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Abstract

This paper presents an upper-body detection algorithm that extends classical shape-based detectors through the use of additional

semantic colour segmentation cues. More precisely, candidate upper-body image patches produced by a base detector are soft-

segmented using a multi-class probabilistic colour segmentation algorithm that leverages spatial as well as colour prior distributions

for different semantic object regions (skin, hair, clothing, background). These multi-class soft segmentation maps are then classified

as true or false upper-bodies. By further fusing the score of this latter classifier with the base detection score, the method shows a

performance improvement on three different public datasets and using two different upper-body base detectors, demonstrating the

complementarity of the contextual semantic colour segmentation and the base detector.
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1. Introduction

The automatic detection and localisation of humans in digi-

tal images has been of increasing interest in the past decades.

Applications include video-surveillance, human-computer in-

teraction, image indexation and retrieval, and advanced driver

assistance systems. According to the scenario of interest as well

as the image resolution and quality, different body parts may be

more visible and thus more detectable than others. In this re-

gard, localising people has mainly been achieved by building

detectors for faces, upper bodies, full bodies, or combination

of these. Currently, face detection algorithms produce rela-

tively few false positives for near-frontal head poses, but suffer

from degraded performance under natural and arbitrary poses

that people take when their attention is not directed towards the

camera, and are not suitable for back views. In other scenarios

like video-surveillance, full-body detectors are more appropri-

ate, and state-of-the-art methods can cope relatively well with

most of the common challenges such as articulated body poses,

low image resolution, or poor lighting conditions. Still, upper-

body detectors are of particular interest when there are frequent

occlusions, like in crowded scenes, or in environments where

the lower part of the body is not visible, like in TV broadcasts

and movies or in video-conferencing applications (see Fig. 1).

In this paper, we are interested in the latter type of scenarios

and therefore we focus on upper-body detection, although the

proposed method could be applied to face or body detection as

well.
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Figure 1: Example scenarios for upper-body detection in images: video-

conferencing and entertainment (left), movies (right). Face detectors and full-

body person detectors would have difficulties due to occlusions and difficult

head poses.

Motivations. The main idea of the proposed approach is to use

soft colour-based semantic segmentation maps to distinguish

true positives from false positives coming from a pre-trained

upper-body shape detector based on Histograms of Oriented

Gradients (HOG). In fact, although such HOG detectors have

proven to be generic and efficient, their application on real-

world data still results in false positives like the ones depicted

in Fig. 2, which obviously contain upper-body like shape in-

formation. One can expect that a colour segmentation of these

detected patches would be quite different than those obtained

on trained upper-body patches. On the contrary, the segmenta-

tion of missed detection (examples are given in Fig. 2) would

exhibit a closer match.

In spite of this intuition, colour has not been used frequently

in practice. There are several reasons for that. A major one

is that the colour values are often not a discriminative factor.

For instance skin colour might be discriminative, but not the

clothing ones. An alternative view is that colour information

lies more in the spatial segmentation they induce rather than in

the colour values themselves. However, exploiting plain image

colour segmentation maps to define object colour features is

difficult, as the number of regions within an object region is
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Figure 2: Typical false positives and missed detections of the state-of-the-art

HOG-based upper-body detector from the Calvin project (Eichner et al. [1]

relying on Felzenszwalb et al. [2]), at a precision of 90%.

highly variable and usually depends on some threshold and on

the highly variable colour contrast within object segments and

between the object and the background.

To address the above issues, we propose to exploit the re-

sults of a probabilistic multi-class colour segmentation algo-

rithm applied to candidate object patches generated by a first

(e.g. shape-based) object detector algorithm. The benefits are as

follows. Using a fixed number of classes with semantic mean-

ing (for upper-body, face, hair, clothing and background), we

avoid having to handle unpredictable segmentations in regions

like background or clothing that may introduce more noise than

discriminative information. In addition, working on candidate

detections allows the colour segmentation to be conducted in a

particular context. In particular, one can exploit spatial priors

over the locations of class pixels, ultimately leading to better

class colour models and finer segmentations. Furthermore, one

additional advantage of the probabilistic approach we take is the

definition of priors on class colour models, which brings infor-

mation to the segmentation whenever appropriate, like a more

informed prior for the skin/face part and a broader prior for the

background. Finally, by combining the colour segmentation in-

formation from the above algorithm with the score from the first

high-recall low-precision detector, we expect to retain the high

recall property while improving on the precision. This will be

shown in the results.

Related Work. Numerous object detection methods have been

proposed during the last years. One could classify them into

two main categories: holistic and part-based approaches. Ear-

lier holistic approaches relied on Haar wavelet related fea-

tures [3, 4] and a subsequent Support Vector Machine (SVM)

classifier or cascaded classifiers based on Adaboost. Later,

HOG-based visual features have shown to give better perfor-

mance for visual object detection tasks, including person [5],

and upper-body detection [6, 7, 8, 9] as they are capturing

the characteristic omega shape of a human upper-body. More-

over, combinations of different low-level visual feature types

have been shown to improve the overall detection performance,

for example HOG with Haar-like [8] or Local Binary Patterns

(LBP) [10] features. More recently, part-based detectors, e.g.

[11, 12, 13, 2, 1, 14], have proven to give better results thanks

to their higher ability to handle body parts alignment variabili-

ties.

Colour information has seldom been incorporated into full

or upper-body detectors. For example, Micilotta et al. [12]

used temporal adaptive skin colour models to reduce the num-

ber of false detections when tracking upper-bodies in video se-

quences. Extensions of HOG features with colour information

have been proposed for person detection [15, 16]. However,

by definition these approaches consider colour locally, that is,

without integrating a wider spatial context as we propose. The

closest work to ours is that of Ramanan [17]. They applied

a graph-cut colour segmentation algorithm to image patches

produced by an object detectors (of faces, persons, cars), and

then classified the resulting binary segmentation map using a

linear SVM. Although relying on the same hypothesis-testing

scheme as ours, this approach suffers from several limitations:

it only performs a binary segmentation, it does not integrate

prior colour information when available, and it does not fuse

the detection score relying on the segmentation feature with the

score of the initial detector. Our experiments show that these

points are indeed important to improve the performance.

Contributions. We present an effective technique for im-

proving the precision of a first-stage upper-body detector us-

ing colour segmentation information. It relies on a multi-class

probabilistic colour segmentation algorithm that leverages the

context provided by candidate detections using spatial as well

as colour prior distributions for different semantic object re-

gions. A thorough evaluation on three different data sets using

two different upper-body detection algorithms demonstrates the

validity of our approach.

2. Upper-body detection with colour segmentation

2.1. Overall approach

Figure 3 outlines the proposed method which is explained in

the caption. A key component is the segmentation algorithm

which assigns to each pixel of a detection window a probabil-

ity distribution over the four classes: skin, hair, clothing, and

background. In the following, we first summarise the approach

of Scheffler and Odobez [18] and its interest for the detection

task. Then we describe how we exploited it and explain the

segmentation representation that has been used, and finally, we

present the different classification steps.

2.2. Bayesian Segmentation algorithm

To conduct the segmentation of a given detected image, we

use an approach derived from [18]. The advantage of this al-

gorithm [18] is that it provides us with a semantic multi-class

segmentation where both spatial and colour prior knowledge,

learnt from training data, are integrated. It relies on the gen-

erative model of image colour pixels represented in Fig. 4. It

is an extension of the Probabilistic Index Map (PIM) of [19].

However, a major difference is a full Bayesian treatment of the

model by defining appropriate priors on colour palettes2. These

priors are particularly useful for classes whose colours only oc-

cupy a small part of the colour space (like for skin), as they

prevent the inference of an inappropriate class palette and ul-

timately the erroneous labelling of image pixels. This chro-

matic prior complements the class label PIM spatial prior and

2 Another important difference was the inclusion of a Markov Random Field

(MRF) regularisation term on the segmentation map (called Coherent PIM in

[18]). However, we did not use it and do not present it here as it did not result

in better detection rates and is computationally more demanding.
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Figure 3: Proposed scheme. Candidate upper-body image regions produced by an upper-body detector are colour segmented using a probabilistic algorithm. The

resulting 4-class soft segmentation maps are classified by a linear SVM, whose score is further fused using a SVM with the detection score of the first stage detector

to make a final decision.

improves the segmentation results when there is more uncer-

tainty in the spatial prior.

Model: we now more formally describe the main probabilistic

terms included in the model. Figure 4 and the corresponding

caption explain the main elements of this generative model.

First, concerning the colour information, the colour priors,

that are learnt beforehand, are Dirichlet distributions parame-

terised by ϕκ for each colour class κ (here skin, hair, clothing,

and background). For a given image I and for each class κ, dis-

crete colour distributions, called palettes, (i.e. normalised his-

tograms) parameterised by ΘIκ are drawn according to:

ppal(ΘIκ|ϕκ) = Dir(ΘIκ|ϕκ). (1)

Second, the spatial prior information is characterised by PIM

prior maps defined by: p(zIxy = κ) = πxy(κ) and the set of class

labels, i.e. discrete distributions over classes at each pixel (see

example in Fig. 5 b)). The class labels
〈

zIxy

〉

of a given image I

are generated according to:

pPIM(
〈

zIxy

〉

|
〈

πxy

〉

) =
∏

x,y

πxy(zIxy). (2)

Note that both the colour prior ϕκ and spatial PIM prior πxy are

image independent (in Fig. 4 they lie outside the plate indexed

by I).

The class label zIxy at a pixel and the colour palette are then

combined to draw the actual observed colour cIxy:

pcol(cIxy|ΘIκ, zIxy = l) =
1

v
[ΘIl]bin(cIxy), (3)

where v is a normalisation constant (the colour volume of his-

togram bin), [·]a denotes the a-th component of a vector, and

bin(·) maps a colour vector to its bin in the colour histogram.

As in [18] we use the RGB colour space and 16 histogram bins

per channel. Fig. 5 c) illustrates the inferred palettes for an ex-

ample image.

Finally, in summary, the joint prob-

ability of the image random variables

p(
〈

zIxy

〉

, 〈ΘIκ〉 ,
〈

cIxy

〉

| 〈ϕκ〉 ,
〈

πxy

〉

) is given by:

pPIM(
〈

zIxy

〉

|
〈

πxy

〉

)
∏

κ

ppal(ΘIκ|ϕκ)
∏

x,y

pcol(cIxy|ΘIzIxy
). (4)

Prior model training: In order to train the spatial PIM prior,

the base detector has been applied to images that are not part

of our evaluation datasets and for which images that are hand-

segmented into semantic classes (here: skin, hair, clothing,

x, y

κ ∈ colour classes I

πxy

PIM

ϕκ

zIxy

ΘIκ

cIxy

Figure 4: Generative model of an image I (derived from [18]). Plate nota-

tion: a box indicates random variables which are repeated for each element

of the index indicated at its bottom right. For each colour class κ, a specific

palette (i.e. a colour distribution) for this image is drawn from a colour prior.

The palettes are discrete distributions over colours (i.e. normalised histograms)

parameterised by ΘIκ, and priors over ΘIκ are Dirichlet distributions parame-

terised by ϕκ. Each pixel of coordinates x, y of the image I is assigned a colour

class zIxy drawn from the Probabilistic Index Map (PIM) prior characterised by

p(zIxy = κ) = πxy(κ), i.e. discrete distributions over classes at each pixel. Then,

for each pixel, its actual colour cIxy in an image is generated from the palette

corresponding to its class, i.e. ΘIzIxy
.

background) are available. Then, for each correct detection, the

corresponding segmented image is cropped using the bounding

box and resized to a common size (60 × 60). Finally, for each

pixel of the 60×60 patch, the distribution πxy of the class labels

is computed using the set of cropped segmented images. Note

that the individual images do not need to be fully annotated,

as there are sometimes ambiguous pixels, e.g. near the segment

boundaries.

For training the Dirichlet palette priors ϕκ for each class, we

used the colour values of the annotated pixels from the spa-

tial prior training mentioned above, as well as the Compaq

skin database [20] containing pixel values for skin and non-skin

colours.

Segmentation inference in a new image: the model is used

to infer the actual colour palettes ΘIκ and segmentation pos-

terior probabilities p(zIxy|ϕκ, πxy) of a given image, given the

PIM spatial priors and the colour palette priors. Inference on

a test image I is conducted by approximating the posterior be-

liefs over the class of each pixel zIxy and the palette of each

class ΘIκ using variational inference (details are given in [18]).

This latter task is illustrated in Fig. 5. It depicts the input image,

the spatial PIM prior, the inferred colour palettes and posterior

segmentation maps and a visualisation of the maximum a pos-

teriori segmentation (which is not used in our algorithm).

2.3. Upper-body segmentation representation

The algorithm described in the previous section has been ap-

plied to upper-body segmentation in the following way. We
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a) b) c) d) e)

Figure 5: An example illustrating the segmentation procedure: a) input image; b) spatial PIM prior (white: high probability, black: low probability); c) and d) output

of the segmentation inference, with c) the inferred palettes (each colour bin is represented with a surface proportional to its probability) and d) soft segmentation,

i.e. for each class κ, the map over the (x, y) coordinate of p(zIxy = κ|cIxy, πxy, ϕκ), the posterior belief of the label κ given the observed image as well as the PIM and

colour priors; e) maximum a posteriori segmentation.

used four class labels: skin, hair, clothing, and background. We

resorted here to discrete palettes for all labels rather than us-

ing continuous ones for the skin and hair classes as in [18]. We

trained the class spatial priors from around 150 hand-segmented

upper-body samples, which resulted in the PIM trained prior

π
t
xy. This manual segmentation was done at the pixel level by

two persons on individual images of a separate dataset. Am-

biguous pixels (often located near segment boundaries) were

not annotated, and annotation errors are smoothed out since πt
xy

is averaged over all segmented images. The Dirichlet palette

priors for the skin, background and clothing3 classes were learnt

from the Compaq skin database [20] which contains more than

13 000 images, and from a hundred samples for the hair class.

The algorithm of [18] assumes to deal only with true pos-

itive. However, our task is to extract features that allow us

to distinguish between “real” and “false” upper-body images.

Therefore, we need to reduce the influence of the trained PIM

prior πt
xy during inference in order to avoid image patches not

containing any upper-body to be “forced” (by the PIM prior) to

have an approximate upper-body shape. This was achieved by

defining the actual PIM spatial prior πxy, used when inferring

soft segmentation maps on new test images, as a mixture of the

uniform prior over the four classes:

π
u
xy(κ) =

1

4
∀κ (5)

and of the trained prior πt
xy according to

πxy = απ
u
xy + (1 − α)πt

xy. (6)

In practice we used α = 0.2. Such a weaker spatial prior does

not alter significantly the segmentation of real upper-body im-

ages and makes the distinction between true and false positives

easier.

Segmentation representation. The above algorithm produces

soft-segmentation maps, i.e. the posterior probabilities at each

pixel (x, y) and for each class κ: p(zIxy = κ|ΘIκ, πxy), as illus-

trated in Fig. 5d). Given an image patch we use these soft seg-

mentations as the segmentation feature vector:

fI =

〈

fIxy

〉

with: (7)

fIxy = p(zIxy|ΘIκ, πxy), (8)

3The same prior was used for the clothing and background classes.

In practice, the size of the segmentation output (here 60 × 60)

was normalised to a resolution of 30 by 30 pixels (by a simple

resampling of a factor 2 without interpolation), giving a lin-

earised vector fI of 4 × 30 × 30 = 3600 dimensions. Down-

sampling the segmentation output to a resolution of 30 by 30

pixels has only a small effect on the classification performance

(as neighbouring points are highly correlated) and increases the

execution speed.

2.4. Classification

Having the segmentation features of the image patches com-

ing from the base upper-body detector, two classifiers need to

be defined and trained: one that classifies the segmentation fea-

tures, and one that fuses the resulting score with that of the base

detector (c.f . Fig. 3). Here lies one of the key contributions of

our paper, that is, to use these semantic colour segmentation

features in order to improve on the performance of state-of-the-

art upper-body detectors.

Colour segmentation classifier. This classifier receives the

(3 600-dimensional) soft-segmentation features fI as input and

is trained to distinguish between true and false upper-body im-

ages. Following previous works [5, 17] and for efficiency rea-

sons, we used a linear SVM as classifier. The signed distance to

the separating hyper-plane of the trained SVM was interpreted

as a score called “segmentation score” hereafter in the fusion

process. Thus, the segmentation score ss
I

of an Image I is de-

fined as:

ss
I = ws · fI + bs, (9)

where ws and bs are the trained hyper-plane parameters.

The SVM was trained using automatically segmented im-

age patches from around 8 300 (5 700 positive, 2 600 negative)

upper-body detections that have been manually labelled as true

upper-bodies or false detections. Detections have been labelled

correct if there was sufficient overlap with the ground truth rect-

angle and incorrect otherwise. The image samples were ob-

tained from web images and videos queried using Google, and

they were different from the data used for evaluation.

Fusion classifier. The last step consists in fusing the detection

score sd
I

provided by the base upper-body detector with the seg-

mentation score ss
I
. An SVM trained on the concatenation of

the two scores s′
I
= [sd

I
ss

I
] gives us the final score:

sI = s′I · w + b, (10)
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with w and b being the hyper-plane parameters of the trained

SVM.

Here again, we used a linear SVM, trained using a dataset

composed of samples from the same image and video material

as above. This set contained around 2 800 samples (1 100 pos-

itive, 1 700 negative) with scores from both detection and seg-

mentation. With this approach, samples whose segmentations

lead to a wrong classification but have a high detection score

or vice versa (samples with an initially low detection score but

with a good segmentation score) can still be classified correctly.

2.5. Computational speed

For simplicity and efficiency, we resampled the candidate

upper-body images to a size of 60 by 60 pixels before segmen-

tation. Upper-bodies that are smaller than that are up-sampled,

but these cases are rare, and the segmentation algorithm still

gives useful results. In terms of execution speed, the proposed

algorithm requires around 10ms to process a candidate upper-

body image, i.e. to perform the segmentation and classifica-

tion, on a 3GHz 64bit Intel processor. The Calvin detector

runs at a speed of around 2.5s per image (480 × 560). The

Adaboost+HOG detector needs around 0.5s per image (of the

same resolution). Note that in the experiments, we only dealt

with a few candidates per image (from 0 to 10 in general4).

3. Experimental results

3.1. Data

To demonstrate the effectiveness and validity of the proposed

approach, we used three different public datasets containing im-

ages taken in different environments:

1. InriaLite5, a subset of the INRIA person dataset6 (the test

set) containing 145 outdoor photographs of 219 persons in

total, most of them entirely visible and viewed approxi-

mately from the front or from the back.

2. TA27, a set of 95 frames (containing 275 upper-bodies) ex-

tracted from the TA2 database, that is images from video-

conference-like recordings of people sitting around a table

(see Fig. 1, left).

3. Web8, a set of 419 images, with 98 positive images con-

taining 128 upper-bodies and 321 negative images. These

images have been obtained from random queries to Google

Images. They have been taken in all sorts of environments

and conditions.

4There was on average one or two times more detection than the true num-

ber of upper-bodies, i.e. the threshold of the base detector was set to have a

precision between 1
3

and 0.5
5http://www.robots.ox.ac.uk/ vgg/software/UpperBody/
6http://pascal.inrialpes.fr/data/human/
7https://www.idiap.ch/dataset/ta2
8will be made publicly available

Ramanan proposed approach

2 region classes 4 region classes

hard segmentation soft segmentation

spatial smoothing in segmentation no spatial smoothing

no classifier fusion fusion of classifier scores

Table 1: Differences between the proposed approach and the baseline (Rama-

nan [17]).

3.2. Algorithms

3.2.1. Base Detectors

We used the following upper-body detectors to evaluate the

impact of the base detector (see Fig. 3) on the usefulness of the

proposed approach.

HOG-Adaboost: This is a holistic upper-body detector relying

on HOG features and trained with Adaboost using the method

of Laptev [21], in which Linear Discriminant Analysis is per-

formed to train the weak classifiers. A detection cascade of 24

classifiers has been trained using around 1 200 upper-body im-

ages from the INRIA person dataset (not contained in the Inri-

aLite test set) and from Google Images, cropped to a resolution

of 60 × 60 pixels and aligned using manual annotation.

Calvin: A more powerful detector based on deformable parts

introduced by Felzenszwalb et al. [2] and applied to upper-body

detection by Eichner et al. [1].

3.2.2. Compared methods

The following detection methods have been used for compar-

ison:

No segmentation: In this method, only one of the base de-

tectors mentioned (HOG-Adaboost or Calvin) is used, without

exploiting any further colour segmentation.

Ramanan: We implemented as baseline the method of Rama-

nan [17]. Given the detection candidates produced by the base

detector, it uses GrabCut, a graph-cut-based segmentation algo-

rithm, to classify pixels into foreground and background, and a

linear SVM to classify the resulting segmentations into true or

false upper-body detection. We used the same spatial prior (for

GrabCut, where we merged the skin, hair and clothing classes

to define the foreground class) and the same SVM training pa-

rameters as for our proposed method. Table 1 outlines the major

differences between this method and our approach.

Proposed approach: It refers to the method described in the

previous section (c.f . Fig. 3), which combines the base de-

tector (HOG-Adaboost or Calvin), the colour segmentation

(Section 2), and the segmentation and fusion classifiers (Sec-

tion 2.4).

3.3. Evaluation protocol

Performance measures. We evaluated the different algorithms

using precision-recall curves. For the base detectors, these

curves were obtained by varying the detection threshold, and
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dataset

detector method 1 2 3
relative

increase

HOG+

Adaboost

no segmentation 65.79 58.44 40.66

Ramanan [17] 66.95 58.74 41.62 2.36

proposed approach 68.19 61.26 48.63 19.60

Calvin

no segmentation 83.10 75.75 70.38

Ramanan [17] 80.26 70.74 46.05 −34.57

proposed approach 84.47 77.67 72.16 2.53

Table 2: Average precision (in %) of upper-body detection on the three different

datasets using the different segmentation algorithms.

following the protocol of the PASCAL Visual Object Classes

Challenge [22]. More precisely, a detection window D is clas-

sified as correct if the condition D∩GT
D∪GT

> 0.5 is satisfied, where

GT denotes the ground-truth region. If there are several detec-

tions overlapping with the same person, only one is counted as

correct, and the others are counted as false positives.

The threshold of the base detector has been set to a low value

to obtain a high recall with a low precision. Then, the candi-

dates images were processed by the corresponding method, and

the curves were obtained by varying the threshold of the seg-

mentation classifier (Ramanan method), or of the fusion classi-

fier (proposed method).

Datasets. As mentioned in previous sections, the training data

for the different algorithm steps was collected using different

materials than the test datasets, which were only used for eval-

uating the algorithms.

3.4. Experiments

We have conducted two sets of experiments. In the first set,

we compared the three approaches using the two base detec-

tors (HOG+Adaboost and Calvin) on the three datasets. In the

second one, we detail the individual performance of the differ-

ent algorithmic steps (segmentation and fusion) on the results.

Finally, we show the influence of the parameter α in the seg-

mentation algorithm.

Overall results. Figures 6 and 7 show the resulting precision-

recall curves for the Adaboost+HOG and Calvin detectors re-

spectively. The proposed approach outperforms the baseline

methods for both types of detectors and for all three datasets.

Table 2 summarises these results. In many cases Ramanan’s

method even decreases the overall precision and recall. This

might be due to the relatively high pose variability of upper-

bodies, and the quite large difference in appearances across dif-

ferent datasets. Overall, the relative increase of the mean aver-

age precision with the proposed approach is around 6%. Also,

at a fixed precision of 80%, our proposed method increases the

recall by around 10 percentage points for the Adaboost+HOG

detector and by around 5 percentage points for the Calvin detec-

tor. The smaller improvement observed on the InriaLite dataset

with the Calvin detector could be due to the fact that this detec-

tor has been evaluated on this dataset, and thus the software that

we obtained from the Web has been very probably trained on
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Figure 9: Average precision for the three datasets with the Calvin detector and

with varying parameter α, i.e. the proportion of the uniform distribution in-

volved in the PIM class prior distribution (see Eq. 6).

these data, resulting in some overfit. This gives a much smaller

room for improvement using additional cues such as colour seg-

mentation features.

Detailed results. In the second set of experiments, we applied

the Calvin base detector and evaluated the performance of our

approach with and without the final classifier fusion step. We

compared it to the method of Ramanan [17] and extended his

method with the same classifier fusion step as for our method.

Figure 8 shows the resulting precision-recall curves of the four

different approaches. The classifier fusion largely improves the

precision on all datasets, except for TA2 with the proposed me-

thod. An explanation of this behaviour is that the upper-body

detections from the TA2 dataset are “cleaner” in terms of colour

segmentation. Also, the false positives are easier to distinguish

from true positives compared to the other datasets. Thus, the

fusion with the detection score does not help in that case, but it

does not decrease the precision neither. Also, one can note that

the proposed multi-class segmentation algorithm is performing

considerably better than the two-class segmentation proposed

by Ramanan. This is obvious when the fusion step is not used,

but also visible when exploiting it. Also note that the results

of Ramanan’s method with classifier fusion are only marginally

better than the base detector results, because the scores given

by the colour segmentation classifier are much less reliable.

Uniform prior amount. We investigates the influence of the

parameter α in equation 6 in the segmentation algorithm, i.e.

the amount of the uniform PIM spatial prior with respect to the

trained prior. Fig. 9 shows the average precision for the three

datasets with the Calvin detector and with varying α. One can

see that the use of a uniform prior is not crucial but slightly

improves the average precision. The maximum lies around α =

0.2, the value we used in our experiments.

Qualitative results. Finally, Fig. 10 illustrates some cases

where the proposed algorithm, including segmentation and fu-

sion, helped to improve the upper-body detection precision (top

three rows), and reversely, where it had problems (bottom two

rows). More results are given in the supplementary material.

In general, we noticed that for samples where the approach im-

proved classification, the shape classifier was often confused by

the presence of high gradients at sensitive places, like within the

face region due to strong shadows (first row of Fig. 10) or like

the horizontal edges near the arm (second row) which overall
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Figure 6: Precision and recall of upper-body detection using the Adaboost+HOG base detector and different segmentation approaches.

7



0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

base detector
Ramanan
proposed

(a) Dataset 1 (InriaLite)

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

base detector
Ramanan
proposed

(b) Dataset 2 (TA2)

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 

base detector
Ramanan
proposed

(c) Dataset 3 (Web)

Figure 7: Precision and recall of upper-body detection using the Calvin base detector and different segmentation approaches.
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Figure 8: Precision and recall of upper-body detection with and without the final classifier fusion (using the Calvin base detector)
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Figure 10: Some examples where the proposed approach improved classifica-

tion (top three rows) or degraded it (bottom two rows). First column: input

image; second to 5th columns: segmentation posteriors; last column: maxi-

mum a posteriori segmentation (which is not used by the algorithm). Top three

rows: positive examples of upper-body detections where the rank from the final

score has been significantly higher than the rank from the detector score. Fourth

row: true detection with decreased rank due to similar clothing and background

colour. Bottom row: negative sample where our method had problems, i.e. in-

creased the rank. Note the human shape segmentation and the skin-like object

colour which matches the face colour prior.

form a configuration that can often be found in negative samples

like buildings. The employed colour segmentation algorithm is

able to filter out these confusing gradients and to recover and

correctly identify only the relevant upper-body shape. Cases

where the colour classifier degraded the score of true samples

were often due to ambiguous clothing/background segmenta-

tion happening when the same colour is found in both regions

(4th row). Finally, the score of negative samples happened to

increase when the segmentation maps actually looked like hu-

man colour segmentation maps (5th row). Note that in this later

case, even the observed colour fit the face and hair colour prior.

4. Conclusions

We presented a new method for upper-body detection that ex-

tends state-of-the-art detectors commonly based on shape fea-

tures, like HOG. The algorithm makes use of multi-class seg-

mentation features extracted by a probabilistic colour segmen-

tation approach. We showed experimentally that, by classifying

the soft segmentations resulting from shape-based upper-body

detections and fusing both detection and segmentation score,

the overall detection precision is improved. The proposed me-

thod outperforms state-of-the-art upper-body detectors based

on shape features, suggesting that colour segmentation con-

tains complementary, discriminatory information with respect

to shape.

Future work could investigate the benefit of using this type of

colour segmentation features for other visual object detection

tasks. Also the effect of using of several shape priors to cope

for different views and object poses could be explored. Fur-

ther, the proposed detection and segmentation approach could

be used for efficient object or person tracking, where the prior

models could potentially be adapted over time. Finally, one

might consider to directly include these segmentation features

in the detector, and to train both shape and colour features in a

common framework.
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