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Abstract

This paper introduces a novel enhancement for unsuperfesdgdre selection based on generalized Dirichlet (GD)
mixture models. Our proposal is based on the extension ofinfite mixture model previously developed in [1]
to the infinite case, via the consideration of Dirichlet greg mixtures, which can be viewed actually as a purely
nonparametric model since the number of mixture componeansincrease as data are introduced. The infinite
assumption is used to avoid problems related to model gaefite. determination of the number of clusters) and
allows simultaneous separation of data in to similar chgséad selection of relevant features. Our resulting model
is learned within a principled variational Bayesian framekvthat we have developed. The experimental results
reported for both synthetic data and real-world challeggipplications involving image categorization, automatic
semantic annotation and retrieval show the ability of oysrapch to provide accurate models by distinguishing
between relevant and irrelevant features without overnaleu-fitting the data.

Keywords: Infinite mixture models, Dirichlet process, generalizeddbilet, feature selection, clustering, images
categorization, image auto-annotation.

1. Introduction

As the amount of multimedia information available increagmowerful approaches for analyzing, managing and
categorizing these data become crucial. Clustering playsiportant role in exploratory analysis of data. It prowde
principled means of discovering heterogenous groupings (lusters) in data and has been the topic of extensive
research in the past [2, 3, 4, 5, 6, 7]. Data clustering is kntambe a challenging task in modern knowledge discov-
ery and data mining. This is especially true in high-dimenal spaces mainly because of data sparsity [8, 9] and
a crucial step in this case is the selection of relevant feat{10, 11, 12, 1]. Finite mixture models are well suited
for clustering due to their simple structure and flexibilithich ofer a principled formal approach to unsupervised
learning [13, 14]. In the classic approach to mixture modmiglementation, the density components are usually
chosen as Gaussian and the number of components is suppdseéiriite. Many methods for selecting the optimal
number of clusters can be found in the literature (see, f&taimce, [15, 16, 17]). These approaches can be classified
into two groups namely deterministic and Bayesian. The nitgjof both deterministic and Bayesian previous model
selection approaches have to consider all possible vafubg mumber of mixture components up to a certain max-
imum value and then choose the optimal one according to aioentiterion which is unfortunately computationally
prohibitive (i.e. the learning algorithm have to be run fafelent choices of the number of mixture components) and
may cause over- and under-fitting problems. A significantrifoution that overcomes these drawbacks was made
in [18] through the development of infinite mixture modelsiethconstitute an interesting extension of the typical
finite mixture models approach by allowing the number of mmigticomponents to increase as new data arrive. Infinite
mixture models are based on the notion of Dirichlet procesgdch is one of the most popular Bayesian nonpara-
metric models and is defined as a distribution over distigmst[19, 20, 21]. Thanks to the the recent development
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of Markov Chain Monte Carlo (MCMC) techniques [22], infiniteixture models have been widely and successfully
used in various applications (see, for instance, [23, 2428527, 28]) by embodying the well-known Occam’s Razor
principle [29]. Concerning feature selection, althouglotdf attention has been devoted to supervised feature se-
lection (see, for instance, [30, 31, 32]), some unsupetisature selection techniques have been proposed recently
[33, 34, 35, 36, 37, 38, 39]. And some of these unsupervisgthtques have been based on finite mixture models,
but generally suppose that each per-component densityuisgizan with diagonal covariance matrix (i.e. the features
are supposed independéngi, 42, 43].

Recently a nonparametric Bayesian unsupervised featlgetissn approach has been proposed in [44]. The main
idea was the consideration of the infinite generalized Dieit(GD) mixture model, whichféers high flexibility and
ease of use, for simultaneous clustering and feature s@e@ne of the main advantages of this approach is that the
structural properties of the GD allows it to be defined in acepahere the independence of the features becomes a fact
and not an assumption as shown for instance in [1]. The asithgd4] have proposed a fully Bayesian treatment of
the unsupervised feature selection approach that theygravusly introduced in [1] in order to overcome problems
related to deterministic learning. The learning approacl#] was based on the introduction of prior distributions
over the mixture parameters. These parameters have baeedtimated using a typical MCMC approach based on
both Gibbs sampling and Metropolis-Hastings algorithm&NC techniques areffective for parameters estimation,
but are unfortunately computationally very demanding drehin be very hard to diagnose their convergence. This
is especially true in the case of high-dimensional data imigolve the integration over a large number of model
parameters. The accurate evaluation of such high-dimeakiotegrals has been the topic of extensive research.
Recently, variational approaches, known also as ensemétaihg [45, 46, 47], have been proposed asfAgient
alternative to MCMC techniques. Motivated by the good ressobtained recently using variational techniques for
modeling mixture models, in this article we extend the le@agrapproach in [44] by developing a variational alterna-
tive. The contribution of this paper is three-fold. Firsg extend the finite GD mixture model with feature selection
to the infinite case using a stick-breaking constructior §#8h that the dficulty of choosing the appropriate number
of clusters can be solved elegantly. Second, we proposeaativaal inference framework for learning the proposed
model, such that the model parameters and features salfeact estimated simultaneously in a closed form. In
particular, conjugate priors are developed for all the imed parameters. Last, we apply the proposed approach to
solve two challenging problems involving visual sceneggatization, and image automatic semantic annotation and
retrieval. An appealing feature of the proposed variatiapproach is that it allows avoiding over-fitting by finding

a compromise between generality and the number of parasri@témplicitly providing a model order selection cri-
terion [49, 46, 50]. Readers unfamiliar with Bayesian Il&agrand the variational Bayes framework are referred to
[45, 51].

The paper is organized as follows. In Section 2 we presentrdimite feature selection model. In Section 3 we
develop a practical variational approach to learn the patars of this model. Section 4 is devoted to experimental
results of using our approach. This is followed, in Sectiphyba discussion of our findings and conclusions.

2. The Infinite GD Mixture Model for Feature Selection

In this section, we describe our main unsupervised infigture selection model. We start by a brief overview
of the finite GD mixture model. Then, the extension of this eldd the infinite case and the integration of feature
selection are proposed. Finally, we present the conjugaiespihat we will consider for the resulting model learning

2.1. The Finite GD Mixture Model
Consider a random vectdf= (Y1,..., Yp), drawn from a finite mixture of GD Distributions witkl components
[52] as
M
p(¥i7,@.8) = ) =,GD(Vld;, 5)) (1)

=1

IHowever, it is well-known that the independence assumpsianfrequently met in practice [40].



where@ = {@1,...,d@m} ﬂ {ﬂl, .. ,BM @ and,BJ are the parameters of the GD distribution representing coraipt

j with @; = {ail,.. ,ajp} andf; = (Bj1,....Bjp), and# = {m,..., 1w} represents the mixing ceiients which are
positive and sum to one. A GD distribution is defined as

_ 1H(all +,BJI) vi—1 ! il
GD(Yl@;, 3)) = ]_[r(a”)r(ﬂ”)v‘ (1_;Yk) o

Wherezlzl\ﬁ <landO<Y < 1forl= 1,....D,aj > 0,85 >0,y =Bj —aj|+1—ﬂj|+1forl =1,...,.D-1,and
Yip =PFjp -1

Now, let us consider a set of independent identically distributed vect@/s= (\71, ey VN) assumed to arise from a
finite GD mixture. Following the Bayes’ theorem, the probipthat vectori is in clusterj conditional on having
observed; (also known asesponsibilitie} can be written as

p(jIVi) < 7;GD(Yi|@}. Bj) (3)

In our work, we exploit an interesting mathematical propeftthe GD distribution previously discussed in [52, 1] to
redefine the responsibilities as

D
p(ilY:) o< ; l_[ Beta(Xilaj,Bj) (4)

whereXi; = Yi; andX; = Y; /(1- Z Y.k) for| > 1 and BetaXylej,8j) is a Beta distribution defined with parameters
(@i, Bj)- Thus, the clustering structure for a finite GD mixture magederlying data seV can be represented by a
new data seX = ()?1, e )?N) using the following mixture model with conditionally indendent features

M D
p(Xi7,@.0) = > ;| | Beta@lery, By) ®)

=1 =1

It is noteworthy that this property plays a critical role the GD mixture model, since the independence between the
features becomes a fact rather than an assumption as c@tsidgorevious unsupervised feature selection Gaussian
mixture-based approaches [41, 42].

2. Infinite GD Mixture Model With Feature Selection

The Dirichlet process (DP) [20] is a stochastic process wisample paths are probability measures with probabil-
ity one. It can be considered as a distribution over distidims. The infinite GD mixture model with feature selection
proposed in this paper is constructed using the DP with k-btieaking representation. Stick-breaking represeoriati
is an intuitive and straightforward constructive definitiof the DP [48, 53, 54]. It is defined as follows: given a
random distributiorG, it is distributed according to a D& ~ DP(y, H) if the following conditions are satisfied:

j-1 %
A ~Beta(ly), Qi ~H  m=4]]d-1), G=) mdq (6)
s=1 j=1

wheredo, denotes the Dirac delta measure centeréd;aindy is a positive real number. The mixing weightsare
obtained by recursively breaking an unit length stick intdrdinite number of pieces.

Assuming now that the observed data set is generated from migtiDre model with a countably infinite number of
components. Thus, (5) can be rewritten as

) D
p(XiI7, @, B) = Z g H BetaXilaj,Bj) - (7)

j=1 1=1

Then, for each vectoX;, we introduce a binary latent variaie = (Zi1, Zia, . . .), suchz;; € {0,1} andz; = 1if X
belongs to componerjtand 0, otherwise. Therefore, the likelihood function of thinite GD mixture with latent
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variables, which is actually the conditional distributiohdata setX given the class labelg = (Zl, .. .,ZN) can be

written as .
MMZaﬁ=fHTQI%mmm”mﬂ (8)
i=1 j=1

It is worth mentioning that all the featur¢X; } in the previous model are assumed to be equally importarthéor
task of clustering which is not realistic in practice sinoeng of the features might be irrelevant and do not contribute
to the clustering process [1]. In order to take this fact iat@ount the authors in [41] have supposed that a given
featureX; is generated from a mixture of two univariate distributiomie first one is assumed to generate relevant
features and is tfierent for each cluster; the second one is common to all chuéte. independent from class labels)
and assumed to generate irrelevant features. This ideadmasdxtended in [1] where the irrelevant features are
modeled as a finite mixture of distributions rather than aausingle distribution. In this work, we go a step further
by modeling the irrelevant features with an infinite mixtanedel in order to bypass thefficulty of estimating the
appropriate number of components for the mixture modelsgnting irrelevant features. Therefore, each feafyre
can be approximated as

1-¢i

p(Xir) = (Beta% |a/jl»ﬂjl))¢“(ﬁ BetaQ(nIO'kthl)W'k') 9)
k=1

whereWy is a binary variable such th¥lfy, = 1 if Xj comes from thé&th component of the infinite Beta mixture for
the irrelevant featuresg; is a binary latent variable, such that = 1 indicates that featureis relevant and follows
a Beta distribution Betag|aj, 8j), andg; = 0 denotes that featutas irrelevant and supposed to follow an infinite
mixture of Beta distributions independent from the clasgls:

pP(Xin) = Z nkBetagilow, 7«) (10)

whereny denotes the mixing probability and also implies the pricokability thatX; is generated from thi&th
component of the infinite Beta mixture representing irralefeatures.

Thus, we can write the likelihood of the observed dataXsé&vllowing the infinite GD mixture model with feature
selection as

p(XIZ, W, $,d,8, &7 =

N
i=1

00 © —¢ 1%
l_[[l_[ Beta(Xi|aji, Bji)"" % (l_[ BetaXilow, 7ia) "™ )1 ’ } (11)
k=1

j=1

whereW = (Wi, ..., W) with Wi = (Wiy, Who, ...) andWhe = (Wi, . .., Wikn). & = (d1... ., én) contains elements

b = (¢i1, ..., dp). & = (F1, 0, ...) and? = (71, 72, .. .) are the parameters of the Beta mixture representingvasate
features which comprise elemermtgs = (o«1,...,0kp) and@ = (tks, ..., Tkp), respectively. The main idea of the
unsupervised feature selection method in our work is shovifigure 1. The merits of adopting this feature selection
technique shall be demonstrated through experiments itioBet. For more details about this unsupervised feature
selection model, the reader is referred to [41, 1].

2.3. Prior Distributions of The Proposed Model

We shall follow a variational Bayesian approach for leagnr model, thus each unknown parameter is given a
prior distribution. In our work, we choose conjugate prifinsthe unknown random variableg, W, 4, &, 3, & andz.
The consideration of conjugate prior distributions is watiéd by the fact that it may lead to a considerably simplified
Bayesian analysis in which the posterior distributionsehése same functional forms as the priors. More importantly,
the whole variational inference process becomes tractatdleclosed form solutions for updating optimal factors can
be obtained when using conjugate priors in conjunction Withfactorization assumption, as we shall see in the next
section. The prior distributions & andW given the mixing cofficients andsj can be specified as

N o
pmﬁﬂqﬂﬁ’ (12)

i=1 j=1
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Feature [ is relevant ]—.{ p(Xy) = Beta(Xu|an, B;1) ]

Feature / is irrelevant » p(Xﬂ):Zk,lnkBem(X“w“’T“) ‘

Figure 1: The unsupervised feature selection method: when 1, featureX; is relevant and follows a Beta distribution Betalaj , 31); when
#il = 0, featureX; is irrelevant and follows an infinite mixture of Beta distrittons: X2 ; nkBetailow, 7ki)-

D

N o
pewii) = [ [T ][ [ (13)
=1

i k=1 I=1

According to the stick-breaking construction of DP as state(6), 7 is a function ofl. We rewrite it here for the sake
of clarity

j=1
m=4]]@-a) (14)
s=1
Similarly, 77 can be defined as a function@fsuch that
k-1
me=n] [X-79 (15)
s=1
Therefore, we can rewrite (12) and (13) as
N oo -1 N o D k-1
B Zii e 1
pd=[[[ ] Ja-a1%  pewwy =[] ]] Jin] J@-»n" (16)
i=1 j=1 s=1 i=1 k=1 I=1 s=1

wherel = (21, 22,...) andy = (y1,7y2,...). The prior distributions ofl andy follow the specific Beta distribution
given in (6) as

p(AIy) = [ | Beta@yy) = [ Jwi(a- 2" (17)
j=1 j=1

p7I®) = | [ Beta(le) = | [ pu@ - nd*? (18)
k=1 k=1

To add more flexibility, another layer is added to the Bayesi@rarchy by introducing prior distributions over the
hyperparameteis = (41, Y2, . ..) and@ = (¢1, 2, . ..). Motivated by the fact that the Gamma distribution is coyajte
to the stick lengths [47], Gamma priors are placed gvandg as

o B ©dp
o) = 6D = [ | Fisvi €™ p@) = g@ed) = [ | e et (19)
j=1 ! k=1

where hyperparametegs = (ag, ay, .. .), b = (by,by,...), € = (c1,¢C,...) andd = (d1,dp,...) are subject to the

constraints; > 0, b; > 0, ¢, > 0 anddy > 0 to ensure that these two prior distributions can be nomedliThe prior
distribution for the feature relevance indicator variapie defined as

e = [[[ea™ (20)



where eacly; is a Bernoulli variable such that(¢y = 1) = ¢, andp(¢y = 0) = a,. The vectore = (€, ..., &)
represents the features saliencies (i.e. the probabiliiat the features are relevant) such that (e,,6,) and
a, + 6, = 1. Furthermore, a Dirichlet distribution is chosen o#as [55]

= T +8&) ¢g-1 61
p@ = | [ Dircelé) = e te? (21)
D | H GG

where the hyperparametér: (&1, &2) is subject to the constraingy(, &2) > 0 in order to ensure that the distribution
can be normalized. Next, we need to define the prior disidhstfor parameterd, 3, @ and? of Beta distributions.
Although Beta distribution belongs to the exponential fgrand has a formal conjugate prior [46], it is analytically
intractable and cannot be used within a variational frantkves shown for instance in [56]. Thus, the Gamma
distribution is adopted to approximate the conjugate pesrsuggested in [56], by assuming that parameters of Beta
distributions are statistically independent:

© D uJI

P@ = (@) = [ [ [ e e (22)
=1 1=1 (uj)
o D qu|

pd) =6@ra= [ |5 L_gpi~Te-aif (23)
i1 121 L(Pi)

o.gkrle*hk\fm (24)

p(@) = G(cId, h) =

p(#) = 68 ) = [ | [ | e -teen (25)
1
where all the hyperparametais= {uj}, V = {vy}, B = {pji}, G = (a1}, § = (g}, h = {ha}, § = {sa)} andf = {t)

of the above conjugate priors are positive. In our work, wine® = {Z, W, $,a@,5, &, 2, 1,4, 7, & & as the set of
unknown random variables. After defining the priors for B# uinknown variables in the prop sed model, the joint
distribution of all the random variables is given by

(X 0) = p(XIZ, W, 8, &.8, ¢, 7)p(Z|1) p(d) p(ih) P(WI7) P(7IB) D) P(F1E) P(&) P(@) P(B) P(F) P(D)

)

| l—[[l"(ajl +ﬂ1l) X7 1(1 X )/ﬂ 1] il [l—[(r(o-k|+‘rk|) N 1(1 ) l)vvlkl]l—dﬁl}zij

s
v

,: i1 T(aj)T(By) % (o) (ra) "
N o -1 0 bjaj N o D k-1
[T ] Ja-agr xﬂw,(l W Tgger e < 1T Ton] Ja-var
i=1 j=1 s=1 j=1 j=1 i=1 k=1 I=1 s=1
x ﬁ er(1— )Pt x l—[ gt ﬁ ﬁ e 1—1 [+ &) grtget
] Toy e, TerE ™
) Uil Pijl I
x 1_[13[[ lel o ey qJ'l ﬂpu 1 YjiBjl 1_[13[ glk o Ii—Lghaoi tzd TSk\—le—twm] (26)
L) ! I'(py) R 1“(le) I'(sa)

A directed graphical representation of this model is illat#d in Figure 2.

3. Variational Inference

In this section, a variational framework for learning thériie GD mixture model with feature selection is pro-
posed. The main idea in variational learning is to find an axipnation for the posterior distributiop(®|X) as well
as for the model evideng®X) [50]. First, the log marginal probability In(X) can be decomposed as

_ p(X, ®) p(BIX)
In p(X)—fQ(G))In 50 d@—fQ(G))In 6

£(Q KL(Q(®)IIp(1X))

de 27)
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Figure 2: Graphical model representation of the infinite GRture model with feature selection. Symbols in circles aterrandom variables;
otherwise, they denote model parameters. Plates indiepétition (with the number of repetitions in the lower riglaind arcs describe conditional
dependencies between variables.

whereQ(®) is an approximation to the true posterior distributio(®|X). The second term on the right hand side
of (27) is the Kullback-Leibler (KL) divergence betwe€{®) and the posterior distributiop(®|X). In order to
verify the decomposition in (27), we can use the fact tha(iXi, ®) = In p(6]X) + In p(X). After we substitute this
decomposition of Ip(X, ®) into the expression of(Q) in (27), then we can have two terms: one of which cancels
KL(Q(®) || p(®]X)) while the other results in the required log likelihoodlfX). Since KLQ(®)||p(®|X)) > 0 (with
equality if, and only ifQ(®) = p(®|X)), it is obvious that(Q) < In p(X). Therefore,£(Q) can be considered as
a lower bound for Ip(X) [57]. Obviously, this lower bound is maximized when the Kivetgence vanishes, that
is whenQ(®) equals the true posterior distributiqai®|X). Nevertheless, in practice the true posterior distrdouti
is normally computationally intractable and cannot be alyeadopted in variational inference. Thus, in this work,
we exploit a factorization assumption which is knownnasan field theoryor restricting the form ofQ(®). This
approximation framework has been usditeéntly for variational inference by several researchethé past [51, 50].
Under this assumption, the posterior distribut@{®) can be factorized into disjoint tractable distributionsls that
Q(®) = I1;Qi(®). It is worth mentioning that this assumption is imposedghuto achieve tractability. Moreover,
this is the only assumption about the distribution, and strietion is placed on the functional forms of the indivitiua
factorsQ;(®;). To maximize the lower bound(Q), we need to make a variational optimization£(fQ) with respect

to each of the factor distributiorg3 (®;) in turn. Indeed, for a specific fact@s(®s) in a standard variational inference
framework, the general expression for its optimal soluigogiven by [51, 58, 50]

expIn p(X, ©))ixs
J expiin p(X, ©))i.s00
where(-)i:s denotes an expectation with respect to all the distribgti@(®;) exceptfoi = s. In variational inference,
all factorsQ;(®;) need to be suitably initialized first, then each individfadtor is updated in turn with a revised

value obtained by (28) using the current values of all thewothctors. Furthermore, we truncate the stick-breaking
representation for the infinite GD mixture model at a valudlodis

Qs(®s) = (28)

M
Av=1, ;=0 whenj>M, Zn,-zl (29)
=1
Moreover, the infinite Beta mixture model for the irrelevégdtures is truncated at a valuekouch that
K
yk=1, =0 whenk>K, anzl (30)
k=1
Note that, the truncation level andK are variational parameters which can be freely initialiaed will be op-

timized automatically during the learning process. By emiplg the factorization assumption and the truncated
7



stick-breaking representation for the proposed modelhee bbtain

Q©) - []‘[ ﬂ Q(zi;)][lM[ Q(M)Q(l//;‘)][]ﬁ[ 117 Q(vvikl)][ﬁ Q(yk)Q(sok)][ﬁ [ Q(¢n)”ﬁ Q)|

i j j=1 i=1 k=1 I=1 k=1 i=1 I=1 1=1

M D K D
|11 T enen|[[ ]] @il (31)

=1 1=1 k=1 I=1

By applying (28) to each factor of the variational posteniee then acquire the following optimal solutions (details
of the variational inference are given in Appendix |)

N M M
Q) =[[[]r. =] |Betagl6; ;) (32)
i=1 j=1 j=1
M N K D
QW) =[ [6wilai.b),  w)=[][ ][ ]tmid*) (33)
j=1 i=1 k=1 1=1
K
Q) = [ [Betatdon @) . QD) = ﬂ Glpdc. d) (34)
k=1 k=1
N D D
=] ][ [fra-we. o@=] [oiEe) (35)
i=1 I=1 =1
M D M D
Q@) =[ [[ [6iluivi). Q@) =[] [6®ilp;.qi) (36)
j=1 1=1 j=1 1=1
K D K D
Q) =[] ﬂ Glodg i), QD =[] | gl t) (37)
k=1 I= k=1 1=1
where we have defined
rii = L f, = L = L (38)
PEYE T e gEe s ™NT S ey
D _ _ j-1
fij = eXP{Z(@O[Rn +(aj = 1) X + By — 1) In(1- X)] + (Ina) + Z('n(l— ﬂs))} (39)
1=1 s=1
k-1
My = exp{<1 = ¢i)[Fia + (@ — D) InXy + (T — 1) In(L- Xi)] + Iy + Z('n(l— 75))} (40)
s=1
M
fil(d)il) = eXp{Z(Ziﬂ[ﬁﬂ + (&jl — 1) In Xi + (Ej| - 1) In(l— Xn)] + (In E|1>} (41)
=1
K
% = expl 3 (Wia)lFw + @i = 1) I + (7 = (L= X)] + (n e} (42)
k=1
R =1In i((%;(%)) +a[¥(@ + B) - ¥(@)]((Ina) - Ina) + B[¥(@ + B) - PB)((InB) - InB)

+0.522[W (@ + B) — V' (@){(Ina — In@)?) + 0.562[¥ (@ + B) — ¥'(B)] - ((InB - InB)?)

+ap¥ (@ +B)({(Ina) - Ina){InB) - Inp) (43)
F =In g((f);(?) + V(@ +7) - Y@){Ino) - InG) + (T + 7) - ¥D]((InT) = In7)

+ 055V (0 +7) - V' (@N(Ino - Ind)?) + 0.52[¥ (0 + 7) - V@(In T - In7)?)

+oV (@ +D(noy - In@A)Int) = In7) (44)



N
Uy =uj + Z(Zij><¢n>5jl [(ay +By) — P(ay) +Bi¥ (@) +By)(InBy) - Injy)] (45)
i=1

N
Py =P + Z(Zij><¢i|>,8_j| [W(@j +Bi) —P(By) + @iV (@ +Bi)({(Inay) - Inay)] (46)
i1
N
O = Ok + Z(l = P Y Wi Yo [P (o + Ta) — Plow) + T (0w + Ti) {IN 1) — IN i) | 47)
i1
N
Sq=S+ Z(l — @i Y Wh)Ta [P (0w + Tw) — ¥ (Ti) + oY (0w + 7)) ({IN o) — IN o) ] (48)
i1
N N
Vi =Vj - Z(Zij>(¢il> In X , o = dj — Z(Zij><¢i|> In(L - Xu) (49)
i1 i1
N N
Mg = i = D (1= g XWha) IN Xty = tia = > (L= g X Wha) In(L = X3) (50)
i1 i1
N N M
=1+ Z), Bi=W+y Y (L), a=a+1 (51)
i=1 i=1 s=j+1
N JD
by =by —(N(AL-1)), pc=1+ > (W), G=c+1 (52)
i1 11
N K D
=)+ ), > > Wa) . di=do— - %)) (53)
i=1 s=k+1 I=1
N N
=6+ 0, &=+ ) (1-g) (54)
i1 i1

where¥(+) is the digamma function and defined 84a) = dInT'(a)/da. The expected values in the above formulas
are given by

u* _ ¥ *

5]|=F;:, ﬂjlz%, 5k|=ﬁ—g:, ‘Fk|=?:7kll (55)

& G
W) = o (o) = T iy =rij,  (Wig) =my (56)

i K
(i) = fi, A-¢y) =1-1y, (Ina) =¥U)-Inv (57)
(npgy =¥(p’)-Ing", (noc) =¥(@)-Inh", (In7t) =¥(s)-Int" (58)
Ny =¥() - PO+, (In(1-2;)) = ¥(&) - P(B + D) (59)
(Inyg =¥p)-Ype+@), (In1l-n))=¥@w@)-Yp+wo) (60)
(Ine)) =¥(E) -Y(E+&), (ney) =W(E) -Y(E +£) (61)
((Ina —Ina)?)y = [P(U*) - Inu]? + ¥ (u") (62)
((InB—Inpy) = [¥(p") - In p'1* + ¥ (p) (63)
(Ino—1Ino)?) = [¥(@) - Ing']* + ¥'(g) (64)
(InT=In7)?) = [¥(s") = InS]? + ¥'(5) (65)

Since the solutions to each variational factor are couplgdther through the expected values of other factors, the
optimization of the model can be solved in a way analogoubs¢oBM algorithm. In the variational equivalent of
the E-step, we optimize the moments using the current matahpeters through (55§65). Then, in the subsequent
variational equivalent of the M-step, we keep the valueshobé moments fixed and use them to re-estimate the
variational distributions by (32)37). These two steps are repeated until convergence. Thplete learning process
is summarized in Algorithm %.

2The complete source code is available upon request.



Algorithm 1 Variational learning of infinite GD mixtures with featurdeetion
1: Choose the initial truncation leveld andK.
. Initialize the values for hyper-parametess vji, pji, dji, 9, M, S, tk, 8, bj, Ck, dk, &1 andéa.
. Initialize the values of;; andmyg by K-Means algorithm.
. repeat
The variational E-step: Estimate the expected values ip{®5), use the current distributions over the model
parameters.
6: The variational M-step: Update the variational solutiomsdach factor by (32)(37) using the current values
of the moments.
7: until Convergence criteria is reached.
8: Compute the expected value Bfas(;) = 6;/(6; + ©;) and substitute it into (14) to obtain the estimated values
of the mixing codficientsr;.
9: Compute the expected valuemafas(yx) = px/(ok + @k) and substitute it into (15) to obtain the estimated values
of the mixing codicientsry.
10: Calculate the expected values of the features salienciég)oy £;/(¢] + &) = (&1 + ZiN:1<¢il N/ (€ + &+ N).
11: Detect the optimal number of componeMsandK by eliminating the components with small mixing ¢oeents
close to 0.

g A WN

4. Experimental Results

In this section, we evaluate th&ectiveness of the proposed variational infinite GD mixtuieel with feature
selection [(hFsGD) through synthetic data and two challenging applicaticenmely unsupervised image categoriza-
tion and image annotation and retrieval. In all our experitagwe initialize the truncation level andK to 15 and
10, respectively. The initial values of hyperparameterg, g ands of the Gamma priors are set to 1, andj, h, t
are set to 0.01. The hyperparamet®rb, c andd are set to 1, whil&; andé; are set to 0.1. Our simulations have
supported these specific choices.

Table 1: Parameters of the generated data $étienotes the total number of elemeritg,denotes the number of elements in clugtesji, @j2,
Bi1, Bj2 andr; are the real parameters;1; @j2, ,811 ,812 ands; are the estimated parameters by the proposed algorithm.

Ni J|lax Bip ap B @j1 Bt @j2 Bi2 7
Data set 1 200 13 10 15 21 12 0.50 10.12 1459 20.38 11.73 0.501
(N=400) 200 2| 25 18 35 40 0.50 23.67 18.65 36.18 41.26 0.499
Data set 2 200 1 10 15 21 12 0.25 9.81 1589 20.51 12.10 0.253
(N =800) 200 2| 25 18 35 40 0.25 25.77 18.32 36.03 41.68 0.249
400 3| 18 35 10 25 0.50 17.35 34.29 10.72 26.65 0.498
Data set 3 200 1 10 15 21 12 0.25 10.09 1557 21.33 1154 0.247
(N=800) 200 2| 25 18 35 40 0.25 24.13 17.28 3515 38.66 0.251
200 3| 18 35 10 25 0.25 18.61 34.19 9.71 25.08 0.248
200 4| 33 27 45 13 0.25 31.95 26.83 43.89 12.27 0.254

Dataset4 200 14 10 15 21 12 0.200 9.34 1450 20.18 1235 0.197
(N=1000) 200 2| 25 18 35 40 0.20 26.07 18.16 34.49 39.12 0.199
200 3|18 35 10 25 0.20 17.31 36.53 10.76 24.22 0.203
200 4|33 27 45 13 0.20 3152 26.35 47.03 13.98 0.204
200 5| 20 10 42 38 0.20 19.88 10.94 4114 36.67 0.197
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4.1. Synthetic data

The purpose of the synthetic data is to investigate the acgusf the proposed algorithm in terms of parame-
ters estimation and model selection. The performance dihfhegGDwas evaluated through quantitative analysis on
four ten-dimensional (two relevant features and eightaxant features) synthetic data. The relevant featuree wer
generated in the transformed space from mixtures of Betdhiisons with well-separated components, while irrel-
evant ones were from mixtures of overlapped componentsle Tablustrates the real and estimated parameters of
the distributions representing the relevant featuresdchelata set using the proposed algorithm. According to this
table, the parameters of the model, representing relegatirfes, and its mixing céiecients are accurately estimated
by thelnFsGD. Although we do not show the estimated values of the parasieféhe mixture models representing
irrelevant features (the eight remaining features), aateuresults (in terms of both parameters estimation and mode
selection) were obtained by adopting the proposed alguorith
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Figure 3: Mixing probabilities of components;, found for each synthetic data set after convergence. (&) & 1, (b) Data set 2, (c) Data set 3,
(d) Data set 4.
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Figure 4: Features saliencies for synthetic data sets wigtstandard deviation over ten runs. (a) Data set 1, (b) &t $éc) Data set 3, (d) Data

set 4.

Figure 3 shows the estimated mixing @dgients of the mixture components, in each data set, afterergance.

By removing the components with very small mixing ffa@ents (close to 0) in each data set, we obtain the correct
number of components for the mixtures representing retefemtures. Furthermore, we present the results of the
features saliencies of all the 10 features for each datavseten runs in Figure 4. It obviously shows that features 1
and 2 have been assigned a high degree of relevance, whichesahe ground-truth. Furthermore, we have tested
the numerical complexity of the proposed variational alpon, in terms of overall computation time and number of
iterations before convergence. The corresponding reastdtshown in Table 2.

4.2. Visual Scenes Categorization

In this experiment, a challenging problem namely imagesgmization is highlighted. It is a fundamental task
in vision and has recently drawn considerable interest asdieen successfully applied in various applications such
as the automatic understanding of images, object recognitnage databases browsing and content-based images
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Table 2: Run time (in seconds) and number of iterations reduiefore convergence using the proposed algorithm.

Data set| Runtime| No. iterations
1 6.27 362
2 11.51 419
3 12.35 433
4 16.82 467

suggestion and retrieval [59, 60]. As the majority of congpwiision tasks, a central step for accurate images cate-
gorization is the extraction of good descriptors (i.e. dimtnative and invariant at the same time) to representthes
images. Recently local descriptors have been widely andesséully used [61, 62] mainly via the bag of visual
words approach [63, 64, 65] which has allowed the developwfemany models inspired from text analysis such as
the probabilistic latent semantic analysis (pLSA) modé&l][6Recently, it has been shown that the performance of
visual words-based approaches to images categorizatiobeaignificantly improved by adopting multiple image
segmentations instead of considering the entire image ag/dowtilize visual grouping cues to generate groups of
related visual words [65, 67].

The methodology that we have adopted for categorizing im@ge be summarized as follows: First, we compute
multiple candidate segmentations for each image in theecidn using Normalized Cuts [68] Following that,
Gradient location-orientation histogram (GLOH) desaipt[69] are extracted from each image using the Hessian-
Laplace region detector [70] Note that, the GLOH descriptor is an extension of the SIF3cdptor, and is shown

to outperform SIFT [69]. PCA is then used to reduce the dinogradity to 128. Next, a visual vocabulary is
constructed by quantizing these feature vectors into Visoads usingk-means algorithm and each image is then
represented as a frequency histogram over the visual wBedged on our experiments, the optimal performance can
be obtained whefi’ = 800. Then, we apply the pLSA model to the bag of visual worg@sagentation which allows
the description of each image a®adimensional vector of proportions whelbeis the number of aspects (or learnt
topics). Finally, we employ the propostud-sGDas a classifier to categorize images by assigning each tageito

the class which has the highest posterior probability atiogrto Bayes’ decision rule.

In our experiment, two challenging data sets have been gmgid-irst, we have considered four object classes from
the Caltech data set [71] which include: “airplane”, “facé&ar”, and “motorbike”; The second data set is the UIUC
sports event data set [72] containing 8 categories of sgodres: rowing (250 images), badminton (200 images),
polo (182 images), bocce (137 images), snow boarding (189&s), croquet (236 images), sailing (190 images), and
rock climbing (194 images). Thus, the data set containsdlisiages in total. Sample images from these two data
sets are displayed in Figures 5 and 6. Each of the two datégssatisdomly divided into two halves: one for training
(constructing the visual words) and the other for testing.a¥aluated the performance of the proposed algorithm by
running it 20 times. For comparison, we have applied theitefil@D mixture model using Gibbs sampling algorithm
(denoted as5ilnGD) proposed in [24] and four other mixture models that arerledrusing variational inference:
the finite GD mixture model with feature selectidfsGD), the infinite GD mixture model without feature selection
(InGD), the infinite Gaussian mixture modéhGau) proposed in [47] and the Gaussian mixture model with fesatur
selection FsGay as learned in [42].

The performance of the proposed approach for image caegiom was first evaluated on the Caltech data set. First,
multiple segmentations for each image are performed. Sam@le segments for images from each category in this
data set are shown in Figure 7. The categorization accwasiag the dferent tested approaches are presented in
Table 3. According to the results in this table, the propde€38GD provides the best performance among the tested
algorithms in terms of the highest classification rate aedtlost accurately estimation of the number of categories. It
is noteworthy that the variational approaéi@D) provides comparable performance as the one using Gibhdisagm
(GilnGD) according to Table 3. However, the major advantage of ugmigitional inference algorithm is its compu-
tational dficiency. According to our experimentiGD is almost four times faster tha®ilnGD for this application.

1source code of the Normalized Cuts segmentation is avaitablhttp/www.seas.upenn.egitimothegsoftwargncugncut.html
2Source code: httpwww.robots.ox.ac.ykvggresearctaffing
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Face Airplane Car Motorbike

Figure 5: Sample images from the four categories of the Claldata set.

Rowing Badminton Polo Bocce Snow boarding Croquet Sailing ockrelimbing

Figure 6: Sample images from the UIUC sports event data set.

Additionally, the number of components for the mixture mo@presenting irrelevant features was estimated as 2
using the proposebhFsGD. Furthermore, we have tested the evolution of the classitaccuracy with dferent
number of aspects as shown in Figure 8 (a). Based on this fithedighest classification accuracy can be obtained
when we set the number of aspects to 40. The correspondingdesaliencies of the 40 aspects obtainedntysGD

are illustrated in Figure 8 (b). As shown in this figure, it lsar that the features havefigirent relevance degrees
and then contribute derently to images categorization. Next, we evaluate ffectveness and thefeiency of the

Table 3: The average classification accuracy and the nunilcetegories 1) computed by dferent algorithms for the Caltech data set.
INFsGD FsGD InGD GilInGD InGau FsGau

M 3.90 3.75 3.85 3.85 3.80 3.70
Accuracy (%) | 90.21 88.64 88.03 88.59 84.19 81.75

proposed approach on categorizing the UIUC sports eveatsddat The confusion matrix for this data set calculated
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Airplane Car Motorbike

Figure 7: Sample segmentation results from the four caiegiof the Caltech data set.
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Figure 8: Caltech data set: (a) Classification accuracyhesntimber of aspects; (b) Feature saliency for each aspect.

by thelnFsGDis shown in Figure 9. The average categorization accuracidshe average numbers of categories
obtained by the dierent algorithms are shown in Table 4. As we can see fromadbig tour algorithm provides the
highest accuracy while detecting the number of categorim&raccurately. In this experiment, the optimal number

Table 4: The average classification accuracy and the nunflcatagories 1) computed by dferent algorithms for the UIUC sports data set.
INFsGD FsGD InGD GilnGD InGau FsGau

M 7.85 7.60 7.75 7.80 7.70 7.60
Accuracy (%) | 74.13 72.08 71.76 71.83 68.37  65.51

of aspects is 50 as shown in Figure 10 (a). The salienciesedb@aspects calculated hyFsGD are illustrated in
Figure 10 (b). Obviously, dlierent features are assigned witlffelient degrees of importance. For instance, there
are six features (features number 10, 16, 23, 31, 33 and 46htve saliencies lower than 0.5, and then provide
less contribution to clustering. By contrast, nine featufeatures number 2, 9, 12, 17, 28, 38, 41, 48 and 49) have
high relevance degrees with saliencies greater than 0.9all¥siwe have compared the proposed method with two
traditional and widely used classifiers: k-nearest neighlNN) and support vector machineSYM). These two
classifiers have shown theiffectiveness in scene categorization task with bag of visoadlsiframework previously

in [64, 73]. In our work, an Euclidean distance function wasdiforKNN (with K = 10) as in [64] while an Euclidean
exponential kernel was adopted 8¥Mas in [73]. The corresponding results are shown in Table oAding to
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Figure 10: UIUC sports data set: (a) Classification accuvacyhe number of aspects; (b) Feature saliency for eacltaspe

the results, it is clear that our method outperforms BGUN and SVMin terms of classification accuracy for both
data sets. This is due to the fact that eitk&iN or SVMconsiders all aspects with “equal” importance. However, as
shown in Figures 8 (b) and 10 (b), these aspects may corgnitith diferent degrees in discriminating the image cat-
egories. Thus, higher classification accuracies can bénglothy usingnFsGDwhich allows to identify and discard
the aspects without discrimination power.

Table 5: The average classification accuracy (%) computeadiftgrent algorithms for the Caltech and the UIUC sports dat set

Data set InNFsGD KNN SVM
Caltech 90.21 84.32 88.46
UIUC sports| 74.13 68.55 72.38
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4.3. Image Auto-Annotation

4.3.1. Methodology

Many images carrying extremely rich information are nowhared in large databases. A challenging problem
is then to automatically analyze, organize, index, browskratrieve these images. A lot of approaches have been
proposed to address this problem. In particular, semami#gé understanding and auto-annotation have been the
topic of extensive research in the past [74, 75, 76, 77, 788@P The main goal is to extract high-level semantic
features in addition to low level features to bridge the gefmeen them and to enhance visual scenes interpretation
abilities [81, 82, 83]. Automatic annotation approacheasioa divided into two main groups of approaches [84, 85].
The first group deals directly with the annotation problenpbyviding labels to the complete image or itéfeient
regions (see, for instance, [81, 82]). The second grougddadkis problem via two independent steps where the
first step categorizes the images and the second fbeetalabels to them using the top ranked categories (see, for
instance, [76, 85]). Approaches in this second group hage/stpromising results recently. Thus, the goal of this
subsection is to develop an annotation-driven image xetrggoproach, based on the work in [85], via categorization
results obtained with the proposkdFsGDin a bag of visual key words representation. Our aim is todoail éficient
annotation-retrieval approach to handle the problem ofyensearch under three challenging scenarios as stated in
[85]: 1) use atagged image or a set of keywords as query tolsgaages on the untagged portion of a partially tagged
image database; 2) use an untagged image as query to seagdsion the tagged portion of a partially tagged image
database; 3) use an untagged image as query to search intagasuntagged image database. The methodology
that we have adopted for this experiment can be divided imteet sequential steps namely: images categorization,
annotation, and retrieval.
In the categorization stage, the proposeisGD is integrated with the pLSA model to categorize images thhou
a bag of key visual words representation. First, interesitp@re detected using thef@rence-of-Gaussian (DoG)
detector [70]. Then, we use PCA-SIFT descrip{@6], computed on detected keypoints of all images and tiesul
on 36-dimensional vector for each keypoint. SubsequetityK-Means algorithm is used to construct a visual
vocabulary by quantizing these PCA-SIFT vectors into Misu@ds. In our experiments, we set the vocabulary size
to 1000. Each image is then represented as a frequency taistagver the visual words. Then, the pLSA model
is applied to the obtained histograms to represent eacheimg@ 50-dimensional proportional vector where 50 is
the number of latent aspects. Finally, duaFsGDis deployed to cluster the images. The categorization tesul
the previous stage are exploited to perform image annotatitere, we follow an approach proposed in [85] which
considers the problem of image annotation from three phd3eke frequency of occurrence of potential tags based
on the categorization results; 2) saliency of the given;t8yshe congruity of a word among all the candidate tags.
Assume that we have a training image data set that contanesateategories. Each category is annotated by 4 to
5 tags where common tags may appear ifietent categories. At the beginning, we collect all the tagmfeach
category. The total number of categories in the data setnetdd asC and the number of categories that have each
unique tag is represented as(t). Then, tag saliency can be evaluated similarly as for B&elocument frequency
in the field of document retrieval. For a test image, a rankgtaf predicted categories is generated according to the
Bayes'’ decision rule in the classification. Then, the topesipnted categories are chosen and the union of all involved
unigue tags denoted &51) forms the set of candidate tags. Thus, we defifig) as the frequency of the occurrence
of each unique tagamong the top 5 predicted categories. We follow the ideagsegin [85] to determine the word
congruity using WordNet [87] with the Leacock and Chowdrowasure [88]. WordNet is a large lexical database
of English which groups English words into sets of cognisyaonyms called synsets. Hence, the congruity for a
candidate tag can be calculated by [85]:

Chot(1)
Chot(1) + U (D] Xxeuqy dich (X, 1)

We adopt the same settings fdtcy andr cy as in [85], such that the distance between two tagandt; is:
dich(ti, t2) = explricu(ts, t2) + 3.584)— 1. In addition,dy(l) evaluates the pairwise semantic distance among
all candidate tags and is defined dgi(l) = X ycuq) Zyeuq) dicH(X. ). By having all the three annotation factors on

G(tl) = (66)

3Source code of PCA-SIFT: htfiawvww.cs.cmu.edi+yke/pcasift
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hand, we can compute the overall score for a candidate tag as

C
1+F(®)

ap

At = as () + —=

In( ) + asG(tll) (67)
wherea; + a, + ag = 1 represents the degree of importance of the three factben, & tad is chosen for annotation
only if its score is within the top percentile among the candidate tags. According to our @xjgatal results, we set

a; = 0.5,a, =0.2,a3 = 0.3, ande = 0.7. For retrieving images, we use automatic annotation amd\brdNet-based
bag of words distances as introduced in [85]. The core id#zaisif tags were missing in the query image or in our
database, automatic annotation is then performed and thefbsords distances between query image tags and the
database tags are calculated. This distance is used tolramlegree of relevance of the images in the database and
then to perform images search accordingly (more detailsd@udissions can be found in [85]).

4.3.2. Results

We test out approach using a subset of LabelMe data set [8@hvdontains both class labels and annotations.
First, we use the LabelMe Matlab tooldobo obtain images online from 8 outdoor scene classes: “highwinside
city”, “tall building”, “street”, “forest”, “coast”, “mouwntain” and “open country”. We randomly choose 200 images
from each categories. Thus, we have 1600 images in totah &stegory is associated with 4-5 tags. We randomly
divide the data set into two partitions: one for training tdther for testing. First, we have performed categorinatio
using the proposethFsGD with bag of visual key words representation as describediquely. We compare our
approach with other five well-defined approaches: the variat infinite GD mixture model without feature selection
(InGD), the infinite GD mixture model using Gibbs sampling aldarit(GilnGD), the variational infinite Gaussian
mixture model [hGau), the combination of a structure-composition model and asSian mixture model (we denote
it as SC-GM as proposed in [85] and the variational Gaussian mixturdehwith feature selectionF6Gay. The
categorization result of the 8 outdoor scene images igiiitesd in Table 6. According to this table, we can observe tha
the proposednFsGD outperforms other five approaches in terms of the highessifieation accuracy rate (75.1%).
The obtained result from the categorization is then exgtbiity the annotation stage. The performance of annotation

Table 6: The average classification accuracy computedftgreint algorithms.

Method | Accuracy (%)
InNFsGD 75.1
INGD 74.7
GilnGD 74.8
InGau 73.6
SC-GM 71.8
FsGau 70.2

is evaluated by precision and recall which are defined in tdwedsard way: the annotation precision for a keyword is
defined as the number of tags correctly predicted dividedbydtal number of predicted tags. The annotation recall
is defined as the number of tags correctly predicted, divigethe number of tags in the ground-truth annotation. In
our experiments, the average number of tags generateddbrtest image is 4.05. Table 7 shows the performance
evaluation of the automatic annotation approach accorttirthe categorization result obtained by usinfetent
methods. Itis clear that, annotation with the categoriratesult obtained binFsGD provides the best performance.
Table 8 presents some examples of the annotations prodyessitiyiInFsGDcategorization method. In the last step,
we perform image retrieval under the three scenarios asibdeddn the previous subsection. For the first scenario
in which the database is not tagged and query may either b&dteg or tagged image, the retrieval is performed
by first automatically annotating the database throughgoaization and annotation steps. Then, image retrieval is

4httpy/labelme.csail.mit.equ
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Table 7: Performance evaluation of the automatic annetatystem based onftitrent categorization methods.

Method | Mean Precision (%) Mean Recall (%)
InFsGD 31.5 43.6
InGD 30.4 42.3
GilnGD 30.3 42.5
InGau 29.8 40.2
SC-GM 27.1 38.7
FsGau 26.3 36.8

Table 8: Sample annotation results by usingsGD classification method.

~ R C
L1
QOur labels | car, road, mountain car, sidewalk, window | sky, building, tree human, car, tree
LabelMe truck, car, sky, road, building, car, window,| building, tree, car, sky | person, car, sidewalk]
labels mountain sidewalk, human building, tree
Our labels | sea water, tree, sky sand, tree, sea water | forest, sky, cloud cloud, field, mountain,
tree
LabelMe tree, forest, mountain| sea water, sand, sky, mountain, sky, field,| sky, sand, field, moun
labels cloud, sky cloud tree tain, car
Table 9: The comparison of image retrieval performances.
Scenario 1 Scenario 2 Scenario 3

Method | Precision (%)‘ Recall (%) || Precision (%)‘ Recall (%) || Precision (%)‘ Recall (%)

InNFsGD 515 58.9 45.3 50.2 47.5 56.6

InGD 49.7 56.6 425 49.3 46.6 54.1

GilnGD 49.9 56.5 42.8 49.7 46.5 54.3

InGau 48.6 56.3 41.4 48.7 45.9 52.8

SC-GM 46.2 55.7 38.6 45.6 41.7 53.5

FsGau 43.8 52.1 37.1 43.4 38.3 51.0
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performed according to the bag of words distances betweery gags and our annotation. In this experiment, we use
40 pairs of query words that are randomly chosen from all trelilate tags. In the second scenario, the database is
tagged and the query is an untagged image. Thus, the firsisste@utomatically annotate the query image. Then,
the database is ranked according to the bag of words disgtahtéhe third scenario, neither the image database nor
the query is tagged. Therefore, both the image databasehamguiery images have to be annotated automatically
first. Subsequently, image retrieval is applied once agsiimgthe bag of words distance evaluation. We choose 100
images randomly as the set of query images in this expeririiéetperformance of semantic retrieval was evaluated
by measuring precision and recall. In this case, precisatefined as the proportion of retrieved images that are
relevant, and recall denotes the proportion of relevangesahat are retrieved. An image is considered relevant if
there is an overlap between the original tags of the quergéma query word and the original tags of the retrieved
image. Since categorization is the baseline of our anmotatriven image retrieval approach. We have also tested the
impact of using dferent categorization algorithms on annotation-drivengeneetrieval performance and illustrates
the corresponding result in Table 9 on retrieving the topelévant images. As we can observed form this table, using
InFsGD as the categorization method provides the best perfornfanedl three scenarios which indicates that the
categorization algorithm is a significant influence factorthe annotation-driven image retrieval scheme that we hav
applied.

5. Conclusion

Until recently, feature selection approaches based onumgixnhodels were almost exclusively considered in the
finite case. The work proposed in this paper is motivated kat@mpt to overcome this limitation via the extension of
the simultaneous clustering and feature selection approased on finite generalized Dirichlet mixture models, pre-
viously proposed in [1], to the infinite case via Dirichlebpesses with a stick-breaking representation. The prapose
technique drives much of its power from the flexibility of theneralized Dirichlet mixture, the high generalization
accuracy of Dirichlet processes, and the advantages ofdtiational Bayesian framework that we have developed
to learn our model. Our method has been successfully testeelieral scenarios and our experimental results using
synthetic data and real-world applications namely visgahss categorization, auto-annotation and retrieval have
shown advantages derived from its adoption. The model dpeel in this paper is also applicable to many other
problems which involve high-dimensional data clusteringhsas gene microarray data sets analysis, text clustering
and retrieval, and object recognition.

Appendix A. Proof of Equations (32)~(37)
Based on (28), the general expression for the variationalisn Qs(®s) can be written as
In Qs(®s) = (In p(X, ®)),..s + const. (A1)

where any terms that are independen€f®s) are absorbed into the additive constant. Next, we needltolete
the logarithm of the joint distribution (26) as

iz {Z¢n[ Iy +5y) +(ay = 1) InXy + (B3 — 1) In(1 - Xi|)]+ZD:i(1— ¢i|)Wik|[|n o + i)

| =
nRe) =1 = T(oy)T(By) = T (Tw)

N
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j=1 j=1 j=1
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N D
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k=1 i=1 I=1

o D
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In the following variational inference process, we trumctte stick-breaking representation for the infinite GD
mixture model at a value dfl, and the infinite Beta mixture model for the irrelevant featuis truncated at a level of
K.

Appendix A.1. Variational Solution to()
We can compute the logarithm of the variational fac@ge; ) as

M
In Q(¢,|) = (In(p(X, ®))>®#¢i| = q)“{Z(Zij}[R“ + (C7J'| - 1) In Xi| + (Ej| - 1) In(l— Xn)] + (In E|1>}
=1

K
+(1- ¢i|){Z<Wikl>[7:k| + (0w — 1) InX + (T — 1) In(1 = X;)[KIn 6|2>} + const. (A.3)
=1
where

a=(ay, B=@B, aT=(0, T=( (A.4)

o r(aﬂ +ﬂj|) _ (o + Tw)
Rii = <|n F(aj|)l"(,3j|)>a,| B Fia = <|n (o) (tw) >0—k\ - (A.5)

Note that the expectations in (A.5) are analytically intadde, thus, the standard variational inference can not be
applied directly To tackle this problem, we can apply a Ioweund approximation such as second-order Taylor
series expansion, to the intractable function to obtairpael-form expression [51, 56]. In our work, we adopt the

second-order Taylor series expansion to approxnﬂ@tend?‘m usng” (43) andfy (44) as proposed in [56]. By
substituting the lower bounds (43) and (44) into (A.3), wertlobtain

and we define

M
In Q(¢,|) = (In(p(X, @)»@#(ﬁ“ = qb"{Z(Zij)[ﬁ“ + ((;J] - l) In X + (ﬂi] - l) |I"I(l— Xn)] + (In 6|1>}
=1

K
+(1- ¢i|){z<vvikl>[%kl + (o — 1) In X + (71a — 1) In(1— X;)]<In 6|2)} + const. (A.6)
P

We can find that (A.6) has the same logarithmic form of (20)e@tdor the normalization constant. Therefore, we
can acquire the variational solution as

N D
Q&) = H H £ (L - fy)on (A7)
i=1 I1=1

wheref; is defined in (38). Then, from the Bernoulli distributi@{g) (A.7), it is straightforward to have
(#ij) = fij and (1-¢jj) = 1 - fij (A.8)

Appendix A.2. Variational Solution to(Q)
The logarithm of the variational fact@(Z;) is calculated as

D -1
InQ(Zi) = zj{Z«p”)[%“ (@) - DInXi + @) — 1) In(L—X)] +In ) + > (In(L- /ls))} L Const.  (A.9)
1=1 s=1

where we have substitutgq for R;. By analyzing (A.9), it is obvious that the variational siim to Q(Z) has the
logarithmic form of (12) except for the normalization cast Therefore, we can rewrite (A.9) as

N M
INQ(Z) =) >\ ZInFi; + const. (A.10)

i=1 j=1
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whererjj is defined in (39). By taking the exponential of both sidesfilQ), we then have
N M
QD) = [ [ ]7 (A.11)
i=1 j=1
Sincez;; are binary an@?ﬂlzﬂ =1, (A.11) can be normalized as
N M
Q) =[] ]~} (A.12)
i=1 j=1

wherer;; is given in (38). Since;; is nonnegative and sum to one, for the multinormial distidouQ(Z) we can
obtain

(zj) = rij (A.13)
wherer;j are playing the role of responsibilities as in the converdl&M algorithm.

Appendix A.3. Variational Solution to(@
For the variational facto®(), its logarithm form is obtained by

N N M
INQUY) =InA; Y (Zy + (A= 4;)( D D" (Zis) + @y — 1)+Const. (A.14)
i=1

i=1 s=j+1

We can observe that (A.14) has the logarithmic form of a Bét#idution as its conjugatae prior distribution (17).
By taking the exponential of its both sides, we obtain

M
Q) = [ | Betagley, #)) (A.15)
j=1

whered; andd; are defined in (51).

Appendix A.4. Variational Solution to(()
The logarithm form of the variational factG(g) is given by

InQ(y;) = Inyja; + y;((In(1 - 4;)) — bj) + Const. (A.16)
By taking the exponential of the both sides of (A.16), we chtam

M
QW) = [ | gwila. by) (A.17)
-1

Thus, the optimal solutions to the hyper-param@?mdb*j‘ can be calculated as
aj=aj+1, bj = bj —(In(1 - 4;)) (A.18)

Appendix A.5. Variational Solution to(QV), Q(¥) and Q)
We can calculate the logarithm of the variational fac@gw) as

k-1
In Q(Wiki) = Wik|{<1 — ¢ Fa + (@ — 1) INXi + (g — 1) IN(L = Xi)] + o) + Z(In(l - )’s))} + Const. (A.19)
=1

where we have substitutef for F. By analyzing (A.19), we can obtain the variational solatio Q(‘W) by taking

the exponential of the both sides it as
N K D
Qw) =[] ]mk (A-20)

wheremy is given by (38).
Sincey has the Beta prior angd has the Gamma prior distribution, the variational soluitmQ(y) andQ(g) can be
derived in a similar way as fa(1) andQ(), respectively.
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Appendix A.6. Variational Solution to(€)
The logarithm of the variational fact@)(¢) as

N N
In Q@) =, () (#) +& ~1)+Ne,() (1~ ) +&~1)+ Const. (A21)
i=1 i=1

We can see that (A.21) has logarithmic form of a Dirichletritisition except for the normalization constant. Then,
the variational solution t6(€) can be obtained by

D
Q@) = [ [ pir@i&) (A.22)
1=1

whereg* are defined in (54).

Appendix A.7. Variational Solution to(@), Q(3), Q(@) and Q?)
The logarithm of the variational fact@(e;) can be calculated as

N
11 Qlay) = (I Y, B))ou, = Z<Z”><¢”)[Z)(aj|) +aj In X ] + (uj — 1) Inaj — vy + const. (A.23)
i=1
where we have defined ey +Bi)
aj| |
N A.24
Dery) < n F(ajl)r(ﬁjl)>ﬁi' o

Since the functiorD(«;) is analytically intractable, we can not perform the staddariational inference directly
and (A.23) does not have the same form as the logarithm of an@@adistribution as its conjugate prior. Thus, we
approximate the functio®(«) by a non-linear approximation as proposed in [56], such tha

D(a) > Inaf¥(a + B) - ¥(a) + BY (@ + BH({InB) - InB)ja (A.25)
After substituting the lower bound (A.25) back into (A.2@) then have

N

In Qary)~Ina{ (X[ ¥(@ +By) = ¥(@) + B (@ + By)(Any) = InBy)lay + uy — 1

=
N
+aj [Z(Xij><¢il>|n Xii — vji [+ Const.
i1
(A.26)

We can find that (A.26) has the logarithmic form of a Gammaithistion. By taking the exponential of both sides of
(A.26), we then obtain

M D
Q@ = [ [ [gtenu.vy) (A.27)
j=1 1=1
The hyperparametet% andv*j‘I can be estimated by (45) and (49).

Sinced, ¢ andz all have Gamma prior, it is straightforward to obtain theiatonal solutions t&Q(3), Q(¢*) andQ(?)
in a same way as fd(a).
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