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Abstract

Automatic face recognition is an area with immense practical potential which in-

cludes a wide range of commercial and law enforcement applications. Hence it is

unsurprising that it continues to be one of the most active research areas of com-

puter vision. Even after over three decades of intense research, the state-of-the-art

in face recognition continues to improve, benefitting from advances in a range of

different research fields such as image processing, pattern recognition, computer

graphics, and physiology. Systems based on visible spectrum images, the most re-

searched face recognition modality, have reached a significant level of maturity with

some practical success. However, they continue to face challenges in the presence of

illumination, pose and expression changes, as well as facial disguises, all of which

can significantly decrease recognition accuracy. Amongst various approaches which

have been proposed in an attempt to overcome these limitations, the use of infrared

(IR) imaging has emerged as a particularly promising research direction. This paper

presents a comprehensive and timely review of the literature on this subject. Our

key contributions are: (i) a summary of the inherent properties of infrared imaging

which makes this modality promising in the context of face recognition, (ii) a sys-

tematic review of the most influential approaches, with a focus on emerging common

trends as well as key differences between alternative methodologies, (iii) a descrip-

tion of the main databases of infrared facial images available to the researcher, and
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lastly (iv) a discussion of the most promising avenues for future research.
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1 Introduction

In the last two decades automatic face recognition has consistently been one of

the most active research areas of computer vision and applied pattern recogni-

tion. Systems based on images acquired in the visible spectrum have reached a

significant level of maturity with some practical success [1]. However, a range

of nuisance factors continue to pose serious problems when visible spectrum

based face recognition methods are applied in a real-world setting. Dealing

with illumination, pose and facial expression changes, and facial disguises is

still a major challenge.

There is a large corpus of published work which has attempted to overcome

the aforesaid difficulties by developing increasingly sophisticated models which

were then applied on the same type of data – usually images acquired in the

visible spectrum (wavelength approximately pin the range 390 − 750 nm).

Pose, for example, has been normalized by a learnt 2D warp of an input im-

age [2], generated from a model fitted using an analysis-by-synthesis approach

[3] or synthesized using a statistical method [4], while illumination has been

corrected for using image processing filters [5] and statistical facial models [6],

amongst others, with varying levels of success. Other methods adopt a multi-

image approach by matching sets [7,8,9,10] or sequences of images [11,12].

Another increasingly active research direction has pursued the use of alterna-

tive modalities. For example, it is clear that data acquired using 3D scanners
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[13,14] is inherently robust to illumination and pose changes. However, the cost

of these systems is high and the process of data collection overly restrictive

for most practical applications.

1.1 Infrared Spectrum

Infrared imagery is a modality which has attracted particular attention, in

large part due to its invariance to the changes in illumination by visible light

[15]. A detailed account of the relevant physics, which is outside the scope

of this paper, can be found in [16]. In the context of face recognition, data

acquired using infrared cameras has distinct advantages over the more common

cameras which operate in the visible spectrum. For instance, infrared images of

the faces can be obtained under any lighting condition, even in completely dark

environments, and there is some evidence that thermal infrared (see Sec. 1.2)

“appearance” may exhibit a higher degree of robustness to facial expression

changes [17]. Thermal infrared energy is also less affected by scattering and

absorption by smoke or dust than reflected visible light [18,19]. Unlike visible

spectrum imaging, infrared imaging can be used to extract not only exterior,

but also useful subcutaneous anatomical information, such as the vascular

network of a face [20]. Finally, in contrast to visible spectrum imaging, thermal

vision can be used to detect facial disguises [21].

1.2 Spectral Composition

In the existing literature, it has been customary to divide the infrared spec-

trum into four sub-bands: near IR (NIR; wavelength 0.75 − 1.4µm), short
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wave IR (SWIR; wavelength 1.4 − 3µm), medium wave IR (MWIR; wave-

length 3 − 8µm), and long wave IR (LWIR; wavelength 8 − 15µm). This di-

vision of the IR spectrum is also observed in the manufacturing of infrared

cameras, which are often made with sensors that respond to electromagnetic

radiation constrained to a particular sub-band. It should be emphasized that

the division of the IR spectrum is not arbitrary. Rather, different sub-bands

correspond to continuous frequency chunks of the solar spectrum which are di-

vided by absorption lines of different atmospheric gasses [16]. In the context of

face recognition, one of the largest differences between different IR sub-bands

emerges as a consequence of the human body’s heat emission spectrum which

is, in its idealized form, shown in Fig. 1.2. Specifically, note that most of the

heat energy is emitted in LWIR sub-band, which is why it is often referred

to as the thermal sub-band (this term is sometimes extended to include the

MWIR sub-band). Significant heat is also emitted in the MWIR sub-band.

Both of these sub-bands can be used to passively sense facial thermal emis-

sions without an external source of light. This is one of the reasons why LWIR

and MWIR sub-bands have received the most attention in the face recognition

literature. In contrast to them, facial heat emission in the SWIR and NIR sub-

bands is small and recognition systems operating on data acquired in these

sub-bands require appropriate illuminators (invisible to the human eye) i.e.

recognition is active in nature [22]. In recent years, the use of NIR also started

received increasing attention from the face recognition community, while the

utility of the SWIR sub-band has yet to be studied in depth.
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Fig. 1. The idealized spectrum of heat emission by the human body predicted by
Planck’s law at 305 K, with marked boundaries of the four infrared sub-bands of
interest in this paper: near-wave (NIR), short-wave (SWIR), medium-wave (MWIR)
and long-wave (LWIR). Observe that the emission in the NIR and SWIR sub-bands
is nearly zero. As a consequence, imaging in these bands is by necessity active i.e.
it requires an illuminator at the appropriate wavelengths.

1.3 Challenges

The use of infrared images for automatic face recognition is not void of chal-

lenges. For example, MWIR and LWIR images are sensitive to the environ-

mental temperature, as well as the emotional, physical and health condition

of the subject, as illustrated in Fig. 2. They are also affected by alcohol intake.

Another potential problem is that eyeglasses are opaque to the greater part

of the IR spectrum (LWIR, MWIR and SWIR) [23]. This means that a large

portion of the face wearing eyeglasses may be occluded, causing the loss of

important discriminative information. Unsurprisingly, each of the aforemen-

tioned challenges has led to and motivated a new research direction. Some

researchers have suggested fusing the information from IR and visible modali-

ties as a possible solution to the problem posed by the opaqueness of eyeglasses

[1]. Others have described methods which use thermal infrared images to ex-
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tract a range of invariant features such as facial vascular networks [20,24] or

blood perfusion data [25] in order to overcome the temperature dependency

of thermal “appearance”. Another consideration of interest pertains to the

impact of sunlight if recognition is performed outdoors and during daytime.

Although invariant to the changes in the illumination by visible light itself

(by definition), the infrared “appearance” in the NIR and SWIR sub-bands

is affected by sunlight which has significant spectral components at the cor-

responding wavelengths. This is one of the key reasons why NIR and SWIR

based systems which perform well indoors struggle when applied outdoors

[26,27].

(a) (b)

Fig. 2. Thermal IR images of a person acquired during the course of an average
day (a), and following exposure to cold (b). Note that the images were enhanced
and are shown in false colour for easier visualization.

1.4 Aims and Organization

The aim of this paper is to present a thorough literature review of the growing

and increasingly important problem of infrared face recognition. In comparison

with the already published reviews of the field, by Kong et al. [1], Akhloufi et

al. [28] and Ghiass et al. [29,30], the present paper makes several important

contributions. Firstly, we survey a much greater corpus of relevant work. What

is more, we include and give particular emphasis to the most recent advances
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in the field. As such, our review is both the most comprehensive and the

most up-to-date review of infrared based face recognition to date. Finally,

our work is distinguished from other reviews of the field also by its original

categorization of different methodologies, which adds further insight into the

evolution of dominant research trends.

The remainder of this paper is organized as follows. Firstly, the inherent ad-

vantages and disadvantages of infrared data in the context of face recognition

are discussed in Sec. 2. Sec. 3 comprises the main part of the paper. This is

where we describe different recognition approaches proposed in the literature,

grouped by the methodology or the type of features employed for recognition.

Sec. 4 which follows aims to survey various databases of infrared facial im-

ages. Our focus was on free databases, but a number of proprietary databases

which have gained prominence through important peer-reviewed publications

are included as well. Finally, the most important conclusions and trends in

the field to date are summarized in Sec. 5.

2 Infrared Data: Advantages and Disadvantages

Many of the methods for infrared based face recognition have been inspired

by or are verbatim copies of algorithms which were initially developed for vis-

ible spectrum recognition. In most cases, these methods make little use of the

information about the spectrum which was used to acquire images. However,

the increasing appreciation of challenges encountered in trying to robustly

match infrared images strongly suggests that domain specific properties of

data should be exploited more. Indeed, as we discuss in Sec. 3 and 5, the re-
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cent trend in the field has been moving in this direction, increasingly complex

IR specific models being proposed. Thus, in this section we focus on the rele-

vant differences of practical significance between infrared and visible spectrum

images. The use of infrared imagery provides several important advantages as

well as disadvantages, and we start with a summary of the former first.

2.1 Advantages of Infrared Data in Automatic Face Recognition

Much of the early work on the potential of infrared images as identity sig-

natures was performed by Prokoski et al. [31,32,33]. They were the first to

advance the idea that infrared “appearance” could be used to extract robust

biometric features which exhibit a high degree of uniqueness and repeatability.

Facial expression and pose changes are two key factors that a face recognition

system should be robust to for it to be useful in most practical applications of

interest. By comparing image space differences of thermal and visible spectrum

images, Friedrich et al. [17] found that thermal images are less affected by

changes in pose or facial expression than their visible spectrum counterparts.

An example is shown in Fig. 3. Illumination invariance of different infrared sub-

bands was analyzed in detail by Wolff et al. [34] who showed the superiority

of infrared over visible data with respect to this important nuisance variable.

(a) (b)

Fig. 3. Examples of (a) visible spectrum images and (b) the corresponding thermo-
grams of an individual across different poses/views [17]. Note that the visible and
thermal images were not acquired concurrently so the poses in (a) and (b) are not
exactly the same.
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The very nature of thermal imaging also opens the possibility of non-invasive

extraction and use of superficial anatomical information for recognition. Blood

vessel patterns are one such example. As they continually transport circulat-

ing blood, blood vessels are somewhat warmer than the surrounding tissues.

Since thermal cameras capture the heat emitted by a face, standard image pro-

cessing techniques can be readily used to extract blood vessel patterns from

facial thermograms. An important property of these patterns which makes

them particularly attractive for use in recognition is that the blood vessels

are “hardwired” at birth and form a pattern which remains virtually unaf-

fected by factors such as aging, except for predictable growth [35]. Moreover,

it appears that the human vessel pattern is robust enough to facilitate scaling

up to large populations [33]. Prokoski et al. estimate that about 175 blood

vessel based minutiae can be extracted from a full facial image [33] which,

they argued, can exhibit a far greater number of possible configurations than

the size of the foreseeable maximum human population. It should be noted

that the authors did not propose a specific algorithm to extract the minutiae

in question. In the same work, the authors also argued that forgery attempts

and disguises can both be detected by infrared imaging. The key observation

is that the temperature distribution of artificial facial hair or other facial wear

differs from that of natural hair and skin, allowing them to be differentiated

one from another.

2.1.1 The Twin Paradox

An interesting question first raised by Prokoski et al. [33] concerns thermo-

grams of monozygotic twins. The appearance of monozygotic twins (or “iden-
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tical” in common vernacular) is nearly identical in the visible spectrum. Using

a small number of thermograms of monozygotic twins which were qualitatively

assessed for similarity, Prokoski et al. found that the difference in appearance

was significantly greater in the thermal than in the visible spectrum, and

sufficiently so to allow for them to be automatically differentiated. This hy-

pothesis was disputed by subsequent contradictory findings of Chen et al. [36].

However, the weight of evidence provided both by Prokoski et al. as well as

Chen et al. is inadequate to allow for a confident conclusion to be made. Both

positive and negative claims are based on experiments which use little data

and lack sufficient rigour. In addition, it is plausible that the truth may be

somewhere in the middle, that is, that in some cases monozygotic twins can

be differentiated from their thermograms and in others not, depending on a

host of physiological variables.

2.2 Limitations of Infrared Data in Automatic Face Recognition

In the context of automatic face recognition, the main drawback specific to

the thermal sub-band images (or thermograms, as they are often referred to),

the most often used sub-band of the infrared spectrum, stems from the fact

that the heat pattern emitted by the face is affected by a number of con-

founding variables, such as ambient temperature, air flow conditions, exercise,

postprandial metabolism, illness and drugs [33]. Sensitivity to ambient tem-

perature is illustrated on an example in Fig. 4 (a–d). Some of the confounding

variables produce global, others local thermal appearance changes. Wearing

clothes, experiencing stress, blushing, having a headache or an infected tooth
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are examples of factors which can effect localized changes.

(a) 28.4◦C (b) 28.7◦C

(c) 28.9◦C (d) 29.3◦C (e) Visible (f) Thermal

Fig. 4. (a–d) Thermal infrared images of the same person taken at different am-
bient temperatures [37]. Regions marked in red correspond to heat intensity val-
ues exceeding 93% of the maximal heat value representable in the images. (e,f) A
corresponding pair of visual and false colour thermal images of a person wearing
eyeglasses. Notice the complete loss of information around the eyes in the thermal
image. The visible spectrum image is affected much less: some information is lost
due to localized specular effects and the occlusion of the face by the frame of the
eyeglasses.

The high sensitivity of the facial thermogram to a large number of extrinsic

factors makes the task of finding persistent and discriminative features a chal-

lenging one. It also lends support to the ideas first voiced by Prokoski et al.

who argued against the use of thermal appearance based methods in favour of

anatomical feature based approaches invariant to many of the aforementioned

factors. As we will discuss in Sec. 3.2, this direction of infrared based face

recognition has indeed attracted a substantial research effort.

Another drawback of using the infrared spectrum for face recognition is that

glass and thus eyeglasses are opaque to wavelengths longer and including the

SWIR sub-band. Consequently an important part of the face, one rich in

discriminative information, may be occluded in the corresponding images. In

particular, the absence of appearance information around the eyes can greatly

decrease recognition accuracy [38]. Multi-modal fusion based methods have

11



been particularly successful in dealing with this problem, as described in detail

in Sec. 3.4.3.

Lastly, a major challenge when NIR and SWIR sub-bands are used for recog-

nition, stems from their sensitivity to sunlight which has significant spectral

components at the corresponding wavelengths [26,27]. In this sense, the prob-

lem of matching images acquired in NIR and SWIR sub-bands is similar to

matching visible spectrum images.

3 Face Recognition Using Infrared

In this review, we recognize four main groups of face recognition methodolo-

gies which use infrared data: holistic appearance based, feature based, multi-

spectral based, and multi-modal fusion based. Holistic appearance methods

use the entire infrared appearance image of a face for recognition. Feature

based approaches use infrared images to extract salient face features, such as

facial geometry, its vascular network or blood perfusion data. Spectral model

based approaches model the process of infrared image formation to decom-

pose images of faces. Some approaches directly use data from multi-spectral

or hyper-spectral imaging sensors to obtain facial images across different fre-

quency sub-bands. Multi-modal fusion based approaches combine information

contained in infrared images with information contained in other types of

modalities, such as visible spectrum data, with the aim of exploiting their

complementary advantages. As the understanding of the challenges of using

infrared data for face recognition has increased, this direction of research has

become increasingly active.
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3.1 Appearance-Based Methods

The earliest attempts at examining the potential of infrared imaging for face

recognition dates back to 1992 and the work done by Prokoski et al. [31].

Their work introduced the concept of “elementary shapes” extracted from

thermograms, which are likened to fingerprints. While precise technical detail

of the method used to extract these elementary shapes is lacking, it appears

that they are isothermal regions segmented out from an image, as illustrated in

Fig. 5. There is no published record on the effectiveness of this representation.

Fig. 5. Images of “elementary shapes” proposed by Prokoski et al. [31].

3.1.1 Early Approaches

Perhaps unsurprisingly, most of the automatic methods which followed the

work of Prokoski et al. closely mirrored in their approach methods developed

for the more popular visible spectrum based recognition. Generally, these used

holistic face appearance in a simple statistical manner, with little attempt to

achieve any generalization, relying instead on the availability of training data

with sufficient variability of possible appearance for each subject.

One of the first attempts at using infrared data in an automatic face recogni-

tion system was described by Cutler [39]. His method was entirely based on

the popular Eigenfaces method proposed by Turk and Pentland [40]. Using a

database of 288 thermal images (12 images for each of the 24 subjects in the
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database) which included limited pose and facial expression variation, Cutler

reported rank-1 recognition rates of 96% for frontal and semi-profile views,

and 100% for profile views. These recognition rates compared favourably with

those achievable using the same methodology on visible spectrum images. Fol-

lowing these promising results, many of the subsequently developed algorithms

also adopted Eigenfaces as the baseline classifier. For example, findings similar

to those made by Cutler were independently reported by Socolinsky et al. [41].

In their later work, Socolinsky et al. [42] and Selinger et al. [43,44] extended

their comparative evaluation of thermal and visible data based recognition

using a wider range of linear methods: Eigenfaces (that is, principal component

analysis), linear discriminant analysis, local feature analysis and independent

component analysis. Their results corroborated previous observations made in

the literature on the superiority of the thermal spectrum for recognition in the

presence of a range of nuisance variables. However, the conclusions that could

be drawn from their analysis of different recognition approaches, or indeed

that of Culter, were limited by the insufficiently challenging data sets which

were used: pose and expression variability was small, training and test data

were acquired in a single session, and the subjects wore no eyeglasses. This is

reflected in the fact that all of the evaluated algorithms achieved comparable,

and in practical terms high, recognition rates (approximately 93-98%).

3.1.2 Effects of Registration

In practice, after detection faces are still insufficiently well aligned (registered)

for pixel-wise comparison to be meaningful. The simplest and the most direct

way of registering faces is by detecting a discrete set of salient facial features
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and then applying a geometric warp to map them into a canonical frame.

Unlike in the case of images acquired in the visible spectrum, in which sev-

eral salient facial features (such as the eyes and the mouth) can usually be

reliably detected [45,46,47], most of the work to date supports the conclusion

that salient facial feature localization in thermal images is significantly more

challenging. Different approaches, which mainly focus on the eyes, were de-

scribed by Tzeng et al. [48], Arandjelović et al. [38], Jin et al. [49], Bourlai

et al. [50,51] and Martinez et al. [52]. What is more, the effect of feature lo-

calization errors and thus registration errors seems to be greater for thermal

than visible spectrum images. This was investigated by Chen et al. [53] who

demonstrated a substantial reduction in thermal based recognition rates when

small localization errors were synthetically introduced to manually marked eye

positions.

Zhao et al. [54] circumvent the problem of localizing the eyes in passively

acquired images by their use of additional active NIR data. A NIR lighting

source placed close to and aligned with the camera axis is used to illuminate

the face. Because the interior of the eyes reflects the incident light the pupils

appear distinctively bright and as such are readily detected in the observed

image (the so-called “bright pupil” effect). Zhao et al. use the locations of

pupils to register images of faces, which are then represented using their DCT

coefficients and classified using a support vector machine. A related approach

has also been described by Zou et al. [55].
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3.1.3 Recent Advances in IR Appearance Based Recognition

Although the general trend in the field has been way from appearance based

approaches and in the direction of feature and model based methods, the

former have continued to attract some research interest. Much like the ini-

tial work, the recent advances in appearance based IR face recognition has

closely mirrored research in visible spectrum based recognition. Progress in

comparison with the early work is mainly to be found in the use of more so-

phisticated statistical techniques. For example, Elguebaly and Bouguila [56]

recently described a method based on a generalized Gaussian mixture model,

the parameters of which are learnt from a training image set using a Bayesian

approach. Although substantially more complex, this approach did not demon-

strate a statistically significant improvement in recognition on the IRIS Ther-

mal/Visible database (see Sec. 4.2), both methods achieving rank-1 rate of

approximately 95%. Lin et al. [57] were the first to investigate the potential of

the increasingly popular compressive sensing in the context of IR face recogni-

tion. Using a proprietary database of 50 persons with 10 images each person,

their results provided some preliminary evidence for the superiority of this

approach over wavelet based decomposition (also see Sec. 3.2.2).

Considering that the development of appearance based methods has nearly ex-

clusively focused on the use of more sophisticated statistical techniques (rather

than the incorporation of data specific knowledge, say), it is a major flaw in

this body of research that the data sets used for evaluation have not included

the types of intra-personal variations that appearance based methods are likely

to be sensitive to. Indeed, none of the data sets that we are aware of included
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intra-personal variations due to differing emotional states, alcohol intake or

exercise, for example, or even ambient temperature. This observation casts a

shadow on the reported results and impedes further development of algorithms

which could cope with such variations in a realistic, practical setup.

3.2 Feature-Based Methods

An early approach which uses features extracted from thermal images, rather

than raw thermal appearance, was proposed by Yoshitomi et al. [58]. Follow-

ing the localization of a face in an image, their method was based on combin-

ing the results of neural network based classification of grey level histograms

and locally averaged appearance, and supervised classification of a facial ge-

ometry based descriptor. The proposed method was evaluated across room

temperature variations ranging from 302K to 285K. As expected, the highest

recognition rates were attained (92%+) when both training and test data were

acquired at the same room temperature. However, the significant drop to 60%

for the highest temperature difference of 17K between training and test data

demonstrated the lack of robustness of the proposed features and highlighted

the need for the development of discriminative features exhibiting a higher

degree of invariance to confounding variables expected in practice. Yoshitomi

et al. did not investigate the effectiveness of their method in the presence of

other nuisance factors, such as pose or expression.

3.2.1 Infrared Local Binary Patterns

In a series of influential works, Li et al. [59,60,61,26] were the first to use fea-

tures based on local binary patterns (LBP) [62] extracted from infrared images.
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They apply their algorithm in an active setting which uses strong NIR light-

emitting diodes, coaxial with the direction of the camera. This setup ensures

both that the face is illuminated as homogeneously as possible, thus removing

the need of algorithmic robustness to NIR illumination, as well as that the eyes

can be reliably detected using the bright pupil effect. Evaluated in an indoor

setting and with cooperative users, their system achieved impressive accuracy.

However, as noted by Li et al. [26] themselves, it is unsuitable for uncooper-

ative user applications or outdoor use due to the strong NIR component of

sunlight (see Sec. 2).

The use of local binary patters was also investigated by Maeng et al. [63],

who applied them in a multi-scale framework on NIR imagery acquired at

distance (up to 60m) with limited success, dense SIFT based features proving

more successful in their recognition scenario. A good comparative evaluation

of local binary patters in the context of a variety of linear and kernel methods

was recently published by Goswami et al. [64].

3.2.2 Wavelet Transform

Owing to its ability to capture both frequency and spatial information, the

wavelet transform has been studied extensively as a means of representing a

wide range of 1D and 2D signals, including face appearance in the visual spec-

trum. Srivastava et al. [65,66] were the first to investigate the use of wavelets

for extracting robust features from face “appearance” images in the infrared

spectrum. They described a system which uses the wavelet transform based on

a bank of Gabor filters. The marginal density functions of the filtered features

are then modelled using Bessel K forms which are matched using the sim-
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ple L2-norm. Srivastava et al. reported a remarkable fit between the observed

and the estimated marginals across a large set of filtered images. Evaluated

on the Equinox database their method achieved a nearly perfect recognition

rate and on the FSU database (the two databases are described in Sec. 4.1

and 4.7) outperformed both Eigenfaces and independent component analy-

sis based matching. A similar approach was also described by Buddharaju et

al. [67]. The method of Nicolo and Schmid [19] also adopts Gabor wavelet

features at its core and encodes the responses using the recently introduced

Weber local descriptor [68] and local binary patterns.

3.2.3 Curvelet Transform

The curvelet transform an extension of the wavelet transform in which the de-

gree of orientational localization is dependent on the scale of the curvelet [69].

For a variety of natural images, the curvelet transform facilitates a sparser

representation than wavelet transforms do, with effective spatial and direc-

tional localization of edge-like structures. Xie et al. [70,71,72] described the

first infrared based face recognition system which uses the curvelet transform

for feature extraction. Using a simple nearest neighbour classifier, in their

experiments the method demonstrated a slight advantage (of approximately

1-2%) over simple linear discriminant based approaches, but with a significant

improvement in computational and storage demands.

3.2.4 Vascular Networks

Although the idea of using the superficial vascular network of a face to derive

robust features for recognition dates as far back as the work of Prokoski et
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al. [31], it wasn’t until only recently that the first automatic methods have

been described in the literature. The first corpus of work based around this

idea was published by Buddharaju et al. [20,73,24] with subsequent further

contributions by Gault et al. [74] and Seal et al. [75]. Following automatic

background-foreground segmentation of a face, Buddharaju et al. first extract

blood vessels from an image using simple morphological filters, as shown in

Fig. 6(a-d). The skeletonized vascular network is then used to localize salient

features of the network which they term thermal minutia points and which

are similar in nature to the minutiae used in fingerprint recognition. Indeed,

the authors adopt a method of matching sets of minutia points already widely

used in fingerprint recognition, using relative minutiae orientations on local

and global scale. Unsurprisingly, the method’s performance was best when the

semi-profile pose was used for training and querying, rather than the frontal

pose. This finding is similar to what has repeatedly been noted by multiple au-

thors for both human and computer based recognition in the visible spectrum

[76,77,10]. While images of frontally oriented faces contain the highest degree

of appearance redundancy, they limit the amount of discriminative informa-

tion available from the sides of the face. In the multi-pose training scenario,

rank-1 recognition of approximately 86% and the equal error rate of approx-

imately 18% were achieved. While, as the authors note, some of the errors

can be attributed to incorrectly localized thermal minutia points, the main

reason for the relatively poor performance of their method is to be found in

the sensitivity of their geometry based approach to out-of-plane rotation and

the effected distortion of the observed vascular network shape.
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Vascular network of Buddharaju et al.

(a)
100%

(b) 90% (c) 80% (d) 70%

Vesselness response based representation of Ghiass et al.

(e)
100%

(f) 90% (g) 80% (h) 70%

Fig. 6. One of the major limitations of the vascular network based approach pro-
posed by Buddharaju et al. lies in its ‘crisp’ binary nature: a particular pixel is
deemed either a part of the vascular network or not. The consequence of this is that
the extracted vascular network is highly sensitive to the scale of the input image
(and thus to the distance of the user from the camera as well as the spatial resolution
of the camera). (a-d) Even small changes in face scale can effect large topological
changes on the result (note that the representation of interest is the vascular net-
work, shown in black, which is only superimposed on the images it is extracted
from for the benefit of the reader). (e-h) In contrast, the vesselness response based
representation of Ghiass et al. [78,79] encodes the certainty that a particular pixel
locus is a reliable vessel pattern, and exhibits far greater resilience to scale changes.

In their more recent work, Buddharaju et al. [80] improve their method on sev-

eral accounts. Firstly, they introduce a post-processing step in their vascular

network segmentation algorithm, with the aim of removing spurious segments

which, as mentioned previously, are responsible for some of the matching er-

rors observed of their initial method [24]. More significantly, using an iterative

closest point algorithm Buddharaju et al. now also non-rigidly register two

vascular networks which are being compared as a means of correcting for the

distortion effected by out-of-plane head rotation. Their experiments indeed

demonstrate the superiority of this approach over that proposed previously.

Cho et al. [81] describe a simple modification of the temporal minutia point
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based approach of Buddharaju et al. which appends the location of the face

centre (estimated from the segmented foreground mask) to the vectors cor-

responding to minutia point loci. Their method significantly outperformed

Näıve Bayes, multilayer perceptron and Adaboost classifiers, achieving a false

acceptance rate of 1.2% for the false rejection rate of 0.1% on the Equinox

database (see Sec. 4).

The most recent contribution to the corpus of work on vascular network based

recognition was made by Ghiass et al. [78,79]. There are several important as-

pects of novelty in the approach they describe. Firstly, instead of seeking a

binary representation in which each pixel either ‘crisply’ belongs or does not

belong to the vascular network, the baseline representation of Ghiass et al.

smoothly encodes this membership by a confidence level in the interval [0, 1].

This change of paradigm, further embedded within a multi-scale vascular net-

work extraction framework, is shown to achieve better robustness to face scale

changes (e.g. due to different resolutions of query and training images, or

indeed different user-camera distances), as illustrated in Fig. 6. The second

significant contribution of this work concerns the recognition across pose which

is a major challenge for previously proposed vascular network based methods.

The method of Ghiass et al. achieves pose invariance by geometrically warping

images to a canonical frame. Ghiass et al. are the first to show how the ac-

tive appearance model (AAM) [82] can be applied on IR images of faces and,

specifically, they show how the difficult problem of AAM convergence in the

presence of many local minima can be addressed by pre-processing thermal IR

images in a manner which emphasizes discriminative information content [78].
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In their most recent work, recognition across the entire range of poses from

frontal to profile is achieved by training en ensemble of AAMs, each ‘special-

izing’ in a particular region of the thermal IR face space corresponding to an

automatically determined cluster of poses and subject appearances [79].

Lastly, it should be noted that Ghiass et al. emphasize that “. . .none of the

existing publications on face recognition using ‘vascular network’ based repre-

sentations provide any evidence that the extracted structures are indeed blood

vessels. Thus the reader should understand that we use this term for the sake

of consistency with previous work, and that we do not claim that what we

extract in this paper is an actual vascular network. Rather we prefer to think

of our representation as a function of the underlying vasculature” (the reader

may also find the work of Gault et al. [74] useful in the consideration of this

issue).

3.2.5 Blood Perfusion

A different attempt at extracting invariant features which also exploits the

temperature differential between vascular and non-vascular tissues was pro-

posed by Wu et al. [27] and Xie et al. [83]. Using a series of assumptions on

relative temperatures of body’s deep and superficial tissues, and the ambient

temperature, Wu et al. formulate a differential equation governing blood per-

fusion. The model is then used to compute a “blood perfusion image” from

the original segmented thermogram of a face, as illustrated in Fig. 7. Finally,

blood perfusion images are matched using a standard linear discriminant and

an RBF network.

Following their original work, Wu et al. [84] and Xie et al. [85] introduce
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(a) Thermo-
gram

(b) Perfusion

Fig. 7. (a) A thermogram and the corresponding (b) blood perfusion image.

alternative blood perfusion models. The model described by Wu et al. was

demonstrated to produce comparable recognition results to the more complex

model previously, while achieving greater time and storage efficiency. Xie et

al. derived a model based on the Pennes equation which too outperformed the

initial model described by Wu et al. [27].

In addition to their work on different blood perfusion models, in their more

recent work Wu et al. [25] also extend their classification method by another

feature extraction stage. Instead of using the blood perfusion image directly,

they first decompose the image of a face using the wavelet transform. Af-

ter that, they apply the sub-block discrete cosine transform on the low fre-

quency sub-band of the transform and use the obtained coefficients as an

identity descriptor. Wu et al. demonstrate experimentally that this represen-

tation outperforms both purely discrete cosine transform based and purely

wavelet transform based representations of the blood perfusion image.

3.3 Multi-Spectral and Hyper-Spectral Methods

Multi-spectral imaging refers to the process of concurrent acquisition of a set

of images, each image corresponding to a different band of the electromagnetic
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spectrum. A familiar example is colour imaging in the visual spectrum which

acquires three images that correspond to what the human eyes perceives as

red, green, and blue sensations. In general, the number of bands can be much

greater and the width of the sub-bands different images correspond to wider

or narrower. The terms multi-spectral and hyper-spectral imaging are often

used interchangeably, while some authors make the distinction between sets

of images acquired in discrete and separated narrow bands (multi-spectral)

and sets of images acquired in usually wider but frequency wise contiguous

sub-bands. Henceforth in this paper we will consistently use the term multi-

spectral imaging and specifically describe the data used by a specific method

(or reference a standard database which contains this information).

The epidermal and dermal layers of skin make up a scattering medium that

contains pigments such as melanin, hemoglobin, bilirubin, and β-carotene.

Small changes in the distribution of these pigments induce significant changes

in the skin’s spectral reflectance. In the method of Pan et al. [86], the struc-

ture of the skin, including sub-surface layers, is sensed using multi-spectral

imaging in 31 narrow bands of the NIR sub-band. The authors measured the

variability in spectral properties of the human skin and showed that there are

significant differences in both amplitude and spectral shape of the reflectance

curves for the different subjects, while the spectral reflectance for the same

subject did not change in different trials. They also observed good invariance

of local spectral properties to face orientation and expression. On a proprietary

database of 200 subjects with a diverse sex, age and ethnicity composition,

the proposed method achieved recognition rates of 50%, 75%, and 92% for
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profile, semi-profile and frontal faces respectively. In their subsequent work,

Pan et al. [87] examine the use of holistic multi-spectral appearance, in con-

trast to their previous work which used a sparse set of local features only.

They apply Eigenfaces on images obtained from different NIR sub-bands, as

a means of de-correlating the set of features used for classification. They also

describe a method for synthesizing a discriminative signature image that they

term the “spectral-face” image, obtained by sequential interlacing of images

corresponding to different sub-bands, which in their experiments showed some

advantage when used as input for Eigenfaces. An example of a spectral-face

image and spectral-face based eigenfaces is shown in Fig. 8.

(a) (b) (c)

Fig. 8. (a) The original visible spectrum image, (b) the corresponding spectral-face,
and (c) the first five eigen-spectral-faces obtained by Pan et al. [87].

3.3.1 Inter-Spectral Matching

The work by Bourlai et al. [88] is the only published account of the use of data

acquired in the short wave infrared sub-band for face recognition. Following

face localization using the detector of Viola and Jones [89], Bourlai et al. apply

contrast limited adaptive histogram equalization and feed the result into: (i)

a K-nearest neighbour based classifier, (ii) VeriLook’s and (iii) Identity Tools

G8 commercial recognition systems. A particularly interesting aspect of this

work is that Bourlai et al. investigate the possibility of inter-spectral match-

ing. Their experimental results suggest that SWIR images can be matched
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to visible images with promising results. Klare and Jain [90] similarly match

visible and NIR data, using local binary patterns and HoG local descriptors

[91]. The success of these methods not particularly surprising considering that

the NIR and SWIR sub-bands of the infrared spectrum is much closer to the

visible spectrum than MWIR or LWIR sub-bands. Indeed, this premise is cen-

tral to the methods described by Chen et al. [92], Lei and Li [93], Mavadati et

al. [94] and Shao et al. [95] who show that visible spectrum data can be used

to create synthetic NIR images, the NIR sub-band of the infrared being the

closest to the visible spectrum.

A greater challenge was recently investigated by Bourlai et al. [96] who at-

tempted to match MWIR to visible spectrum images. Following global affine

normalization and contrast limited adaptive histogram equalization, the au-

thors evaluated different pre-processing methods (the self-quotient image and

difference of Gaussian based filtering), feature types (local binary patterns,

pyramids of oriented gradients histograms [97] and scale invariant feature

transform [98]) and similarity measures (chi-squared, distance transform based,

Euclidean and city-block). No combination of the parameters was found to be

very promising, the best performing patch based and difference of Gaussian fil-

tered LBP on average achieving only approximately 40% correct rank-1 recog-

nition rate on a 39 subject subset of the West Virginia University database

(see Sec. 4.9).
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3.4 Multimodal Methods

As predicted from theory and repeatedly demonstrated in experiments sum-

marized in the preceding sections, some of the major challenges of automatic

face recognition methods which use infrared images include the opaqueness

of eyeglasses in this spectrum and the dependence of the acquired data on

the emotional and physical condition of the subject. In contrast, neither of

these is a significant challenge in the visible spectrum. In the visible spec-

trum eyeglasses are largely transparent and such physiological variables such

as the emotional state have negligible inherent effect on one’s appearance.

Indeed, in the context of many challenging factors in the two spectra, they

can be considered complementary. Consequently, it can be expected that this

complementary information can be exploited to achieve a greater degree of

invariance across a wide range of nuisance variables.

Most of the methods for fusing information from visible and infrared spectra

described in the literature fall into one of two groups. The first of these is

data-level fusion. Methods of this category construct features which inherit

information from both modalities, and then perform learning and classifica-

tion of such features. The second fusion type is decision-level. Methods of

this group compute the final score of matching two individuals from matches

independently performed in the visible and in the infrared spectra. To date,

decision-level fusion predominates in the infrared face recognition literature.
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3.4.1 Early Work

Wilder et al. [99] were the first to investigate the possibility of fusion of visible

and infrared data. They examined three different methods for representing

and matching images, using (i) transform coded grey scale projections, (ii)

Eigenfaces and (iii) pursuit filters, and compared the performance of the two

modalities in isolation and their fusion. Decision-level fusion was achieved sim-

ply by adding the matching scores separately computed for visible and infrared

data. The transform coded grey scale projections based method achieved the

best performance of the three methods compared. Using this representation in-

dependently in the visible and thermal IR spectra, the two modalities achieved

comparable recognition results. However, the proposed fusion method had a

remarkable effect, reducing the error rate for approximately an order of mag-

nitude (from approximately 10% down to approximately 1%).

3.4.2 Time-Lapse

The problem of time-lapse in recognition concerns the empirical observation

made across different recognition methodologies that the performance of an

algorithm degrades with the passage of time between training and test data

even if the acquisition conditions are seemingly the same. The term “time-

lapse” is, we would argue, a somewhat misleading one. Clearly, the drop in

recognition performance is not caused by the passage of time per se but rather

a change in some tangible factor which affects facial appearance. This is partic-

ularly easy to illustrate on thermal data. Even if external imaging conditions

are controlled or compensated for, none of the published work attempts to

control or measure the effects of the emotional state or the level of excitement
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of the subject 1 or indeed the loss of calibration of the infrared camera [16].

The effects of external temperature on the temperature of the face is explicitly

handled only in the method proposed by Siddiqui et al. [100] who used simple

thresholding and image enhancement to detect and normalize the appearance

of face regions with particularly delayed temperature regulation. Nonetheless,

for the sake of consistency and uniformity with the rest of the literature, we

shall continue using the term “time-lapse” with an implicit understanding of

the underlying issues raised herein.

The effect of time-lapse on the performance of infrared based systems was

investigated by Chen et al. [53,101,36]. They presented experiments evidencing

the complementarity of visible and infrared spectra in the presence of time-

lapse by showing that recognition errors achieved using the two modalities, and

effected by the passage of time between training and query data acquisition,

are largely uncorrelated. Similar observations were made by Socolinsky et al.

[42]. Regardless of whether simple PCA features were used for matching or

the commercial system developed by the Equinox Corporation, the benefit of

fusing visible and infrared modalities was substantial even though the simple

additive combination of matching scores was used.

3.4.3 Eyeglasses

Since eyeglasses are opaque to the infrared frequencies in the SWIR, MWIR

and LWIR sub-bands [23], their presence is a major issue when this data is

used for recognition as some of the most discriminative regions of the face

1 This could be achieved using various proxy variables correlated with sympathetic
nervous system output, for example, such as perspiration rate, pulse, galvanic skin
response and so on.
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can be occluded. In contrast, the effect of eyeglasses on the appearance in

the visible spectrum is far less significant. The methods of Gyaourova et al.

[102] and Singh et al. [103] propose a data level fusion approach whereby a

genetic algorithm is used to select features computed separately in the visual

and thermal infrared spectra. Using two types of features, Haar wavelet based

and eigencomponent based, and the Equinox database the proposed fusion

method was shown to yield a superior performance compared to both purely

visual and purely thermal infrared based matching, and particularly so in the

presence of eyeglasses or variable illumination. Inspired by this work, Chen et

al. [104] describe a similar fusion method. Instead of a genetic algorithm, they

employ a fuzzy integral neural network based feature selection algorithm which

has the advantage of faster convergence and greater probability of reaching a

solution close to the global optimum.

Heo et al. [105] investigate both data-level and decision-level fusion. First, fol-

lowing the detection of eyeglasses, the corresponding image region is replaced

with a generic eye template. As expected, the replacement of the eyeglass

region with a generic template significantly improves recognition in the ther-

mal but not in the visible spectrum. Data-level fusion is achieved by simple

weighted addition of the corresponding pixels in mutually co-registered visible

and thermal infrared images. The key contribution of this work pertains to

the difference in performance observed between data-level and decision-level

fusion. Interestingly, unlike in the case of data-level fusion where a remarkable

performance improvement was observed, when fusion was performed at the

decision-level the performance was actually somewhat worsened.
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A similar approach to handing the occlusion of thermal infrared image re-

gions by eyeglasses was taken by Kong et al. [106]. They replace an elliptical

patch surrounding the eye occluded by eyeglasses with a patch representing

the average eye appearance. Although differently implemented, the approach

of Arandjelović et al. [38] is similar in spirit. Following the detection of eye-

glasses unlike Heo et al. and Kong et al. Arandjelović et al. do not remove the

offending image region, but rather introduce a robust modification to canoni-

cal correlations based matching, which ignores the eyeglasses region when sets

of images are compared.

3.4.4 Illumination

In addition to the problem posed by eyeglasses, in their work already de-

scribed in Sec. 3.4.3 Heo et al. [105] also examined the effects of the proposed

fusion on illumination invariance. Their results successfully substantiated the

theoretically expected complementarity of infrared and visible spectrum data.

Socolinsky et al. [107,108] extend their previous work [109] by describing a

simple decision based fusion based on a weighted combination of visible and

thermal infrared based matching scores, and evaluate it in indoor and outdoor

data acquisition environments. The more extreme illumination conditions en-

countered outdoors proved rather more challenging than the indoor environ-

ment, regardless of which modality or baseline matching algorithm was used

for recognition. Although simple, their fusion approach did yield substantial

improvements in all cases, but still failed reach practically useful performance

levels when applied outdoors.

In spirit, the work of Bhowmik et al. [110] builds on the contribution of So-
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colinsky et al. [107,108]. Bhowmik et al. also investigate a simple weighted

combination of visible and thermal infrared spectrum matching scores and

report the performance of the fusion for different contributions of the two.

The limitations of the approaches of Socolinsky et al. and Bhowmik et al.

was recognized by Arandjelović et al. [38], who demonstrate that the opti-

mal weights in decision-level fusion are illumination dependent. In a series of

works Arandjelović et al. [111,112,38] extend their method aimed at achieving

illumination invariance using visible spectrum data only [113], which fused

raw appearance and filtered appearance based matching scores, and apply it

to the fusion of matching scores based on visible and thermal data. A block

diagram of their system is illustrated in Fig. 9. Their main contribution is

a fusion method which learns the optimal weighting of matching scores in

an illumination-specific manner. Illumination specificity is achieved implicitly.

Conceptually, they exploit the observation that if the best match in the visible

domain is sufficiently confident, the illumination change between training and

novel data is small so more weight should be placed on the visible spectrum

match. If the best match is insufficiently confident, the illumination change is

significant and more weight is placed on infrared data which is largely unaf-

fected by visible light. Conceptually similar is the fusion approach described

by Moon et al. [114] which also adaptively controls the contributions of the

visible and thermal infrared spectra. Unlike the Arandjelović et al. who use a

combination of filtered holistic and local appearances, Moon et al. represent

images of faces using the coefficients obtained from a wavelet decomposition

of an input image. Different wavelet based fusion approaches have also been
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proposed by Kwon et al. [115] and Zahran et al. [116].

Visual imagery (image set) Thermal imagery (image set)

Features

Facial feature detection & registration

Modality and data fusion

Glasses detection

PreprocessingPreprocessing

Trained classifier

Fig. 9. The method proposed by Arandjelović et al. [111,38] comprises (i) data
preprocessing and registration, (ii) glasses detection and (iii) fusion of holistic and
local face representations using visual and thermal modalities.

3.4.5 Expression

The method proposed by Hariharan et al. [117] is one of the small number

data-level fusion approaches. Hariharan et al. produce a synthetic image which

contains information from both visible and infrared spectra. The key element

of their approach is empirical mode decomposition. After decomposing the

corresponding and mutually co-registered visible and thermal infrared spec-

trum images into their intrinsic mode functions, a new image is produced as

a re-weighted sum of the intrinsic mode functions of both modalities. The re-

weighting coefficients are determined experimentally on a training set in an

ad hoc subjective manner which involves human judgement on how discrimi-

native the resulting image appears. Hariharan et al. report that their method

outperformed that proposed by Kong et al. [106], as well as Rockinger and

Fechner [118], and particularly so in poor illumination conditions and in the

presence of facial expression changes.
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3.5 Other Approaches

Owing to the increasing popularity of research into infrared based recognition

there are a number of approaches in the literature which we did not discuss

explicitly. These include the geometric invariant moment based approaches of

Abas and Ono [119,120,121], elastic graph matching based method of Hizem

textitet al. [122], isotherm based method of Tzeng et al. [48], faceprints of

Akhloufi and Bendada [123], fusion work of Toh et al. [124,125], and others

[126,127,128,129,130]. Specifically, we did not describe (i) straightforward or

minor extensions of the original approaches already surveyed and (ii) those

methods which lack the weight of sufficient empirical evidence to support

their competitiveness with the state-of-the-art at the time when they were

first proposed. Nonetheless references to these are provided herein for the

sake of completeness and for the benefit of the reader.

4 Infrared Face Databases

The previous section makes it readily apparent that a major obstacle to under-

standing relative merits of published work on infrared based face recognition

lies in the evaluation methodology used to assess the effectiveness of proposed

approaches. Different authors focus their attention to different nuisance vari-

ables and, in the best case, evaluate their method on appropriate data sets.

However, it is largely unclear, at least on the basis of empirical evidence, how

different methods compare to one another if they are evaluated on the same

data representative of that which may be acquired in a real-world applica-

35



Table 1
A quick reference summary of the main databases of face images acquired in the
infrared spectrum. The presence of variability due to a particular nuisance variable
in the data is denoted by  , some but limited variability by H# and little to no
variability by #.

tion. In this section we review the most relevant databases of infrared imagery

which have been collected for research purposes. We focus our attention on

those which are public, that is, freely available. A quick reference summary of

the key facts can be found in Table 1.

4.1 Equinox

The “Human Identification at a Distance” database [131], collected by Equinox

Corporation has been the most used data set for the evaluation of infrared

based face recognition algorithms in the literature. It is freely available for

non-commercial use. The data set contains 240 × 320 pixel images of 90 in-

dividuals’ appearance in the (i) visible, (ii) long wave infrared, (iii) medium

wave infrared, and (iv) short wave infrared spectral bands, acquired using a
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setup of cameras co-registered to within 1/3 of a pixel. Fig. 10 shows an ex-

ample of a set of four concurrently acquired images. For each subject in the

database, data was collected under three different controlled lighting condi-

tions using a directional light source illuminating from the (i) frontal, (ii) left

lateral and (iii) right lateral directions. In all cases the subject was facing the

camera so the database contains only frontal face images. Individuals wearing

glasses were imaged with glasses both on and off. Facial expression variabil-

ity was introduced by two means. First, a 4 second video sequence acquired

at 10 fps was taken of the subject pronouncing the vowels. In addition, the

subject was explicitly asked to assume the ‘smiling’, ‘frowning’ and ‘surprised’

expressions. Note that all images of a particular individual were acquired in a

single session making this data set unsuitable for the evaluation of robustness

to time-lapse associated appearance changes. A comprehensive evaluation of

different recognition approaches on the Equinox database was published by

Hermosilla et al. [132].

(a) (b) (c) (d)

Fig. 10. Four concurrently acquired images from the Equinox’s “Human Identifica-
tion at a Distance Database” respectively in the visible, long wave infrared, medium
wave infrared and short wave infrared spectral bands. Images are co-registered to
within 1/3 of a pixel.
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4.2 IRIS Thermal/Visible

IRIS Thermal/Visible Face Database [133] is a free data set of thermal and

visual spectrum images, collected across pose, illumination and expression

variation. The set comprises 4228 pairs of 320× 240 pixel images which were

concurrently acquired but are not mutually co-registered. There are 32 indi-

viduals in the database, with 176–250 images per person. The five illumination

conditions were obtained using different on/off combinations of two directional

lateral light sources and one ambient light source: (i) all light sources off, (ii)

only the ambient light on, (iii) the ambient and the left directional light on, (iv)

the ambient and the right directional light on, and (v) all light on. In a similar

manner as in the Equinox database, images of the subject ‘smiling’, ‘frowning’

and exhibiting ‘surprise’ were acquired. Using a motorized setup, the camera

viewing direction was controlled and images acquired every 36◦ across the 180◦

range, resulting in 11 images per modality for each illumination setting and

subject expression. All data for a particular subject was acquired in a single

session. Fig. 11 shows examples of images from the database.

Fig. 11. Five pairs of matching visible (top row) and thermal (bottom) row images of
the IRIS Thermal/Visible Face Database [133] database of a subject in the same pose
and different illumination conditions. Note that the visible and thermal spectrum
images are not mutually co-registered.
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4.3 IRIS-M3

Much like the Equinox and IRIS Thermal/Visible data sets, IRIS-M3 [134] is

a database which contains both thermal and visible spectrum images. Unlike

the previous two databases, it also includes multi-spectral images acquired in

25 sub-bands of the visible spectrum. The acquisition of multi spectral images

was achieved using an electronically tunable liquid crystal filter coupled to a

camera.

The IRIS-M3 data set contains images of 82 people of various ethnicity, age

and sex, and a total of 2624 images in 640 × 480 pixel resolution. Data was

collected in two sessions. In the first session, which took place indoors, acqui-

sition was performed under two illumination conditions: first using a halogen

ambient lighting source and then a fluorescent ambient lighting source. Thus

in both cases the faces were roughly homogeneously lit. In the second ses-

sion, the acquisition of images was again performed under two illumination

conditions: first using a fluorescent ambient lighting source indoors (as in the

first session) and then outdoors in natural light. In the latter case, the sub-

jects were oriented so that sunlight was illuminating their faces from a lateral

direction. The IRIS-M3 data set does not contain any pose or expression vari-

ation: the subjects were asked to face the camera and maintain a neutral facial

expression. Example images of a single subject from the database are shown

in Fig. 12.
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(a) Flourescent (b) Thermal (c) 480nm (d) 540nm

(e) 600nm (f) 660nm (g) 720nm (h) Sunlight

Fig. 12. Eight images of a subject from the IRIS-M3 database. Shown are images
acquired indoors in the (a) visible and (b) thermal spectrum, followed by (c,d,e,f,g)
five multi-spectral images acquired in different sub-bands of the visible spectrum
(these images are subtitled with the mean wavelength of the corresponding sub-
-band), and (f) an image acquired outdoors with natural daylight in a subsequent
session.

4.4 University of Notre Dame (UND)

The University of Notre Dame data set (Collection C) [135] contains long

wave infrared and visible spectrum images in 320 × 240 pixel resolution of

241 subjects under two illumination conditions. Three studio lights were used,

one positioned in front of the subject and the other two in front and to the

right and left of the subject. The first illumination in which data was acquired

was obtained by having the frontal light off and the remaining lights off. The

second illumination was obtained by having all lights switched on. For each

illumination, two images were taken, one with the subject in a neutral facial

expression and one smiling. Thus in each session four images per modality per

subject were taken. Data was collected in multiple sessions in weekly intervals,

different subjects participating in varying numbers of repeated sessions. The

database contains a total of 2492 images some of which are shown in Fig. 13,

and it is freely available upon request.
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(a) Neutral expression (b) Smiling expression

Fig. 13. Visible and long wave infrared spectrum images of a person from the
University of Notre Dame data set. The left-hand pair of images shows the subject
in a neutral facial expression, while the right-hand pair shows the same subject
smiling.

4.5 University of Houston (UH)

The University of Houston database consists of a total of 7590 thermal images

of 138 subjects, with a uniform distribution of 55 images per subject. Subjects

are of various ethnicity, age and sex. With the exception of four subjects,

from whom data was collected in two sessions six months apart, the data

for a particular subject was acquired in a single session. The exact protocol

which was used to introduce pose and expression variability in the data set

was not described by the authors [24]. Example images are shown in Fig. 14.

The database is available free of charge upon request.

Fig. 14. False colour thermal appearance images of a subject in the five key poses
in the University of Houston data set.

4.6 Surveillance Cameras Face Database (SCface)

The Surveillance Cameras Face Database [136] is a particulary interesting data

set because it was acquired using a setup substantially different from those

adopted for the collection of other infrared databases described here. SCface
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has only recently been made public which is why it was not used in any of

the publications reviewed herein. Of all the publicly available databases, the

variability of extrinsic factors such as illumination or pose in this data set

is controlled the least. Images were collected in a “real-world” setup using a

set of visual and thermal spectrum surveillance cameras imaging hallways of a

University of Zagreb building. Thus illumination, pose, camera resolution, face

scale (distance from the camera) and to a lesser degree facial expression are

all variable. The data set contains 130 subjects and the total of 4160 images

collected over five days see Fig. 15.

Fig. 15. A set of images from the Surveillance Cameras Face Database [136] collected
at the University of Zagreb. Images were collected in a “real-world” setup using a
set of surveillance cameras of different resolutions and quality. Illumination, pose
and facial expression of subjects (University staff) were not explicitly controlled.

4.7 Florida State University (FSU)

The publicly available face data set collected at Florida State University com-

prises 234 images in 320× 240 pixel resolution of 10 different subjects across

a range of ad lib adopted poses and facial expressions [65], as illustrated in

Fig. 16. It is available for download at http://lcv.stat.fsu.edu.

4.8 UC Irvine Hyperspectral (UC)

The University of California/Irvine collected a data set of multi-spectral im-

ages of 200 subjects. All images were captured in 468 × 494 pixel resolution
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Fig. 16. Examples of images from the Florida State University infrared database
showing typical pose and facial expression variability in the data set.

[86] and under halogen ambient illumination. Subjects were imaged with a

neutral facial expression in the frontal, and two profile and semi-profile poses,

as well as with a smiling expression in the frontal pose only. For each pose and

illumination 31 multi-spectral images were captured for 0.1µm wide sub-bands

of the near infrared spectrum. For twenty of the 200 subjects, data acquisition

was repeated after a time lapse of up to five weeks. Fig. 17 (a) shows images of

a subject for different poses and facial expressions, with multi-spectral images

of two subjects in seven equidistant sub-bands covering the near wave infrared

spectrum in Fig. 17 (b,c).

4.9 West Virginia University Multispectral (WVUM)

The West Virginia University Multi-spectral database consists of visible and

short wave infrared spectrum images of 50 subjects. In the visible spectrum, 25

frontal face images were captured for each subject in the database, giving the

total of 1250 images. In the short wave infrared spectrum, faces were imaged

in the frontal, and left and right semi-profile (67.5◦ from frontal) poses. For

each pose nine multi-spectral images were acquired corresponding to 100nm

wide spectral sub-bands in the range from 950nm to 1650nm. Thus there are

1350 short wave infrared images in the database. Data for each person was

collected in two sessions, up to a month apart. Example images are shown in
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(a) Pose variation

(b) Person 1: seven multi-spectral images

(c) Person 2: seven multi-spectral images

Fig. 17. (a) For the UC Irvine Hyperspectral data set subjects were imaged with a
neutral facial expression in five different poses (the frontal pose twice) and smiling in
the frontal pose. For each pose/expression combination, multi-spectral images were
acquired in 0.1µm wide sub-bands of the near infrared spectrum. (b) Multi-spectral
images corresponding to seven equidistant (wavelength-wise) sub-bands spanning
the near infrared spectrum are shown here.

Fig. 18.

(a) 950nm (b) 1150nm (c) 1350nm (d) 1550nm (e) Visible

Fig. 18. Examples of images from the West Virginia University Multispectral
database. Shown are matching images acquired in different spectral sub-bands.

4.10 The Hong Kong Polytechnic University NIR Face Database (PolyU-

NIR)

The Hong Kong Polytechnic University NIR Face Database is one of the few

freely available data sets which contains images of faces acquired in the NIR
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sub-band of the infrared spectrum. It contains approximately 34,000 images

of 335 individuals with a moderate degree of scale, pose and facial expression

variation within the data subset of each subject. Example images are shown

in Fig. 19. More information on the database can be obtained from the original

publication [137] and at http://www4.comp.polyu.edu.hk/~biometrics/polyudb_face.htm.

(a) (b) (c) (d)

Fig. 19. Examples of images from the Hong Kong Polytechnic University NIR Face
Database. Shown are images of a single subject across a moderate degree of scale,
pose and facial expression variation.

4.11 The Laval University Thermal IR Face Motion Database

The Laval University Thermal IR Face Motion Database is the only freely

available data set which contains videos of faces acquired in the IR spectrum.

It contains 200 individuals of varying age, ethnicity and gender, with two

sequences collected for each person. Each video sequence is 10 s long and

was captured at 30 fps, thus resulting in 300 frames of 640 × 512 pixels.

The imaged subjects were instructed to perform head motion that covers the

yaw range from frontal (0 degrees) approximately full profile (90 degrees) face

orientation relative to the camera, without any special attention to the tempo

of the motion or the time spent in each pose. The subjects were also asked

to display an arbitrary range of facial expressions. Examples of frames from a

single video sequence are shown in Fig. 20. The data set if freely available for

research purposes and can be obtained by contacting the authors [79].
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Fig. 20. False colour thermal appearance images of a subject in five arbitrary poses
and facial expressions in the Laval University Thermal IR Face Motion data set.

5 Summary and Conclusions

Systems based on images acquired in the visible spectrum have reached a

significant level of maturity with some yet limited practical success. A range

of nuisance factors continue to pose serious problems when visible spectrum

based face recognition methods are applied in a real-world setting. Dealing

with illumination, pose and facial expression changes, and facial disguises is

still a major challenge. The use of infrared imaging which has emerged as an

alternative to visual spectrum based approaches, has attracted substantial re-

search and commercial attention as a modality which could facilitate greater

robustness to illumination and facial expression changes, facial disguises and

dark environments. On the other hand, both theoretical and empirical evidence

reveals a number of nuisance variables which affect infrared appearance too.

These include occlusion by corrective eyeglasses, the person’s emotional state,

postprandial thermogenesis, alcohol consumption and compensatory bodily

temperature changes to ambient temperature. Early work on infrared based

face recognition which mostly explored the use of standard statistical tech-

niques applied on holistic appearance was generally unsuccessful in dealing

with the aforementioned challenges when applied on realistic data. Feature

based methods, which extract more robust facial biometric characteristics of

a face from infrared images have been more successful. Particularly interest-
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ing are methods which are based on the distribution of superficial vessels.

Vascular network based method extract and use this information explicitly,

while blood perfusion based methods synthesize quasi-invariant images using

peripheral blood flow models. We also expect that algorithms based on the

concept of sparse representation, which have recently received a significant

amount of attention in the sphere of visible spectrum-based face recognition

[138,139], could offer interesting insights when applied on IR data.

A notable limitation which we found in all of the reviewed publications, is of

a methodological nature: despite the universal acknowledgment of the major

challenges of infrared based face recognition, none of the reported experiments

evaluate performance in the context of all of them. What is more, even papers

which do use a public database often perform evaluation on only a subset

of the data. These reasons make a direct comparison of different approaches

difficult, as well as the assessment of their capacity for practical deployment.

Consequently we encourage efforts directed towards the collection of large

scale data sets acquired in realistic conditions and their consistent use in the

evaluation and reporting of novel recognition algorithms. Indeed, in this paper

we also reviewed a range of data sets currently available to researchers.

Considering the results published to date, in the opinion of these authors two

particularly promising ideas stand out: (i) the development of identity descrip-

tors based on persistent physiological features such as vascular networks, and

(ii) the use of methods for multi-modal fusion of complementary data types,

most notably those based on visible and infrared images. Both are still in their

early stages, with a potential for significant further improvement.
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[10] O. Arandjelović and R. Cipolla. An illumination invariant face recognition
system for access control using video. In Proc. British Machine Vision
Conference, pages 537–546, 2004.

[11] K. Lee and D. Kriegman. Online learning of probabilistic appearance manifolds
for video-based recognition and tracking. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 1:852–859, 2005.

[12] K. Bowyer, K. Chang, P. Flynn, and X. Chen. Face recognition using 2-D,
3-D, and infrared: is multimodal better than multisample? In Proc. IEEE,
94(11):2000–2012, 2006.

[13] G. Pan and Z. Wu. 3D face recognition from range data. International Journal
of Image and Graphics, 5(3):573–593, 2005.

[14] A. Godil, S. Ressler, and R. Grother. Face recognition using 3D facial shape
and color map information: comparison and combination. In Proc. SPIE,
5404:351–361, 2004.

48



[15] X. Zou, J. Kittler, and K. Messer. Illumination invariant face recognition: A
survey. In Proc. IEEE Conference on Biometrics: Theory, Applications and
Systems, 2007.

[16] X. Maldague. Theory and Practice of Infrared Technology for Non Destructive
Testing. John-Wiley & Sons, 2001.

[17] G. Friedrich and Y. Yeshurun. Seeing people in the dark: Face recognition in
infrared images. In Proc. British Machine Vision Conference, pages 348–359,
2003.

[18] H. Chang, A. Koschan, M. Abidi, S. G. Kong, and C. Won. Multispectral
visible and infrared imaging for face recognition. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 1–6, 2008.

[19] F. Nicolo and N. A. Schmid. A method for robust multispectral face
recognition. In Proc. IEEE International Conference on Image Analysis and
Recognition, 2:180–190, 2011.

[20] P. Buddharaju, I. T. Pavlidis, and P. Tsiamyrtzis. Physiology-based face
recognition. In Proc. IEEE Conference on Advanced Video and Singal Based
Surveillance, pages 354–359, 2005.

[21] I. Pavlidis and P. Symosek. The imaging issue in an automatic face/disguise
detection system. In Proc. IEEE Workshop on Computer Vision Beyond the
Visible Spectrum, pages 15–24, 2000.

[22] X. Zou, J. Kittler, and K. Messer. Face recognition using active near-ir
illumination. In Proc. British Machine Vision Conference, pages 209–219,
2005.

[23] W. Tasman and E. A. Jaeger. Duane’s Ophthalmology. Lippincott Williams
& Wilkins, 2009.

[24] P. Buddharaju, I. T. Pavlidis, P. Tsiamyrtzis, and M. Bazakos. Physiology-
based face recognition in the thermal infrared spectrum. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(4):613–626, 2007.

[25] S. Q. Wu, L. Z. Wei, Z. J. Fang, R. W. Li, and X. Q. Ye. Infrared face
recognition based on blood perfusion and sub-block DCT in wavelet domain. In
Proc. International Conference on Wavelet Analysis and Pattern Recognition
(ICWAPR), 3:1252–1256, 2007.

[26] S. Li, R. Chu, S. Liao, and L. Zhang. Illumination invariant face recognition
using near-infrared images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(4):627–639, 2007.

[27] S. Wu, W. Song, L.J. Jiang, S. Xie, F. Pan, W.Y. Yau, and S. Ranganath.
Infrared face recognition by using blood perfusion data. In Proc. International
Conference on Audio- and Video-Based Biometric Person Authentication,
pages 320–328, 2005.

[28] M. Akhloufi, A. Bendada, and J. Batsale. State of the art in infrared face
recognition. Quantitative Infrared Thermography, 5(1):3–26, 2008.

49



[29] R. S. Ghiass, A. Bendada, and X. Maldague. Infrared face recognition: A
review of the state of the art. QIRT, pages 533–540, 2010.
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