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Abstract

In this paper, we propose an effective feature extraction algorithm, called

Multi-Subregion based Correlation Filter Bank (MS-CFB), for robust face

recognition. MS-CFB combines the benefits of global-based and local-based

feature extraction algorithms, where multiple correlation filters correspond-

ing to different face subregions are jointly designed to optimize the overall

correlation outputs. Furthermore, we reduce the computational complex-

ity of MS-CFB by designing the correlation filter bank in the spatial domain

and improve its generalization capability by capitalizing on the unconstrained

form during the filter bank design process. MS-CFB not only takes the dif-

ferences among face subregions into account, but also effectively exploits the

discriminative information in face subregions. Experimental results on vari-

ous public face databases demonstrate that the proposed algorithm provides

a better feature representation for classification and achieves higher recogni-

tion rates compared with several state-of-the-art algorithms.
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1. Introduction

In the past few decades, we have witnessed a rapid development of the

theories and algorithms of face recognition and its successful applications in

access control, video surveillance, law enforcement, human computer interac-

tion, and so on [1, 2, 3]. However, face recognition is still a very challenging

task due to large face appearance variations caused by occlusions, aging,

changes of illumination, facial expression, pose, etc. In particular, in many

real-world applications, it often suffers from the small sample size (SSS) prob-

lem [2] since the training samples of each subject are very few, which can

severely affect the performance of most face recognition algorithms especially

when the dimension of facial feature space is high.

It has been well recognized that effective feature extraction (FE) plays

an important role in the success of an face recognition algorithm [1, 2, 3, 4].

After the FE process, a proper low-dimensional feature vector, with which

the class separability is enhanced and the computational complexity of sub-

sequent classifiers is reduced, is generated. FE algorithms can be roughly

grouped into two categories [4]: global-based and local-based. Global-based

FE algorithms consider a face region as a whole. The extracted features

contain the information embedded in the whole face [5]. On the other hand,

local-based FE algorithms are based on face subregions (i.e., local facial fea-

tures, such as eyes, nose, mouth, and chin [4, 6, 7]) and encode the detailed

characteristics within each face subregion.

Traditional local-based FE algorithms usually combine the outputs from

different face subregions by adopting a fusion strategy (e.g., the majority

voting [8], the weighted sum [4, 9, 10], or the concatenation of original/low-

dimensional features [11, 12, 13]). Note that the above-mentioned algorithms

consider the local FE step and the combination of different subregions as two
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independent processes. Although many successful local-based FE algorithms

have been proposed, it remains an open issue that how to combine these two

processes as a whole.

In this paper, we propose an effective feature extraction algorithm, called

Multi-Subregion based Correlation Filter Bank (MS-CFB), for robust face

recognition. A new type of filter bank, i.e., Correlation Filter Bank (CFB), is

employed in MS-CFB. We formulate the filter bank design as a minimization

problem of the generalized Rayleigh quotient [14], which has a closed-form

solution. The advantages of this development are the reduction in the com-

putational complexity and the simplification in the decision process, since we

can obtain multiple correlation filters corresponding to different face subre-

gions simultaneously.

Compared with traditional algorithms, the proposed MS-CFB algorithm

has the following characteristics:

• MS-CFB makes use of local facial features to perform global FE. There-

fore, MS-CFB exploits the benefits of both local face subregions and the

whole face for extracting features, which incorporates the advantages

of both global-based and local-based FE algorithms.

• Traditional local-based FE algorithms consider the local FE step and

the combination of different face subregions as two independent pro-

cesses. In contrast, MS-CFB tries to unify these two processes in an

integrated framework. The local FE step of MS-CFB aims to optimize

the overall correlation outputs from all face subregions. Such strategy

enhances the effectiveness of local feature extraction.

• While conventional correlation filters [15] rely on the frequency domain

representations, the design process of a CFB is based on the spatial

domain representations, which effectively reduces the computational
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complexity during the filter bank design process (this is because the

Fourier transforms used in traditional algorithms are not required).

Moreover, compared with commonly used constrained correlation filters

in face recognition (such as OTF [15]), a CFB is designed by capitalizing

on the unconstrained form to improve its generalization capability.

The remainder of this paper is organized as follows. Related work is dis-

cussed in Section 2. A detailed description of the proposed MS-CFB algo-

rithm is presented in Section 3. In Section 4, the experimental results on

various public face databases are given. Finally, the concluding remarks and

future work are provided in Section 5.

2. Related Work

In this section, we begin with reviewing some widely used FE algorithms

including popular global-based and local-based FE algorithms in Section 2.1.

Some traditional and recently developed correlation filters are described in

Section 2.2. The motivation of this work is given in Section 2.3.

2.1. Global-based and Local-based FE Algorithms

A large number of global-based FE algorithms have been developed so far.

One of the most successful algorithms for face recognition is appearance-

based algorithms, where a face is represented as a vector (e.g., it can be

obtained by concatenating each row/column of a face image) [5, 16, 17] or a

tensor [18, 19]. In practice, however, a high-dimensional vector or a tensor are

too large to allow fast and robust face recognition. A common way to solve

this problem is to use dimensionality reduction algorithms, such as Principal

Component Analysis (PCA) [5], Linear Discriminant Analysis (LDA) [16, 18],

or Class-dependence Feature Analysis (CFA) [20, 21]. Each projection vector
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in the projection matrix obtained by PCA (or LDA) tries to represent (or

discriminate) all classes in the new feature space. On the other hand, each

projection vector obtained by CFA, which is based on the design of the

correlation filters, discriminates one class from all the other classes. Fig. 1

shows a comparison of the projection vectors obtained by LDA and CFA for

a three-class problem.
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Figure 1: A comparison of the projection vectors obtained by (a) LDA and

(b) CFA for a three-class problem. Each projection vector obtained by LDA

discriminates all three classes while that obtained by CFA discriminates one

class from the other two classes. Note that LDA obtains only two projection

vectors.

Global-based FE algorithms, however, do not consider the diversity of

local facial structures which can be useful for classification. Recently, local-

based FE algorithms have received much attention due to the fact that local

facial features (such as eyes and mouth) are more robust to variations of

illumination, facial expression, and pose. In [22], the Local Feature Analysis

(LFA) algorithm was introduced to encode the local topographic represen-
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tations of a face image, where kernels of local spatial support are used to

extract information from local face subregions. Kim et al. [11] presented a

component-based LDA FE algorithm for image retrieval. Each face subregion

is firstly represented as the LDA coefficients in the Fisher subspace. Then, a

feature vector is formulated by concatenating all of the coefficients. Finally, a

holistic LDA [16], which reduces the dimension of the combined feature vec-

tors, is employed to obtain a compact representation. Li et al. [13] proposed

a Block-based Bag Of Words (BBOW) algorithm for robust face recogni-

tion. Dense SIFT features [23] are calculated and quantized into different

codewords for each face subregion. Then, histograms of each face subregion

are concatenated to obtain a feature vector. Finally, linear SVM classifiers

are employed to perform classification. Su et al. [4] proposed a novel face

recognition algorithm which employs both global and local classifiers. The

global feature vector is extracted from a whole face image by using the low

frequency Fourier coefficients, while the local feature vector is constructed

based on LDA. The final classifier is formed by combining (i.e., using the lin-

ear weighted sum) a global feature based classifier and a local feature based

classifier. Zhu et al. [8] proposed a Patch-based Collaborative Representation

based Classification (PCRC) algorithm for face recognition. The majority

voting of the classification outputs from all face subregions is employed to

make a final decision. Furthermore, in order to make PCRC less sensitive to

the size of face subregions, a multi-scale scheme is used by integrating the

complementary information obtained at different scales.

We should point out that, in this paper, we focus on the FE technique,

mainly referred to dimensionality reduction [19], which aims to find a map-

ping from a high-dimensional image space onto a desired low-dimensional

face subspace in a global or local manner.
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2.2. Correlation Filters

Since the pioneering work by VanderLugt [24], correlation filters have

been widely used in signal processing and pattern recognition for decades.

One of the most simple correlation filters is the Matched Filter (MF) [24, 25],

which uses the complex conjugate of a reference sample. An MF is optimal

only when an input sample and the reference sample are identical except

that they are with different white noises. However, for practical applica-

tions, an input sample suffers from different variations, such as rotations

and illumination changes, and thus an MF does not perform well. Therefore,

the composite correlation filters [20] were developed instead of a single cor-

relation filter. For instance, Hester et al. [26] proposed the concept of the

Synthetic Discriminant Function (SDF) filter, which is the weighted sum of

MFs. An SDF filter produces high correlation peaks for authentic samples

but it does not consider impostor samples. A Minimum Average Correlation

Energy (MACE) filter [27] was proposed to minimize the average energy of

a correlation plane for all samples while constraining the correlation outputs

for authentic samples. However, an MACE filter emphasizes high frequency

parts of samples, which makes it susceptible to noise. An Optimal Tradeoff

Filter (OTF) [28] was designed by combining a Minimum Variance Synthetic

Discriminant Function (MVSDF) filter [29] (focusing on the low frequency

parts of samples) and an MACE filter. Yan et al. [21] proposed an Optimal

Extra-class Output Tradeoff Filter (OEOTF) to emphasize the outputs for

extra-class samples.

2.3. Motivation

Recent studies [1, 4] have suggested that a hybrid-based FE algorithm,

which makes use of both global-based and local-based FE algorithms, could

potentially offer the best of the two types of algorithms. Hence, in this paper
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we combine global-based and local-based FE algorithms in a principled way.

Here, instead of extracting local facial features separately and then combin-

ing them by using the weighted sum or the majority voting, the proposed

algorithm directly extracts a global feature vector based on the combination

of local features. Meanwhile, the local FE steps for different face subregions

are jointly performed so that the overall correlation outputs from all face

subregions satisfy the design criterion.

On the other hand, to adapt to the correlation filter which is specifically

designed for the face recognition task, instead of optimizing the whole cor-

relation plane, we propose to optimize the origin peaks in the correlation

plane. This improvement is motivated by the fact that the proposed feature

extraction framework mainly considers the information of the origin peaks.

One merit of working on the origin peaks is that traditional Fourier trans-

forms are not required (based on the generalized Parseval’s theorem [30]),

which improves the computational efficiency during the design process.

3. Multi-Subregion Based Correlation Filter Bank (MS-CFB)

In this section, an overview of the proposed MS-CFB algorithm for face

recognition is introduced in Section 3.1. The detailed design process of a CFB

and feature extraction based on CFBs are described in Sections 3.2 and 3.3,

respectively. Classification rule is presented in Section 3.4. The complete

algorithm is given in Section 3.5. We discuss the proposed algorithm in

Section 3.6.

Before formally presenting the proposed algorithm, we begin by introduc-

ing the notations used in this paper. Light case symbols represent the spatial

domain while bold case ones refer to the frequency domain.
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3.1. Overview of the MS-CFB Algorithm for Face Recognition

An overview of the proposed MS-CFB algorithm for face recognition is

shown in Fig. 2.

 

Design of MS-CFB for each class 

gc = [h1c;h2c;...;hMc], c=1,2,...,C 

Cosine similarity based 

 nearest neighbor classifier 

Testing set 

Multi-subregion division 

Feature extraction based on MS-CFB 

Training set 

Multi-subregion division 

Figure 2: An overview of the MS-CFB algorithm for face recognition.

Inspired by CFA [20, 21], the proposed algorithm tries to distinguish one

class from all the other classes for each projection vector. During the training

stage, for each face image in the training set, it is firstly divided into multiple

blocks of the same size (corresponding to different face subregions). Each face

subregion is represented as a high-dimensional vector by concatenating the

pixel values in the subregion (other face feature representations, such as SIFT

[23] and Gabor [31], can also be used). Secondly, a set of Correlation Filter

Banks (CFBs) is designed for all classes (see Section 3.2) and then used to

perform feature extraction (see Section 3.3). More specifically, a class-specific

9















1Ch

2Ch

CKh

1

...

C

f

f

 
 
 
  

Authentic samples for class c

MS-CFB for class C

{hC1,hC2,…,hCK}

feature vector

1f

Cf

sum of all the 

outputs for Class C

11h

11h


1ch

2ch

Mch

Multi-subregion 

division

sum of all 

the outputs 













⊙

1ch


⊙

2ch

⊙

Mch

Average 

Origin Peak

Origin 

Output Energy

Generalized 

Rayleigh Quotient

Impostor samples for class c ⊙

1ch


⊙

2ch

⊙

Mch

⊙

1ch


⊙

2ch

⊙

Mch

⊙

1ch


⊙

2ch

⊙

Mch

⊙

1ch


⊙

2ch

⊙

Mch

Correlation Filter Bank Design

Figure 3: The design process of a CFB. ‘�’ represents the inner product.

CFB is designed for each class in the training set to discriminate that class

from all the other classes, and thus a set of class-specific CFBs is obtained for

all classes and employed to extract features. During the test stage, for a face

image in the test set, after the multi-subregion division procedure, a feature

vector is extracted based on CFBs. Finally, a nearest neighbor classifier is

employed for classification.

3.2. Design Process of a CFB

Assume that there are N training images and C classes in the training

set. We aim to design a CFB for class c (c = 1, 2, · · · , C). The design process

of a CFB for class c is shown in Fig. 3.
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First, we define the overall correlation output (O[n]) of a CFB as:

O[n] =
M∑

m=1

(xm ⊗ hm,c)[n], (1)

where xm is the raw feature vector of the m-th face subregion; hm,c is a

correlation filter corresponding to the m-th face subregion for class c; M is

the number of face subregions in a face image; ‘⊗’ stands for the correlation

operator.

According to the Fourier transform theory [30], the above equation can

be re-written in the frequency domain, that is:

O[n] =
M∑

m=1

D−1∑
k=0

(Xm[k])∗Hm,c[k]e
j2πkn
P , (2)

where Xm[k] and Hm,c[k] are the Fourier transforms of xm and hm,c, respec-

tively; ‘∗’ denotes the conjugate operator; n and k represent the indexes in

the spatial domain and frequency domain, respectively; D is the dimension

of the raw local facial feature vector. Note that the point O[0], which is equal

to the sum of the inner products between the inputs and the correlation fil-

ters, is usually referred to the overall origin correlation output or the overall

origin peak.

In the CFB, all of the correlation filters are jointly designed so that the

outputs for authentic training samples (refer to the training samples in class

c) and the ones for impostor training samples (refer to the training samples

that are excluded from class c) are well separated. To achieve this goal,

we emphasize the outputs for authentic training samples while at the same

time, suppressing the outputs for impostor training samples. Formally, the

design criterion of a CFB is to minimize the overall origin output energy for

impostor training samples and simultaneously maximize the average overall

origin peak for authentic training samples for the class of interest.
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According to Eq. (2), the overall origin output energy (EI) for impostor

training samples of class c can be derived as:

EI =
1

N I
c

NI
c∑

i=1

|OI
i,c[0]|2

=
1

N I
c

NI
c∑

i=1

|
M∑

m=1

D−1∑
k=0

(XI
mi,c[k])∗Hm,c[k]|2, (3)

where OI
i,c[0] represents the overall origin correlation output corresponding to

the i-th impostor training sample of class c; XI
mi,c[k] is the Fourier transform

of xImi,c (see the definition below); N I
c is the number of impostor training

samples of class c.

Based on the generalized Parseval’s theorem [30] (which shows that the

correlation of two functions is equal to the product of the individual Fourier

transforms of the functions, where one of them is complex conjugated), in

Eq. (3) we can replace the representations of features in the frequency domain

with those in the spatial domain. Therefore, the right side of Eq. (3) is

equivalent to the following equation:

1

N I
c

NI
c∑

i=1

|D
M∑

m=1

D−1∑
n=0

xImi,c[n]hm,c[n]|2 =
D2

N I
c

NI
c∑

i=1

|
M∑

m=1

hTm,cx
I
mi,c|2

=
D2

N I
c

NI
c∑

i=1

gTc (XI
i,c)(X

I
i,c)

Tgc

= gTc Σcgc, (4)

where xImi,c = (xImi,c[0], xImi,c[1], · · · , xImi,c[D − 1])T is the raw feature vector

corresponding to the m-th face subregion of the i-th impostor training sample

of class c; hm,c = (hm,c[0], hm,c[1], · · · , hm,c[D − 1])T is the corresponding

correlation filter; XI
i,c = (xI1i,c;x

I
2i,c; · · · ;xIMi,c)∈ RMD×1 is a column vector,

which contains M different face subregions of the i-th impostor training
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sample; gc = (h1,c;h2,c; · · · ;hM,c)∈ RMD×1 is composed of M correlation

filters corresponding to M face subregions, and

Σc =
D2

N I
c

NI
c∑

i=1

(XI
i,c)(X

I
i,c)

T, (5)

where Σc is the covariance matrix which effectively encodes the relationships

among M different face subregions.

The average overall origin peak (PA) for authentic training samples of

class c can be expressed as:

PA =
1

Nc

Nc∑
j=1

OA
j,c[0]

=
D

Nc

Nc∑
j=1

M∑
m=1

D−1∑
n=0

xAmj,c[n]hm,c[n], (6)

where OA
j,c[0] represents the overall origin correlation output corresponding

to the j-th authentic training sample of class c; Nc is the number of authentic

training samples of class c.

Using the vector representation, the right side item of Eq. (6) can be

converted as:

D

Nc

Nc∑
j=1

M∑
m=1

D−1∑
n=0

xAmj,c[n]hm,c[n] =
D

Nc

Nc∑
j=1

M∑
m=1

hTm,cx
A
mj,c

=
D

Nc

Nc∑
j=1

(XA
j,c)

Tgc

= mT
c gc, (7)

where xAmj,c = (xAmj,c[0], xAmj,c[1], · · · , xAmj,c[D − 1])T is the raw feature vector

corresponding to the m-th face subregion of the j-th authentic training sam-

ple of class c; XA
j,c = (xA1j,c;x

A
2j,c; · · · ;xAMj,c) ∈ RMD×1 is a column vector,
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which contains M different face subregions of the j-th authentic training

sample, and

mc =
D

Nc

Nc∑
j=1

XA
j,c, (8)

where mc is the mean of all authentic training samples of class c.

Therefore, in order to maximize the average overall origin peak for au-

thentic training samples while minimizing the overall origin output energy

for impostor training samples, we employ the quotient form by combining

Eqs. (4) and (7), that is,

J(gc) =
P2
A

EI

=
|mT

c gc|2

gTc Σcgc
. (9)

As we can see, J(gc) is the generalized Rayleigh quotient [14] which

reaches its maximal value when Σc is a non-singular matrix. Unfortunately,

recalling that Σc = D2

NI
c

∑NI
c

i=1(X
I
i,c)(X

I
i,c)

T, where XI
i,c ∈ RMD×1, it is easy to

derive that Σc ∈ RMD×MD is a singular matrix since rank(Σc) ≤ N I
c (by

using the properties of the rank) and N I
c � MD (i.e., the SSS problem).

Therefore, to resolve the singularity problem of Σc, we add a regularized

term to Eq. (9). As a result, the optimization criterion becomes

gc = arg max
gc

|mT
c gc|2

gTc Σ̂cgc
. (10)

Here Σ̂c = (1 − α)Σc + αI, where α (∈ [0, 1]) is the regularized parameter

and I ∈ RMD×MD is an identity matrix.

Based on some matrix operations [14], the solution of Eq. (10) is

gc = Σ̂−1
c mc. (11)

Once gc is computed, all of the correlation filters hm,c (m = 1, 2, · · · ,M)

can be obtained simultaneously for class c. In this paper, gc is termed as
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Figure 4: The correlation outputs of a CFB for an authentic test sample and
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the Correlation Filter Bank (CFB), since it consists of multiple correlation

filters corresponding to different face subregions. Fig. 4 illustrates the typical

correlation outputs of a CFB for an authentic test sample and an impostor

one. As shown in Fig. 4, for an authentic test sample, the CFB can produce

a sharp peak, while the correlation output has no discernible peak for an

impostor test sample.

The time complexity to design a CFB is O(N I
c (MD)2 + (MD)3 +MD),

where M and D are the number of face subregions and the dimension of

local facial feature space, respectively. N I
c is the number of impostor training

samples of class c. The time cost mainly comprises three parts: O(N I
c (MD)2)

is used to compute Σ̂c; O((MD)3) is used to calculate the matrix inversion of

Σ̂c; and O(MD) is used to construct the final gc. Therefore, the non-diagonal

matrix inversion of Σ̂c consumes the majority time during the design process

of a CFB.

3.3. Feature Extraction Based on CFBs

After obtaining a set of CFBs (a CFB is designed by optimizing Eq. (10)

for one class) during the training stage, we can perform feature extraction

for both training set and test set. A face image correlated with all CFBs

generates a features vector to represent the image.

The proposed framework of feature extraction based on CFBs is illus-

trated in Fig. 5. According to Fig. 5, the sum of the correlation outputs

is first computed for each CFB. A global feature vector, which exploits the

statistics of local face subregions, is then constructed based on the origin

correlation outputs of all CFBs. To be specific, after the multi-subregion

division procedure, a raw feature vector is first extracted for each face sub-

region. Next, the correlations between the correlation filters in the CFB and

the corresponding raw feature vectors are calculated and then summed for
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1 课题背景和课题简介（主要是视频监控系统的背景和意义） 

随着我国社会经济的不断发展，地区之间的人员流动日益频繁。随之出现了一系列的安

全问题，许多违法犯罪分子流窜作案，跨地区的犯罪呈上升趋势，这给国家安全和社会治安

的长久稳定带来了严重的问题。为了保障城市的社会治安和稳定，许多城市采用了电子化的

视频监控系统。利用视频监控系统来抓捕危险的犯罪分子和预防各类可能的重大突发事件是

一种有效抑止跨地区犯罪和维护社会治安的方式。但是现有的视频监控系统主要还是基于人

工的运作方式。凭借人工进行嫌疑人或者各类突发事件的查找和识别，浪费了大量的劳力和

物力。如何进行智能化的监控和利用先进的模式分析和识别技术，特别是自动的目标检测，

跟踪和识别技术（包括人脸识别，行为识别等）分析各类突发事件或者嫌疑人对于保障国家

和社会安全具有十分重要的意义。另一方面，硬件水平的不断发展和模式分析和识别技术的

不断进步也给智能化目标识别带来了巨大的市场应用前景。在视频智能监控，生物特征认证，

信息安全和人机交互等领域目标检测，跟踪和识别技术都具有巨大的应用潜力。 

现在我国电子政务建设中的重点业务系统就是“平安城市”。在“平安城市”的建设中，其

核心是城市报警与监控系统，城市报警与监控系统建设也是社会治安防控体系的重要组成部

分。公安部2004年在全国范围内确定了22个城市作为首批科技强警示范城市。2005年确定中

西部地区的15个城市和江苏、浙江、山东、广东四省的23个城市作为第二批示范城市。2007

至2008年，则为第三批示范城市建设的时期，到2008年，科技强警示范城市已经达到180个。

“平安城市”的建设促进了视频监控市场的迅速增长，到2008年，全国约有200万个监控摄像

头用于城市监控与报警系统。可以看出视频监控市场巨大。以往依靠单纯的人力已经无法应

付上万人的数据库查询和分析工作。基于视频监控系统的目标检测，跟踪和识别具有重要的

经济意义和社会意义。 

综上可知，该项目具有巨大的经济效益和社会效益，是一项亟待开展的研究课题。 

//（下面主要是针对人脸识别的背景和意义） 

硬件水平的不断发展和人脸识别技术的不断进步给人脸识别带来了巨大的市场应用前

景。在视频智能监控，生物特征认证，信息安全和人机交互等领域人脸识别都具有巨大的应

用潜力。同时各国政府也在大力发展包括人脸识别在内的各种生物特征识别技术。9·11以后，

以美国为首的西方世界各国都将生物特征识别技术作为关系国家未来安全的重大关键技术

加以扶持。在国外，美国在911后连续发布三个法案强调在边检、执法、民用航空等领域应

用包括人脸识别在内的生物特征识别技术，并立法要求在2004年10月以前在护照上使用生物

Figure 5: The proposed framework of feature extraction based on CFBs. ‘⊗’

and ‘⊕’ represent the correlation operator and summation operator, respec-

tively.

each face class. Finally, a global feature vector is obtained, whose compo-

nents respectively represent the overall origin correlation outputs of all CFBs

in the summed correlation output plane. In fact, the overall origin correlation

output can also be derived by cumulating the inner products between the lo-

cal features and a CFB. Mathematically, after obtaining a set of CFBs for all

classes, each component in a global feature vector f = (f [1], f [2], · · · , f [C])T

can be obtained by

f [c] =
M∑

m=1

hTm,cxm (c = 1, · · · , C), (12)

where {h1,c, h2,c, · · · , hM,c} is the CFB for class c; xm is the raw feature vector

of the m-th face subregion; C is the dimension of the global feature vector

(which is equal to the number of face classes in the training set) and M is
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the number of face subregions in a face image.

3.4. Classification Rule

After the feature extraction step for both training set and test set, we need

to design a classifier for final classification. Note that the design process of a

CFB is to produce a correlation peak only for the authentic samples for the

class of interest, which means that the maximal value criterion, i.e., the class

index of the maximal component in the feature vector, can be used as the

classification rule. Thus the label of a test sample can be given according to

Label(y) = arg max
i=1,··· ,C

(y[i]), (13)

where y = (y[1], y[2], · · · , y[C])T is the extracted feature vector corresponding

to the test face image.

On the other hand, the cosine similarity measure based nearest neigh-

bor classifier can also be employed for classification. The cosine similarity

measure is shown as follows:

Cos(y1, y2) =
yT1 y2

||y1|| · ||y2||
, (14)

where || · || represents the L2 norm. The cosine similarity measure calculates

the angle between two vectors and is not affected by their magnitudes.

The cosine similarity measure based nearest neighbor classifier is widely

used in face recognition [32, 33]. In [20], it has been shown that the cosine

similarity measure performs better than both L1 norm and L2 norm distance

measures in most face recognition experiments. One reason is that [33], when

an unseen sample in the test set is projected onto the feature space, the novel

variations in the sample are inclined to evenly affect the projected scale on

each component of the features. Thus the variations make more influence

on the L1 norm and L2 norm distance measures (since they are affected by
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the scale differences [34]) rather than the angle between two vectors (i.e., the

cosine similarity measure). Therefore, the cosine similarity measure, which is

invariant to changes in scale, is more effective to perform the nearest neighbor

search in the feature space for face recognition.

As a matter of fact, compared with the maximal value criterion, the

nearest neighbor classifier based on cosine similarity measure has two main

advantages: 1) It explores the information in all components of the feature

vectors in both training and test sets, which is beneficial for classification; 2)

It can be applied to standard face recognition test protocols (such as FERET

[35] and CAS-PEAL [36]). According to these protocols, the subjects in both

gallery and probe sets can be the unseen classes (which do not exist in the

training set). In such a case, each component in the extracted feature vectors

obtained by MS-CFB characterizes the identity similarity between a training

class and the unseen classes. Thus, the maximal value criterion is not valid for

classifying the unseen classes, while the nearest neighbor classifier (comparing

the feature vectors in the gallery and probe sets) can be used.

3.5. The Complete Algorithm

In the previous subsections, we have developed all ingredients for a robust

face recognition algorithm. Now we put them together to yield a complete

Multi-Subregion based CFB (MS-CFB) algorithm for face recognition (as

detailed in Fig. 6).

3.6. Discussion

The advantages of the proposed MS-CFB algorithm over the related

FE algorithms are summarized as follows. Firstly, different from traditional

global-based and local-based FE algorithms, the proposed algorithm can be

viewed as a hybrid algorithm, which uses local facial features to extract a
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Training Stage:

Input: A training data matrix with C classes; the size of a face subre-

gion (s); and the regularized parameter (α).

Output: A feature matrix Ytrain of the training data.

Step 1 : Divide all face images into M blocks of the same size and

construct the training data matrix Xtrain (see Section 3.1);

Step 2 : Do for c = 1,· · · , C:

2.1 Calculate the covariance matrix Σc via Eq. (5);

2.2 Calculate the mean value mc via Eq. (8);

2.3 Design the correlation filter bank gc = (h1,c;h2,c; · · · ;hM,c)

via Eq. (11);

Step 3 : Compute the feature matrix Ytrain based on the sum of the inner

products between Xtrain and {gc|c = 1, 2, · · · , C} via Eq. (12).

Test Stage:

Input: A test image; and a feature matrix Ytrain of the training data.

Output: The class label of the test image.

Step 1 : Divide the test face image into M blocks of the same size and

construct the test data xtest (see Section 3.1);

Step 2 : Compute the feature vector ytest based on the sum of the inner

products between xtest and {gc|c = 1, 2, · · · , C} via Eq. (12);

Step 3 : Assign the class label to the test image by using the nearest

neighbor classifier with the cosine similarity measure based on

ytest and Ytrain.

Figure 6: The complete MS-CFB algorithm for face recognition.

global feature vector. Similar to the human perception system, a hybrid al-

gorithm could combine the advantages of both global-based and local-based

FE algorithms, and it is more robust to variations of illumination, facial ex-

pression, pose, and so on. Secondly, compared with the existing local-based

FE algorithms, where classifiers are independently trained for each face sub-

region, a CFB is designed by jointly optimizing multiple correlation filters
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corresponding to respective face subregions at the overall origin correlation

outputs. Therefore, the differences among face subregions are taken into ac-

count and the discriminative information in face subregions is more effectively

exploited in MS-CFB. Thirdly, while the local FE step and the combination

of local subregions are considered as two independent processes in traditional

local-based FE algorithms, the proposed algorithm attempts to unify these

two processes in one framework, where the local FE steps for different face

subregions are integrated to produce the optimal outputs. Hence, the effec-

tiveness of local FE is enhanced.

It is worth mentioning that a CFB becomes an unconstrained correlation

filter when a whole face image without division (i.e., M = 1) is considered.

Compared with the constrained correlation filters, such as OTF [20, 15] and

OEOTF [21], the generalization capability of the unconstrained correlation

filter is greatly improved since the hard constraints are removed during the

filter design process. In fact, a CFB with M = 1 can be viewed as an un-

constrained extension of an OEOTF which concentrates on the origin peaks.

However, the main differences between a CFB and an OEOTF are: 1) A CFB

is designed based on the spatial domain while an OEOTF is represented in

the frequency domain. Therefore, traditional Fourier transforms are not re-

quired during the design process of a CFB; 2) Compared with an OEOTF

that is a single filter, a CFB consists of multiple filters corresponding to dif-

ferent face subregions. A CFB is more robust in dealing with pose variations

(by dividing a whole face image into multiple subregions) than an OEOTF.

4. Experiments

In this section, we present extensive experimental results on various pub-

lic face databases to evaluate the effectiveness of the proposed algorithm. In

Section 4.1, we introduce the competing algorithms and experimental set-
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tings. In Section 4.2, we give the determination of the optimal parameters in

MS-CFB. In Section 4.3, we demonstrate the robustness of the proposed MS-

CFB algorithm against illumination variations on the Multi-PIE and FRGC

face databases. In Section 4.4, we evaluate the proposed MS-CFB algorithm

against pose and facial expression variations on the FERET and LFW face

databases. In Section 4.5, the face recognition performance obtained by the

competing algorithms on the databases with a single sample per person is

presented. A comprehensive evaluation on the CAS-PEAL R1 face database

is shown in Section 4.6. The computational complexity of the proposed algo-

rithm and the performance of the competing algorithms for automatic face

recognition are given in Sections 4.7 and 4.8, respectively. Finally, the dis-

cussion is given in Section 4.9.

4.1. The Competing Algorithms and Experimental Settings

To evaluate the performance of the proposed algorithm, we select sev-

eral popular algorithms for comparisons, including the baseline Eigenface

[5], Fisherface [16], OTF-based [20] and OEOTF-based [21] CFA , Sparse

Representation based Classification (SRC) [3], and the state-of-the-art local-

based FE algorithms including Block-FLD [37], Cascaded LDA (C-LDA)

[11], Hierarchical Ensemble Classifier (HEC) [4], Block-based Bag-Of-Words

(BBOW) [13], and Patch-based Collaborative Representation based Classifi-

cation (PCRC) [8].

Each image in the face databases is normalized to extract a facial region

that contains only the face. Specifically, the normalization for each image

contains the following steps: firstly, the centers of the eyes are manually

annotated; secondly, rotation and scaling transformations align the centers

of the eyes to predefined locations and fixed interocular distances; finally, a

face image is cropped and resized to the size of 80 × 88 pixels. Histogram
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equalization is then applied to all face images for photometric normalization.

The reduced dimension of the PCA subspace in CFA is set to N − 1,

where N is the number of training samples. The value of the parameter λ

in SRC is set to 0.001 (which is the same as [8]). For Block-FLD, we test

three different sizes of a face subregion (i.e., 10 × 10, 20 × 20, and 30 × 30)

and report the best recognition results obtained with the size of 20× 20. For

C-LDA, the five components encoding scheme is used. For HEC, the size of

a candidate face subregion is set to a range from 16 × 16 to 64 × 64. For

PCRC, the size of a face subregion is set to 10 × 10. For other parameters

used in the competing algorithms, we use their default parameter settings.

After feature extraction for both training set and test set, we employ

the nearest neighbor classifier for final classification. The cosine similarity

measure is used for all compared algorithms. For the proposed MS-CFB

algorithm, we respectively evaluate the MS-CFB (max) method (using the

maximal value criterion for classification) and the MS-CFB (cos) method

(using the cosine similarity measure based nearest neighbor classifier).

For all databases, a random subset (with t images per subject) is taken

from each database to form the training set. The rest of the database is used

as the test set. For each t, the experiments with randomly chosen subsets

are performed twenty times. We report the average recognition rates as well

as the standard deviations over the randomly chosen test sets as the final

results. The training set and test set for all the competing algorithms are

the same for all the experiments. In addition, the highest recognition rate

for each case is shown in bold font.

In this paper, we focus on the SSS problem, which is one of the most

challenging issues in face recognition [2, 8]. This problem arises when the

number of the samples is smaller than the dimension of the facial feature

space. In many real-world applications, the number of training samples for
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each subject is very limited. Therefore, the discriminability of features under

such a case is important to the final performance of a face recognition algo-

rithm. To evaluate the effectiveness of different feature extraction algorithms

to solve the SSS problem, the value of t is set to 2 ∼ 5 for all databases. In

Section 4.5, we will discuss the case that the value of t is set to 1 for the

SSPP problem in particular.

4.2. Determining the Optimal Parameters in MS-CFB

In MS-CFB, two parameters (i.e., the size of a face subregion s and the

regularized parameter α) have an influence on the recognition accuracy. If

the size of a face subregion is too large (e.g., it contains the whole face

region), MS-CFB does not take advantage of local-based feature extraction.

On the contrary, if the size of a face subregion is too small, MS-CFB becomes

sensitive to face alignment. Similarly, the regularized parameter should also

be carefully set. The purpose of regularization is to reduce the high variance

related to the estimation of the covariance matrix [38], which is caused by

the SSS problem.

To determine the optimal values of these two parameters (i.e., s and α) for

MS-CFB, we use the AR database [39] for evaluation. The AR database con-

tains over 4,000 face images of 126 subjects (70 men and 56 women). The AR

database characterizes the divergence from ideal conditions by incorporating

various facial expressions (neutral, smile, and scream), illumination changes

(left light on, right light on, and both sides’ light on), and occlusion modes.

It has been used as a testbed to evaluate the face recognition algorithms.

A subset that contains 120 subjects (each subject has 14 images) with only

facial expression and illumination changes is used in our experiments (see

Fig. 7 for some examples).

Fig. 8 shows the recognition rates obtained by MS-CFB (with the cosine
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Figure 7: The face images of one subject on the AR database.
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Figure 8: The recognition rates obtained by MS-CFB over different sizes of

a face subregion and different values of α under t = 2 and t = 4 on the AR

database.

similarity measure) over different sizes of a face subregion (including 4 × 4,

8×8, 10×11, 16×11, 20×22, and 40×44) and different values of α (including

0.2, 0.4, 0.6, and 0.8) under t = 2 and t = 4 on the AR database. We can

observe that when the size of a face subregion is very small (e.g., 4 × 4),

the recognition rate is low. This is because that a face region is divided into

too many subregions, which over-segments meaningful facial features (such

as eyes and nose) that are critical for recognition. The recognition rates

increase when the size of a face subregion becomes larger. The recognition
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rate achieves the highest when the size of a face subregion is 16× 11, while

the recognition rate begins to decrease for larger subregion sizes (e.g., 20×22

and 40 × 44), which is caused by the sensitivity of large face subregions to

variations of facial expression and illumination. The value of the regularized

parameter α also affects the recognition accuracy of MS-CFB. When α =

0.6, MS-CFB achieves the best results compared with the other values of α.

Therefore, we choose the size of a face subregion to be 16× 11 and the value

of α to be 0.6 for MS-CFB in all following experiments.

4.3. Robustness to Illumination Variations

One of the most fundamental challenges in face recognition is significant

facial appearance variations due to illumination changes. In this section,

we evaluate the performance of the proposed algorithm against illumination

variations on two popular face databases, i.e., the Multi-PIE database [40]

and the FRGC database [41].

The Multi-PIE database contains more than 750,000 images of 337 sub-

jects captured in four sessions with variations in pose, facial expression, and

illumination. A subset that contains 68 subjects (each subject has 22 images)

with various illumination changes is used. Specifically, we use the frontal

pose images (i.e., the c27 subset) under 11 different illumination conditions

(i.e., f01, f03, f05, f07, f09, f11, f13, f15, f17, f19, f21) with the ambient

lights on/off. Fig. 9 shows the face images of one subject on the Multi-PIE

database. The FRGC (Face Recognition Grand Challenge) database consists

of controlled images, uncontrolled images and three-dimensional images for

each subject. We select a subset containing 6,000 images of 300 subjects

(20 images for each subject) from the FRGC database. The face images in

this subset are captured in both controlled and uncontrolled conditions with

severe illumination variations. Fig. 10 shows the face images of one subject

26



on the FRGC database used in our experiments.

Figure 9: The face images of one subject on the Multi-PIE database.

Figure 10: The face images of one subject on the FRGC database.

Tables 1 and 2 show the average recognition accuracies obtained by the

different algorithms on the Multi-PIE and FRGC databases, respectively.

From these tables, we can see that the proposed MS-CFB (cos) algorithm

consistently achieves better recognition accuracies than the other competing

algorithms. Compared with MS-CFB (max), MS-CFB (cos) improves the

recognition rates by about 4% ∼ 5%, which demonstrates the advantages of

using the cosine similarity measure as a metric. SRC obtains better results

than Block-FLD in Multi-PIE and FRGC, which shows that SRC is more ro-

bust in dealing with illumination variations. Block-FLD constructs multiple

training patterns from a single image, but it does not consider the relation-

ships among different face subregions. PCRC, HEC, and BBOW achieve
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Table 1: The average recognition accuracies (mean%±std.dev.) obtained by

the different algorithms on the Multi-PIE database.

Algorithm t = 2 t = 3 t = 4 t = 5

Eigenface 72.24±1.5 78.54±1.7 82.13±1.8 85.41±1.7

Fisherface 76.79±1.1 86.63±1.3 88.95 ±1.4 92.07±1.5

CFA (OTF) 83.15±0.8 88.05±0.8 90.17±0.6 93.10±0.5

CFA (OEOTF) 84.00 ±0.6 88.10±0.9 92.32±0.5 93.58±0.6

SRC 82.24±1.2 86.59±1.3 89.98 ±1.2 93.15 ±0.9

Block-FLD 81.17 ±1.0 82.84±1.2 88.77±1.1 89.73±1.0

C-LDA 83.25±0.9 85.77±0.8 89.95 ±0.9 90.07±0.8

HEC 85.56 ±0.8 88.74 ±0.6 91.41 ±0.8 91.11 ±0.6

BBOW 83.58±0.8 87.25±0.9 91.27±0.9 92.66±0.7

PCRC 86.17 ±0.5 90.15 ±0.7 92.17 ±0.6 93.05 ±0.5

MS-CFB (max) 82.51±1.1 86.24±0.9 90.05 ±0.8 91.17 ±0.6

MS-CFB (cos) 86.87±0.6 92.07±0.7 94.17 ±0.5 96.65 ±0.4

Table 2: The average recognition accuracies (mean%±std.dev.) obtained by

the different algorithms on the FRGC database.

Algorithm t = 2 t = 3 t = 4 t = 5

Eigenface 45.38±1.3 53.10±1.2 64.35±1.1 70.26±1.5

Fisherface 48.17±1.1 55.42±1.3 66.78 ±1.5 69.06±1.7

CFA (OTF) 54.35±0.8 62.17±0.8 65.99±0.9 73.81±1.0

CFA (OEOTF) 59.80 ±0.7 70.05 ±0.9 78.31 ±0.7 85.04±0.6

SRC 57.72±1.1 65.14±1.2 72.28 ±0.9 81.18 ±0.9

Block-FLD 53.14 ±0.8 62.28±1.3 66.77±0.9 70.20±1.0

C-LDA 55.72±1.1 66.11 ±0.8 72.24 ±1.1 76.89±1.2

HEC 57.28 ±1.3 66.24 ±1.2 71.17 ±1.3 75.25 ±1.5

BBOW 58.57±1.4 71.90±1.2 73.10±0.7 78.43 ±0.9

PCRC 59.02 ±1.0 70.02 ±1.0 75.65 ±0.6 80.11 ±0.5

MS-CFB (max) 59.86±1.2 70.66±1.3 78.31 ±1.2 85.53 ±1.2

MS-CFB (cos) 63.99±0.8 75.24±0.9 82.21 ±0.5 88.58 ±0.6
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worse performance than MS-CFB (cos). The reason is that MS-CFB con-

siders the local FE step and the combination of different face subregions as

a whole, which effectively overcomes the disadvantages of the conventional

fusion strategies (e.g., the majority voting used in PCRC, the weighted sum

of local facial features used in HEC, and the concatenation of local features

used in BBOW) employed in local-based FE algorithms.

4.4. Robustness to Pose and Facial Expression Variations

In this section, we evaluate the influence of pose and expression variations

on the performance of the proposed algorithm by using two representative

face databases, i.e., the FERET database [35] and the LFW database [42].

The FERET database is a standard face database for evaluating the per-

formance of face recognition algorithms. A subset of the FERET database,

which includes 1,400 images of 200 subjects (each subject has 7 images),

is used. It is composed of the images whose names are marked with two-

character strings: “ba”, “bj”, “bk”, “be”, “bf”, “bd”, and “bg” (see [35]

for more details), as shown in Fig. 11. This subset involves challenges, such

as variations in facial expression and pose. Besides, we also perform an

experiment on a more realistic face database captured in unconstrained en-

vironments (i.e., the Labeled Faces in the Wild (LFW) database). The LFW

database is usually used to evaluate face recognition algorithms in real sce-

narios. It contains the images of 5,749 different individuals collected from

the web. LFW-a [43] is a version of LFW after face alignment. A subset with

150 subjects (10 images for each subject) is chosen from LFW-a. This subset

involves severe variations in pose, facial expression, etc. Fig. 12 shows the

sample images of one subject on the LFW database used in our experiments.

Tables 3 and 4 show the experimental results on the FERET and LFW

databases, respectively. MS-CFB (cos) obtains comparable or better recog-
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Table 3: The average recognition accuracies (mean%±std.dev.) obtained by

the different algorithms on the FERET database.

Algorithm t = 2 t = 3 t = 4 t = 5

Eigenface 53.27±3.0 60.12±2.9 65.50±2.7 70.22±2.1

Fisherface 66.63±1.8 67.79±1.7 76.23 ±1.6 77.54±1.3

CFA (OTF) 58.96±1.7 65.53±1.5 74.18±1.1 78.97±1.4

CFA (OEOTF) 75.27±1.5 79.92±1.6 90.02±1.3 91.50±1.3

SRC 66.21±2.1 67.14±2.2 71.16 ±2.5 75.36 ±2.1

Block-FLD 67.57 ±1.8 69.95±1.7 73.28±1.7 80.95±1.6

C-LDA 68.83±2.1 70.17 ±2.3 75.36 ±2.4 83.27±2.3

HEC 71.72 ±1.8 74.92 ±1.7 80.38 ±1.8 85.50 ±1.9

BBOW 74.15±1.6 77.42±1.2 86.00±1.5 92.34±1.5

PCRC 75.24 ±1.5 79.17 ±1.2 87.93 ±1.4 95.85 ±1.3
MS-CFB (max) 75.10±1.9 81.14±1.8 90.15 ±1.1 92.11 ±1.4

MS-CFB (cos) 80.60±1.4 84.72±1.3 94.26 ±1.2 94.93 ±1.1

Table 4: The average recognition accuracies (mean%±std.dev.) obtained by

the different algorithms on the LFW database.

Algorithm t = 2 t = 3 t = 4 t = 5

Eigenface 24.15±3.2 28.10±3.8 32.23±3.5 37.00±3.7

Fisherface 27.89±2.8 33.42±2.7 38.42 ±2.4 44.25±2.3

CFA (OTF) 25.27±3.5 30.17±3.9 32.17±4.0 35.24±3.5

CFA (OEOTF) 30.11±2.1 35.39±1.8 39.95±1.6 42.13±1.5

SRC 30.25±2.5 35.24±2.3 39.97 ±2.8 45.13 ±2.0

Block-FLD 32.53 ±2.3 36.78±2.4 40.12±1.9 45.24±1.5

C-LDA 31.10±2.2 35.41 ±2.1 38.82 ±1.5 44.99±1.3

HEC 33.24 ±2.3 41.78 ±2.2 45.80 ±1.5 49.72 ±1.9

BBOW 31.27±2.2 33.41±1.9 41.17±1.5 48.21±1.5

PCRC 38.20 ±2.0 42.17 ±1.4 48.58±1.3 50.72 ±1.3

MS-CFB (max) 31.10±2.4 35.22±2.1 42.32 ±2.0 46.00 ±1.8

MS-CFB (cos) 37.17±1.8 43.10±1.5 47.15 ±1.4 52.20 ±1.2
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Figure 11: The face images of one subject on the FERET database.

Figure 12: The face images of one subject on the LFW database.

nition rates than the other algorithms. Particularly, the performance of

MS-CFB (cos) increases significantly when more training sample are used.

MS-CFB (cos) improves the discriminability of features by adopting the un-

constrained form (which is beneficial for learning the underlying classification

boundary) during the design process of a CFB. The recognition accuracies

obtained by CFA (OTF) and CFA (OEOTF) are lower than those obtained

by MS-CFB (cos). This is due to the fact that the usage of the whole face

region makes CFA sensitive to pose variations. In contrast, MS-CFB (cos) al-

leviates this problem by using multiple face subregions. Furthermore, BBOW

obtains lower recognition rates than HEC and PCRC on the LFW database,

which indicates that BBOW cannot effectively capture the intrinsic discrim-

inative information when the training set contains variations in pose and

facial expression.

Compared with the recognition results on other databases, MS-CFB (cos)

obtains lower accuracies on the LFW database. There are two main reasons:

1) After the multi-subregion division procedure, some face subregions con-

tain the surrounding background (mainly caused by pose changes), which
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(a) (b) (c)

Figure 13: Multi-block division of the same subject with different poses based

on our face alignment (an image is divided into 5× 8 blocks and the size of

each block is 16× 11 pixels). (a) and (b) are both frontal face images while

(c) is a face image with a large pose variation. Note that the blocks marked

with green in (a) and (b) are aligned, while the marked blocks in (c) are not

well-aligned with the ones in (a) and (b).

decreases the discriminability of features extracted by our algorithm (note

that MS-CFB is based on the sum of the correlation outputs from all face

subregions); 2) The mismatching of face subregions between training sam-

ples and test samples can occur when dealing with large pose variations. See

Fig. 13 for an example. In our experiments all face images are aligned only

according to the manually annotated eye positions, as in [21, 34]. When han-

dling the frontal face images, most face subregions between training samples

and test samples, corresponding to specific facial structures (such as eyes,

mouth), can be aligned, which makes our algorithm work well. However,

when matching face images with large pose variations, the performance of

our algorithm drops. This is because the face alignment method employed

in our work is not effective enough so that the blocks with the same spatial

layout are not well-aligned in this case, which leads to low correlation values

between face subregions and the corresponding correlation filters. Therefore,

a more effective face alignment technique can improve the performance of
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our algorithm, especially for handling images with large pose variations.

4.5. Face Recognition on Databases with a Single Sample Per Person

In this section, we test the performance of the competing algorithms on

all above-mentioned databases with a Single training Sample Per Person

(SSPP) [2, 44] (which is an extreme case of the SSS problem that severely

challenges conventional face recognition algorithms). In such a case, super-

vised learning techniques, such as LDA [16], may not be applicable since the

intra-subject information cannot be obtained from one training sample. One

possible solution is to use a generic training set. For instance, Su et al. [45]

proposed an Adaptive Generic Learning (AGL) algorithm, which is specially

designed for solving the SSPP problem by using a generic training set. Kan

et al. [46] developed an Adaptive Discriminant Analysis (ADA) algorithm,

where the within-class scatter matrix of each single sample is inferred by

using only a limited number of the nearest neighbors in the generic training

set. Recently, the image partitioning based algorithms become popular for

solving the SSPP problem. Lu et al. [47] proposed a novel Discriminative

Multi-Manifold Analysis (DMMA) algorithm by learning discriminative fea-

tures from image patches. Therefore, AGL, ADA and DMMA are employed

as the competing algorithms in our experiments. When we evaluate the per-

formance of AGL (or ADA) on one database, all the other databases are

used to constitute the generic training set in AGL (or ADA). For the other

algorithms, we only use a single sample per person for training. Note that

since Fisherface [16] (based on LDA) cannot deal with the SSPP problem,

its performance is not reported in this section.

Table 5 shows the average recognition accuracies obtained by the com-

peting algorithms in dealing with the SSPP problem. Among the competing

algorithms, MS-CFB (cos) obtains comparable results on most databases.
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Table 5: The average recognition accuracies (mean%±std.dev.) obtained by

the different algorithms for the SSPP problem.

Algorithm AR Multi-PIE FRGC FERET LFW

Eigenface 35.77±3.5 50.15±3.5 22.42±4.1 33.70±3.8 11.13±3.8

CFA (OTF) 38.54±3.4 55.54±2.5 40.17±3.8 31.00±3.5 13.21±2.8

CFA (OEOTF) 53.27±2.9 58.10±2.1 43.50±3.1 55.27±3.0 16.17±2.6

SRC 45.27±3.2 57.89±1.8 38.28±3.3 43.82±3.3 15.26±2.7

Block-FLD 48.81±2.4 56.17±1.4 45.17±3.0 50.47±2.8 18.78±2.5

AGL 55.41±3.4 60.95±1.7 50.20±2.8 55.14±1.3 15.11±3.2

ADA 60.18±3.0 60.16±1.9 51.76±2.7 60.11±62 19.32±3.0

DMMA 67.24±2.0 62.55±1.6 53.15±2.7 65.24±2.5 22.17±2.8
BBOW 64.21±2.5 55.98± 1.8 46.31±2.7 60.52± 3.0 17.37±3.2

PCRC 65.40±2.3 61.11±1.6 48.94±3.2 64.25±2.2 22.14±2.8

MS-CFB (max) 61.21±2.9 57.72±2.5 45.30±2.4 61.78±2.1 16.66±2.2

MS-CFB (cos) 66.13±2.2 62.81±1.5 52.74 ±2.8 66.60±2.1 21.15±2.9

Specifically, MS-CFB (cos) outperforms most of the compared local-based

algorithms, such as Block-FLD, BBOW, and PCRC. Furthermore, it obtains

comparable performance with the recently proposed DMMA algorithm which

considers the local face subregions of each subject as a manifold. The reason

why our algorithm is comparable to these state-of-the-art algorithms even if

only raw data of local face subregions is used is that our algorithm extracts

global features by effectively combining local features in an integrated frame-

work, while others extract local features independently. Furthermore, com-

pared with the AGL and ADA algorithms, which additionally use a generic

training set, MS-CFB (cos) still achieves better performance, which clearly

demonstrates the desirable classification ability of the proposed algorithm. It

is also interesting to observe that MS-CFB (cos), DMMA, and PCRC obtain

better recognition results than AGL and ADA in most databases.

Note that the results obtained by some competing algorithms (such as
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DMMA [47], PCRC [8], AGL [45], and ADA [46]) in our experiments are

different from the reported results. This is because that the experimental

settings in our paper and the original papers are different. For instance, in

the original papers [47, 8], DMMA used the standard FERET evaluation

protocol, while PCRC used more than 2 images per person for training. In

contrast, for DMMA and PCRC, we only use a single sample per person for

training in our paper. In addition, in the original papers [45, 46], AGL (or

ADA) uses a generic training set that is similar to the test set. However,

when we evaluate the performance of AGL (or ADA) on one database in this

paper, all the other databases are used to constitute the generic training set

(which is significantly different from the test set) for AGL (or ADA). Hence,

the accuracies of AGL and ADA are lower than those reported in the original

papers. How to choose a proper and representative generic training set still

needs further investigation for AGL and ADA.

4.6. Face Recognition on CAS-PEAL R1 with Unseen Subjects

To evaluate the generalization capability of the proposed algorithm, we

use the CAS-PEAL R1 face database for evaluation. The CAS-PEAL R1

database contains three types of datasets, i.e., the training set, gallery set

and probe set. The training set contains 300 subjects and each subject has 4

images. The gallery set includes 1,040 images of 1,040 subjects (each subject

has one image captured under a normal condition). The CAS-PEAL R1

database contains six probe sets under six different conditions: accessory, age,

background, distance, expression, and lighting. All images that appear in the

training set are excluded from the probe sets and the probe subjects may not

exist in the training set. We employ the evaluation protocol introduced in

[36]. Here only the training set is used to train all of the algorithms. The

details of the CAS-PEAL R1 database are described in Table 6. Fig. 14 shows
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the face images of two subjects on the CAS-PEAL R1 training set. Among

the competing algorithms, SRC and PCRC are infeasible to deal with the case

that the probe subjects are the unseen subjects in the probe sets, because a

test image is represented as a linear combination of the training samples for

these two algorithms. In addition, MS-CFB (max) is not evaluated, since it

is not valid for classifying unseen subjects.

 

 

 

 

 

Figure 14: The face images of two subjects on the CAS-PEAL R1 training

set.

Table 6: The datasets used in the CAS-PEAL R1 evaluation protocol.

Datasets
Training Gallery Probe set (frontal)

set set Accessory Age Background Distance Expression Lighting

No. of Images 1,200 1,040 2,285 66 553 275 1,570 2,243

The recognition rates obtained by the different algorithms on the CAS-

PEAL R1 database are given in Table 7. It can be seen that MS-CFB (cos)

achieves the recognition rates with at least 6% higher (on an average) than

the other competing algorithms. Fisherface obtains the worst recognition

rates (which are much lower than the recognition rates obtained by Eigen-

face). The generalization capability of Fisherface is poor because the number

of training samples for each class is small. BBOW obtains much worse per-

formance than HEC and C-LDA. The reason is that the codewords learned in
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Table 7: The recognition rates (%) obtained by the different algorithms on

the CAS-PEAL R1 database .

Algorithm Accessory Age Background Distance Expression Lighting Average

Eigenface 59.39 57.58 95.84 93.09 73.69 10.16 51.00

Fisherface 45.95 33.33 87.70 77.45 61.34 4.95 40.67

CFA (OTF) 53.52 56.06 94.58 92.00 67.83 15.78 49.41

CFA (OEOTF) 73.39 66.67 98.19 98.18 83.31 30.14 64.62

B-FLD 65.43 63.64 90.60 93.82 75.92 23.09 57.29

C-LDA 69.80 69.70 94.03 94.91 76.05 24.92 59.71

HEC 70.68 71.21 94.21 96.36 82.04 35.62 64.86

BBOW 60.18 57.58 92.59 94.55 71.21 20.33 53.76

MS-CFB (cos) 75.49 75.76 97.29 97.82 88.28 42.71 70.45

the training set are not representative (note that some subjects in the probe

sets are different from those in the training set). MS-CFB (cos) achieves the

highest recognition rates on the ‘Accessory ’, ‘Age’, and ‘Expression’ probe

sets. In particular, for the most difficult ‘Lighting ’ probe set, MS-CFB (cos)

significantly improves the recognition accuracy (it achieves the recognition

rate of 70.45%), while Fisherface only obtains the recognition rate of 4.95%.

In short, these experimental results on the CAS-PEAL R1 database show

that the CFBs learned on the training set can classify unseen subjects well

in the proposed MS-CFB.

4.7. Computational Complexity of the Proposed Algorithm

We compare the computational time of the proposed MS-CFB algorithm

with that of some representative feature extraction algorithms, including

Eigenface, Fisherface, CFA (with OTF and OEOTF), and PCRC. All the

computational time is reported on a workstation with 2 Intel Xeon E5620

(2.40GHz) CPUs (only one core is used) on the MATLAB platform. Table
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8 shows the computational time spent on the training and test (recognition)

stages by these algorithms on the CAS-PEAL R1 database.

Table 8: Comparisons of the computational time (in seconds) used by the

competing algorithms on the CAS-PEAL R1 database.

Algorithm Training time Recognition time

Eigenface 51.41 70.61

Fisherface 83.79 20.62

CFA (OTF) 522.74 32.88

CFA (OEOTF) 202.78 30.41

PCRC 65.27 23.80

MS-CFB 3134.21 82.64

As shown in Table 8, the computational time of the proposed MS-CFB

used for training is higher than that of the other algorithms. However, the

computational time of MS-CFB used for recognition is comparable to that

of the other algorithms (and the proposed MS-CFB achieves more accurate

recognition rates when it is compared with these competing algorithms on the

CAS-PEAL R1 database). As the training stage is usually performed offline,

the computational complexity of the proposed algorithm will not constrain

its applications to real-world tasks.

4.8. Automatic Face Recognition

In the above experiments, the facial part in each image is cropped and

resized into the size of 80 × 88 based on manually annotated eye positions.

However, in many real-world applications, a robust face recognition system

should be a fully automatic system (it is not realistic to manually annotate

the centers of eyes for each test face image). Hence, in this section, we
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evaluate the performance of all the competing algorithms in the applications

of automatic face recognition. To be specific, we manually align and crop each

face image in the training set and automatically detect, crop, and resize each

image in the test set by using a popular face detector [48] and an automatic

eye detector [49]. A subset (includes 1,400 images of 200 individuals) of the

FERET database is used for comparisons. The experimental settings used

are the same as those in Section 4.4. Here, the number of training samples

for each subject t is set to 3. Fig. 15 shows the average recognition accuracies

when manual annotation and automatic detection are respectively applied.
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Figure 15: The average recognition accuracies (mean%±std.dev.) when man-

ual annotation and automatic detection are respectively applied. Methods

1-12 correspond to Eigenface, Fisherface, CFA(OTF), CFA (OEOTF), SRC,

Block-FLD, C-LDA, HEC, BBOW, PCRC, MS-CFB (max), MS-CFB (cos),

respectively.

From Fig. 15, we can observe that the accuracy of automatically detected

positions of the centers of eyes affects the face recognition performance of all
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the competing algorithms. This is due to the fact that there usually contain

some spatial misalignments caused by location errors in the automatically

detected face images, which leads to a negative influence on the recognition

accuracy. Experimental results have verified the degrade of the recognition

performance (about a 3% ∼ 10% drop) with automatically detection of the

centers of eyes. However, the local-based algorithms (such as Block-FLD,

BBOW, PCRC, and the proposed MS-CFB) are more robust against spatial

misalignments than the global-based algorithms (such as Eigenface, CFA,

and SRC). This is because the local-based algorithms can alleviate the mis-

alignment effects by partitioning a face image into smaller face subregions. In

particular, experimental results have shown that the proposed MS-CFB gives

the smallest drop on the recognition accuracy, since it effectively combines

local features in an integrated framework.

4.9. Discussion

From the above-mentioned experimental results, we can see that the pro-

posed MS-CFB with the cosine similarity measure can achieve better recogni-

tion accuracies than most competing algorithms to handle the SSS problem.

There are two reasons why MS-CFB achieves superior performance: 1) MS-

CFB partitions each face image into multi-subregions and an effective learn-

ing algorithm (i.e., CFB) is applied to explore discriminative local features

which are more robust to variations caused by facial expression, illumination,

and pose; 2) MS-CFB extracts discriminative features in a class-specific man-

ner, while the others extract features in a generic way.

It is worth remarking upon the performance comparisons between differ-

ent algorithms.

(1) Eigenface, which is based on PCA, extracts the most representative

features in terms of the minimal mean squared error. However, PCA is not
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optimal for the classification problem, which results in less effectiveness of

Eigenface in face recognition. On the contrary, MS-CFB emphasizes the

correlation outputs for authentic samples while suppressing the outputs for

impostor samples. Therefore, MS-CFB can extract discriminative features

which effectively distinguish different classes.

(2) The projection vector obtained by Fisherface discriminates all classes.

One problem of Fisherface is that it is not able to effectively discriminate two

classes close to each other since large class distances are often overemphasized

(which is also known as the class separation problem [50]). In contrast, the

projection vector of MS-CFB focuses on the separation between one specific

class and all the other classes. As a result, MS-CFB can alleviate the class

separation problem.

(3) Compared with CFA, where the correlation filter is designed in the

frequency domain, the CFB used in MS-CFB only employs the feature repre-

sentation in the spatial domain which improves the computational efficiency

by removing the traditional Fourier transforms during the design process of

a CFB. Furthermore, different from the commonly used OTF and OEOTF

(which are the constrained correlation filters), the design of a CFB removes

the hard constraints by using the unconstrained form so as to increase the

generalization capability of the filter bank.

(4) While most FE algorithms are required to select the optimal reduced

dimension (ORD) [51], MS-CFB does not need to determine the ORD, thus

improving the convenience. This is because the dimension of the feature

vector obtained by MS-CFB is a fixed value (which is equal to the number

of classes in a training set). Moreover, compared with popular local-based

FE algorithms (such as HEC and PCRC), where the local FE step and the

combination of local subregions are performed as two independent processes,

MS-CFB unifies these two processes in an effective framework.
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5. Conclusions and Future Work

In this paper, we have presented an effective feature extraction algorithm

called MS-CFB and applied it to the task of face recognition. MS-CFB uni-

fies the local feature extraction step and the combination of different face

subregions in an integrated framework. The key idea of MS-CFB is that, in-

stead of extracting local features independently for each face subregion, the

local feature extraction steps for different face subregions are combined to

give optimal overall correlation outputs. We have evaluated MS-CFB under

different conditions, including variations in illumination, facial expression,

and pose, as well as dealing with the SSPP problem. Experimental results

have shown that MS-CFB outperforms most state-of-the-art feature extrac-

tion algorithms, such as SRC, HEC, and PCRC, on popular face databases

for solving the SSS problem.

As mentioned in our experiments, the multi-block division strategy (based

on rectangle blocks) used in the proposed algorithm cannot handle face recog-

nition with large pose variations well due to the fact that all face images are

manually aligned according to the eye positions. Recent work has demon-

strated that the usage of irregular subregions can be helpful to improve face

recognition performance. For instance, Kumar et al. [6] defined 10 subregions

with different shapes (e.g., rectangles, eclipses, polygons, etc.) corresponding

to functional parts of a face (such as the nose, mouth, eye) in recognition.

Hence, how to design adaptive face subregions to improve the performance

of MS-CFB under large pose variations is an interesting direction of our fu-

ture work. In addition, we are interested in extending the idea of MS-CFB

to the task of facial expression recognition and other biometric recognition

applications.
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