j) (A.17)

Thus, the optimal solutions to the hyper-parametersa∗j andb∗j can be calculated as

a∗j = a j + 1 , b∗j = b j − 〈ln(1− λ j)〉 (A.18)

Appendix A.5. Variational Solution to Q(W), Q(~γ) and Q(~ϕ)
We can calculate the logarithm of the variational factorQ(Wikl) as

ln Q(Wikl) =Wikl

{
〈1− φil 〉

[
F̃kl + (σ̄kl − 1) lnXil + (τ̄kl − 1) ln(1− Xil )

]
+ 〈ln γk〉 +

k−1∑

s=1

〈ln(1− γs)〉
}
+ Const. (A.19)

where we have substituted̃Fkl for Fkl. By analyzing (A.19), we can obtain the variational solution to Q(W) by taking
the exponential of the both sides it as

Q(W) =
N∏

i=1

K∏

k=1

D∏

l=1

mWikl

ikl (A.20)

wheremikl is given by (38).
Since~γ has the Beta prior and~ϕ has the Gamma prior distribution, the variational solutions toQ(~γ) andQ(~ϕ) can be
derived in a similar way as forQ(~λ) andQ(~ψ), respectively.
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Appendix A.6. Variational Solution to Q(~ǫ)

The logarithm of the variational factorQ(~ǫl) as

ln Q(~ǫl) = ln ǫl1(
N∑

i=1

〈φil 〉 + ξ1 − 1)+ ln ǫl2(
N∑

i=1

〈1− φil 〉 + ξ2 − 1)+ Const. (A.21)

We can see that (A.21) has logarithmic form of a Dirichlet distribution except for the normalization constant. Then,
the variational solution toQ(~ǫl) can be obtained by

Q(~ǫl) =
D∏

l=1

Dir(~ǫl |~ξ∗) (A.22)

where~ξ∗ are defined in (54).

Appendix A.7. Variational Solution to Q(~α), Q(~β), Q(~σ) and Q(~τ)

The logarithm of the variational factorQ(α jl ) can be calculated as

ln Q(α jl ) = 〈ln p(X,Θ)〉Θ,α jl =

N∑

i=1

〈Zi j 〉〈φil 〉[D(α jl ) + α jl ln Xil ] + (u jl − 1) lnα jl − v jlα jl + const. (A.23)

where we have defined

D(α jl ) =
〈

ln
Γ(α jl + β jl )

Γ(α jl )Γ(β jl )

〉

β jl

(A.24)

Since the functionD(α jl ) is analytically intractable, we can not perform the standard variational inference directly
and (A.23) does not have the same form as the logarithm of a Gamma distribution as its conjugate prior. Thus, we
approximate the functionD(α) by a non-linear approximation as proposed in [56], such that

D(α) ≥ lnα
{
Ψ(ᾱ + β̄) −Ψ(ᾱ) + β̄Ψ′(ᾱ + β̄)(

〈
ln β
〉
− ln β̄)

}
ᾱ (A.25)

After substituting the lower bound (A.25) back into (A.23),we then have

ln Q(α jl )≈lnα jl

{ N∑

i=1

〈
zi j
〉〈
φil
〉[
Ψ(ᾱ jl + β̄ jl ) − Ψ(ᾱ jl ) + β̄ jlΨ

′(ᾱ jl + β̄ jl )(
〈
ln β jl
〉
− ln β̄ jl )

]
ᾱ jl + u jl − 1

}

+α jl

[ N∑

i=1

〈
Xi j
〉〈
φil
〉

ln Xil − v jl

]
+ Const.

(A.26)

We can find that (A.26) has the logarithmic form of a Gamma distribution. By taking the exponential of both sides of
(A.26), we then obtain

Q(~α) =
M∏

j=1

D∏

l=1

G(α jl |u
∗
jl , v
∗
jl ) (A.27)

The hyperparametersu∗jl andv∗jl can be estimated by (45) and (49).

Since~β, ~σ and~τ all have Gamma prior, it is straightforward to obtain the variational solutions toQ(~β), Q(~σ) andQ(~τ)
in a same way as forQ(~α).
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