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Abstract
This paper provides exact analytical expressions for the first and second moments of the true error
for linear discriminant analysis (LDA) when the data are univariate and taken from two stochastic
Gaussian processes. The key point is that we assume a general setting in which the sample data
from each class do not need to be identically distributed or independent within or between classes.
We compare the true errors of designed classifiers under the typical i.i.d. model and when the data
are correlated, providing exact expressions and demonstrating that, depending on the covariance
structure, correlated data can result in classifiers with either greater error or less error than when
training with uncorrelated data. The general theory is applied to autoregressive and moving-
average models of the first order, and it is demonstrated using real genomic data.
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1. Introduction
It is common in practice to assume that the training data used to construct a classifier are
independent and identically distributed (i.i.d). Should the data be dependent or not
identically distributed, the classifier performance is affected. This paper presents a
mathematical framework for analytically studying classifiers in such situations in general,
and the univariate LDA (linear discriminant analysis) classifier in particular. We pay
particular attention to the univariate LDA model because it is possible to obtain closed-form
(not asymptotic) results for moments of the error – in analogy to moments for the error [1, 2]
and error estimates [1, 3] for univariate LDA with i.i.d. sampling. The desired framework is
achieved by placing classifier performance in a stochastic setting where the training data are
univariate dependent and not necessarily identically distributed.

Motivation for this line of research goes back to the early 1970’s when Basu and Odell
observed in remote sensing applications that the conditional expected true error of LDA is
commonly higher than what is expected from a theoretical analysis [4]. They associated this
observation with violation of the independence assumption on the training data.
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To study the effect of correlated training data on the performance of LDA, Basu and Odell
[4] used numerical examples under an equicorrellated structure of samples (see Appendix
for definition of various correlation structures). They showed that misclassification
probabilities change under such structures. Afterwards, McLachlan [5] used asymptotic
analysis to show that even under a simple-equicorrelated structure the probability of
misclassification changes. Later, Tubbs [6] used a similar asymptotic analysis but with a
serially correlated structure among training data. He considered further simplifying
assumptions to show that the asymptotic error rate changes with serially correlated data
having positive correlations. Lawoko and McLachlan [7] used the same serially correlated
structure and obtained a different asymptotic expansion of LDA true error from the one that
Tubbs previously achieved in [6]. This type of asymptotic analysis was later used in [7, 8] to
characterize the asymptotic expected true error of univariate LDA and Z-statistics assuming
an autoregressive process of order p.

Typically, large-sample asymptotic results are not helpful in small-sample situations. Going
back to 1925, R. A. Fisher wrote, “Only by systematically tackling small sample problems
on their merits does it seem possible to apply accurate tests to practical data” [9, 10]. This
understanding led us to study the distribution and exact moments of LDA true error and
comnon estimators [11, 3, 12, 13].

Having laid the groundwork for analyzing LDA related statistics in small-sample situations,
in this work we establish a framework for studying LDA in stochastic settings, thereby
allowing us to obtain the exact first and second moments of univariate LDA true error in a
general stochastic setting. We neither impose a specific correlation structure on the training
data, nor do we assume the training data have necessarily the same mean or variance. For
example the basic assumption in [4, 5, 6, 7, 8] is that the training data of the two classes are
taken separately from two class conditional densities Π0, for class 0, and Π1, for class 1.
This assumption immediately imposes several restrictions on the problem: the training data
from each class have the same mean and variance (because they are coming from the same
distribution) and, furthermore, only intraclass correlations exist. The stochastic setting
permits us to generalize such assumptions to training data being correlated across classes or
the samples from each class being differently distributed. To model such data we employ
Gaussian processes and we assume the samples are taken from class conditional processes
rather than class conditional densities.

Another related line of research is the work on classification of stationary time series data
[14, 15, 16]. The main focus in this work is to construct linear discriminant rules with the
knowledge of having stationary data. In this framework the discriminant function is
commonly the one which maximizes some measure of disparity between two multivariate
densities, e.g. the Kullback-Leibler information measure. This means that the linear
discriminant rules constructed here are no longer what is commonly known as LDA.
Therefore, the main difference between the aforementioned results on studying the
performance of LDA under correlated training data and the body of work on classification of
stationary times series, is that the former focuses on the analysis of the effect of correlated
training data (which may have a stationary structure) on the performance of LDA, and the
latter focuses on the synthesis of new classification rules with the knowledge of having
stationary time series. Our work is of the first type. We study the effect of training data that
can be dependent and not necessarily identically distributed or stationary on the performance
of LDA.

As an application of these results, we consider two commonly used models, first-order
autoregressive and moving averages. We further study the exact effect of autoregressive or
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moving-average model coefficients on changing the expected true error of LDA. Finally, we
present numerical experiments to study several specific settings using the theory.

Before proceeding we note that univariate classification has played a major role in the
history of pattern recogntion, in part, because of the ability to obtain closed-form solutions
for error moments [1, 2, 3]; however, we should not overlook practical application. Indeed,
most common tests for diagnosis and prognosis of cancer are univariate: PSA for prostate
cancer [21], AFP for liver cancer [22], CA 125 for ovarian cancer [23], and CA 19.9 for
colorectal cancer [24] are major protein markers. In addition to these protein biomarkers,
there are genomic markers such as BRCA1 for breast cancer [25], BRCA2 [26] for male
breast cancer, and APC for pancreatic cancer [27] that are major genomic markers.

2. Linear Discriminant Analysis and Error Estimation: Independent
Sampling

In this section, we present the traditional sampling scenario in which LDA is employed in a
univariate setting. Consider a set of n = n0 + n1 independent sample points in ℝ, where X1,
X2, …, Xn0 come from population Π0 and Xn0+1, Xn0+2, …, Xn0+n1 come from population

Π1. Population Πi is assumed to follow a univariate Gaussian distribution , for i =
0, 1. Linear Discriminant Analysis (LDA) utilizes the Anderson W statistic, which in the
univariate case is presented as

(1)

where  and  are the sample means for each class and σ̂2 is the
pooled estimate of the variance of classes, which is assumed to be common in the LDA
discriminant. Given X¯0 and X¯1, the designed LDA classifier is given by

(2)

with c being a constant. It is commonly assumed that c is zero [17], which is the assumption
we also make throughout this paper. Therefore, the sign of W determines the classification
of the sample point X and since σ̂2 > 0, (1) reduces to

(3)

where . Given the training data Sn (and thus X¯0 and X¯1), the classification error, also
known as true error, is given by

(4)

where αi = P (X ∈ Πi) is the a priori mixing probability for population Πi and εi is the error
rate specific to population Πi, with
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(5)

The first and second moments of the classification error are given by

(6)

and

(7)

3. Performance of LDA classifier in Univariate Gaussian Dependent
Sampling (UGDS) Model of Binary Classification

We now provide the mathematical framework to study LDA performance in a stochastic
setting.

Definition 1—A process Xt = {Xt : t ∈ T} with T being an ordered set, is called a Gaussian
process if any finite-dimensional vector [Xt1, Xt2, …, Xtn]T has the multivariate normal
distribution N(μT, ΣT), where

and ΣT is the covariance matrix dependent on T = [t1, t2, …, tn].

Definition 2—We refer to the following sampling procedure as the Univariate Gaussian

Dependent Sampling (UGDS) Model of Binary Classification: , with Ti being
two ordered sets for i = 0, 1, are two Gaussian processes such that any finite-dimensional

vector constructed by stacking the random variables of  and  as

 possesses a multivariate normal distribution N(μT, ΣT),

where , and

(8)

is a positive definite covariance matrix.

This model is univariate because both processes,  and , are collections of univariate

random variables, not necessarily with the same means or variances.  and  are called
class conditional processes. For ease of notations and without loss of mathematical
generality, we assume that T0 and T1 are the same set and, therefore, we omit the
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superscript i from ti. Thus, henceforth we denote  by  and the stacked vector

 by .

Remark 1—If we assume μT = [μ0T
, μ1T]T, with , i = 0,

1, j = 1, 2, …, ni, where (σi)2 is the variance of class conditional distributions and 

indicates the diagonal elements of matrix Σii, , i = 0, 1, j, k = 1, …, ni, j ≠ k, Σ01 =
0n0×n1 = Σ10T

, and any future sample is independent from the training data and distributed
either as N(μ0, (σ0)2) or N(μ1, (σ1)2), depending on its class, then the UGDS model reduces
to the traditional i.i.d. sampling scenario defined in section 2. Because we will want to
compare classifier errors in the dependent and independent scenarios, we will sometimes use
εD and εI to denote errors in the respective settings.

Similar to (3), employing LDA with the UGDS model instead of traditional independent
sampling in order to classify a sample point taken at t, denoted by Xt, results in the
following W statistic for the univariate case

(9)

where  and  are the sample means for each class and .
The designed LDA classifier is given by

(10)

For the ease of notation, hereafter, we omit the subscript T from μT and ΣT.

3.1. Stochastic true error and its moments

Let  denote a test sample point, where i indicates the class conditional process in which

the sample is coming from, i.e. either  or . The auto-covariance sequence of  with the
training data is defined as

(11)

where  is the jth element of the sequence . Since  is a future sample point, we
assume 2 ≤ max{n0, n1} < s, unless otherwise stated. Throughout the paper, we use SA to

denote the sum of all elements of a matrix or vector A. For instance, .

The true classifier error under the UGDS model is a function of ts. Sample points at ts can
come from either processes and the classifier may misclassify any of these. Hence,

(12)
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where , i = 0, 1, is the a priori mixing probability of the two processes  and

 at ts and  is the error rate specific to each process, with

(13)

By replacing  with any proper statistic used in other classifiers, this stochastic
definition of true error applies to other rules. The expected performance of true error is also
specific to ts:

(14)

In (12), the true error is indexed. One could, if desired, define the true error of a classifier to
be the average error the classifier induces over an index set of interest, namely,

. Since characterizing εts yields a characterization of εts1−s2
, no

generality is gained by averaging and we restrict our attention to εts. The second moment is
also a function of ts and from (12) we get

(15)

First focusing on , the square of the probability defining  can be factored by

introducing the random variable . Writing the probabilities as integrals of indicator

functions allows us to apply Fubini’s theorem, which shows Xts and  to be independent

(denoted ). The expectation can then be applied. Altogether,

(16)

 and 

can be expressed via similar factorizations. Hence,

(17)
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To facilitate the subsequent discussion, we will explicitly denote the dependency of true

error on the number of samples. Therefore, hereafter we use εts,n0+n1 and εts, or  and

, interchangeably.

Throughout the paper, we use the notations Z < 0 or Z ≥ 0 to indicate componentwise
inequalities, e.g. Z = (z1, z2)T < 0 means z1 < 0, z2 < 0.

3.2. Expected performance of LDA in the UGDS model
The first moment of the classification error for LDA under the UGDS model is expressed
exactly according to the following theorem.

Theorem 1—Under the UGDS model, the expected true error of LDA at ts is

(18)

where  and  are Gaussian bivariate vectors with

(19)

where , and  and  are the mean and variance of

random variables at ts from class i, i = 0, 1, with the auto-covariance  defined as in (11).

Proof: See the Appendix.

We note that under conditions stated in Remark 1, Theorem 1 reduces to Theorem 1 in [3].

Let Φ(x, y; ρ) be the cumulative bivariate normal distribution defined as:

(20)

We have the following Corollary.

Corollary 2—In the model considered in Theorem 1, let the training samples from each
class have the same mean, that is μ = [μ0T

, μ1T
]T in which

, i = 0, 1, meaning the test data at ts has equal variances

across classes, and . Furthermore, let  , i, k = 0, 1 Then
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(21)

where

(22)

(23)

Proof: See the Appendix.

To further proceed we present the following lemma, in which ∧ denotes conjunction.

Lemma 3—Let Φ(x, y; ρ) be the cumulative bivariate normal distribution defined in (20)
and defne F(x, y; ρ) and G(x, y; ρ) as follows:

(24)

where x and y are two constants such that xy < 0. Then, for 0 ≤ λx < 1, 0 ≤ λy < 1,

(25)

Proof: See the Appendix.

Using this Lemma, we compare the expected true error of the UGDS model with the
independent sampling model.

Corollary 4—In the model considered in Corollary 2, let , i = 0, 1, j = 1, 2, …,
ni, and let

(26)

Let  be the expectaton of the true error of the classifier in (10) specific to ts and
constructed as if all n0 + n1 training samples are i.i.d. (same mean and variance). Then
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(27)

(28)

where  is the sum of the off diagonal elements of matrix A, defined as 

Proof: Find the expected true error in Theorem 1 using the conditions in the corollary and
compare it to the expected true error determined by setting all off diagonal elements of Σii to
zero, i = 0, 1 and Σ01 = 0n0×n1. The proof follows by using the results of Lemma 3 in
Theorem 1.

A more restricted set of sufficient conditions than those presented in Corollary 4 follows.

Corollary 5—In the model considered in Corollary 2, let , i = 0, 1, j = 1, 2, …,
ni, and

(29)

Then

(30)

(31)

where  is the sum of off diagonal elements of matrix A, defined as 

Proof: The proof is similar to Corollary 4.

To have a sense of the conditions stated in Corollary 5, consider a scenario in which n0 = n1,
the sample points in each class are equi-correlated with correlation ρ, and there is
independent sampling across classes. This satisfies (29). If ρ > 0, then (30) holds and

. If ρ < 0 and the class covariance matrices are positive definite,

then (31) holds and .

Let us reflect on Corollaries 4 and 5. A correlated set of n sample points can be considered
as a set in which the points convey some information about each other. Therefore, they are
often considered to be as informative as n′ independent samples with n′ < n, thereby
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producing a poorer classifier. This intuition aligns with the simple situation in which the
sample points in each class are equi-correlated with ρ > 0 and the sample points across the
two classes are uncorrelated. This scenario is a special case of (30) and

. However, (31) shows that there are correlation patterns that result
in an expected true error smaller than it would be were there independent sampling, which
means that sampling satisfying (31) is like having a larger sample size than if sampling were
independent.

To illustrate, in the UGDS model suppose the training sample points are identically
distributed as two Gaussian distribution, N(−1, 1) for class 0 and N(1, 1) for class 1. Let n0 =
n1 = 3 and assume that any future test point is also distributed identically to the training data
of its class. Furthermore, assume the data are generated via two different scenarios, a and b,
such that Σ01 = 03×3 and, for i = 0, 1,

(32)

Figure 1(a) shows the expected true error of the classifier designed in scenario a as a
function of ρ. It demonstrates that for some dependency patterns, as defined by the
covariance matrix, the classifier has better performance than if the sampling were
independent. Note that in Fig. 1(a) the curves meet at ρ = 0.5, the point of equality for the

inequalities (30) and (31). Note also that for ρ = −0.499, . Hence, for
the sampling covariance matrix (32), 3 points have the effect of 9 independent points. In
general, better classification accuracy may be achieved if the sample points are collected
according to specific schemes. Equations (28) and (31) provide sufficient sets of conditions
that result in such schemes.

Figure 1(b) shows the expected true error of a classifier constructed in scenario b by varying
ρ in the same range as in scenario a. The only difference between scenarios a and b is
changing the covariances between the first sample point and other sample points to positive
values. It results in the curve for dependent sampling in Figure 1(b) being substantially
above the curve for independent sampling.

3.3. Second moment of LDA true error in the UGDS model
Next we obtain the second moment of true error of LDA at ts as defined in (17).

Theorem 6—Under the UGDS model, the second moment of LDA at ts is

(33)

where  is a 3-variate Gaussian random vector with mean and covarianc matrices as
follows:

(34)

and, for i, j = 0, 1, i ≠ j, letting
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(35)

we have

(36)

with , SA is the sum of all elements of matrix A, defined as

SA = Σi,j aij, and  and  are the mean and variance of random variables at ts from class

i, i = 0, 1. Furthermore, μZIII is obtained from μZI by replacing −μ′ with μ′ and  with ,

and  is obtained from  by exchanging n0 and n1,  and , SΣ00 and SΣ11,

 and , and  and .

Proof: See the Appendix.

Let  and  be the first and second moments of true error of the
classifier in (10) specific to ts and constructed by n0 + n1 independent training sample points
distributed according to the same mean and variance. Then we have the following corollary.

Corollary 7—In the model considered in corollary 5, further assume n0 = n1 = n, Σ01 =
0n×n, and, for k, j = 1, 2, …, n,

(37)

where σ is the common variance of test sample points across classes at ts. Let m be the
number of additional dependent training points in each class with the same class conditional

means and dependency structure, meaning  as in (37) for k, j = 1, 2, …, n + m and Σ01

=0(n+m)×(n+m), that are required to make . This number also makes

 and is given by

(38)

Proof: The proof of  follows by equating elements of covariance
matrices obtained for the dependent model in (19) with the covariance matrices for the
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independent sampling model. Under the conditions of the corollary, these matrices in the
independent sampling scenario (given by Theorem 1 in [3]) are

(39)

Furthermore, we note that the conditions stated in this corollary satisfy the condition stated

in (30), and hence . The proof of  follows
similarly by equating covariance matrices presented in (36) with those presented in Theorem
2 in [3].

In (38), if , then m < 0, meaning that adding any additional points under the

dependency model in the corollary does not lower  and  to the level
of the first and second moments of true error of the constructed LDA classifier as if the
original 2n training samples were independent.

4. Applications
In this section we study applications to common models used in signal processing, the first-
order autoregressive model, AR(1), and the first-order moving average model, MA(1), by

assuming the training data are generated by the output processes of two models.  and 

are two independent white noise processes and  and  are the processes producing the
system output. The goal is to characterize the performance of the LDA classifier as a
function of sample size, the parameters of the white noise processes, and the autoregressive
coefficients.

4.1. First-order autoregressive model AR(1)
We consider two AR(1) models:

(40)

where ψi is a constant such that 0 < |ψi| < 1, i = 0, 1, and , for all t,

are independent from each other. Then  and  are two
independent covariance-stationary processes and we have the following theorem.

Theorem 8—Let  in the UGDS model be defined by the two independent
covariance-stationary AR(1) processes as defined in (40). Then, at ts, where max{n0, n1} <

s, the expected true error of LDA constructed using the training samples 

and  is

(41)

where  and  are Gaussian bivariate vectors with
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(42)

where

(43)

Proof: See the Appendix.

Corollary 9—In the model considered in Theorem 8, let ψ0 = ψ1 = ψ, σ0 = σ1, . Let

 denote the expected true error of an AR(1) model with AR coefficient ψ specific
to ts. Then

(44)

where L(h, k; ρ) is defined in (22) and

(45)

Proof: See the Appendix.

We consider  as a function of ψ and compare it to the case where ψ= 0, which
corresponds to the stochastic i.i.d setting.

Corollary 10—In the model considered in Corollary 9, let n0 = n1 = n. Furthermore, let

 be the expected true error of the LDA classifier with ψ = 0 in (40). Let ψ′ and ψ″ be
two arbitrary values of the AR coefficient ψ. Then

(46)

Hence,
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(47)

Proof: See the Appendix.

Corollary 10 shows that, if ψ ∈ (0, 1), then under the conditions of the Corollary,
constructing an LDA classifier to differentiate between AR processes is beneficial in terms
of the expected true error tested on sufficiently lagged data; however, for ψ ∈ (−1, 0), we
expect larger expected true error.

4.2. First-order moving-average model MA(1)
We consider the MA(1) models

(48)

where θi ∈ ℝ and , for all t, are independent from each other. Then

 and 

are two independent and covariance-stationary processes regardless of the values of θi [18].

Theorem 11—Let  in the UGDS model be defined by the two independent
covariance-stationary MA(1) processes defined in (48). Then, at ts, where max{n0, n1} + 1 <
s, the expected true error of an LDA classifier constructed using the training samples

 and  is

(49)

where  and  are Gaussian bivariate vectors with:

(50)

where i = 0, 1, and

(51)

Proof: See the Appendix.
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Corollary 12—For the model in Theorem 11, let θ0 = θ1, σ0 = σ1, . Let 
denote the expected true error of an MA(1) model with MA coefficient θ specific to ts. Then

(52)

where L(h, k; ρ) is defined in (22) and

(53)

Proof: The result follows by considering the assumption of the corollary in Theorem 11 and
then following the same steps similar to Corollary 2.

Corollary 13—For the model in Corollary 12, let n0 = n1 = n. Furthermore, let  be
the expected true error of the LDA classifier specific to ts with θ = 0 in (48). Let θ′ and θ″ be
two arbitrary values of the MA coefficient θ. Then

(54)

and, therefore,

(55)

Proof: See the Appendix.

Corollary 13 shows that there exists a range of moving-average coefficients, i.e. [ , 0),
that is beneficial in terms of expected classification error, i.e. has a smaller expected true
error than the stochastic i.i.d model. For positive values of the coefficient, the expected true
error of LDA increases.

5. Numerical Examples
We now illustrate the results obtained in previous sections under several specific settings.

Experiment 1
First, we consider scenarios in which the sample points taken from each class conditional
process are identically distributed. They have the same mean, μ0 for class 0 and μ1 for class
1, and we set μ0 = −μ1 and μ0 = 0.5, 0.75, 1, 1.5. We assume that the observations have
variance 1 and are equally correlated with ρwith ∈ [ρl, 0.95]. The value of ρl is determined so
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that the covariance matrix defined in (8) is positive definite. In each case we consider three
settings for the correlation, ρbet, across classes: (1) independent, ρbet = 0, (2) ρbet = ρwith, and
(3) ρbet = −ρwith. For each setting we consider two sample sizes, n0 = n1 = n = 5 and n0 = n1
= n = 25. We assume any future observation from each class conditional process has a

distribution similar to those of the training data from that class and .

Figure 2(a)–2(d) show the exact expectation and standard deviation (SD) of the LDA true
error for this experiment as a function of ρwith. The results are calculated from Theorems 1
and 6. Parts a and b of the figure show that increasing ρwith has an incremental effect on

. Since future observations are identically distributed,  is the same for all
values of ts. Theoretically, for ρbet = 0, we can easily verify the graphical behavior by using

Lemma 3 in Theorem 1. To analytically see the effect of ρwith on  once ρbet = 0, let
ρ1, ρ2 be two arbitrary values of ρwith such that ρ1 < ρ2 and denote all distributional
parameters used in Corollary 2 corresponding to ρk, k = 1, 2, with a super script ρk. With the

aforementioned conditions of the experiment, we have  and

, k = 1, 2. Therefore, aρ1 < aρ2 and bρ1 < bρ2. The results then follow from
Lemma 3. For other cases where ρbet ≠ 0 one may analytically study the effect of changing

ρbet on  using results Theorem 1 and studying the change similar to the proof of
Lemma 3.

Figures 2(a) and 2(b) show that increasing d = |μ0 − μ1| has an incremental effect on

. This effect can also be seen from Lemma 3 and Corollary 2. Therefore, we call
classification scenarios with a larger d, “easier” scenarios, and those with smaller d,
“harder” scenarios. In this sense, d is an indicator of classification difficulty in our
experiment. The figures suggest that having a between-class correlation of ρbet = ρwith > 0
helps in classification performance in “harder” classification situations (i.e., compared with
ρbet = 0) and has a detrimental effect on classification performance in “easier” settings.
However, having ρbet = ρwith < 0, helps to have a better classification performance in
“easier” settings and results in a worse performance in “harder” settings. This is observed by
the fact that curves for ρbet = ρwith are above (below) the curves for ρbet = 0 for d = 3 (d = 1).

The standard deviation is more complicated to interpret. The trends seen in Figures 2(c) and
2(d) suggest that increasing ρwith generally increases the standard deviation of the LDA true
error in cases where ρbet = 0. Furthermore, it suggests that once ρbet = −ρwith, the standard
deviation generally increases as ρwith grows, but once ρbet = ρwith, increasing ρwith in small
sample sizes may increase or decrease the standard deviation depending on classification
difficulty, and as the sample size gets larger, increasing ρwith generally increases the
standard deviation. Furthermore, the figures suggest that increasing the classification
difficulty may first increase the standard deviation and then decreases it.

Comparing Figure 2(a) with 2(b) and Figure 2(c) with 2(d) shows that increasing sample
sizes lower the magnitude of the expectation and standard deviation regardless of
classification difficulty or magnitude of ρwith.

Experiment 2
In this experiment, we use the first order autoregressive model defined in (40). We assume

, n0 = n1 = n, σ0 = σ1 = 1, and ψ0 = ψ1 = ψ ∈ [−0.95, 0.95]. We consider various cases
where c0 = 0.5, 0.75, 1, 1.5 with c0 = −c1. Figure 2(e) and 2(f) show the exact expectation of
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LDA true error for this experiment. These results are exact and are calculated from Theorem

8. These figures suggest that increasing ψ decreases . According to Corollary 10,

for a sufficiently lagged ts,  is a decreasing function of ψ and, furthermore,

 for 0 < ψ < 1 and  for 0 < ψ < 1. Here the same
behavior is observed even for small lags of 2 and 10. Furthermore, decreasing the sample
size and increasing the classification difficulty have an incremental effect on the expected
true error.

Experiment 3

In this experiment, we use the AR(1) model in (48). We assume , n0 = n1 = n, σ0 = σ1
= 1, and θ0 = θ1 = θ ∈ [−10, 10]. We consider c0 = 0.5, 0.75, 1, 1.5 with c0 = −c1. Figure 3
shows the exact expectation of the LDA true error for this experiment. These results are
exact and are calculated from Theorem 11.

Figure 3 shows that the expected true error of LDA under the MA(1) model has an inverted
bell shape with a negatively biased center, and the bias decreases as the sample size

increases. The results of Corollary 13 are clear in this figure: for  is
a decreasing function of θ. This region is on the left-hand side of the vertical blue dotted

lines in Figure 3. For  is an increasing function of θ. This region is on
the right-hand side of the vertical red dashed line in the figure. As proved in Corollary 13,

we observe in Figure 3(c) and 3(d) that, for . This is the
region between red dashed line and the vertical black line of each plot. For θ ∈ (0, ∞),

. This is the region on the right-hand side of the vertical black solid
lines.

Experiment 4
This experiment is an example derived from gene-expression data used in studying the
prognosis of breast-cancer using 70 genes with high prognostic ability [19]. Following [20],
we divide the 307 individuals used in this study into 64 “poor” prognosis (class 0) versus
243 “good” prognosis (class 1) patients. A poor prognosis is defined to be a distant
metastasis within 5 years of initial diagnosis. The gene expression data used in this study
have been collected by triplicating each gene on each microarray and then duplicating each
measurement by dye-swaping. Therefore, for each patient, each gene, we have six
measurements, three of which are positively correlated with themselves and negatively
correlated with others. Using this dataset we consider a scenario in which the experimenter
is only given six measurements taken from one patient from class 0 and six measurements
from another patient from class 1, and a univariate LDA classifier is desired to differentiate
the two groups. We assume the single variate used in this classifier is the ALDH4 gene,
which has the highest correlation with prognosis of breast cancer in [20]. Therefore, in this
scenario, the experimenter is given 12 “technical” replicates in total, which are now treated
as our “sample points”. This is an example of the UGDS model in genomic applications in

which our classification is defined by two Gaussian processes,  and , which are
assumed to be independent processes. We note that the expected performance of a classifier

depends on ts, i.e.  in Theorem 1, which is a function of the distribution of the future
data as well as the distribution of the training data and their correlation structure. We verify

the Gaussianity of each of the 12 random variables, , used for
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characterizing the two Gaussian processes of this example via a Shapiro-Wilk test (using the
R statistical software) on the full dataset corresponding to each random variable. This test
does not reject Gaussianity of the random variables over either of the classes at a 95%
significance level after employing the Bonferroni correction of multi-hypothesis tests.

Unfortunately, taken together, the 12 random variables do not pass the Shapiro-Wilk test for
multivariate Gaussianity. Nonetheless, we will proceed and demonstrate that, even with this
lack of multivariate Gaussianity, Theorem 1 is much more accurate than its counterpart in
[3], which assumes i.i.d. data from each distribution.

Sample means, variances, and correlation, computed on the full dataset, were used as
estimates of the unknown true means, variances, and the correlation structure between
samples needed in Theorem 1. Using Theorem 1, the expected performance of a classifier,

, to differentiate samples distributed as  from samples distributed as  is 0.475.
To further verify this expected performance we construct a classifier on each possible
combination among 243 × 64 = 15552 combinations of 6 samples from either classes and
each time we test the accuracy of the designed classifier on the 64 − 1 = 63 remaining

realizations of  and 243 − 1 = 242 realizations of . The accuracy computed in this way
is 0.479, which is almost the same as what is computed from Theorem 1. It is interesting to
compare this accuracy to the case in which one designs a classifier without paying attention
to the correlation structure between samples and various distributions governing the data
(considering the data being i.i.d.). In this scenario one (incorrectly) considers the data from
each class coming from a single distribution and the expected performance of a classifier
can be therefore evaluated from Theorem 1 that we presented in [3]. Again we use the
sample means and variances, computed on the full dataset, as estimates of the unknown true
means and variances. In this case the expected performance of LDA is estimated to be
0.374, which is very far from 0.479.

6. Conclusion
In many applications, the assumption of having i.i.d. training samples is violated. This paper
characterizes the performance of univariate LDA classification in stochastic settings by
assuming the samples are taken from two class conditional Gaussian processes, which are
not necessarily independent. Linear classification has been considered owing to its long
history in pattern recognition and its suitability for small-sample classification. We do not
impose a specific correlation structure on the training data. We have presented conditions in
which the correlation structure can be either beneficial or detrimental in terms of
classification performance. As an application we have obtained exact expressions for the
performance of LDA in situations that the data are produced through auto-regressive (AR)
or moving-average (MA) models of the first order. We have found ranges of AR or MA
multiplicative coefficients having incremental or decremental effect on classification
performance. Having characterized univariate LDA performance in closed form, we aim to
follow our work in [3] and characterize the effect of non-i.i.d. samples on training-data-
based error estimators.
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Appendix. Various Correlation Structures
Let p-dimenional sample points of each class, X1, X2, …, Xni, with Xj being a column
vector, be separately taken from two p-variate normal distributions, Π1 and Π2, with the
distribution N(μi, Σ). Furthermore, let Vi be the dispersion matrix of the nip×1 vector

, i = 0, 1, defined as Vi = E[(X − E(X))(X − E(X))T]. We define three
correlation structures in regard to the data: (1) equicorrelated if Vi = Ini ⊗ (Σ − R)+ Eni ⊗ R,
with R being a symmetric matrix, In the n × n identity matrix, and En the n × n matrix with
all elements being 1; (2) simply equicorrelated if Vi = Ini ⊗ (1 − ρ)Σ + Eni ⊗ ρΣ, where ρ is
a nonzero scalar constant where |ρ| < 1; and (3) serially correlated if Vi = Ini ⊗ Σ + Eni ⊗ ρτ
Σ, where τ = |k − l|, k, l = 1, 2, …, ni, |ρτ| < 1, τ = 1, 2, …, ni, ρ0 = 0. Note that univariate
sample points, equicorrelation and simple-equicorrelation structures are essentially the same.

Proof of Theorem 1
From (9), it follows that

where . Expanding  and  as  and  results in

(56)

where  and , where the super index 0 in  is to

denote explicitly , and

(57)
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Therefore,  is a Gaussian random vector with mean  and covariance matrix .

Plugging in the values of  and noting the fact that the jth

element of vector  is defined as , i, k = 0, 1, j = 1, 2, …, nk, we
have

(58)

which leads to the expression stated in Theorem 1. Evaluating the mean and covariance

matrix of vector , which is the counterpart for , is entirely similar, by considering

.

Proof of Corollary 2
Note that for Φ(x, y; ρ) defined in (20),

(59)

By considering the assumption of the corollary for Theorem 1, and using (20) and (59) in
(18), we get

(60)

with a, b, and ρ defined in the corollary. Using the identity [28]

(61)

where Φ(.) is the standard normal cumulative function, completes the proof.

Proof of Lemma 3
Here, we first provide a way to intuitively understand the Lemma and then we provide a
rigorous proof. We have

(62)

where the last equality is due to xy < 0 stated as an assumption to the lemma. Intuitively, the
lemma makes sense because smaller values of |x|, |y|, and |ρ| imply not only a smaller
integration region in (22), but also less mass in that region. Next we provide a rigorous
proof. It is straightforward to show
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(63)

where the last equality comes from well known results of Gaussian distribution, where

. Without loss of generality, we assume x ≥ 0 and y ≤ 0. The results for
x ≤ 0 and y ≥ 0 are entirely similar after exchanging x and y in the following proof. We have

(64)

Hence, . Similarly, . Furthermore,

For 0 ≤ λ ≤ 1, we set

(65)

Then λ, γx ≥ 0, γy ≤ 0, ρi ≥ 0 ⇒ γρ ≥ 0 (i = 0, 1), and ρi < 0 ⇒ γρ < 0 (i = 0, 1). Thus,

 and

(66)

Then

(67)

First assume ρi ≥ 0, i = 0, 1, so that γρ ≥ 0, . Since , x1 ≤ x0, , y1 ≥ y0,
and ρ1 ≤ ρ0, we have . Therefore,

(68)

Next assume ρi ≤ 0, i = 0, 1, so that γρ ≤ 0, . Since , x1 ≤ x0, , y1 ≥ y0,
and ρ1 ≥ ρ0, we have . Therefore,
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Lastly, assume the ρi’s have opposite signs. Without loss of generality, assume ρ0 < 0, ρ1 ≥
0, and |ρ1| ≤ |ρ0|. Then

(69)

where , x1 < xm < x0, and y0 < ym < y1.
From the definition of G(x, y, ρ) it is easy to see that G(x, y, ρ) = G(x, y, −ρ) and then, from
the conditions that result in (68), we have G(xm, ym, −ρ1) − G(x1, y1, ρ1) = G(xm, ym, ρ1) −
G(x1, y1, ρ1) ≥ 0. Hence, in order to show G(x1, y1, ρ1) − G(x0, y0, ρ0) ≥ 0 it is sufficient to

show that . For , we have γρ ≤ 0, . Therefore, from

(67),  and, furthermore, . Thus,  and the result follows.

Proof of Theorem 6
From (16) and (9), it follows that

(70)

where . Expanding  and  as  and  results in

(71)

where , in which , and the super index 0 in

 and  is to denote explicitly Xts, , and

Therefore,  is a Gaussian random vector with mean  and covariance matrix .

Plugging in the values of  and noting the fact that

the jth element of vector  is defined as , i, k = 0, 1, j = 1, 2,

…, nk, and from the definition of  it holds that

, we have:
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(72)

which leads to the expression stated in Theorem 6. Evaluating the mean and covariance

matrices of vector  and  is entirely similar.

Proof of Theorem 8

Since the ’s are Gaussian,  and  are covariance-stationary [18] and the vectors

 and  are distributed normally as

, i = 0, 1, where

(73)

, and Σi(k, l) denotes the entry in the kth row and lth column of matrix Σi. The result
follows by replacing (73) in Theorem 1.

Proof of Corollary 9
Using the corollary assumptions in Theorem 8, we get

(74)

(75)

with k, a, b, ρ, and μ defined in (45). Let F(x, y; ρ) = Φ(x, y; ρ) + Φ(−x, −y; ρ), with Φ(x, y;
ρ) defined in (20). Then using Scheffe’s Lemma [29] we have

(76)

Note that by taking the limit, the term  in  and  converges exponentially to 0

and we have . The result follows similarly to proof of Corollary
2.
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Proof of Corollary 10

With n0 = n1 = n, we have ρ = 0 in (45). From (76) we get ,
with G(hψ, −kψ; 0) defined as in (24) and lψ= −kψ, where we use a subscript ψ to explicitly
denote dependence of l and h on ψ. Since hψlψ< 0, we can use a proof similar to that of
Lemma 3 to compare different AR models. Specifically, suppose we prove that

(77)

Then, similar to proof of Lemma 3, we can prove G(hψ″, lψ″; 0) < G(hψ′, lψ′; 0), so that

(78)

thereby proving the basic inequality in the corrollary. We first demonstrate (77). Assume c0

> c1. We first prove that for ψ ∈ (−1, 1), we have  and . It is easy to see that:

where

(79)

From Descartes’ Rule of Signs [30], gψ has either zero or two positive roots. For n ≥ 2,

(80)

Therefore, for all n, gψ has two roots at 1 and these are the only positive roots. Similarly we
observe that if n is even, then gψ has only two negative roots at −1. If n is odd, again from
Descartes’ Rule of Signs [30], gψ has only one negative root, denoted by ψ−. We show that
ψ− ∈ (−∞, −1). Let ψ− = −ψ+, ψ+ > 0. Since n is odd, we need to have

(81)

Were ψ+ ∈ (0, 1), this would imply . Hence, (81) is not possible and ψ−

∈ (−∞, −1). Summarizing this result, we see that ψ ∈ (−1, 1) ⇒ gψ > 0 and therefore, .
It is straightforward to show
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where . Since for ψ ∈ (−1, 1) we have gψ > 0, then . We set γψ = λψ1 + (1
− λ)ψ0, where 0 ≤ λ ≤ 1. Now we check that (78) holds. Denoting G(hγψ,lγψ; 0) by G, we
have

(82)

Since ψ ∈ (−1, 1), 0 ≤ λ ≤ 1, and hψlψ< 0, we can see that γψ ∈ (−1, 1), hγψlγψ< 0,

, and from Proof of Lemma 3 in the appendix,  and . Since ψ″ >
ψ′, we see that . Similar to the proof of Lemma 3, integrating over λ results in G(hψ″,
lψ″; 0) < G(hψ′, lψ′; 0). The same basic argument goes through for c0 < c1 and we have

. The remaining results follow from the definition of , where we have

.

Proof of Theorem 11

Since the ’s are Gaussian,  and  are covariance-stationary and the vectors

 and  are distributed normally as

, i = 0, 1, [18], where for k = 1, 2, …, ni,

(83)

where μi = ci and Σi(k, l) denotes the entry in the kth row and lth column of the matrix Σi.
The result follows by replacing (83) in Theorem 1.

Proof of Corollary 13

From Theorem 11, since  and max{n0, n1} + 1 < s, we have ,
for any s, with lθ = −kθ, hθ and kθ defined in Corollary 12, and G(hθ, −kθ; 0) defined as in
(24). Similar to proof of Corollary 10, the present corollary follows by setting n0 = n1 = n
and using

(84)

where a and b are obtained from (53).
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Figure 1.
(a) Expected true error of constructed classifiers in scenario a as a function of ρ, (b)
Expected true error of constructed classifiers in scenario b as a function of ρ. The horizontal
line shows the performance of the constructed classifier as if the samples were independent.
Solid lines: dependent samples; Dashed lines: independent samples.
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Figure 2.
Figures (a)–(d) show the exact expectation and standard deviation of LDA true error in
Experiment 1 as a function of ρwith. (a) Expectation for n0 = n1 = 5; (b) Expectation for n0 =
n1 = 25; (c) Standard deviation for n0 = n1 = 5; (d) Standard deviation for n0 = n1 = 25; (a)–
(d) plot keys: ○ := ρbet = 0; ×:= ρbet = ρwith; △ = ρbet = −ρwith; solid := μ0 = 1.5; dash := μ0
= 1; dot := μ0 = 0.75; dash-dot := μ0 = 0.5. The cross section of each curve with the vertical
solid line in (a)–(d) plots shows the magnitude of the expectation/variance for i.i.d sampling
situation for the corresponding scenario. The small horizontal solid lines in Figures (b) and
(d) show the magnitude of expectation/variance of i.i.d situation in Figures (a) and (c),
respectively. Figures (e)–(f) show the exact expectation of LDA true error of the first-order
autoregressive model in Experiment 2 as a function of ψ:= ψ0 = ψ1. (a) Case of n0 = n1 = 5;
(b) Case of n0 = n1 = 25; (e)–(f) plot keys: ○ := s − n0 = 2; × : s − n0 = 10; solid := c0 = 1.5;
dash := c0 = 1; dot := c0 = 0.75; dash-dot := c0 = 0.5. The cross section of each curve with
the vertical solid line in (e)–(f) plots shows the magnitude of the expectation for i.i.d
sampling situation for the corresponding scenario. The small horizontal solid lines in Figure
(f) show the magnitude of expectation of i.i.d situation in Figure (e).
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Figure 3.
Exact expectation of LDA true error of the first-order moving average model in Experiment
3 as a function of θ := θ0 = θ1. (a) Expectation for n = 5; (b) Expectation for n = 25; (c)
Magnification of region [−1, 0.1] in Figure (a); (d) Magnification of region [−1, 0.1] in
Figure (b). Plot keys: ○:= c0 = 1.5; △ : c0 = 1; ▽ := c0 = 0.75; × := c0 = 0.5; The cross
section of each curve with the vertical solid line in each plot shows the magnitude of the
expectation for i.i.d sampling situation for the corresponding scenario. The small horizontal
solid lines in Figure (b) are drawn to facilitate comparing this figure with Figure (a) at these
cross sections. The left side of blue dotted line is (−∞, ] region, which in (54) we proved
that the expectation of true error is a decreasing function of θ. The right hand side of the red

dashed line is [ , ∞) region, which the expectation is an increasing function as seen from
(54).
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