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Abstract Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence
(IIF) HEp-2 cell imaging is important for the differential diagnosis of autoimmune
diseases. The current technique, based on human visual inspection, is time-consuming,
subjective and dependent on the operator’s experience. Automating this process may
be a solution to these limitations, making IIF faster and more reliable. This work
proposes a classification approach based on Subclass Discriminant Analysis (SDA),
a dimensionality reduction technique that provides an effective representation of the
cells in the feature space, suitably coping with the high within-class variance typical
of HEp-2 cell patterns. In order to generate an adequate characterization of the
fluorescence patterns, we investigate the individual and combined contributions of
several image attributes, showing that the integration of morphological, global and
local textural features is the most suited for this purpose. The proposed approach
provides an accuracy of the staining pattern classification of about 90%.
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1 INTRODUCTION

Indirect Immunofluorescence (IIF) is a widespread microscopy imaging technique for
the detection of antinuclear auto-antibodies (ANA), which can reveal the presence
of important autoimmune pathologies such as systemic rheumatic diseases, multiple
sclerosis and diabetes [1]. The ANA-screening is typically performed by visually
inspecting cultured cells with a fluorescence microscope. The patient’s serum is first
dispensed on a HEp-2 cell substrate and then diluted and incubated. The auto-
antibodies of the serum selectively bond with specific antigens on the substrate and
are finally revealed by a fluorescence tag.

The specialists usually perform a three-step analysis. First, the slide is validated
by checking the presence of at least one fluorescence mitotic cell. Second, the in-
tensity of fluorescence signal is evaluated according to three levels: negative (i.e.
absence of fluorescence), intermediate or positive. Finally, the cells of the interme-
diate and positive slides (Figure 1) are classified on the basis of the pattern of the
fluorescence signal, which in turn reveals the auto-antibody type. According to lit-
erature, the different staining patterns can be classified into six main groups, namely
centromere, homogeneous, nucleolar, coarse speckled, fine speckled and cytoplasmatic
(Figure 2).

Figure 1: HEp-2 IIF images with positive (left) and intermediate (right) fluorescence
intensity.

The accurate classification of the staining patterns is very important for dif-
ferential diagnosis, since different patterns are associated with different types of
autoimmune diseases. Nevertheless, in the standard practice this process suffers
from intrinsic limitations related to the visual evaluation performed by human sub-
jects. The analysis of large volume of images is a tedious and time-consuming task
and requires highly trained and specialized personnel. Moreover, human evaluation
for this type of screening is affected by very high inter laboratory variability (up
to 24%, as reported in [2, 3]). This has tremendous impact on the reliability and
reproducibility of the obtained results.

Computer-Aided Diagnosis (CAD) systems may overcome these limitations and
effectively support the decision of the specialists. In particular, the automation of
the staining pattern classification process may considerably reduce the time and
effort required by the analysis and, at the same time, improve its repeatability. This
would make IIF analysis easier, faster and more reliable.
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Figure 2: HEp-2 staining patterns that are considered relevant to diagnostic pur-
poses.

Triggered by the growing demand for reliable CAD systems, recent research has
proposed solutions for all the major steps of IIF analysis, including methods for (i)
the automated segmentation of the HEp-2 cells [4, 5, 6], (ii) the recognition of the
mitotic cells in the slides [7, 8], (iii) the quantification of fluorescence intensity [9] and
(iv) the automated classification of the staining patterns [10, 11, 12, 13, 14, 15, 16].
In particular, most of the recent efforts are focused on the latter task and the
proposed classification schemes span the entire spectrum of machine learning (e.g.,
learning vector quantization [10], decision tree induction algorithms [11, 12], support
vector machines [15], random forests [16], self-organizing maps [14] and multi-expert
systems [13]). The image attributes used to characterize the fluorescent patterns
include several types of descriptors, with special focus on morphological and textural
features [17, 18].

In spite of the recent extensive research, the accurate classification of the stain-
ing patterns still remains a challenge. Moreover, the comparison of the solutions
presented in the literature is extremely difficult because they are based on different
datasets and different experimental protocols. Conversely, the recent availability of
a public dataset of HEp-2 cell images that bounds the researchers to a standardized
experimental procedure enables the direct comparability of different approaches [19].

In this paper we describe a new technique for the automated characterization of
the staining patterns in HEp-2 IIF images. Our contribution is twofold:

• we propose a set of features to characterize cell images that are highly discrim-
inative with respect to their fluorescence patterns. Such feature set is obtained
through a detailed analysis of single image attributes, as well as of their integra-
tion, and of the selection of the most relevant feature variables. In particular,
we investigated image attributes derived from morphological, global and local
texture analysis. For each of these categories, we first performed experiments
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with different formulations of features to evaluate their individual accuracy.
Then, we combined attributes of different categories showing that the aggrega-
tion of descriptors of different nature provides a more comprehensive solution
to characterize the HEp-2 fluorescence patterns;

• we propose a Subclass Discriminant Analysis (SDA, [20]) based strategy to
remap the cell representations into a novel feature space that provides a better
separation of the classes aimed at simultaneously improving the intra-class
similarities and inter-class dissimilarities and, thus, at making the classification
task easier and more accurate.

A preliminary version of this technique was presented in [21], where we first
analysed the use of SDA to approach the staining pattern classification problem,
using textural descriptors based on Gray-Level Co-occurrence Matrices (GLCM)
and Discrete Cosine Transform (DCT). Here we present a deeper insight into the
problem aimed at obtaining a better characterization of the staining patterns and a
larger set of experiments supporting our findings.

The rest of the paper is organized as follows. After providing a full characteri-
zation of the HEp-2 image dataset in Section 2, in Section 3 we present the main
steps of our proposed solution. In Section 4 we describe the experimental protocol
and in Section 5 we show and discuss our experimental results. Finally, Section 6
concludes the paper.

2 MATERIALS

The samples used in our experiments were obtained from the MIVIA HEp-2, an
annotated database of Indirect Immunofluorescence (IIF) images that is publicly
available at [19]. The database was firstly adopted and described in [7] and later
used in the 2012 HEp-2 Cells Classification Contest [3]. It contains 28 images of
different patients (one image per patient), which were obtained with the following
protocol. Each image was acquired with a fluorescence microscope coupled with a
50W mercury vapour lamp and a digital camera having a CCD with square pixels
of size 6.45 µm. The microscope observed, with a 40-fold magnification, a slide of
HEp-2 substrate prepared with a fixed dilution of 1:80, as recommended in [22]. The
size of the IIF images is 1388x1038 pixels and their color bit depth is 24.

Specialists manually segmented and annotated each cell in the IIF images. All
the segmentations were reviewed by medical doctors specialized in immunology,
which also provided information related to fluorescence intensity, mitotic phase and
staining pattern of the cells. Thus, the database provides for each image its fluo-
rescence intensity (intermediate or positive) and, for each object in an image, (i)
its seed point and bounding box, (ii) a binary mask describing its region of interest
(ROI), (iii) the object type (cell, mitotic cell or artifact due to the slide’s preparation
process) and, if the object is a non-mitotic cell, (iv) the label of its staining pattern,
i.e. one of the six classes reported in Figure 2.

The dataset used for training and testing our method contains all and only the
normal cells (i.e., neither artifacts nor mitotic cells) of the 28 IIF images included
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in the MIVIA HEp-2 database. A full characterization of this dataset is reported
in Table 1.

Table 1: HEp-2 cell dataset characterization, grouped by image ID.

Image ID Pattern Intensity n. of cells
1 Homogeneous positive 61
2 Fine Speckled intermediate 48
3 Centromere positive 89
4 Nucleolar intermediate 66
5 Homogeneous intermediate 47
6 Coarse Speckled positive 68
7 Centromere intermediate 56
8 Nucleolar positive 56
9 Fine Speckled positive 46
10 Coarse Speckled intermediate 33
11 Coarse Speckled intermediate 41
12 Coarse Speckled positive 49
13 Centromere positive 46
14 Centromere intermediate 63
15 Fine Speckled intermediate 63
16 Centromere positive 38
17 Coarse Speckled positive 19
18 Homogeneous positive 42
19 Centromere intermediate 65
20 Nucleolar intermediate 46
21 Homogeneous intermediate 61
22 Homogeneous positive 119
23 Fine Speckled positive 51
24 Nucleolar positive 73
25 Cytoplasmatic intermediate 24
26 Cytoplasmatic positive 34
27 Cytoplasmatic intermediate 38
28 Cytoplasmatic intermediate 13

Tot. 1455

3 METHOD

In the recent literature several formulations of image descriptors have been ap-
plied to the automated classification of HEp-2 staining patterns. These descriptors
are derived from either morphological or textural analysis. However, the relevance
of these different types of attributes and their mutual contribution are still open
issues.

In several works it has been found that the integration of information of different
nature provides a substantial improvement of the classification accuracy [17, 18].
Furthermore, the combination of local and global descriptors has been claimed to
generate a more robust mechanism of texture representation [23, 24].

Based on these considerations, in our work we performed a detailed analysis of
different formulations of morphological, global and local texture characteristics and
we investigated, through their integration at different levels, their reciprocal impact
on the classification problem.

The outline of the proposed staining pattern classification algorithm is the fol-
lowing. For each cell: (i) we normalise its image and (ii) we extract different feature
vectors, one for each considered attribute type. When combining different attributes
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to characterize a cell image, the corresponding feature vectors are concatenated.
Then, for each individual attribute or concatenation of attributes, we select its most
relevant feature variables and apply SDA to remap the cell representation into a
novel feature space that provides a better class separation. Finally, we train a clas-
sifier on a sample set and apply it to a separate test set of samples.

3.1 Image normalisation

Size and intensity normalisation of the samples is a necessary preprocessing step.
In fact, small differences in the dimensions of the cell images are normal, and these
differences are completely uncorrelated with their staining pattern. On the other
hand, there are considerable variations of fluorescence intensity between intermedi-
ate and positive samples, and, in a smaller scale, even within cells of the same image
(see Figure 1). Reducing such variability helps to decrease the noise in the classi-
fication process and avoids as well the necessity of training two separate classifiers
for intermediate and positive samples.

In our work, all the cell images were resized to 128x128 pixels. As for the
intensity, since the images are produced by green fluorescence, the samples were
first converted to grayscale by taking into account only the green channel. Then,
intensity normalisation was obtained by linearly remapping all the intensities so that
the bottom 1% and the top 1% of all pixel values are saturated at, respectively, the
lowest and highest intensities.

3.2 Feature Extraction

In the following, we will use interchangeably the terms “feature set” and “attribute”
to refer to the elements used to characterize a cell image according to a specific
technique.

As already explained, we took into consideration different image attributes be-
longing to three main categories:

1. morphological features, focusing on shape attributes of the fluorescent signal
of the cells or of specific regions within the cells;

2. global texture descriptors, which summarize the overall appearance or general
distribution of the gray-levels in the cell image;

3. local texture descriptors, which summarize the isolated contribution of small
regions or pixel neighbourhoods.

For each of these categories, several approaches have been described in the lit-
erature. However, performing an exhaustive analysis of all of them is extremely
difficult and out of the scope of this work. Here we focused on the ones that, based
on preliminary experiments that we do not report for the sake of brevity, appear to
be the most promising for HEp-2 cell characterization. The list of these attributes
can be seen in Table 2.
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Table 2: Image attributes considered in this work.

Image Attributes size
Morphological Features MORPH 43

Global Texture Features

Gray-Level Co-occurrence Matrices [25, 26, 27] GLCM 44
Edge Orientation Histograms [28] EOH 80
Rotation-Invariant Gabor features [29] RIGF 32
Modified Zernike moments [30] ZERN 55

Local Texture Features

Rotation-Invariant Uniform Local Binary Patterns [31] LBP riu2 42
Completed Local Binary Patterns [32] CLBP 42
Co-occurrence of adjacent LBPs [33] CoALBP 3072
Rotation-invariant Co-occurrence of adjacent LBPs [34] RIC-LBP 408

3.2.1 Morphological features (MORPH)

Several morphological features have been used to characterize the cell images.
The first feature derives from the following consideration. As it is shown in

Figure 2, for all the staining patterns except the cytoplasmatic, the fluorescence
signal is localized into the nucleus of the cell. Therefore, in these cases, the cell ROI is
round or elliptical. On the contrary, the shape of cytoplasmatic patterns is generally
more irregular. These differences can be summarized by the ROI circularity, defined
as Area/Perimeter2.

Figure 3: Examples of binary masks obtained from seven progressive thresholding
levels (TH1-TH7) applied to images of cells with homogeneous (top) and nucleolar
(bottom) staining patterns.

Other morphological measurements are extracted from the binarization of the
cell image at increasing intensity thresholds. For each of these thresholds a dif-
ferent binary mask is obtained, which isolates the structuring elements of the cell
pattern at that specific intensity level. As it can be seen in Figure 3, the shape
changes of these masks show a very characteristic behaviour for distinct staining
patterns. Therefore, the concatenation of morphological parameters measured at
the increasing thresholding levels appears to be effective in characterizing the HEp-
2 cell patterns [17].

As for the binarization, we used seven progressive thresholds. A first reference
value (TH4, in Figure 4) is obtained applying the Otsu’s method [35] to the intensity
histogram of the cell. The two intervals of the intensity histogram defined by TH4
are further divided intro three equal segments to obtain the other six thresholds,
namely TH1-3 and TH5-7 for, respectively, the lower and upper parts of the intensity
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distribution (see Figure 4).

Figure 4: The seven progressive thresholds computed from a cell intensity histogram.

For each binary mask, we then extracted the following morphological properties:

1. proportion of the ROI area covered by foreground pixels;

2. number of connected regions of the foreground;

3. proportion of the connected regions of the foreground which have circular
shape (i.e. with circularity >= 0.8);

4. average area of the foreground’s connected regions divided by the total area
of the cell ROI;

5. average circularity of the connected regions of the foreground;

6. average solidity of the foreground, where the solidity of each connected region
is computed as the percentage of the pixels in the convex hull that also belong
to that region.

All the measurements (i.e. the circularity of the ROI, and the six properties ex-
tracted at the seven thresholding levels) are finally concatenated, obtaining a de-
scriptor of size 43.

Some of the aforementioned properties can be more discriminative for some
classes and less for others. For example, features 1 and 4 provide the same val-
ues when the foreground contains only one connected region (e.g. the homogeneous
pattern in the first row of Figure 3) and very different ones in other cases (e.g. the
nucleolar pattern in the second row of Figure 3). However, as we will show in the
following, the application of a Feature Selection process helps to discard the less
relevant variables.

3.2.2 Global textural features (GTF)

Gray-Level Co-occurrence Matrices (GLCM) Several types of global texture
descriptors can be computed from Gray-Level Co-occurrence Matrices. These ma-
trices report the distribution of co-occurring values between neighbouring pixels
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according to different distances and directions [25]. More specifically, each GLCM
element (i, j)d,θ contains the probability for a pair of pixels located at a distance d
and direction θ to have gray levels i and j, respectively. In our work, we first com-
puted four GLCMs for a fixed unitarian d and a varying θ = 0o,45o,90o,135o after
grouping intensity values into 16 levels. The use of 4 different directions makes the
method less sensitive to image rotations. Then, we extracted from each GLCM a to-
tal of 22 statistical measures, whose full characterization can be found in [25, 26, 27].
Finally, we computed the mean M and the range value R (i.e. maximum-minimum)
over the 4 GLCMs for each of these measures, obtaining a total of 44 GLCM features.
Modified Zernike moments (ZERN) Zernike radial polynomials can serve as
basis functions to extract image moments, capable of describing the shape and
textural characteristics of an object. However, they are strongly affected by changes
in scale and position of the objects in the image. An effective descriptor overcoming
this limitations and invariant to rotation, translation and scaling, has been presented
in [30]. Its invariance properties are obtained computing modified Zernike moments
on the normalised power spectrum of the image. In our case, for each cell we
extracted a descriptor of 55 elements.
Edge Orientation Histograms (EOH) The general idea of Edge Orientation
Histograms (EOH, [28]), as the name suggests, is to represent an image by a his-
togram obtained from the predominant gradient orientations of its edge pixels. More
specifically, EOH applies a Canny operator to obtain contour pixels from the image,
and then it constructs a histogram of directions, counting for each bin the number
of contour pixels whose gradient falls within its specific orientation interval. In our
work, we computed a 80-dimensional EOH feature vector for each cell image.
Rotation-Invariant Gabor features (RIGF) Gabor filters are widely used for
edge detection and texture analysis. Although not rotation invariant, Gabor features
can be modified to gain this property by computing their Discrete Fourier Transform
(DFT). In this way, the circular shift caused in the Gabor feature vector by an image
rotation is converted into a phase shift in the Fourier domain. This phase shift does
not affect the magnitude of the DFT coefficients which, therefore, can be used as
a rotation-independent representation of textural data. In our work we used the
formulation of RIGF proposed in [29], obtaining for each cell a feature vector of
dimension 32.

3.2.3 Local textural features (LTF)

In the context of local textural features, one of the most used descriptors is based
on local binary patterns (LBPs) [36]. This approach has been found to be very
promising also for the characterization of HEp-2 fluorescence patterns [17, 34].

The basic idea behind this descriptor is to represent the texture of the image as a
histogram of LBPs, i.e. binary patterns representing the intensity relations between
a pixel and its neighbours. For each image pixel, an LBP is obtained by binarizing
its neighbouring region using the intensity of the pixel as threshold, and then by
converting the resulting binary pattern to a decimal number. Finally, a histogram
is generated by taking into account the occurrences of all the LBPs in the image.
This is a very simple yet powerful textural descriptor, whose main advantage is the
invariance to changes of illumination over the image.
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Recent literature reports different descriptors that are supposed to extend and
improve the descriptive capabilities of classical LBPs. In our work, we considered
the following major formulations.
Rotation-Invariant Uniform Local Binary Patterns (LBPriu2) A binary
pattern is called uniform if it contains not more than two bitwise transitions from 0
to 1 or vice versa when the bit pattern is transversed circularly. Uniform patterns
were found to be predominant with respect to other patterns for texture description.
Therefore, in [31] they are used to produce compact rotation-invariant LBP feature
vectors. In our work we concatenated three histograms with different scales of LBP
neighbourhood, as suggested in [31], obtaining a feature vector of dimension 42.
Completed Local Binary Patterns (CLBP) The classical formulation of LBP
uses the intensity of the center pixel as threshold for its neighbours. Hence, only the
sign of the difference between the center and the neighbour gray values is relevant.
The key idea of Completed Local Binary Patterns (CLBP [32]) is to represent each
neighbourhood by its center pixel and a local difference sign-magnitude transform
(LDSMT) that computes both the sign and the magnitude of the difference between
the central pixel and its neighbours. Using the same scale and neighbourhood of
LBP riu2, we obtained a 42-dimensional CLBP feature vector.
Co-occurrence of Adjacent LBPs (CoALBP) The original expression of LBPs
lacks structural information among different binary patterns. In order to provide
them, [33] introduced a novel formulation which measures the co-occurrence among
multiple LBPs (and in particular, among adjacent LBPs). This formulation provides
a high-dimensional feature vector that has been found to provide a better texture
characterization compared to previous LBPs. Concatenating three CoALBP his-
tograms with the parameters suggested in [34], the resulting feature vector has
size 3072.
Rotation-Invariant Co-occurrence of Adjacent LBPs (RIC-LBP) The CoALBP
features can vary significantly depending on the orientation of the target object. In
order to cope with this problem, [34] extends the concept of rotation equivalence
class of LBP riu2 to the CoALBPs. This is achieved by attaching a rotation invariant
label to each LBP pair, so that all CoALBPs corresponding to different rotations of
the same LBPs have the same value. For each cell image, we extracted and concate-
nated three RIC-LBP histograms as suggested by [34], obtaining a feature vector of
dimension 408.

3.3 Classification based on Subclass Discriminant Analysis

The categorization of the cell staining patterns is a multiclass classification problem.
Our classifier is based on Subclass Discriminant Analysis (SDA), an algorithm that
has been recently proposed in [20].

SDA belongs to the family of Discriminant analysis (DA) algorithms, which have
been used for dimensionality reduction and feature extraction in many applications.
Given a set of samples X = (x1, x2, . . . , xn), where each xi is a vector in ℜD and
has an associated class label ∈ [1, C], DA algorithms compute a mapping of X

to a subspace in ℜd, with d≪D, where the data can be more easily separated
according to their class-labels. This mapping is defined by a projection matrix
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V = (v1, v2, . . . , vd), with vi ∈ ℜD, which, in most DA algorithms, is found by
maximizing the so-called Fisher-Rao’s criterion:

J(V ) =

∣

∣V TAV
∣

∣

|V TBV |
(1)

where A and B are symmetric and positive-defined matrices, so that they define a
metric. The solution to this problem is given by the generalized eigenvalue decom-
position:

AV = BV Λ (2)

where Λ is the diagonal matrix of eigenvalues corresponding to the column-vectors
of V.

Linear Discriminant Analysis (LDA) is probably the most well-known DA al-
gorithm. It assumes that the C classes the data belong to are homoscedastic, i.e.
that their underlying distributions are Gaussian with common variance and different
means. In equation (1), LDA uses A = SB, the between-class scatter matrix, and
B = SW , the within-class scatter matrix, which are defined as follows:

SB =

C
∑

i=1

(µi − µ)(µi − µ)T (3)

SW =
1

n

C
∑

i=1

ni
∑

j=1

(xij − µi)(xij − µi)
T (4)

where n is the number of the samples in X, ni the number of samples in class i, µi

is the sample mean for class i, µ is the global mean and xij is the j
th sample of class

i.
The mapping provided by LDA maximizes the between-class variance and mini-

mizes the within-class variance in any particular data set. In other words, it guaran-
tees maximal class separability of the training samples and, possibly, optimizes the
accuracy in later classification. The main drawback of LDA is that the dimension
of the reduced space is bounded by the rank of SB, which is in turn equal or lower
than C − 1. This means that each sample in the original space is represented by at
most C−1 features. As a consequence, LDA works well for problems that are linear
in the origin space, i.e. those for which C − 1 features are sufficient to discriminate
C classes, but fails to provide optimal subspaces for inherently non-linear structures
in data.

To cope with this problem, several extensions of LDA have been introduced in
literature [37] and SDA is one of the most effective. The main idea of SDA is to
approximate the underlying distribution of each class using a mixture of Gaussians.
This is achieved by dividing the classes into a set of subclasses, capable of describing
for each class the variance of the data in a more subtle way. Therefore, the main
problem to be solved in SDA is to find the optimal number of subclasses for each
class.
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Once the number of subclasses is known, the transformation matrix V is found
by assigning to A in equation (1) the between-subclass scatter matrix defined as:

SB =

C−1
∑

i=1

Hi
∑

j=1

C
∑

k=i+1

Hk
∑

l=1

pijpkl(µij − µkl)(µij − µkl)
T (5)

where Hi is the number of subclasses of class i, µij and pij are the mean and prior
probability of the jth subclass of class i, respectively. The priors are estimated as
pij = nij/n, where nij is the number of samples in the jth subclass of class i. With
this formulation of SB, equation (1) works towards the contemporary maximiza-
tion of the distance between the class means and of the one between the means of
subclasses of the same class. The objective is, again, to maximize the classification
accuracy in the reduced space.

In order to select the optimal number of subclasses, two different methods are
proposed in [20] . The first is based on a stability criterion described in [38].
However, as pointed out in [39], the minimization of the metric used in this criterion
is not guaranteed when data have a Gaussian homoscedastic subclass structure (and
probably even for heteroscedastic). The second selection criterion is based on a
leave-one-object test. In practice, a leave-one-out cross validation is applied for each
subdivision, and the optimal subdivision is the one maximizing the recognition rate.
The problem with this strategy is its very high computational costs, especially with
large datasets and high number of classes as in our case. Therefore, in our work we
use a slightly different formulation of this criterion, which is based on a stratified
5-fold cross validation of the training set and on the accuracies obtained with a
k -Nearest Neighbour (k -NN) classifier.

Our implementation differs from the original SDA formulation for two other
details. The first concerns the clustering method. In [20] data are assigned to sub-
classes by first sorting the class samples with a Nearest-Neighbour based algorithm
and then by dividing the obtained list into a set of equal-sized clusters. However,
this method does not allow to model effectively the non-linearity present in the
data, as in the case under analysis of HEp-2 staining patterns. Therefore, we used
the K -means algorithm, which partitions the samples into K clusters by minimizing
iteratively the sum, over all clusters, of the within-cluster sums of sample-to-cluster-
centroid distances.

The second difference is that, instead of increasing at each iteration the number
of subclasses of all groups of the same amount, we first choose a maximal number
of subclasses for each class, based heuristically on the number of samples per class.
Then, all the possible permutations of class subdivisions are tested, halting the
subdivision process of a specific class r if the minimal number of samples in any
of its current Hr clusters drops below a predefined threshold. In order to reduce
the computational burden, the clusters created for each class and each number of
subclasses are computed only once and cached for further use.

Once the optimal number of subclasses have been found and the feature vectors
of the samples have been obtained by projecting them on the sub-space defined
by SDA, the classification is performed with k -NN. A value of 8 for k has been
heuristically found to provide good classification results.
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3.4 Feature Selection

Feature selection (FS) is a data preprocessing step that is frequently applied in
machine learning. FS extracts the subset of features used to describe the data that
improves the classification accuracy. The main purposes of FS are two. First, it
reduces the dimensionality of the input data, removing irrelevant information and
improving their comprehension by telling which are the most important features and
how they are correlated. Second, it improves the chances of avoiding overfitting,
whose probability increases with the dimension of the feature space.

In our work, a reduction of the dimensionality of the feature space is already pro-
vided by SDA. However, decreasing the initial number of parameters representing
the data in order to include only the features that are the most relevant for the con-
sidered task improves the separability of the samples in the reduced space computed
by SDA and, hence, the classification accuracy (as we will show in Section 5).

We applied a robust feature selection method based on the minimum-Redundancy-
Maximum-Relevance (mRMR) algorithm, whose better performance over the con-
ventional top-ranking methods has been widely demonstrated in literature [40].
mRMR sorts the features that are most relevant for the characterization of the clas-
sification variable, pointing at the contemporaneous minimization of their mutual
similarity and maximization of their correlation with the classification label.

However, mRMR provides a mere ranking of the features with no information
on the size of the optimal feature set. Therefore, heuristically, we looked for this
optimal size by iteratively increasing the number of candidates in the feature set
until the global optimum is found. The candidates are selected in order of relevance
and, given the computational burden of the classification algorithm, at each itera-
tion their number is increased by a factor 10. The initial number of candidates is
chosen according to the following consideration. The rank of matrix SB and, there-
fore, the dimensionality d of the reduced subspace obtained with SDA, is given by
min(H − 1, rank(SX)), where H is the total number of subclasses, SX is the ma-
trix concatenating the representative vectors of the samples in the training set and
rank(SX) is equal (or minor) to the number of features characterizing each sample.
Since the data in our problem present high non-linearities, we set as reasonable lower
bound for d the value 40.

4 EXPERIMENTAL PROTOCOL

All experiments shown in this paper were run on the HEp-2 cell dataset described
in Section 2 using the following protocol.

The first experiment applies the leave-one-out technique over all the 28 IIF im-
ages composing the dataset. For each image, an instance of the classifier is trained
with the cells of the remaining 27 images and then used to classify the cells of the
image left out. The classification evaluates each cell individually, without using
information on the other cells belonging to the same image. The classification ac-
curacy is evaluated (i) on a cell-level basis, in terms of percentage of cells correctly
classified for each class over all the 28 leave-one-out runs, and (ii) on an image-level
basis, in terms of percentage of images correctly classified, using as the predicted
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image label the class most frequently assigned to its cells. In both cases, the ac-
curacy is obtained by adding the classification counts of the 28 leave-one-out runs
(i.e. the number of cells of class i assigned to class j are evaluated by summing the
corresponding numbers in each run, and then percentages are computed), and not
by averaging the percentages relative to each run.

The leave-one-out method over the images ensures a complete separability and
independence of training and test set and it is the experimental protocol that maxi-
mizes the number of independent samples (i.e. cells belonging to different patients)
used for training. Therefore, it is particularly suited to the HEp-2 cell dataset, that
is characterized by a very low number of independent samples per class. Moreover,
the execution of several training/test runs with different images allows to assess the
robustness and generalization capabilities of the classifier.

A second additional experiment is performed by dividing the images into two sep-
arate training and test sets in exactly the same way as it was done in the 2012 HEp-2
Cells Classification Contest [3]. The classifier is trained with the cells included in
the training set, which contains only 14 of the images of the entire dataset, and the
performance of the classifier is assessed on the test set (i.e. the cells belonging to
the remaining 14 images). As for the previous experiment, cell-level and image-level
accuracies are computed.

5 RESULTS AND DISCUSSION

Our experiments were aimed at answering the following research questions:

• how do the different attributes described in Section 3.2 contribute to the classi-
fication of the HEp-2 staining patterns and how can these individual attributes
be combined to improve the classification accuracy? (Section 5.1)

• how does SDA strategy cope with the high within-class variance that is typical
of HEp-2 staining patterns? (Section 5.2)

5.1 Assessing the classification accuracy

For clarity, we briefly recall the main idea behind our feature extraction approach.
Morphological, global and local textural descriptors have been found to be the most
suitable features for characterizing HEp-2 fluorescence patterns. However, the rel-
evance of each of this kind of attributes and their mutual contribution is still an
open issue. In this work we postulate that the integration of information of differ-
ent nature improves the capabilities of a classifier of recognizing different staining
patterns. To this end, we defined a set of morphological features and we identified
different textural descriptors that appeared promising for the task considered.

In the first tests, we computed the classification accuracy (on a cell-level ba-
sis) obtained with each individual feature set described in Section 3.2, using the
leave-one-out experiment described in Section 4. Then we analysed the accuracies
obtained with different groups of attributes.
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The experimental results are summarized in Figure 5, where we report for dif-
ferent feature sets the classification accuracy and (within parentheses) the number
of optimal features selected by the FS algorithm.

Figure 5: Cell-level accuracy obtained by different sets of features (leave-one-out
experiment). The sections of the graph describe the results of: a) morphological
features, b) global textural features, c) local textural features, d) best combinations
of the three attribute categories, e) sub-groups of attributes of the best solution, f)
our previous approach [21].

Figure 5 is divided into sections showing the accuracies of the individual at-
tributes (a-c) and of different combinations of them (d-e). For the sake of brevity,
we report only those combinations, between all the ones tested, providing the highest
accuracies. For comparison, we also report, in section (f), the accuracy obtained by
our previous approach to the problem [21] (feature set named BIOINFO). It should
be noted that FS was not applied to attributes whose size was close to, or lower
than, 40, which is the limit value for our FS process (Section 3.4).

The following initial remarks can be drawn from the results of Figure 5:

• the single attribute providing the highest accuracy was RIC-LBP (80.76%),
followed by CoALBP (77.80%) and MORPH (71.48%);

• considering the categories of individual attributes, local textural features (LTF)
performed much better than morphological features, which were in turn better
than global textural features (GTF);

• in general, groups of feature sets consistently achieved better results than their
single components;

• the integration of morphological and both local and global textural features
provided the most comprehensive solution to characterize fluorescence pat-
terns. That is, the more heterogeneous the information, the better the accu-
racies. The best result (89.55%) was obtained by the combination of GLCM,
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CoALBP and MORPH. The accuracy obtained by this optimal group was
higher than any partial combination of its composing attributes (shown in
figure 5(e));

• the proposed method outperformed our previous approach to the problem,
which obtained a 76.56% accuracy.

These results require a more detailed discussion. First, while LTF are effective
in characterizing the cells, as also found in [3], GTF do not perform equally well. In
other words, GTF are less capable of capturing the differences between the various
staining patterns, differences that, on the contrary, are more suitably described in
terms of local variations of the intensity patterns. The relevance of local information
is supported by the results obtained by morphological features, which, in a way, en-
code local characteristics into the description of the morphological properties of the
cells and of the changes of these properties as a function of the intensity thresholds
used to compute them.

Second, the combination of global and local texture descriptors consistently gen-
erates a more robust mechanism of texture representation (for example, this is shown
in Figure 5 by comparing the accuracy of GLCM-CoALBP, 88.25%, with the ac-
curacy of the single attributes, 61.31% and 77.80% respectively). This result is
consistent with the findings of previous works [23, 24].

Third, the combination of different attributes generates a completely new mech-
anism of image representation compared to the one provided by the same attributes
considered individually. Thus, the feature sets best performing individually are not
necessarily the ones that will give the best performance when combined together.
Indeed, the best GTF and LTF attributes (respectively, EOH with 67.35% and
RIC-LBP with 80.76%) are not included into the group that obtained the highest
accuracy and, for instance, much better accuracies are obtained with groups based
on GLCM as GTF and on CoALBP as LTF. This could be explained as follows:

• the integration with other features helps to soften the major limitations of
specific attributes (e.g., the dependence from texture rotations of CoALBP);

• Feature Selection contributes to this scenario by selecting a compact set of
features that helps to reduce the noise and by strengthening the mutual con-
tribution of specific attributes.

Feature Selection deserves another detailed discussion. As expected, FS always
significantly improves the accuracy. As an example, in Figure 6 we show, for the
group GLCM-RIC-LBP-MORPH, the behaviour of the accuracy against the number
of features used by the classifier. As it can be seen, the accuracy reaches a global
maximum for 100 features improving of more than 5% the accuracy obtained with
all the 495 feature variables. Another interesting result is that the total accuracy
around the optimal set size is rather stable (i.e. less than 2% in the range between
60 and 160), indicating that the performance of the proposed approach is not strictly
tied to a precise identification of the optimal size. For other attributes and attribute
groups, including the optimal GLCM-CoALBP-MORPH group, we obtained similar
results that we omit for brevity. We simply underline the fact that with very large
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feature sets (e.g. those including CoALBP), the performance drop between the
optimal set and the full feature set is significantly higher than the one shown in
the example of Figure 6. As a matter of facts, in these cases, since the classifiers
are based on a number of features largely greater than the number of observations,
results with no FS are likely to be affected by overfitting. We believe that these
results highlight as well the capabilities of FS to prevent this problem.

Figure 6: Cell classification accuracy vs. size of the feature set (features set GLCM-
RIC-LBP-MORPH, leave-one-out experiment).

The analysis of the features surviving the FS pruning can provide some insights
into the cell characteristics that are more relevant for the classification of the staining
patterns. In general, in all groups all types of features are present, with a slight
preference for local texture descriptors. If we consider, as an example, the optimal
combination GLCM-CoALBP-MORPH, we have that, of the 150 features selected,
16 come from GLCM (out of a total of 44), 106 from CoALBP (3072) and the
remaining 28 from MORPH (43). This is another evidence of the fact that features
with different nature are effectively combined to provide a substantial improvement
of the accuracy.

Concluding this section, we present the detailed results of the optimal solution
found for this first experiment (GLCM-CoALBP-MORPH). In Table 3 we show
for each of the 28 IIF images its true class and the number and the percentage of
the image cells labelled with each of the six staining patterns. Table 4 shows on
the left the confusion matrix and the total accuracy of cell classification (89.55%)
and, on the right, the image-level confusion matrix and the total accuracy of image
classification (96.43%).

5.2 Discriminative capabilities of SDA

Another interesting subject of analysis is the discriminative capability of our SDA-
based classification approach. For the discussion of this issue, we will also make use
of the results obtained with the second experiment described in Section 4, which is
based on two separate training and test sets. For the sake of conciseness, we do not
report the detailed results of this experiment, which basically confirmed the main
findings of the leave-one-out experiment :

• grouped attributes perform better than single attributes;
17



Table 3: Leave-one-out experiment : number and percentage of cells assigned to each
class. The values corresponding to the true class are highlighted in dark gray.

IMAGE Cent. Hom. Nucl. C. Sp. F. Sp. Cyt.
ID True class n. % n. % n. % n. % n. % n. %
1 Hom. 0 0 61 100 0 0 0 0 0 0 0 0
2 F. Sp. 1 2.08 4 8.33 0 0 1 2.08 42 87.5 0 0
3 Cent. 89 100 0 0 0 0 0 0 0 0 0 0
4 Nucl. 1 1.51 0 0 57 86.36 8 12.12 0 0 0 0
5 Hom. 0 0 46 97.87 0 0 0 0 1 2.13 0 0
6 C. Sp. 2 2.94 1 1.47 0 0 65 95.59 0 0 0 0
7 Cent. 49 87.5 0 0 5 8.93 2 3.57 0 0 0 0
8 Nucl. 1 1.79 0 0 55 98.21 0 0 0 0 0 0
9 F. Sp. 0 0 5 10.87 0 0 1 2.17 40 86.96 0 0
10 C. Sp. 3 9.09 0 0 0 0 29 87.88 1 3.03 0 0
11 C. Sp. 0 0 0 0 2 4.88 39 95.12 0 0 0 0
12 C. Sp. 0 0 0 0 0 0 49 100 0 0 0 0
13 Cent. 46 100 0 0 0 0 0 0 0 0 0 0
14 Cent. 14 22.22 20 31.75 0 0 9 14.29 20 31.75 0 0
15 F. Sp. 2 3.17 15 23.81 0 0 7 11.11 39 61.90 0 0
16 Cent. 37 97.37 0 0 1 2.63 0 0 0 0 0 0
17 C. Sp. 0 0 0 0 1 5.26 14 73.68 4 21.05 0 0
18 Hom. 0 0 41 97.62 0 0 1 2.38 0 0 0 0
19 Cent. 63 96.92 0 0 2 3.08 0 0 0 0 0 0
20 Nucl. 0 0 0 0 45 97.83 0 0 0 0 1 2.17
21 Hom. 3 4.92 44 72.13 0 0 2 3.28 12 19.67 0 0
22 Hom. 0 0 115 96.64 2 1.68 0 0 1 0.84 1 0.84
23 F. Sp. 0 0 2 3.92 0 0 0 0 49 96.08 0 0
24 Nucl. 1 1.37 3 4.11 69 94.52 0 0 0 0 0 0
25 Cyt. 0 0 0 0 0 0 2 8.33 0 0 22 91.67
26 Cyt. 0 0 0 0 0 0 0 0 0 0 34 100
27 Cyt. 0 0 0 0 0 0 1 2.63 0 0 37 97.37
28 Cyt. 0 0 0 0 0 0 0 0 0 0 13 100

Table 4: Leave-one-out experiment : confusion matrices (%).
CELL CLASSIFICATION IMAGE CLASSIFICATION

class Cent. Hom. Nucl. C. Sp. F. Sp. Cyt. Cent. Hom. Nucl. C. Sp. F. Sp. Cyt.
Cent. 83.47 5.60 2.24 3.08 5.60 0 83.33 16.67 0 0 0 0
Hom. 0.91 93.03 0.61 0.91 4.24 0.30 0 100 0 0 0 0
Nucl. 1.25 1.24 93.78 3.32 0 0.41 0 0 100 0 0 0
C. Sp. 2.38 0.48 1.43 93.33 2.38 0 0 0 0 100 0 0
F. Sp. 1.44 12.5 0 4.33 81.73 0 0 0 0 0 100 0
Cyt. 0 0 0 2.75 0 97.25 0 0 0 0 0 100

Total accuracy = 89.55% Total accuracy = 96.43%

• the combination of morphological, global and local textural information guar-
antees the highest accuracies;

• the optimal solution is provided, again, by the GLCM-CoALBP-MORPH
group (with 100 features), although in this experiment other groups perform
in a comparable way at both cell and image-level.

• the performance around the optimal set size is, again, rather stable, indicating
that the accuracy is not strictly tied to a precise identification of the optimal
number of features.

For completeness, we detail the best result achieved in Table 5, where as before
we show the confusion matrix and classification accuracy at cell-level (on the left)
and at image-level (on the right). As it can be seen, the cell-level accuracy drops
drastically from the 89.55% of the first experiment to the current 72.21%, while
the accuracy at image level is similar (92.86% vs. 96.43% of the leave-one-out
experiment, both corresponding to a single misclassified image).
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This difference can be easily explained in terms of the characteristics of the
training and test sets. In the second experiment, the availability of only 14 differ-
ent images for training, coupled with the high within-class variance present in the
HEp-2 cell patterns, translates into very few independent samples per class. As a
consequence, the manifolds of the various staining patterns in the feature space are
likely to be under-sampled, thus hampering the SDA capabilities to model them in a
suitable manner and, consequently, reducing the cell-level classification accuracy of
the whole method. The better performance at image-level can be simply explained
analysing in details the results of the leave-one-out experiment (Table 3), where the
per class correct accuracies are most of the times greater than 85%. Therefore, even
if more cells are misclassified in the second experiment, the ones maintaining the
correct label are still sufficient, in most of the cases, to assign the correct image
label.

Table 5: Separate training/test sets experiment : confusion matrices (%).
CELL CLASSIFICATION IMAGE CLASSIFICATION

class Cent. Hom. Nucl. C. Sp. F. Sp. Cyt. Cent. Hom. Nucl. C. Sp. F. Sp. Cyt.
Cent. 90.60 0 5.37 4.03 0 0 100 0 0 0 0 0
Hom. 7.78 74.44 1.11 0.56 16.11 0 0 100 0 0 0 0
Nucl. 11.51 2.88 65.47 20.14 0 0 0 0 100 0 0 0
C. Sp. 32.67 1.98 0 53.47 10.89 0.99 0 0 0 66.67 33.33 0
F. Sp. 13.16 21.93 2.63 0.88 61.40 0 0 0 0 0 100 0
Cyt. 5.88 0 0 3.92 0 90.20 0 0 0 0 0 100

Total accuracy = 72.21% Total accuracy = 92.86%

The protocol of the second experiment let us also inspect in more details the
strategy used by SDA in dividing class samples into subclasses. In fact, differently
from the leave-one-out method, where the optimal class subdivision is likely to
vary at each fold, the use of a single training set translates into a single optimal
partition of subclasses. If we consider as an example the best solution shown in
Table 5, the number of subclasses is two for nucleolar and centromere classes, three
for cytoplasmatic class, four for coarse and fine speckled and five for homogeneous
class.

For nucleolar and centromere classes, SDA performs a straightforward subdivi-
sion between cells with intermediate and positive fluorescence intensity. For other
classes (e.g. the homogeneous pattern) the subdivision splits the cells in a more
subtle way, grouping cells of similar appearance in the same subclass (Figure 7),
which is obviously of major help for the classification process.

Finally, in order to further assess the discriminative capabilities of our SDA-
based approach, we compared our method with Support Vector Machines (SVM), a
state-of-the-art classifier that is widely recognized for its classification performance
by computer scientists and machine learning researchers. For the classification, we
used SVM with a radial basis kernel, optimizing its parameters by means of a grid
search as suggested in [41]. Then, we applied the two-step FS process described
in [15]: we first chose for each single/composite attribute a candidate feature set of
size 200 with mRMR, or directly the whole feature set if its size was lower than 200,
and then we reduced it to an optimal size applying a Sequential Forward Selection
scheme (more details in [15]).

We repeated with SVM all the tests in the two experiments obtaining, on average,
classification accuracies lower than SDA-based approach by about 10% in the leave-
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Figure 7: Sample images from the five homogeneous subclasses obtained in the
optimal solution shown in Table 5.

one-out experiment and about 3% in the separate training-test set experiment.
Concluding, we think that all these results further support our hypothesis that

SDA, being particularly suited to deal with the high within-class heterogeneity of
HEp-2 cell images, is a promising approach for staining pattern classification.

6 CONCLUSIONS AND FUTURE WORKS

In this paper we described an automated solution for HEp-2 staining pattern clas-
sification in IIF images based on Subclass Discriminant Analysis approach.

The main findings of our work are two. First, after investigating the contribu-
tion of several types of attributes, individually and grouped, we obtained an optimal
set of features that combines morphological descriptors with global and local tex-
tural analysis based on, respectively, GLCM and CoALBP features. With this set
of attributes we achieved a classification accuracy close to 90%, showing that the
integration of information of different nature provides an effective representation of
the fluorescence patterns. Furthermore, the classification accuracy was stable in a
neighborhood of the optimal set size, indicating a good robustness of the proposed
approach. Second, we verified that the proposed SDA-based strategy can effectively
cope with the high within-class variance of HEp-2 samples and, coupled with a Fea-
ture Selection process, can provide a compact set of image attributes that is highly
discriminative and effective for the classification task.

As future works, we are planning to implement a complete solution tackling all
the steps of an automated IIF analysis, including the quantification of the staining
intensity, the cell segmentation and the recognition of the mitotic cells. Further
improvements of the SDA-based solution will be also investigated, e.g. by experi-
menting different types of classifiers other than k -NN.
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