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Abstract 

 
Long-term persistent tracking in ever-changing 

environments is a challenging task, which often requires 
addressing difficult object appearance update problems. 
To solve them, most top-performing methods rely on 
online learning-based algorithms. Unfortunately, one 
inherent problem of online learning-based trackers is drift, 
a gradual adaptation of the tracker to non-targets. To 
alleviate this problem, we consider visual tracking in a 
novel weakly supervised learning scenario where (possibly 
noisy) labels but no ground truth are provided by multiple 
imperfect oracles (i.e., trackers), some of which may be 
mediocre. A probabilistic approach is proposed to 
simultaneously infer the most likely object position and the 
accuracy of each tracker. Moreover, an online evaluation 
strategy of trackers and a heuristic training data selection 
scheme are adopted to make the inference more effective 
and fast. Consequently, the proposed method can avoid 
the pitfalls of purely single tracking approaches and get 
reliable labeled samples to incrementally update each 
tracker (if it is an appearance-adaptive tracker) to capture 
the appearance changes. Extensive comparing 
experiments on challenging video sequences demonstrate 
the robustness and effectiveness of the proposed method. 

1. Introduction 
Visual tracking has attracted significant attention due to 

its wide variety of applications, including intelligence 
video surveillance, human machine interfaces and robotics. 
Much progress has been made in the last two decades. 
However, designing robust visual tracking methods is still 
an open issue. Challenges in visual tracking problems 
include non-rigid shape and appearance variations of the 
object, occlusions, illumination changes, cluttered scenes, 
etc. To solve them, most top-performing methods rely on 
online learning-based algorithms [1-4] to adaptively 
update target appearance. In these methods, visual 
tracking is formulated as an online binary classification 
problem and the target appearance is updated adaptively 
using the images tracked from the previous frames. 
Compared with the approaches using fixed target models, 
such as [5], these adaptive approaches are more robust to 
appearance changes. However, the main drawback of 
these appearance-adaptive approaches is their sensitivity 

to drift, i.e., they may gradually adapt to non-targets. 
Years of research in tracker drift avoidance have 

demonstrated that significant improvements on the final 
tracking results may be achieved by using notably more 
sophisticated feature selection or target representation 
procedures, more elaborate synergies between tracking 
and classification, segmentation or detection, and taking 
into account prior information on the scenes and tracked 
objects. One popular technique to avoid tracker drift is to 
make sure the current tracker doesn’t stray too far from the 
initial appearance model. Matthews et al. [6] are among 
the first to utilize the technique and provide a partial 
solution for template trackers. In [7], discriminative 
attentional regions are chosen on-the-fly as those that best 
discriminate current object motion from background 
motion. Tracker drift is unlikely, since no on-line updates 
of attentional regions, and no new features are chosen after 
initialization in the first frame. Grabner et al. formulate 
tracking as an online semi-supervised learning problem [8]. 
Combining with a prior classifier, this method takes all the 
coming samples as unlabeled and uses them to update the 
tracker. Despite their success, these approaches are limited 
by the fact that they cannot accommodate very large 
changes in appearance. To balance between 
semi-supervised and the fully adaptive tracking, Stalder et 
al. [9] present an approach using object specific and 
adaptive priors. In [10], Babenko et al. propose to use a 
multiple instance learning based appearance model for 
object tracking. Instead of using a single positive image 
patch to update a traditional discriminative classifier, they 
use one positive bag consisting of several image patches to 
update a multiple instance learning classifier. In [11], 
co-training technique is applied to online multiple trackers 
learning with different features. The trackers 
collaboratively classify the new unlabeled samples and use 
these newly labeled samples with high confidence to 
update each other. However, independence among 
different features is required in co-tracking and this 
condition is too strong to be met in practice. Lu and Hager 
[12] propose model adaptation driven by feature matching 
and feature distinctiveness that may be robust to drift. Ren 
[13] and Yin [14] propose a paradigm of tracking by 
segmenting to alleviate the drift problem through accurate 
spatial support obtained in segmentation respectively. 
However, segmentation based methods only benefit from 
the situation when the foreground is in high contrast to the 
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background, which is not always the case in natural scenes. 
Grabner et al. [15] and He et al. [16] use a tracker based 
on online learning for key-point matching. They perform 
tracker update only when motion consensus of local 
descriptors is verified. These two methods can alleviate 
the drift problem in some extent but they only work well 
for the tracking of texture-rich objects. A number of 
attempts [17, 18] have been made to utilize multiple 
observation models to improve the performance of a 
tracker. For a full review of tracking literature, please refer 
to [19]. 

The inspiration for this work comes from a brand new 
machine learning area in weak supervision, where the task 
is to jointly learn from multiple labeling sources [20-25]. 
This general task underlies several subfields receiving 
increasing interest from the machine learning community, 
such as data fusion, active learning, transfer learning, 
multitask learning, multiview learning, and learning under 
covariate shift. The problem of learning from multiple 
labeling sources is different from the unsupervised, 
supervised, semi-supervised or transductive learning 
problems, in which each training instance is given a set of 
candidate class labels provided by different labelers with 
varying accuracy and the ground truth label of each 
instance is unknown. In practice, a variety of real-world 
problems can be formalized as such a ‘multi-labelers’ 
problem. For example, there have been an increasing 
number of experiments using Amazon's Mechanical Turk 
[26] for annotation. In situations like these, the 
performance of different annotators can vary widely. 
Without the ground truth, how to learn classifiers, evaluate 
the annotators, infer the ground truth label of each data 
point, and estimate the difficulty of each data point are the 
main issues addressed by the task of learning from 
multiple labeling sources. Other examples of a 
‘multi-labelers’ scenario involve reCAPTCHA [20], 
computer-aided diagnosis [23] and Search-engine 
optimizers [24]. 

To the best of authors’ knowledge, none of the earlier 
studies have viewed visual tracking as the problem of 
learning from multiple labeling sources. In the tracking 
literatures, for a given tracking scenario, we actually can 
get a lot of output via a number of tracking algorithms 
using different object representations and learning 
strategies. Since each kind of tracking algorithm has its 
strength and weakness and is particularly applicable for 
handling a certain type of variation, many methods often 
use sequential cascaded or parallel majority voting 
frameworks to fuse the output of a number of tracking 
algorithms. One of the main challenges dominating these 
two kinds of fusing schemes is that how would one 
measure the performance of a tracker when there is no 
ground truth available? The tracking approach, proposed 
in this paper, is conceptually different and explores a new 
strategy; in fact, instead of using sequential cascaded or 

parallel majority voting schemes, we consider visual 
tracking in a novel weakly supervised learning scenario 
where (possibly noisy) labels but no ground truth are 
provided by multiple imperfect oracles (i.e., trackers), 
some of which may be mediocre. A probabilistic approach 
is proposed to explore the possible alternative of fusing 
multiple imperfect oracles for visual tracking, and 
simultaneously infer the most likely object position and 
the accuracy of each imperfect oracle. Our method has the 
following advantages.  

 
(1) We propose a natural way of fusing multiple imperfect oracles to get a 
final reliable and accurate tracking result. The imperfect oracles can be 
arbitrary tracking algorithms in the literature. This avoids the pitfalls of purely 
single tracking approaches. 
(2) The proposed algorithm gives an estimate of the ground truth labeling of 
training data during tracking in a robust probabilistic inference manner and 
thus can alleviate the tracker drift problem.  
(3) We can online evaluate tracking algorithms in the absence of ground truth, 
which is an important and challenging problem in visual tracking systems.  
(4) The proposed approach can also handle missing labels (i.e., each tracker is 
not required to label all the image patches).  
 

Therefore, we can greatly alleviate the tracker drift 
problem to robustly achieve long-term persistent tracking 
in ever-changing environments.    

The rest of the paper is organized as follows. Section 2 
introduces our weakly supervised learning formulation for 
visual tracking, and presents the probabilistic approach 
that jointly learns the most likely object position and each 
tracker’ accuracy. The detailed tracking algorithm is then 
described in Section 3. Experimental results are given in 
Section 4. Finally, we conclude this work in Section 5. 

2. An weakly supervised learning view of 
visual tracking 

2.1. A Chicken-and-egg problem 
For online learning based visual tracking, a tracker 

observes samples (typically image patches) in each frame 
and predicts their labels to be either foreground or 
background. At the end of each frame, the adaptive tracker 
uses the newly obtained sample-label pairs to presumably 
improve its prediction rule for the frames to come. 
However, due to the challenges in natural scenes and 
accumulated tracking error, the tracker may gradually 
adapt to non-targets. The main reason behind tracker drift 
is that the tracker is updated using a self-learning policy in 
the absence of ground truth. Many demonstrations have 
shown that aggregating the judgments of a number of 
individuals (e.g., detectors, trackers and recognizers) 
enhances the tracking performance to some degree, a 
phenomenon that has come to be known as the “wisdom of 
crowds”. Thus, the performance of one tracker may be 
assessed by using majority voting scheme from other 
trackers, which is often utilized in tracking applications. 
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But how would one measure the performance of the other 
trackers when there is no ground truth available? This is 
an apparent chicken-and-egg problem. So the question is, 
despite the absence of ground truth, how to effectively 
address the apparent chicken-and-egg problem in order to 
learn the appearance changes of the target while 
alleviating the drift problem. 

2.2. Optimal Integration of Labels from Labelers 
of Unknown Expertise 

Recently, weakly supervised learning from multiple 
labeling sources has aroused the interests of many 
researchers. Before introducing our work, we briefly 
review the work of [25] as it forms the basis of our 
approach.  

1β 2β 3β nβ

1Z 2Z 3Z nZ

11L 21L 12L 22L 32L

1α 2α 3α mα  
           (a)                        (b) 
Fig. 1. (a) Graphical model [25] of image difficulties, true image 
labels, observed labels, and labeler accuracies. Only the shaded 
variables are observed. (b) Overview of the proposed tracking 
algorithm. 

 
Consider a set of n images, each of which belongs to 

one of two possible categories of interest. We want to 
determine the class label Z୨ א ሼ0,1ሽ of each image j by 
querying from m labelers. The observed labels depend on 
several causal factors: (1) the difficulty of the image; (2) 
the true label; and (3) the expertise of the labeler. Denote 
1/β୨ א ሾ0, ൅∞ሻ as the parameter of the difficulty of the 
image j , Z୨  as the true label of the image j  and 
α୧ א ሺെ∞, ൅∞ሻ as the parameter of the expertise of the 
labeler i. The labels given by labeler i to image j are 
denoted as L୧୨ and, under the model, are generated as 
follows: 

p൫L୧୨ ൌ Z୨หα୧, β୨൯ ൌ ଵ

ଵାୣషಉ౟ಊౠ
           (1) 

Thus, under the model, the log odds for the obtained 
labels being correct are a bilinear function of the difficulty 
of the label and the expertise of the labeler, i.e., 

log
୮ሺL౟ౠୀZౠሻ

ଵି୮ሺL౟ౠୀZౠሻ
ൌ α୧β୨              (2) 

Fig.1 (a) shows the causal structure of the model. True 
image labels Z୨, labeler accuracy values α୧, and image 
difficulty values β୨  are sampled from a known prior 

distribution. These determine the observed labels 
according to Equation 1. Given a set of observed labels 
L ൌ ሼl୧୨ሽ, the task is to infer simultaneously the most likely 
values of ܈ ൌ ሼZ୨ሽ (the true image labels) as well as the 
labeler accuracies હ ൌ ሼα୧ሽ  and the image difficulty 
parameters ઺ ൌ ሼβ୨ሽ . An Expectation-Maximization 
approach (EM) is derived for obtaining maximum 
likelihood estimates of the parameters of interest: 
E step: Let the set of all given labels for an image j be 
denoted as ܔ୨ ൌ ሼl୧୨ᇲ|jᇱ ൌ jሽ. Note that not every labeler 
must label every single image. In this case, the index 
variable i in l୧୨ᇲ refers only to those labelers who labeled 
image j. We need to compute the posterior probabilities of 
all z୨ א ሼ0,1ሽ given the હ, ઺ values from the last M step 
and the observed labels: 
                   p൫z୨หܔ, હ, ઺൯ ൌ p൫z୨หܔ୨, હ, β୨൯ 
ן                                           p൫z୨หહ, β୨൯p൫ܔ୨หz୨, હ, β୨൯ 

ן   Pሺz୨ሻ ∏ pሺl୧୨|z୨, α୧, β୨ሻ୧       (3) 
where we noted that p൫z୨หહ, β୨൯ ൌ pሺz୨ሻ using the 
conditional independence assumptions from the graphical 
model. 
M step: We maximize the standard auxiliary function Q, 
which is defined as the expectation of the joint 
log-likelihood of the observed and hidden variables ሺܔ,  ሻ܈
given the parameters ሺહ, ઺ሻ , w.r.t. the posterior 
probabilities of the ܈ values computed during the last E 
step: 
Qሺહ, ઺ሻ ൌ Eሾln pሺܔ, ,હ|ܢ ઺ሻሿ 

           ൌ Eൣln ∏ ൫p൫z୨൯ ∏ p൫l୧୨หz୨, α୧, β୨൯୧ ൯୨ ൧  
(since l୧୨ are cond. indep. given ܢ, હ, ઺) 

      ൌ ∑ Eሾln pሺz୨ሻሿ୨ ൅ ∑ Eሾln pሺl୧୨|z୨, α୧, β୨ሻሿ୧୨     (4) 
where the expectation is taken over ܢ  given the old 
parameter values હ୭୪ୢ, ઺୭୪ୢ as estimated during the last 
E-step. Using gradient ascent, we find values of હ and ઺ 
that locally maximize Q. 

To facilitate the description later on, we denote the 
above inference method as the GLAD (Generative model 
of Labels, Abilities, and Difficulties), which is also used in 
[25]. 

2.3. Visual tracking via learning from oracle set 
A unified weakly supervised learning framework for 

visual tracking, in which multiple imperfect oracles 
cooperate on tracking objects, can be formulized as the 
following problem: 

Consider that m imperfect oracles observe an input 
sequence sଵ, sଶ, … , sT  , where s୲ ൌ ሼx୲

ଵ, x୲
ଶ, … , x୲

N౪ሽ is a 
sample set obtained in frame t and x୲

୨  is the jth sample 
in s୲. Denote L୲

୨ ൌ ሼl୲
୧୨ᇲ

|jᇱ ൌ jሽ as a set of candidate class 
labels for the sample x୲

୨ , where l୲
୧୨ᇲ

א ሼ0,1ሽ is the label 
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provided by ith  oracle. Our weakly supervised 
learning-based tracker setting is depicted in Fig.2. 
For t = 1, 2, … 

1. Receive sample set s୲ ൌ ሼx୲
ଵ, x୲

ଶ, … , x୲
N౪ሽ. 

2. Predict L୲
୨ ൌ ሼl୲

୧୨ᇲ
|jᇱ ൌ jሽ  for each sample x୲

୨  using multiple 
imperfect oracles. 

3. Jointly learn the ground truth label of each sample and the accuracy 
of each imperfect oracle from current observed sample set s୲. 

4. Update multiple imperfect oracles based on the robust tracking 
results.  

Fig. 2. Weakly supervised learning setting for visual tracking. 

3. Robust visual tracking 
In this section, we develop our tracking algorithm inside 

the weakly supervised learning setting described above. 
The basic idea is to embed a heterogeneous set of trackers 
into our weakly supervised learning algorithm to form a 
robust tracking algorithm. The proposed tracking 
algorithm is schematically shown in Fig.1 (b). 

Specifically, our tracking algorithm works as follows: 
For one incoming video frame, we first obtain a set of 
candidate solutions that are produced by a heterogeneous 
set of tracking algorithms. Then, training data, which is 
used for GLAD, is carefully selected according to a 
heuristic strategy. After the training data generation 
process, the GLAD model is utilized to infer 
simultaneously the most likely object position and the 
accuracy of each tracker. A testing sample with maximum 
probability belonging to positive sample is chosen to be 
the new object position, and also is retained as a positive 
training sample for further tracker update. An online 
evaluation strategy is developed to incrementally update 
the accuracy of each tracker. Meanwhile, target 
appearance model of each candidate tracker is updated if it 
is an appearance-adaptive tracker. The tracking procedure 
continues in this iterative fashion until the end of video. 
Below we give a detailed description about each 
component in this framework, and the algorithm is 
summarized finally. 

3.1. A heterogeneous set of oracles 
The key part of our algorithm proceeds by first 

computing many different tracking results that serve as 
proposal solutions, and then optimally fusing them using 
the GLAD model. The success of the method thus depends 
on the availability of good proposal solutions. 

It is important to note that the proposal solutions need 
not to be good in the whole tracking process in order to be 
“useful”. Instead, each solution may contribute to a 
particular time in the whole tracking process, if it contains 
reasonable tracking results for that time, no matter how 
poor it is in other times. This suggests the use of different 
tracking methods with different strengths and weaknesses 
for computing the proposals. In our experiments, we used 
six kinds of the proposal solutions (please see Table 1). 

 (1) Fragments-based Tracker [5]. The tracker uses static appearance models 
to obtain solutions. Due to using integral gray histograms and part based 
appearance model, such solutions are very efficient and robust to occlusions. 
However, the method tends to have difficulties tracking objects that exhibit 
significant appearance changes.  
(2) Online Boosting Tracker [3]. The tracker uses online boosting method to 
obtain solutions. Due to the properties of the method, such solutions are able 
to adapt to appearance changes of the object, but unfortunately suffer from the 
drifting problem. 
(3) Semi-Supervised Online Boosting Tracker [8]. The tracker uses 
semi-supervised online boosting method to obtain solutions. Such solutions 
can alleviate the drifting problem since the tracker cannot get too far away 
from the prior. But the prior might be too strong (i.e., limited appearance 
changes and partial occlusions) and generic (i.e., no discrimination between 
different objects from one class).  
(4) Beyond Semi-Supervised Tracker [9]. The tracker uses beyond 
semi-supervised tracking method, which is balancing between 
semi-supervised and the fully adaptive tracking, to obtain solutions. 
(5) Online Multiple Instance Learning-based Tracker [10]. The tracker uses 
online multiple instance learning (MIL) method, in which one positive bag 
consisting of several image patches is used to update a MIL classifier, to 
obtain solutions. 
(6) SURF Tracker [16]. The tracker uses SURF descriptors to obtain 
solutions. Such solutions often contain good results for textured objects but 
are virtually useless for textureless objects.  
Table 1. A rich set of complementary tracking approaches are 
used in our method (please refer to text for further explanation). 

 
The reasons we choose such a rich set of proposal 

solutions are:  
(1) The set consists of a variety of complementary tracking approaches, such 
as gray histogram-based patch matching [5], motion consensus of local 
descriptors [16] and online classification using haar feature [3, 8, 9, 10]. 
(2) The features used in all the six tracking methods can be extracted in a very 
efficient manner due to integral image data structure. 
(3) Their source codes are publicly available. This makes the parameters 
tuning to achieve the results reported in original literature and the comparison 
of these approaches convenient and fair. 
(4) Candidate solutions of each tracking method can be obtained 
independently, which allows for a high-speed parallel implementation if 
needed. 

 
It is important to note that other (potentially more 

efficient and robust) approaches for obtaining proposal 
solutions may also be considered. The proposed approach 
provides a principled way of fusing proposal solutions 
from any tracking algorithms in the literature. 

3.2. Heuristic selection of training data for 
optimal fusion 

It can be seen from section 2.2 that the computational 
complexity of the E-Step is linear in the number of patches 
and the total number of labels. For the M-Step, the values 
of Q and Q׏  must be computed repeatedly until 
convergence. Computing each function is linear in the 
number of patches, number of labelers, and total number 
of image labels. To make our tracking algorithm 
computationally feasible in practice, we develop in this 
subsection a heuristic way to select training data for the 
GLAD model.  

Consider that m imperfect oracles receive an image 
patch set s୲ ൌ ሼx୲

ଵ, x୲
ଶ, … , x୲

N౪ሽ  within current search 
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window in frame t, where x୲
୨ is the jth image patch of 

interested. Denote P୲ ൌ ሼp୲
ଵ, p୲

ଶ, … , p୲
୫ሽ  as a set of 

proposal solution bounding boxes obtained via m 
imperfect trackers T ൌ ሼTଵ, Tଶ, … , T୫ሽ in frame t, Dሺ·,·ሻ 
as the center location distance (pixels) between two image 
patch, and l୲

୧୨ א ሼ0,1ሽ as the label of the image patch x୲
୨  

provided by the tracker T୧. For each tracker T୧, denote 
Top୲

୧  as a set of image patches having the highest 10 
confidences (estimated by the tracker T୧) belonging to the 
positive samples in frame t. The training data is 
heuristically selected as follow: 

 For j ൌ 1, … , N୲ 
 If x୲

୨ א P୲ ൌ ሼp୲
ଵ, p୲

ଶ, … , p୲
୫ሽ 

 For i ൌ 1, … , m 
 IfሺDሺx୲

୨, p୲
୧ሻ ൑ 5 צ x୲

୨ א Top୲
୧ሻ l୲

୧୨ ൌ 1. 
 Else l୲

୧୨ ൌ 0. 
 End for 

 Else neglect the image patch x୲
୨. 

 End for  
In addition, we initialize the parameter β୲

୨  of the 
difficulty of the image patch x୲

୨  by majority voting: 
β୲

୨ ൌ exp ሺkଵ ൈ ቚቀ ଶ
୫

∑ l୲
୧୨୫

୧ୀଵ ቁ െ 1ቚሻ         (5) 
where kଵ is a normalized factor and typically set as 1.6. 

3.3. Online evaluation of trackers 
Automatic evaluation of visual tracking algorithms in 

the absence of ground truth is a very challenging and 
important problem. As the accuracy α୧ of each tracker 
can be inferred in each frame and the Q function in 
Equation (4) can be modified straightforwardly to handle a 
prior over each α୧ by adding a log-prior term for each of 
these variables, we would like to online determine which 
of the trackers are most accurate. Heuristically, we are 
interested in the trackers which have the most supporting 
evidence over time. After the tracking of each frame, we 
first check the m  proposal solutions of the imperfect 
trackers against the fusing results. A tracker is deemed to 
fail if the center location error (pixels) between its 
proposal bounding box and the final bounding box 
obtained by fusion is great than 5. This threshold can be 
perturbed with little effect on performance. Then, the prior 
accuracies of the m trackers at time t are adjusted as 
follows: 

α୧
୲ ൌ ሺ1 െ w୧

୲ሻα୧
୲ିଵ ൅ w୧

୲M୧
୲          (6) 

where w୧
୲  is the learning rate and M୧

୲  is 1 for the 
tracker which succeeded and 0 for the remaining models. 

In addition, in order to avoid false updating and 
maximize robustness, we adaptively adjust the learning 
rate w୧

୲ of the ith tracker as follows: 

w୧
୲ ൌ ቐ

୩మ
ଵାୣషಉ౟

,   if M୧
୲ ൌ 1 

୩మ
ଵାୣಉ౟

,   if M୧
୲ ൌ 0

           (7) 

where kଶ (typically set as 0.1) is a normalized factor 

and α୧ is the accuracy of the ith tracker, which is one of 
the output of the GLAD model. In the case that a tracker 
succeeded (i.e., M୧

୲ ൌ 1 ), if the accuracy of the ith 
tracker α୧ is large, the learning rate w୧

୲ is set to be large 
to adapt quickly. Otherwise, w୧

୲ is small. 

3.4. Summary of the algorithm 
A summary of our weakly supervised learning based 

tracking algorithm is described as follows. 
 

Algorithm 1 Weakly Supervised Learning from Multiple Imperfect Oracles 
for Visual Tracking 
Initialization:  

1. Acquire one manually labeled frame. 
2. Construct target appearance model for each candidate tracker. 
3. Initialize the accuracy of each candidate tracker . 

for t = 2 to the end of the video 
1. Generate a set of proposal solutions via a heterogeneous set of 

trackers. 
2. Select training data for optimal fusion according to a heuristic 

strategy. 
3. Run the GLAD model. 
4. Locate the new target position as the sample with maximum 

probability belonging to positive sample. 
5. Update the accuracy of each candidate tracker. 
6. Update target appearance model of each candidate tracker if it is an 

appearance-adaptive tracker.  
end for 

4. Experiments 
To evaluate the performance of our proposed tracking 

method, we apply it to several challenging video 
sequences and systematically compare our tracker with 
several representatives of state-of-the-art trackers. 

4.1. Experiment setting 
In our experiments, we chose to track only the location 

for simplicity and computational efficiency reasons. Thus, 
no scale and rotation adaption are implemented, which 
both however can be incorporated with slight modification 
of algorithm. We don’t use any motion model to predict 
the new position. The centroid of the search window is the 
same as that of the previous target bounding box. The 
processing speed depends on the size of the search 
window which we have defined by enlarging the target 
region by half of its size in each direction. In addition, 
multiple imperfect oracles are parallel implemented. We 
have achieved the processing speed of 10 fps at the 
resolution of 320 ൈ 240 pixels (the running time could 
be reduced substantially using multiple cores). The initial 
accuracy α୧

଴  of each oracle is 1. Our algorithm is 
implemented using C++, on a machine with Intel Pentium 
Dual 2.0 GHz processor. 

For performance evaluation, we compare our approach 
against several representatives of the current 
state-of-the-art in visual tracking – the Fragments-based 
Tracker [5], the Online Boosting Tracker [3], the 
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Semi-Supervised Online Boosting Tracker [8], the Beyond 
Semi-Supervised Tracker [9], the Online Multiple Instance 
Learning-based Tracker [10], and the SURF Tracker [16]. 
In the rest of our experiments, we refer to these six 
compared algorithms as FT, OBT, SSOBT, BSST, 
OMILT and ST respectively. For the first five methods, 
we use the same parameters as the authors have given on 
their websites [27, 28, 29] for all of our experiments. The 
ST is implemented by ourselves according to [16]. In 
addition, to more clearly illustrate that we can give proper 
labels to new samples for further tracker training, we also 
implement the variations of the six algorithms separately. 
More specifically, the variation of each algorithm updates 
itself with reliable labeled samples obtained by the finally 
fusing results. We refer to the variations of the six trackers 
as FT_V, OBT_V, SSOBT_V, BSST_V, OMILT_V and 
ST_V respectively. We have tested the tracking 
algorithms using dozens of challenging video sequences 
from the existing literatures as well as our own collections. 
Both qualitative and quantitative comparisons are done to 
evaluate the involved tracking algorithms. The 
quantitative performance is measured by the center 
location errors (pixels) in each frame and average center 
location errors in the whole sequences. Due to space 
limitation, we only show six challenging video sequences 
(please see Fig.3) in this paper. The Bear sequence on the 
row 1 is from the internet. It contains a running bear 
captured by a moving camera. This is a challenging 
sequence since it suffers from light & pose changes and 
dramatic figure/ground appearance pattern changes. The 
Background_Clutter sequence on the row 2 is taken from 
[28]. This sequence contains a 'Waldo' doll moving in 
front of very similar background. This is a very difficult 
visual tracking task. A tracking algorithm should neither 
track the needle to which the target object is attached nor 
track an object in the background. The Airplane sequence 
on the third row is a low quality surveillance video 
captured by a PTZ camera watching a runway. The 
David_ Indoor sequence on the fourth row are from an 
indoor sequence which contains a person moving from 
dark toward bright area with large lighting and pose 
changes. The Person_Surf sequence on the fifth row 
contains a surfer riding a wave. The turbulent wakes 
created by sweeping wave and the surfer create significant 
challenges for tracking algorithms. The Motor sequence 
on the last row contains a motor moving with large pose, 
lighting variation in a cluttered background. 

4.2. Comparison with other trackers 
To show the advantage of the proposed approach over 

the other trackers, we perform a number of experiments 
using a rich set of imperfect oracles consisting of OBT_V, 
SSOBT_V, BSST_V, and OMILT_V trackers and report 
the results in this subsection. 

Fig.3 shows qualitative comparison results of the 
trackers, i.e., our method (in red), the OBT (in magenta), 
SSOBT (in green), BSST (in blue) and OMILT (in 
yellow), on the six challenging video sequences mentioned 
in subsection 4.1. Our method gives good results because 
it considers visual tracking in a weakly supervised 
learning scenario where (possibly noisy) labels are 
provided by multiple imperfect oracles. By simultaneously 
inferring the most likely object position and the accuracy 
of each imperfect oracle via the proposed probabilistic 
approach, we could obtain training data during tracking 
process in a robust manner for further tracker update. 
Therefore, the tracker drift problem is alleviated in the 
proposed method. This is further verified in the 
experiments on the four variations (i.e., OBT_V, 
SSOBT_V, BSST_V and OMILT_V) of the four trackers 
(i.e., OBT, SSOBT, BSST and OMILT). As shown in 
Fig.4, it is obviously to see that the four variations 
outperform their corresponding trackers.  

 
Fig. 3. Qualitative comparison results of our method (in red), the 
OBT (in magenta), SSOBT (in green), BSST (in blue) and 
OMILT (in yellow) on six challenging video sequences. Please 
see text for detailed description. This figure is best viewed in 
color. 
 

The quantitative comparison results of the trackers are 
listed in Table 2 and Fig.5 respectively. Due to space 
limitation, we only plot the position error curves for the 
Bear, Background_Clutter, Airplane and David_Indoor 
sequence in Fig.5. As we can see, the continuously 
changing background and quick variation in foreground 
result in the failure of the single imperfect oracle, e.g., the 
OBT, SSOBT, BSST and OMILT; while our method can 
track the targets for almost the full length of all these 
sequences. 
 
Image sequence OBT SSOBT BSST OMILT Ours
Bear  76 75 63 85 18
Background_Clutter 89 94 111 101 3
Airplane 28 27 30 45 7



7 

David_Indoor 16 24 15 18 11 
Person_Surf 35 37 42 34 5 
Motor 22 21 22 21 23 
Table 2. Average center location errors (pixels). Quantitative 
comparison results on six challenging sequences by our method, 
the OBT, SSOBT, BSST and OMILT separately. 
 

 
Fig. 4. Qualitative comparison results of our method (in red), the 
OBT_V (in magenta), SSOBT_V (in green), BSST_V (in blue) 
and OMILT_V (in yellow) on six challenging video sequences. 
Please see text for detailed description.  
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Fig. 5. Position error curves for four sequences we tested on. 

4.3. How many oracles? 
Since the success of our method depends on the 

availability of good proposal solutions, there naturally 
arise the following questions: 1) How sensitive our 
method is to the number of oracles and the robustness of a 
single imperfect oracle? 2) How easy or difficult is it to 
obtain a good set of imperfect oracles? To answer these 
two questions, we calculate the tracker accuracies in 
different configuration of an oracle set. Instead of travel 
through all the possible combinations of trackers, we use a 
simple sequential heuristic, i.e., increase the oracles set by 

adding one oracle at a time. The measurements are made 
for several image sequences. The results for the 
Background_Clutter sequence are plotted in Fig.6 (a). 
Obviously, for different combinations of multiple 
imperfect oracles, a good combination can be chosen 
across a wide range of oracle sets. The same observation is 
identical for all the other test sequences. This property 
significantly eases the selection of a rich set of imperfect 
oracles. Furthermore, the experiments have shown that a 
good set of multiple oracles for a sequence usually 
performs well also for other sequences (please see Fig.3). 
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(a)                      (b) 

Fig. 6. (a) Position error curves for different combinations of 
multiple imperfect oracles for the Background_Clutter sequence. 
The oracle set is increased in a sequential way. (b) Evolving 
curves of the accuracies for the OBT_V, SSOBT_V, BSST_V 
and OMILT_V in Bear sequence separately. Please note that the 
curve of OBT_V is the same as that of SSOBT_V in this 
example. 
 

 
(a) 

 
(b) 

Fig.7. Illustration of the fusion process. Red indicates the highest 
probability belonging to positive sample. Please see text for 
details. (a) Frame#189 from David_Indoor sequence. (b) Frame 
#31 from Person_Surf sequence. 

4.4. Multiple imperfect oracles: whom to trust? 
One big advantage of multiple oracle based tracking lies 

in that the proposal solutions are not necessarily to be 
good in the whole tracking process in order to be "useful". 
To verify this advantage, we check the accuracies of the 
oracles over time in all the test sequences and give a 
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typical example in Fig.6 (b). In our method, if one oracle 
gives correct tracking results in current frame, then its 
accuracy is incrementally updated to increase. Otherwise, 
its accuracy is incrementally updated to decrease. As 
shown in Fig.6 (b), it is obviously to see that each oracle 
may contribute to a particular time in the whole tracking 
process, if it contains reasonable tracking results for that 
time, no matter how poor it is in other times. 

4.5. Illustration of the fusion process  
In this subsection, we show through the two tracking 

examples the fusion process and how the training samples 
are reliably labeled to alleviate the tracker drift problem. In 
Fig.7, we visualize some representative image patches and 
their (possibly noisy) labels (i.e., 0 or 1) that are provided 
by multiple imperfect oracles from the frame#189 in 
David_Indoor sequence and the frame#31 in Person_Surf 
sequence respectively. As expected, though the 
positive/negative ratio of an image patch is 1:3 (the fourth 
row in Fig.7 (a)) or 2:2 (the second row in Fig.7 (b)), we 
can get the most likely target samples for further training. 
Meanwhile, these two case studies also show the proposed 
method is robust to noisy (or adversarial) labeling and the 
advantage of weak supervised learning scheme over 
majority voting scheme for tracking results fusion. For 
example, the image patch on the fourth row in Fig.7 (a) is 
labeled as 0 by OBT_V, SSOBT_V and OMILT_V. 
Only BSST_V labels it as 1. After fusion, we can still give 
the correct labeling (i.e., 1) to the image patch. 

5. Conclusion and future work 
We address in this paper the tracker drift problem and 

explore a novel visual tracking framework in the setting of 
weakly supervised learning where (possibly noisy) labels 
provided by multiple imperfect oracles can be efficiently 
used for inference. To instantiate the proposed weakly 
supervised tracking framework, we extend the GLAD 
model [25] to video processing mode and take advantage 
of sequential data for making real time and accurate 
inference. An online evaluation strategy is developed to 
incrementally update the accuracy of each tracker. 
Meanwhile, target appearance model of each candidate 
tracker is updated if it is an appearance-adaptive tracker. 
Extensive experimental results show that the proposed 
method can obtain more accurate data labels than single 
oracle and the majority vote heuristic, and it is robust to 
noisy labeling. In summary, we conclude with 
observations that advantages of multiple complementary 
oracles can be seamlessly combined to achieve robust 
tracking by simultaneously inferring the most likely object 
position and the accuracy of each oracle in the absence of 
ground truth, which is always the case in real-world 
tracking applications.   
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