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Abstract

Non-convex regularizers usually improve the performance of sparse estimation in prac-

tice. To prove this fact, we study the conditions of sparse estimations for the sharp

concave regularizers which are a general family of non-convex regularizers includ-

ing many existing regularizers. For the global solutions of the regularized regression,

our sparse eigenvalue based conditions are weaker than that of L1-regularization for

parameter estimation and sparseness estimation. For the approximate global and ap-

proximate stationary (AGAS) solutions, almost the same conditions are also enough.

We show that the desired AGAS solutions can be obtained by coordinate descent (CD)

based methods. Finally, we perform some experiments to show the performance of

CD methods on giving AGAS solutions and the degree of weakness of the estimation

conditions required by the sharp concave regularizers.

Keywords: Sparse estimation, non-convex regularization, sparse eigenvalue,

coordinate descent

1. Introduction

High-dimensional estimation concerns the parameter estimation problems in which

the dimensions of parameters are comparable to or larger than the sampling size. In

general, high-dimensional estimation is ill-posed. Additional prior knowledge about
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the structure of the parameters is usually needed to obtain consistent estimations. In

recent years, tremendous research works have demonstrated that the prior on sparsity

of the true parameters can lead to good estimators, e.g., the well-known work of com-

pressed sensing [6] and its extensions to general high-dimensional inference [24].

For high-dimensional sparse estimation, sparsity is usually imposed as sparsity-

encouraging [8] regularizers for linear regression methods. Many regularizers have

been proposed to describe the prior of sparsity, e.g., `0-norm, `1-norm, `q-norm with

0 < q < 1, smoothly clipped absolute deviation (SCAD) penalty [14], log-sum penalty

(LSP) [8], minimax concave penalty (MCP) [37] and Geman penalty (GP) [17, 32].

Except `1-norm, all of these sparsity-encouraging regularizers are non-convex. Non-

convex regularizers were proposed to improve the performance of sparse estimation in

many applications, e.g., image inpainting and denoising [29], biological feature selec-

tion [3, 27], MRI [8, 9, 33, 34, 35] and CT [26, 30]. However, it still lacks theoreti-

cal explanation for the improvement on sparse estimation for non-convex regularizers.

This paper aims to establish such a theoretical analysis.

In the field of sparse estimation, the following three problems are typically studied.

In this paper, we mainly study the first two problems.

1. Sparseness estimation: whether the estimation is as sparse as the true parameters;

2. Parameter estimation: whether the estimation is accurate in the sense that the

error between the estimation and the true parameter is small under some metric;

3. Feature selection: whether the estimation correctly identities the non-zero com-

ponents of the true parameters.

For the sparseness estimation, the non-convex regularizers give better approxima-

tions to `0-norm than the convex ones. They are more probable to encourage the

regularized regression to yield sparser estimations than the convex regularizers. For

example, `q-regularization can give the sparsest consistent estimations even when `1-

regularization fails [15]. However, `q-norm has infinite derivatives at zero and zero

vector is always a trivial local minimizer of the regularized regression. The non-convex

regularizers with finite derivatives can remedy the numerical problem of `q-norm, e.g.,

LSP, SCAD and MCP. These regularizers can also give sparser solutions for more gen-
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eral situations than `1-regularization in experiments [8] and in theory [14, 32, 37, 38].

For the parameter estimation, a lot of applications and experiments have demon-

strated that many non-convex regularizers give good estimations with far less sampling

sizes than `1-norm as the regularizers [8, 9, 26, 30, 33, 34, 35]. In theory, the re-

quirements for the sampling sizes are essentially the requirements for design matrix

or, rather, estimation conditions. A weaker estimation condition means less sampling

size needed or weaker requirements on design matrix. Weaker estimation conditions

are important for the application in which the data dimension is very high while the

sampling is expensive or restrictive. Theoretically, all of the non-convex regularizers

mentioned above admit accurate parameter estimations under appropriate conditions,

e.g., `q-norm [15], MCP [37], SCAD [37] and general non-convex regularizers [38].

There are mainly two types of estimation conditions. The first is sparse eigenvalue

(SE) conditions, e.g., the restricted isometry property (RIP) [6, 7] and the SE used

by Foucart and Lai [15] and Zhang [40]. The second is restricted eigenvalue (RE)

conditions, e.g., the `2-restricted eigenvalue (`2-RE) [2, 21] and restricted invertibility

factor (RIF) [36, 38]. Based on SE, Foucart and Lai [15] gave a weaker estimation

condition for `q-norm than `1-norm. Trzasko and Manduca [32] established a univer-

sal RIP condition for general non-convex regularizers including `1-norm. Since the

conditions proposed by Trzasko and Manduca [32] are regularizer-independent, it can

not be weakened for non-convex regularizers unfortunately. The definition of SE is

regularizer-independent while the RE is dependent on the regularizers. RE can give

a regularizer-dependent estimation condition for general regularizers, e.g., the `2-RE

based work by Negahban et al. [24] and the RIF based work by Zhang and Zhang [38].

However, the optimization for non-convex regularizers is difficult. It usually can-

not be guaranteed to achieve a global optimum for general non-convex regularizers.

Nevertheless, some optimization methods can lead to local optimums, e.g., coordi-

nate descent [3, 23] and iterative reweighted (or majorization-minimization) methods

[8, 20, 41, 39], homotopy [37], difference convex (DC) methods [27, 28] and proxi-

mal methods [18, 25]. Hence, it is meaningful to analyze the performance of sparse

estimation for these non-optimal optimization methods. For example, the multi-stage

relaxation methods [41, 39] and its one-stage version the adaptive LASSO [19, 42] re-

3



place the regularizers with their convex relaxations using majorization-minimization.

Compared with LASSO, the multi-stage relaxation methods improve the performance

on parameter estimation [39]. Zhang and Zhang [38] use the solutions of LASSO as

the initialization and continue to optimize by gradient descent. It is stated that LASSO

followed by gradient descent can output an approximate global and stationary solution

which is identical to the unique sparse local solution and the global solution. The multi-

stage relaxation methods, the ”LASSO + gradient descent” methods and the homotopy

methods need the same SE or RE conditions as LASSO. The DC methods [28] and

the proximal methods [25] need to know the sparseness of its solutions in advance to

ensure the performance of parameter estimation, but these two methods cannot control

the sparseness of its solutions explicitly.

Based on the related work, we make the following contributions:

• For a general family of non-convex regularizers, we propose new SE based esti-

mation conditions which are weaker than that of `1-norm. As far as we know, our

estimation conditions are the weakest ones for general non-convex regularizers.

The proposed conditions approach the SE conditions of `0-regularized regres-

sion as the regularizers become closer and closer to `0-norm. We also compare

our SE conditions with RE conditions. For `1-regularized regression, RE based

estimation conditions are less severe than that based on SE [2]. However, for

the case of non-convex regularizers, their relationship changes. For proper non-

convex regularizers, SE conditions become weaker than RE conditions, because

SE conditions can be greatly weakened from `1-norm to non-convex regularizers

while RE conditions remain the same.

• Under the proposed SE conditions, we establish upper bounds for the estimation

error in `2-norm. The error bounds are on the same order as that of `1-regularized

regression. It means that although the proposed SE conditions are weakened, the

parameter estimation performance is not weakened. With appropriate additional

conditions, we further give the results of sparseness estimations, which show the

non-convex regularized regression give estimations with the sparseness on the

same order as the true parameters.
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• Like the global solutions of non-convex regularized regression, we show that

the approximate global and approximate stationary (AGAS) solutions [38] also

theoretically guarantee accurate parameter estimation and sparseness estimation.

The error bounds of parameter estimation are on the order of noise level and the

degrees of approximating the stationary solutions and the global optimums. If

the degrees of these two approximations are comparable to the noise level, the

theoretical performance on parameter estimation and sparseness estimation is

also comparable to that of global solutions. Furthermore, the required estima-

tion conditions are almost the same as that of global solutions, which means

the estimation conditions for AGAS solutions are also weaker than that required

by `1-norm. The estimation result on AGAS solutions is useful for application

since it shows the robustness of the non-convex regularized regression to the

inaccuracy of the solutions and gives a theoretical guarantee for the numerical

solutions.

• Under a mild SE condition, the approximate global (AG) solutions are obtainable

and the approximation error is bounded by the prediction error. If the prediction

error is small, the solution will be a good approximate global solution. The algo-

rithms which control the sparseness of the solutions explicitly are suitable to give

good AG solutions, e.g., OMP [31] and GraDeS [16]. For an AG solution, the

coordinate descent (CD) methods update it to be approximate stationary (AS)

without destroying its AG property. CD have been applied to regularized re-

gression with non-convex regularizers [3, 23]. However, the previous works did

not allow the non-convex regularizers to approximate `0-norm arbitrarily. Our

analysis does not have such restriction on the non-convex regularizers .

Denotation. We use T̄ to denote the complement of the set T and |T | to denote

the number of elements in T . For an index set T ∈ {1, 2, · · · , p}, θT denotes the

restriction of θ = (θ1, θ2, · · · , θp) on T , i.e., θT = (θi : i ∈ T ). The support supp(θ)

of a vector θ is defined as the index set composed of the non-zero components’ indices

of θ, i.e., supp(θ) = {i : θi 6= 0}. The `0-norm of the vector θ is the number of

non-zero components of θ, i.e., ‖θ‖0 = |supp(θ)|.
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Table 1: Examples of popular regularizers. The second column is the basis functions of the regularizers. The

third column is the zero gaps of the global solutions when the regularizers are ξ-sharp concave. The fourth

column is the values of λ∗. Section 8.2 gives the proof for the result on λ∗ of LSP.
Name Basis Functions Zero gap λ∗

`1 -norm r(u) = λu 0 λ∗ = λ

`q -norm r(u) = λ2(u/λ)q, γ = log(1/(1 − q)) λ(q(1 − q)/ξ)1/(2−q) λ∗ = λ(2 − q)
(

2(1−q)
ξ

) q−1
2−q

SCAD r(u) = λ
∫u
0 min

{
1,

(
1 − x/λ−1

γ

)
+

}
dx 0 λ∗ = λ for ξ = 1

LSP r(u) = λ2 log
(
1 + u

λγ

)
max{λ(1/

√
ξ − γ), 0} λ∗ ≤ λ

√
2ξ log(1 + 2/(ξγ2))

MCP r(u) = λ
∫u
0

(
1 − x

λγ

)
+
dx λ

√
γ/ξ λ∗ = λmin{

√
γξ, 1}

GP r(u) = λ2u/(λγ + u) max{λ( 3√2γ/ξ − γ), 0} λ∗ =

 λ(
√

2ξ − ξγ/2), ξγ2 ≤ 2

λ/γ, ξγ2 > 2

2. Preliminaries

We first formulate the sparse estimation problems. Suppose we have n samples

(y1, z1), (y2, z2), · · · , (yn, zn), where yi ∈ R and zi ∈ Rp for i = 1, · · · , n. Let

X = (z1, · · · , zn)T ∈ Rn×p and y = (y1, · · · , yn)T ∈ Rn. We assume there exists an

s-sparse true parameter θ∗ which is supported on S and satisfies y = Xθ∗ + e with a

small noise e ∈ Rn. In this paper, we assume that the energy of the noise is limited by

a known level ε, i.e., ‖e‖2 ≤ ε. For Gaussian noise e ∼ N (0, σIn), this assumption is

satisfied for ε = σ
√
n+ 2

√
n log n with the probability at least 1− 1/n [4].

We focus on using the following regularized regression to recover θ∗ from y. This

method uses the solutions of the following regularized regression as the estimations to

the true parameters.

θ̂ = arg min
θ∈Rp

F(θ), (1)

where F(θ) = L(θ) +R(θ). L(θ) = ‖y −Xθ‖22/(2n) is the prediction error. R(θ)

is a non-convex regularizer. In this paper, we only study the component-decomposable

regularizer, i.e., R(θ) =
∑p
i=1 r(|θi|). We call r(u) the basis function of R(θ). Table

1 lists the basis functions of some popular regularizers. For the basis functions in Table

1, r(u) has the formulation r(u) = λ2r0(u/λ; γ) where r0(u; γ) is a non-decreasing

concave function over [0,+∞) and γ is a parameter to describe the ”degree of concav-

ity”, i.e., r(u) changes from linear function of u to the indicator function I{u 6=0} as γ

varies from +∞ to 0 (except `1-norm).

Throughout this paper, we assume the basis function r(u) satisfy the following
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properties. All of them hold for the basis functions in Table 1.

1. r(0) = 0;

2. r(u) is non-decreasing;

3. r(u) is concave over [0,+∞);

4. r(u) is continuous and piecewise differentiable. We use ṙ(u+) and ṙ(u−) to

denote the right and left derivatives.

5. r(u) has the formulation r(u) = λ2r0(u/λ; γ), where r0(u; γ) is parameterized

by γ and is independent of λ.

In this paper, the weaker SE based estimation conditions need two important prop-

erties: zero gap and null consistency [38]. Zero gap means the true parameters and

the estimations are strong in the sense that the minimal magnitude of the non-zero

components cannot be too close to zero. Null consistency requires that the regularized

regression in Eqn. (1) is able to identify the true parameter θ∗ exactly when θ∗ = 0

and the error e is inflated by a factor of 1/η > 1.

Definition 1 (Zero Gap). We say θ ∈ Rp has a zero gap u0 for some u0 ≥ 0 if

min{|θi| : i ∈ supp(θ)} ≥ u0.

Definition 2 (Null Consistency). Let η ∈ (0, 1). We say the regularized regression in

Eqn. (1) is η-null consistent if minθ ‖Xθ − e/η‖22/(2n) +R(θ) = ‖e/η‖22/(2n).

In order to guarantee the above two properties, we propose the following assump-

tion, named sharp concavity. Sharp concavity is important for our analysis because

zero gap and null consistency can be derived from it.

Definition 3 (Sharp Concavity). We say a basis function r(u) satisfies C-sharp con-

cavity condition over an interval I if r(u) > uṙ(u−) + Cu2/2 holds for any u ∈ I,

where C is a positive constant. We also say r(u) is C-sharp concave over I and a

regularizerR(θ) is C-sharp concave if its basis function is C-sharp concave.

Strictly concave functions can only satisfy r(u) > uṙ(u−). However, if the left-

derivative ṙ(u−) decreases so fast that it admits a margin proportional to u2 in some

interval I, the concave functions guarantee the sharp concavity.
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C-sharp concavity is satisfied over (0, u0) if r(u) is strongly concave (or −r(u) is

strongly convex) over (0, u0) , i.e., for any t1, t2 ∈ (0, u0) and α ∈ [0, 1],

r(αt1 + (1− α)t2) ≥ αr(t1) + (1− α)r(t2) +
1

2
Cα(1− α)(t1 − t2)2. (2)

Section 8.1 shows that sharp concavity only needs Eqn. (2) holds for t1 = 0 and any

t2 ∈ (0, u0), which means that the sharp concavity is weaker than the strong concavity.

For example, MCP is ((1 + a)γ)−1-sharp concave over (0,
√

1 + aλγ) for any a > 0.

Whereas, the strong concavity does not hold over (λγ,
√

1 + aλγ). Besides, `q-norm

holds q(1 − q)(u0/λ)q−2-sharp concavity over (0, u0); LSP satisfies λ2/(λγ + u0)2-

sharp concavity over (0, u0); GP is 2λ3γ/(λγ + u0)3-sharp concave over (0, u0).

Let xi be the i-th column of X and

ξ = max
1≤i≤p

‖xi‖22/n.

We observe that ξ-sharp concavity derives non-trivial zero gaps and null consistency.

Theorem 1. If r(u) is ξ-sharp concave over (0, u0), any global solution of Problem

(1) has a zero gap no less than u0, i.e., |θ̂i| ≥ u0 for any i ∈ supp(θ̂).

Table 1 lists the zero gaps of θ̂ when the basis functions are ξ-sharp concave.

Theorem 2. Let r(u) be ξ-sharp concave over (0, u0). The η-null consistency condi-

tion is satisfied if r(u0) ≥ 1
2nη2 ‖e‖

2
2.

Zhang and Zhang [38] give a probabilistic condition for null consistency when X

is drawn from Gaussian distributions. However, our condition is deterministic from

the view of X . It is easy to check whether our condition holds. For the case of

r(u) = λ2r0(u/λ; γ), the condition of Theorem 2 is λ ≥ η−1b0‖e‖2/
√
n, where

b0 = 1/
√

2r0(u0/λ; γ) is a constant if u0 = O(λ) (all the regularizers in Table 1

satisfy u0 = O(λ)). Hence, we assume

λ = η−1b0ε/
√
n (3)

in this paper, so that the η-null consistency holds. In addition, we define

λ∗ = inf
u>0
{ξu/2 + r(u)/u}. (4)
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λ∗ provides a natural normalization of λ [38]. Table 1 lists the values of λ∗ of the reg-

ularizers. We observe λ∗ = O(λ) from Table 1. In general, for r(u) = λ2r0(u/λ; γ),

we can define a constant aγ (independent to λ),

aγ = inf
u>0
{ξu/2 + r0(u; γ)/u}, (5)

so that λ∗ = aγλ. Thus, we have

λ∗ = η−1aγb0ε/
√
n. (6)

If the basis function r(u) is linear over (0, u) for some u > 0, it is not sharp

concave, e.g., SCAD and truncated `1-norm [39]. We name such regularizers that are

linear near the origin as weak non-convex regularizers. The zero gaps of the global

solutions with such regularizers cannot be guaranteed to be strictly positive.

3. Sparse Estimation of Global Solutions

In this section, we show our results on the SE based sparse estimation.

Definition 4 (Sparse Eigenvalue). For an integer t ≥ 1, we say that κ−(t) and κ+(t)

are the minimum and maximum sparse eigenvalues(SE) of a matrix X if

κ−(t) ≤ ‖X∆‖22
n‖∆‖22

≤ κ+(t) for any ∆ with ‖∆‖0 ≤ t. (7)

The SE is related to the restricted isometry constant (RIC) δt [6, 7], which satisfies

1 − δt ≤ ‖X∆‖22/(n‖∆‖22) ≤ 1 + δt for all ∆ with ‖∆‖0 ≤ t. Thus, it follows that

δt = (κ+(t) − κ−(t))/(κ+(t) + κ−(t)), where δt is actually the RIC of the scaled

matrix 2X/(κ+(t) + κ−(t)). We employ SE since it allows κ+(t) ≥ 2 and avoids the

scaling problem of RIC [15].

In order to show the typical values of κ+(t) and κ−(t), we compute them and

their ratio κ+(t)/κ−(t) for the standard Gaussian n × p matrix1, where we fix p =

10 000, n = 500, 1000, 1500, 2000 and t varies from 1 to n. It should be noted

1The elements are i.i.d. drawn from the standard Gaussian distributionN (0, 1).
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Figure 1: κ̃+(t), κ̃−(t) and κ̃+(t)/κ̃−(t) for the Gaussian random matrices with p = 10 000, n =

500, 1000, 1500, 2000 and t ranges from 1 to n. The solid lines are the average values of the 100 trials and

the two dash lines around each solid line are the maximum and the minimum of the 100 trials.

that κ+(t) and κ−(t) cannot be obtained efficiently. We use the following approx-

imation method: For a matrix X ∈ Rn×p, we randomly sample its 100 submatri-

ces X1, X2, · · · , X100 ∈ Rn×t composed by t columns of X and regard κ̃+(t) =

maxi λmax(XT
i Xi) and κ̃−(t) = mini λmin(XT

i Xi) as the approximations for κ+(t)

and κ−(t), where λmax(A) and λmin(A) mean the maximal and minimal eigenvalues

of A. Actually, κ̃+(t) ≤ κ+(t) and κ̃−(t) ≥ κ−(t). For each n and t, we generate 100

standard Gaussian matrices and compute the maximums, minimums and the means of

the values of κ̃+(t), κ̃−(t) and κ̃+(t)/κ̃−(t) for the 100 trials. Figure 1 illustrates the

results. The variances of κ̃+(t), κ̃−(t) and κ̃+(t)/κ̃−(t) with the same n and t are

small since the corresponding lines for the maximum, minimum and mean values are

close to each other. However, κ̃+(t)/κ̃−(t) grows very fast as t grows or n decreases.

Based on SE, we establish the following parameter estimation result for global

solutions of non-convex regularized regression. Let ρ̂0 and ρ∗0 be the zero gaps of the

global solution θ̂ and the true parameter θ∗ respectively. Denote

ρ0 = min{ρ̂0, ρ
∗}. (8)

Theorem 3 (Parameter Estimation of Global Solutions). Suppose the following con-

ditions hold.

1. r(u) is invertible for u ≥ 0 and r−1(u/s1)/r−1(u/s2) is a non-decreasing

function of u for any s2 ≥ s1 ≥ 1;

2. The regularized regression satisfies η-null consistency;
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3. The following SE condition holds for some integer t ≥ αs,

κ+(2t)/κ−(2t) < 4(
√

2− 1)Hr(ρ0, α, s, t) + 1, (9)

where s = ‖θ∗‖0, α = 1+η
1−η , Hr(ρ0, α, s, t) =

√
s
t
r−1(r(ρ0)/s)
r−1(αr(ρ0)/t) for ρ0 > 0 and

Hr(0, α, s, t) = limρ→0+Hr(ρ, α, s, t).

Then,

‖θ̂ − θ∗‖2 ≤ C1λ
∗, (10)

where C1 = (1+
√

2)(1+η)
√
t

κ−(2t)
Hr(ρ0,α,s,t)+1/2

Hr(ρ0,α,s,t)−(1+
√

2)(κ+(2t)/κ−(2t)−1)/4
.

Since λ∗ is on the order of noise level ε (Eqn. (6)), the estimation error ‖θ̂ − θ∗‖2
is at most on the order of noise level. We give a detailed discussion on Theorem 3 in

Section 4. Before the discussion, we first show a corollary given in Section 4, which

shows that our SE condition only needs κ−(t) > 0 with t = O(s). This SE condition

is much weaker than that of `1-norm. In fact, it is almost optimal since it is the same

as the estimation condition of `0-regularization [15, 38].

Corollary 1. Let the condition 1 and 2 of Theorem 3 hold and Hr(ρ0, α, s, αs+ 1)→

∞ as γ → 0. If κ−(2αs+ 2) > 0, there exists γ > 0 such that ‖θ̂ − θ∗‖2 ≤ O(λ∗).

In addition to the error bound in Theorem 3, we hope that the regularized regres-

sions yield enough sparse solutions. We extend the results from Zhang and Zhang [38]

and show that the global solutions are sparse under appropriate conditions.

Theorem 4 (Sparseness Estimation of Global Solutions). Suppose the conditions of

Theorem 3 hold. Consider l0 > 0 and integer m0 > 0 such that

√
2tκ+(m0)r(C2(1 + η)λ∗)/m0 + ‖XT e/n‖∞ < ṙ(l0−),

where C2 is defined in Eqn. (31). Then, |supp(θ̂)\S| ≤ m0 + tr(C2(1 + η)λ∗)/r(l0).

Corollary 2. Suppose the basis function r(u) = λ2r0(u/λ) and the conditions of The-

orem 4 hold with t = (α + 1)s, m0 = β0s and l0 = β1λ for some β0, β1 > 0. Let
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C3 = C2(1 + η)aγ where C2 is the same as Theorem 4 and aγ is defined in Eqn. (5).

If
2(α+ 1)κ+(β0s)

β0
<

(ṙ0(β1−)− ηaγ)2

r0(C3)
, (11)

then

|supp(θ̂)\S| ≤ (β0 + (α+ 1)r0(C3)/r0(β1))s. (12)

Example for Corollary 2. Consider the example of LSP with r0(u) = log(1 +

u/γ) and β1 =
√
γ. Suppose the columns of X are normalized so that ξ = 1. Section

8.2 shows that aγ ≤
√

2 log(1 + 2/γ2). Thus, the right hand of Eqn (11) is larger than(
1/(1 +

√
γ)− η

√
2γ log(1 + 2/γ2)

)2

γ log(1 + γ−1C2(1 + η)
√

2 log(1 + 2/γ2))

Thus, as γ goes to 0, the right side of Eqn. (11) is arbitrarily large. Eqn. (11) holds for

enough small γ. The right side of Eqn. (12) is β0s + O(s) as γ → 0. Hence, we can

freely select β0 satisfying Eqn. (11) with enough small γ. For example, if β0 = 1/s,

Eqn. (11) holds for enough small γ and Eqn. (12) becomes

|supp(θ̂)/S| ≤ 1 + s(α+ 1)
log(1 + γ−1C2(1 + η)

√
2 log(1 + 2/γ2))

log(1 + 1/
√
γ)

. (13)

The right side of Eqn (13) is at most on the order of s when γ is close to zero.

4. Discussion on Theorem 3

This section gives some detailed discussion on Theorem 3.

4.1. Invertible approximate regularizers

If r(u) is not invertible, e.g., MCP, we can design invertible basis function to ap-

proximate it. For example, we can use the following invertible function, named Ap-

proximate MCP, to approximate MCP.

r(u) =

 λu− u2/(2γ), 0 ≤ u ≤ λγ(1− φ),

1
2λ

2γ(1− φ2)
(

u
λγ(1−φ)

)2φ/(1+φ)

, u > λγ(1− φ),
(14)

where φ ∈ (0, 1). Approximate MCP is concatenated by the part of MCP over [0, λγ(1−

φ)] and the part of `q-norm over (λγ(1− φ),∞) with q = 2φ/(1 + φ). When φ→ 0,

12



r(u) will become the basis function of MCP. We will address the method to obtain Eqn.

(14) in Section 8.7. Any other non-invertible regularizers in Table 1 can be approxi-

mated in the same way.

4.2. Non-decreasing property of r−1(u/s1)/r−1(u/s2)

It can be verified that all the regularizers in Table 1 or their invertible approximate

ones (in the way of Eqn. (14)) satisfy the non-decreasing property of r
−1(u/s1)
r−1(u/s2) for any

s2 ≥ s1 > 0. In fact, for derivative basis functions, this non-decreasing property is

equal to that uṙ(u)/r(u) is a non-increasing function of u.

4.3. Non-sharp concave regularizers

If r(u) is not ξ-sharp concave, e.g., SCAD or LSP with γ2 > 1/ξ, we cannot

guarantee θ̂ has a positive zero gap. In this case, the condition 2 (null consistency) of

Theorem 3 can be guaranteed by the `2-regularity conditions [38] and the condition

3 becomes κ+(2αs)/κ−(2αs) < 1.65/
√
α + 1 with t = αs, which also belongs to

the `2-regularity conditions. Hence, without ξ-sharp concavity, Theorem 3 still holds.

Intuitively, non-sharp concave regularizers need the same estimation conditions as `1-

regularization since they cannot approximate `0-norm arbitrarily.

4.4. Relaxed SE based estimation conditions

Much more relaxed estimation conditions are sufficient for ξ-sharp concave regu-

larizers. Suppose r(u) is ξ-sharp concave over (0, ρ0) with 0 < ρ0 ≤ mini∈S |θ∗i |.

In this case, Hr(ρ0, α, s, t) can become arbitrarily large for proper regularizers so that

the SE condition in Eqn. (9) is much weaker than the SE conditions of `1-regularized

regression. We have shown in Figure 1 that κ̃+(t)/κ̃−(t) (≤ κ+(t)/κ−(t)) increases

very fast as t increases or n decreases. Thus, a weaker constraint on κ+(2t)/κ−(2t) in

Eqn. (9) is very important for sparse estimation problems.

Here, we give the examples of approximate MCP, `q-norm and LSP. For approxi-

mate MCP, Eqn. (15) gives its Hr(ρ0, α, s, t) (see Section 8.7).

Hr(ρ0, α, s, t) = α−1/2(t/(αs))
1
2φ , (15)
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Figure 2: The upper bounds of the SE conditions for LSP, approximate MCP(AMCP) and `q-norm. We set

α = 1.01, t = 2s. In each subfigure, we also plot the upper bound of SE conditions for `1-norm, i.e., the

right hand of Eqn. (16) with q = 1.

where we set γξ = φ
1+φ (α/t)1/φ. For `q-norm, the SE conditions can be written as

κ+(2t)

κ−(2t)
< 1 +

4(
√

2− 1)√
α

(
t

αs

)1/q−1/2

. (16)

When α = 1, Eqn. (16) is identical to the estimation condition of Foucart and Lai [15].

Hence, Foucart and Lai [15] can be regarded as a special case of our theory. For LSP,

we have

Hr(ρ0, α, s, t) =

√
s

t

(1 + ρ0/(λγ))
1
s − 1

(1 + ρ0/(λγ))
α
t − 1

=

√
s

t

(γ
√
ξ)−1/s − 1

(γ
√
ξ)−α/t − 1

. (17)

It should be noted that Hr(ρ0, α, s, t) → ∞ as γ → 0 for approximate MCP, `q-

norm and LSP. Figure 2 shows some special cases of Hr(ρ0, α, s, t) for these three

regularizers and `1-norm. In Figure 2, the SE conditions in Eqn. (9) are much weaker

than that of `1-norm.

Theorem 3 reveals that the upper bound constraint for κ+(2t)/κ−(2t) tends to

infinity as γ → 0 for proper non-convex regularizers. It implies that if

κ−(2t) = inf
θ

{
‖X∆‖22
n‖∆‖22

: ‖∆‖0 ≤ 2t

}
> 0, (18)

there exists γ > 0 so that the SE condition (Eqn. (9)) is satisfied. Based on this

observation, we have Corollary 1. In Corollary 1, κ−(2αs + 2) > 0 holds if the

columns of X are in general position2 and 2αs + 2 ≤ n, which is almost optimal in

2General position means any n columns of X are linear independent. The columns of X are in general

position with probability 1 if the elements of X are i.i.d. drawn from some distribution, e.g., Gaussian.
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the sense that it is the same as the SE condition of `0-regularized regression [38].

4.5. Comparison between SE and RE

Like SE, RE is also popular to construct estimation conditions. There are some

variants of RE, e.g., `2-RE [2, 21] and RIF [36, 38]. It can derive a simple expression

to the parameter estimation and the corresponding estimation condition.

Definition 5 (`2-RE). For α ≥ 1, a regularizer R, an index set S ⊂ {1, · · · p} and its

complement set S̄, the `2-RE is defined as

RER(α,S) = inf
∆

{
‖X∆‖22
n‖∆‖22

: R(∆S̄) ≤ αR(∆S)

}
. (19)

Definition 6 (Restricted Invertibility Factor). For τ ≥ 1, α ≥ 1, a regularizer R,

an index set S ⊂ {1, · · · p}, RIF is defined as

RIFRτ (α,S) = inf
∆

{
|S|1/τ‖XTX∆‖∞

n‖∆‖τ
: R(∆S̄) ≤ αR(∆S)

}
.

Theorem 5. Suppose η-null consistency condition holds and α = (1 + η)/(1 − η).

Then, ‖θ̂ − θ∗‖2 ≤ 2α
√
s

RER(α,S)
ṙ(0+). For any τ ≥ 1, ‖θ̂ − θ∗‖τ ≤ (1+η)λ∗s1/τ

RIFRτ (α,S)
.

The estimation conditions based on RE require that RER(α,S) > 0 or RIFRτ (α,S) >

0. The same conclusion also can be obtained for `1-regularized regression [24, 38].

What we are interested in is whether non-convex regularizers allow a larger value of

RER(α,S) than `1-norm, i.e., whether RER(α,S) > 0 becomes weaker by employing

non-convex regularizers.

Define Ω(β) = {∆ ∈ Rn : R(β∆S̄) ≤ αR(β∆S), ‖∆‖2 = 1} for β > 0. The

concavity of r(u) gives that ṙ(0+)u ≥ r(u) ≥ uṙ(u−), which derives that

Ω(β) ⊃ {∆ ∈ Rn : ṙ(0+)β‖∆S̄‖1 ≤ αβ〈|∆S |, ṙ(|β∆S |−)〉, ‖∆‖2 = 1},

where |∆S | is the vector composed of the absolute values of the components of ∆S ,

i.e., |∆S | = (|∆i| : i ∈ S). In the same way, ṙ(|β∆S |−) = (ṙ(|β∆i|−) : i ∈ S).
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Thus, we give an upper bound to RER(α,S):

RER(α,S) = inf
β>0,∆∈Rp

{‖X∆‖22
n‖∆‖22

: ∆ ∈ Ω(β)}

≤ inf
β>0,∆∈Rp

{‖X∆‖22
n‖∆‖22

: ṙ(0+)‖∆S̄‖1 ≤ α〈|∆S |, ṙ(|β∆S |−)〉, ‖∆‖2 = 1}

(β→0+)

≤ inf
∆∈Rp

{‖X∆‖22
n‖∆‖22

: ‖∆S̄‖1 ≤ α‖∆S‖1, ‖∆‖2 = 1}

= RE`1(α,S)

RER(α,S) ≤ RE`1(α,S) means that the RE based condition of non-convex reg-

ularized regression RER(α,S) > 0 is not relaxed. Negahban et al. [24] put an ad-

ditional constraint U(ε) = {∆ : ‖∆‖ ≥ ε} to the definition of RE. This constraint

avoids the bad case ∆ → 0. However, it still cannot guarantee to provide larger

RE for non-convex regularizers than `1-norm. For example, let t1, t2 and t3 sat-

isfy that |t1| + |t2| ≤ 2|t3| and α = 2, S = {3} and S̄ = {1, 2}. Thus, the

concavity of r(u) implies that r(|t1|) + r(|t2|) ≤ 2r((|t1| + |t2|)/2) ≤ 2r(|t3|).

For this case, {∆ : ‖∆S̄‖1 ≤ α‖∆S‖1} ⊂ {∆ : R(∆S̄) ≤ αR(∆S)}. Thus,

RER(α,S) ≤ RE`1(α,S). For RIF, we have the same result. Although non-convex

regularizers give better approximations to `0-norm, the RE of non-convex regularizers

cannot be guaranteed to be lager than that of `1-norm. The framework of RE does not

leave space to relax the estimation condition for non-convex regularizers.

The only difference between the definitions of SE and RE lies in the constraints for

∆. The two constraints {∆ : ‖∆‖0 ≤ 2t} and {∆ : R(∆S̄) ≤ αR(∆S) do not contain

each other. However, we observe that κ−(2t) ≥ min|T |≤s RER((2t − s)/s, T ) ≥

min|T |≤s RER(2α − 1 + 2/s, T ) for t ≥ αs + 1. When η is small and s � 2,

2α−1+2/s is close to α and min|T |≤s RER(2α−1+2/s, T ) ≈ min|T |≤s RER(α, T ).

Hence, with proper regularizers, the SE condition in Eqn. (18) is a weaker condition

than min|T |≤s RER(α, T ) > 0.

We can also compare RE and our SE conditions with the help of the failure bound

of RIC δ2s = 1/
√

2 for `1-minimization recovery [12], where `1-minimization re-

covery includes the basis pursuit [10] and Dantzig selector [5]. The failure bound

means that for any ε > 0 there exists X ∈ R(p−1)×p with δ2s < 1/
√

2 + ε where
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`1-minimization recovery fails. On the other hand, `1-minimization recovery suc-

ceeds when RE`1(α,S) > 0 [2], like `1-regularized regression (Theorem 5). Thus,

min|T |≤s RE`1(α, T ) = 0 if δ2s ≥ 1/
√

2, i.e., κ+(2s)/κ−(2s) ≥ 3 + 2
√

2. Since

non-convex regularizers cannot weaken RE conditions, κ+(2s)/κ−(2s) ≥ 3 + 2
√

2

also causes min|T |≤s RER(α, T ) = 0 for non-convex regularizers. On the contrary,

our SE conditions, e.g., κ−(2αs+ 2) > 0, still hold with proper non-convex regulariz-

ers even when κ+(2s)/κ−(2s) ≥ 3 + 2
√

2.

4.6. Comparison with the conditions for feature selection

Shen et al. [28] gave a necessary condition for consistent feature selection, which

can be relaxed further to κ−(s) > C log p/n with a constant C > 0 independent

of p, s, n. This necessary condition needs κ+(s)/κ−(s) to be upper bounded by

a constant which is independent of the regularizers. For their DC algorithm based

methods, they tightened the conditions to that κ+(2s̃)/κ−(2s̃) is upper bounded, where

s̃ is the number of non-zero components of the solutions given by their methods. This

condition cannot be verified until the solutions are given. However, our SE conditions

do not depend on the sparseness of the practical solutions (see Section 5).

5. Sparse Estimation of AGAS Solutions

For Problem (1), it is practical to obtain a solution which is approximate global

(AG) (Definition 7) and approximate stationary (AS) (Definition 8). We show in this

section that this kind of solutions also give good estimation to the true parameters.

Definition 7. Given µ ≥ 0, we say θ̃ is a (θ∗, µ)-approximate global solution of

minθ F(θ) if F(θ̃) ≤ F(θ∗) + µ.

Definition 8. Given ν ≥ 0, we say θ̃ is a ν-approximate stationary solution of minθ F(θ)

if the directional derivative of F at θ̃ in any direction d ∈ Rp with ‖d‖2 = 1 is no less

than −ν, i.e., F ′(θ; d) ≥ −ν.

The directional derivative is defined asF ′(θ; d) = lim infλ↓0(F(θ+λd)−F(θ))/λ

for any θ ∈ Rp and d ∈ Rp. For Problem (1), F ′(θ; d) = dT∇L(θ)+
∑p
i=1R′(θi; di).
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The following theorem gives the parameter estimation result with AGAS solutions.

Let ũ0 ≥ 0 be the zero gap of θ̃ and ρ̃0 = min{ũ0,mini∈supp(θ∗) |θ∗i |}.

Theorem 6 (Parameter Estimation of AGAS solutions). Suppose the following con-

ditions hold for the regularized regression.

1. θ̃ is a (θ∗, µ)-AG solution and ν-AS solution.

2. r(u) is invertible for u ≥ 0 and r−1(u/s1)/r−1(u/s2) is a non-decreasing

function w.r.t. u for any s2 ≥ s1 > 0;

3. The regularized regression satisfies η-null consistency;

4. The following SE condition holds for some integer t ≥ αs+ 1,

κ+(2t)/κ−(2t) < 4(
√

2− 1)Gr(ρ̃0, α, s, t) + 1, (20)

where α = 1+η
1−η , Gr(ρ̃0, α, s, t) =

√
st

t−1
r−1(r(ρ̃0)/s)

r−1(αr(ρ̃0)/(t−1)) for ρ̃0 > 0 and Gr(0,

α, s, t) = limρ→0+Gr(ρ, α, s, t).

Then, ‖θ̃ − θ∗‖2 ≤ C4ε̃+ C5r
−1( µ

1−η ), where ε̃ = ṙ(0+) + ηλ∗ + ν and C4, C5 are

positive constants. C4 and C5 are defined in Eqn. (39) and (40).

The condition 2, 3 and 4 are almost the same as the three conditions of Theorem

3 except the slightly different requirements for t and the definition of Gr(ρ̃0, α, s, t).

Consequently, the discussion in Section 4 is also suitable for this theorem:

1. The non-invertible basis functions can be approximated by approximate invert-

ible basis functions;

2. Without ξ-sharp concavity, the condition 4 of Theorem 6 is almost the same as

RIP conditions in Foucart and Lai [15];

3. With ξ-sharp concavity and a positive zero gap (we show in Theorem 9 that our

CD methods guarantee the positive zero gaps), SE based estimation conditions

can be much relaxed.

Theorem 6 shows that the error bounds of parameter estimation are mainly deter-

mined by four parts: the slope of r(u) at zero ṙ(0+), the parameter λ∗ = O(ε/
√
n),

the degree of approximating the stationary solutions ν and the degree of approximating
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the global optimums r−1(µ/(1− η)). If r(u) = λ2r0(u/λ; γ) and r0(u; γ) has a finite

derivative at zero, we know that ṙ(0+) = λṙ0(0+; γ), e.g., ṙ(0+) = λ for MCP. Since

λ = O(ε/
√
n) by Eqn. (3) in this paper, the estimation error bound is actually

‖θ̃ − θ∗‖2 ≤ O(ε/
√
n) +O(ν) +O(r−1(µ/(1− η))).

According to Theorem 6, we do not need to solve Problem (1) exactly. A good sub-

optimal solution is enough to give good parameter estimation. Even, we do not need

a strictly stationary solution since Theorem 6 allows a margin ν. So, the non-convex

regularized regression is robust to the inaccuracy of the solutions, which is important

for numerical computation.

It should be noted that ṙ(0+) is required to be finite in Theorem 6, which forbids

the regularizers with infinite ṙ(0+), e.g., `0-norm and `q-norm (0 < q < 1). It may

be due to the strongly NP-hard property brought by `0-norm and `q-norm regularized

regression [11].

Similar to Theorem 4, we give the following sparseness estimation result for AGAS

solutions. The proof is the same as that of Theorem 4.

Theorem 7 (Sparseness Estimation of AGAS solutions). Suppose the conditions of

Theorem 6 hold. Let b = (t− 1)r
(
c4ε̃+ c5r

−1
(

µ
1−η

))
, where c4 and c5 are defined

in Eqn. (37) and Eqn. (38). Consider l0 > 0 and integer m0 > 0 such that√
2κ+(m0)

m0
(

µ

1− η
+ b) + ‖XT e/n‖∞ ≤ ṙ(l0−).

Then, |supp(θ̃)\S| < m0 + b/r(l0).

The sparseness of AGAS solutions is also affected by ε̃ = ṙ(0+) + ηλ∗+ ν and µ.

Theorem 7 can also derive a similar conclusion as Corollary 2. For an AGAS solution

with small ν and µ, the sparseness of the solution is on the order of s, just like the

global solutions.

5.1. Approximate Global Solutions

We need AG solutions in Theorem 6 and Theorem 7. The methods to obtain such

solutions are crucial consequently. Instead of restricting to the solutions given by a
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specific algorithm, we use the prediction error ‖Xθ0 − y‖22/(2n) to give a quality

guarantee for any solution θ0 that is regarded as an AG solution.

Theorem 8. Suppose θ0 is an s0-sparse vector with the prediction error µ2
0 = ‖Xθ0−

y‖22/(2n). If κ−(s+ s0) > 0, then θ0 is a (θ∗, µ)-AG solution where

µ = µ2
0 + (s+ s0)r

( √
2µ0 + ε/

√
n√

(s+ s0)κ−(s+ s0)

)

Corollary 3. Suppose θ0 is an s0-sparse vector with the prediction error µ0 = ζε/
√
n

for some ζ ≥ 0 and the basis function has the formulation r(u) = λ2r0(u/λ) with

λ = η−1b0ε/
√
n. Then, θ0 is a (θ∗, C6ε

2/n)-AG solution where

C6 = ζ2 +
(s+ s0)b20

η2
r0

(
(1 +

√
2ζ)η

b0
√

(s+ s0)κ−(s+ s0)

)
.

The methods that explicitly control the sparseness of its solutions are suitable for

giving the AG solutions, e.g., OMP [31] and GraDeS [16]. However, we do not need

the strong conditions for consistent parameter estimation for these methods, e.g., δ2s <

1/3 for GraDeS [16] or (κ+(1)/κ−(t)) log(κ+(s)/κ−(t)) grows sub-linearly as t for

OMP [40]. In fact, Theorem 8 only requires κ−(s + s0) > 0. Hence, s0 can be

large enough to make µ0 to be small. The relationship between µ0 and s0 depends

on the employed method and the design matrix X . Even with a bad value of µ in the

initialization, we can decrease it further by CD methods as stated in Section 5.2.

5.2. Approximate Stationary Solutions with Zero Gap

Theorem 6 also requires the solution to be ν-AS and has a positive zero gap. Gen-

eral gradient descent algorithms can provide stationary solutions but they cannot ensure

a positive zero gap. However, we observe that the coordinate descent (CD) methods

can yield AS solutions and all of these solutions have positive zero gaps under proper

sharp concavity conditions.

In every step, CD only optimizes for one dimension, i.e.,

θ
(k)
i = arg min

u∈R
F((θ

(k)
1 , · · · , θ(k)

i−1, u, θ
(k−1)
i+1 , · · · , θ(k−1)

p )T )+
ψ

2
(u−θ(k−1)

i )2, (21)
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where k is the number of iterations, i = 1, · · · , p and ψ > 0 is a positive constant. The

constant ψ plays a role of balance between decreasing F(θ) and not going far from the

previous step. The above CD method is also called proximal coordinate descent. For

Problem (1), the CD methods iterate as follows.

θ
(k)
i = arg min

u∈R

1

2

(
‖xi‖22
n

+ ψ

)(
u− ψθ

(k−1)
i + xTi ω

(k)
i /n

ψ + ‖xi‖22/n

)2

+ r(|u|), (22)

where xi is the i-th column of the design matrix X and ω(k)
i = y −

∑
j<i xjθ

(k)
j −∑

j>i xjθ
(k−1)
j . Problem (22) is a non-convex but only one-dimensional problem. All

of its solutions are between 0 and ψθ
(k−1)
i +xTi ω

(k)
i /n

ψ+‖xi‖22/n
. We assume that Problem (22) can

be exactly solved. If Problem (22) has more than one minimizer, any one of them can

be selected as θ(k)
i . In this paper, CD methods stop iterating if

‖θ(k) − θ(k−1)‖2 ≤ τ, (23)

where τ > 0 is a small tolerance proportional to the value ν (see Theorem 10).

Theorem 9. If r(u) is (ξ+ψ)-sharp concave over (0, u0), then θ(k)
i ≥ u0 or θ(k)

i = 0

for any k = 1, 2, · · · and any i = 1, · · · , p.

The above zero gap property of CD is a corollary of Theorem 1. The sharp con-

cavity condition of Theorem 9 is a little stronger than the requirements of Theorem

3. Nonetheless, we can set ψ to be small to narrow the difference between the sharp

concavity conditions of Theorem 3 and Theorem 9.

Besides the zero gap, we show in the following theorem that CD methods simulta-

neously give AS solutions and keep them to be still AG solutions.

Theorem 10. {F(θ(k))} is a non-increasing sequence and converges; For any ν > 0

and with τ = ν/(
√
p(ψ + pξ)), CD stops within k = 1 + 2p(ψ+pξ)2F(θ(0))

ψν2 iterations

and outputs a ν-AS solution, where p is the number of columns of the design matrix X .

Theorem 10 shows CD methods give a further decrease to the value µ of AG prop-

erty and guarantees the ν-AS property, which is necessary for sparse estimation in

Theorem 6 and Theorem 7. This theorem also gives an upper bound for ν, i.e.,

ν ≤ √p(ψ + pξ)‖θ(k) − θ(k−1)‖2, (24)
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where k is the number of iterations. Usually, we hope ν is on the order of λ∗ so that

ε̃ = ṙ(0+) + ηλ∗ + ν = O(λ∗) = O(ε/
√
n) in Theorem 6.

CD has been applied to the non-convex regularized regression by Breheny and

Huang [3] and Mazumder et al. [23] . However, their non-convex regularizers are

restrictive because they need Eqn. (22) to be strictly convex for ψ = 0. They could

not deal with the MCP with γ ≤ 1, the SCAD with γ ≤ 2 or the LSP with γ ≤ 1.

Compared with them, the conclusions of Theorem 10 are weaker but they are enough

to obtain ν-AS solutions and the regularizers can approximate `0-norm arbitrarily.

6. Experiment

In this section, we experimentally show the performance of CD methods on giving

AGAS solutions and the degree of weakness of the estimation conditions required by

the sharp concave regularizers.

6.1. AGAS solutions

In Section 5, we prove that µ is monotonously decreasing, ν tends to 0 and the zero

gap ũ0 is maintained in each iteration of CD algorithm. We experimentally show these

in this part.

We set the dimension of the parameter as p = 1000, the number of non-zero com-

ponents of θ∗ (the true parameter) s = log p. We randomly choose s indices as the

non-zero components. The non-zero components are i.i.d. drawn from N (0, 1) and

those belonging to (−0.1, 0.1) are promoted to ±0.1 according to their signs.

The elements of the design matrix X ∈ Rn×p are i.i.d. drawn from N (0, 1),

where n = 10s log p. The noise e is drawn from N (0, In) and is normalized such that

ε = ‖e‖2 = 0.01. We fix γ = 0.1 and η = 0.01 for all the non-convex regularizers

(LSP, MCP and GP) and use Eqn. (3) to choose λ.

For CD algorithm, we set ψ = 0.1. The CD algorithm is initialized with zero

vectors and terminated when ν is below 10−3 (we set τ = 10−3/(
√
p(ψ + pξ)) by

Theorem 10) or the number of iterations is over 500. For each regularizer, we run CD

for 100 trials with independent true parameters and design matrices.
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Figure 3: The zero gap ũ0 (left) and the parameters of AGAS solutions µ (middle) and ν (right) in each

iteration of CD algorithms. The figures are in the form of the boxplots of the 100 trials of CD algorithms.

The right column is actually the boxplots of the upper bound for ν in Eqn. (24).

We illustrate the boxplots for ũ0, µ and ν of each iteration in Figure 3. The left

column shows that CD methods maintain the zero gaps in each iteration as stated in

Theorem 9. The middle column shows F(θ(k)) − F(θ∗) decrease to zero for most

of trials in 100 iterations. The right column shows that most of the solutions are very

close to stationary solutions within 100 iterations.

6.2. Weaker Conditions for Sparse Estimation

We show the performance of non-convex regularizers for sparse estimation in this

part. For an estimation θ̃, three criterions are used to describe the performance of sparse

estimation: 1. sparseness ‖θ̃‖0; 2. Relative recovery error (RRE) ‖θ̃ − θ∗‖2/‖θ∗‖2; 3.

Support recovery rate (SRR) |supp(θ̃)∩supp(θ∗)|/|supp(θ̃)∪supp(θ∗)|. A weaker esti-

mation condition than convex regularizers can be verified by achieving a more accurate

sparseness, lower RRE or higher SRR with less sampling size.

We fix the dimension of the parameters and the sparseness of the true parameters

and we vary the sampling size n to compare the three criterions between convex regu-
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Figure 4: The sparseness (left), RRE (middle) and SRR (right) corresponding to the regularizers(LSP, MCP,

GP and `1-norm). The true parameters, the design matrices and the noises are generated in the same way as

Section 6.1 except that p = 10 000, s = 100 and n varies from s to 15s. The parameter of the regularizers

γ is set as 10−7. We use the OMP [31] to generate an initial solution for CD with at most (n− s) non-zero

components. The parameters of CD ψ = 0.1 and the stopping criterion of CD is the same as Section 6.1.

Every data point is the average of 100 trials of CD methods. For each regularizer and each n, we select λ

from 10−6, 10−5, · · · , 10 such that it gets the smallest average RRE of the 100 trials.

larizers (`1-norm, implemented by FISTA [1]) and non-convex regularizers (LSP, MCP

and GP).As Figure 4 shows, non-convex regularizers give much more accurate sparse-

ness estimation, lower RREs and higher SRRs than `1-regularization. Among the three

non-convex regularizers, the performance of sparse estimation is similar to each other.

6.3. Single-Pixel Camera

We compare non-convex regularizers and `1-norm in the application of single-pixel

camera [13]. In this application, we need to recover an image from a small fraction of

pixels of an image, which is a similar task to image inpainting [22]. Since most of

natural images have sparse Discrete Cosine Transformations (DCT), we can recover

the image by solving the problem minθ ‖y−Mvec(θ)‖22/(2n)+R(vec(D[θ])), where

y’s components are the known pixels, θ is the estimated image, M is a mask matrix

indicating the positions of the known pixels, D[θ] is the 2D-DCT of θ and vec(θ) is

the vectorization of θ. Denote Θ = D[θ] and we rewrite the problem in the form of

Problem (1) minΘ ‖y −Mvec(D−1[Θ])‖22/(2n) +R(vec(Θ)), where D−1[Θ] is the

inverse 2D-DCT of Θ. Figure 5(a) shows the test image (size 256×256). We randomly

choose 25% pixels of it as y. The PSNRs of LSP (γ = 10−7) and `1-norm are compared
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Figure 5: Comparison of image recovery. (a) The original image. (b)(c) The estimated image by LSP and

`1-norm with highest PSNRs in (d). (d) The PSNRs of LSP and `1-norm for different values of λ. The

results of LSP and `1-norm are obtained by CD (ψ = 0.001ξ, θ(0) = 0) and FISTA respectively.

in Figure 5(d), where LSP has higher PSNRs than `1-norm for all λs in the figure. The

PSNRs of LSP are more robust to λ than `1-norm. Figure 5(b) and (c) illustrate the

recovered images by LSP and `1-norm with the best PSNRs. The image produced by

LSP is of better quality than the one created by `1-norm.

7. Conclusion

This paper establishes a theory for sparse estimation with non-convex regularized

regression. The framework of non-convex regularizers in this paper is general and es-

pecially suitable for sharp concave regularizers. For proper sharp concave regularizers,

both global solutions and AGAS solutions can give good parameter estimation and

sparseness estimation. The proposed SE based estimation conditions are weaker than

that of `1-norm. To obtain AGAS solutions, we give a prediction error based guarantee

for AG property and prove that CD methods yield the desired AGAS solutions.

Our theory explains the improvements on sparse estimation from `1-regularization

to non-convex regularization. Our work can serve as a guideline for the further study

on designing regularizers and developing algorithms for non-convex regularization.

8. Technical Proofs

We first provide two lemmas. The first is Lemma 1 of Zhang and Zhang [38].
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Lemma 1. Let θ̂ be a global optima of Problem (1). We have

‖XT (Xθ̂ − y)/n‖∞ ≤ λ∗. (25)

Under the η-null consistency condition, we further have

‖XT e/n‖∞ ≤ ηλ∗. (26)

Lemma 2. 1. r(u) is subadditive, i.e., r(u1 + u2) ≤ r(u1) + r(u2), ∀u1, u2 ≥ 0.

2. For any ∀u > 0 and any d ∈ ∂r(u), ṙ(0+) ≥ ṙ(u−) ≥ d ≥ ṙ(u+) ≥ 0.

Proof. 1. Since r(u) is concave, it follows that ∀u1, u2 ≥ 0, u1

u1+u2
r(u1 + u2) +

u2

u1+u2
r(0) ≤ r(u1) and u2

u1+u2
r(u1 + u2) + u1

u2+u2
r(0) ≤ r(u2). Summing up the

two inequalities gives r(u1 + u2) ≤ r(u1) + r(u2).

2. Invoking the subadditivity, we have [r(u−∆u)− r(u)]/∆u ≤ r(∆u)/∆u for

∆u > 0 and u ≥ ∆u. Let ∆u→ 0. Then ṙ(0+) ≥ ṙ(u−).

The concavity of r(u) yields that r(u)−r(u−∆u)
∆u ≥ r(u+∆u)−r(u)

∆u for ∆u > 0.

From the definition of subgradient of concave function, we have ∆u ·d ≥ r(u+∆u)−

r(u) and −∆u · d ≥ r(u−∆u)− r(u) for any ∆u > 0. Hence, r(u)−r(u−∆u)
∆u ≥ d ≥

r(u+∆u)−r(u)
∆u . Let ∆u→ 0 and then the lemma follows. �

8.1. Sharp concavity and strong concavity

Invoking Eqn. (2) with α > 0, t1 = 0 and t2 = t > 0, we have r((1 − α)t) ≥

(1− α)r(t) + Cα(1− α)t2/2, which implies

r(t) ≥ t · r(t)− r(t− αt)
αt

+ C(1− α)t2/2.

Let α→ 0. Sharp concavity follows.

8.2. The upper bound of λ∗ for LSP

Define U > 0 such that U2

log(1+U) = 2
ξγ2 . Let u = Uλγ and we have λ∗ ≤

λ( ξγU2 + log(1+U)
γU ) = λ

√
2ξ log(1 + U). Note that U ≤ U2

log(1+U) = 2
ξγ2 . Hence,

λ∗ ≤ λ
√

2ξ log(1 + 2
ξγ2 ). Also, aγ ≤

√
2ξ log(1 + 2

ξγ2 ).
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8.3. Proof of Theorem 1

θ̂ minimizes 1
2n‖y−Xθ‖

2
2+R(θ), therefore the subgradient at θ̂ contains zero, i.e.,

|xTi (Xθ̂−y)/n| ≤ ṙ(|θ̂i|−) for any i ∈ supp(θ̂). Define θ̄ = (θ̂1, · · · , θ̂i−1, 0, θ̂i+1, · · · , θ̂n).

We have 1
2n‖y −Xθ̂‖

2
2 +R(θ̂) ≤ 1

2n‖y −Xθ̄‖
2
2 +R(θ̄), which implies 2nr(|θ̂i|) ≤

θ̂2
i ‖xi‖22 + 2θ̂ix

T
i (y−Xθ̂) ≤ θ̂2

i ‖xi‖22 + 2|θ̂i||xTi (y−Xθ̂)| ≤ nξθ̂2
i + 2n|θ̂i|ṙ(|θ̂i|−).

If θ̂i ∈ (0, u0), this inequality contradicts with ξ-sharp concavity condition. �

8.4. Proof of Theorem 2

We assume that θ = 0 is not a minimizer of minθ
1

2n‖Xθ − e/η‖
2
2 +R(θ) while

θ̂η 6= 0 is a minimizer. Therefore, 1
2nη2 ‖e‖

2
2 >

1
2n‖Xθ̂η − e/η‖

2
2 +R(θ̂η). Since r(u)

is ξ-sharp concave over (0, u0), the non-zero components of θ̂η has magnitudes larger

than u0. Thus, 1
2n‖Xθ̂η − e/η‖

2
2 +R(θ̂η) ≥ r(u0) ≥ 1

2nη2 ‖e‖
2
2. It contradicts with

the assumption. �

8.5. Proof of Theorem 3

Let ∆ = θ̂ − θ∗, S = supp(θ∗), s = |S| and T be any index set with |T | ≤ s.

Let i1, i2, · · · be a sequence of indices such that ik ∈ T̄ for k ≥ 1 and |∆i1 | ≥

|∆i2 | ≥ |∆i3 | ≥ · · · . Given an integer t ≥ s, we partition T̄ as T̄ = ∪i≥1Ti such

that T1 = {i1, · · · , it}, T2 = {it+1, · · · , i2t}, · · · . Define Σ =
∑
i≥2 ‖∆Ti‖2, α =

(1 + η)/(1 − η). Before the proof, we introduce the following three lemmas. Lemma

3 is a special case of Lemma 6 with µ = 0.

Lemma 3. Under η-null consistency, 1
2n‖X∆‖22 +R(∆S̄) ≤ αR(∆S).

Lemma 4. r(Σ/
√
t) ≤ R(∆T̄ )/t.

Proof. For any i ∈ Tk and j ∈ Tk−1 (k ≥ 2), we have |∆i| ≤ |∆j |. Thus,

r(|∆i|) ≤ R(∆Tk−1
)/t, i.e., |∆i|2 ≤ (r−1(R(∆Tk−1

)/t))2. It follows that r(‖∆Tk‖2/
√
t) ≤

R(∆Tk−1
)/t. Thus, R(∆T̄ )/t ≥

∑
k≥2R(∆Tk−1

)/t ≥
∑
k≥2 r(‖∆Tk‖2/

√
t) ≥

r(Σ/
√
t). �

Lemma 5. Under η-null consistency,

max{‖∆T ‖2, ‖∆T1‖2} ≤
1 +
√

2

2κ−(2t)

[
κ+(2t)− κ−(2t)

2
Σ +
√
t(1 + η)λ∗

]
. (27)
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Proof. By Lemma 1, we have ‖XTX∆/n‖∞ ≤ ‖XT (Xθ̂−y)/n‖∞+‖XT e/n‖∞ ≤

λ∗+ηλ∗. We modify the Eqn. (12) in Foucart and Lai [15] to the following inequality.

1

n
〈X∆, X(∆T + ∆T1)〉 ≤ (‖∆T ‖1+‖∆T1‖1)‖ 1

n
XTX∆‖∞ ≤

√
t(1+η)λ∗(‖∆T ‖2+‖∆T1‖2).

Then, following the proof of Theorem 3.1 in Foucart and Lai [15], Eqn. (27) follows.�

Next, we turn to the proof Theorem 3. Let κ− = κ−(2t), κ+ = κ+(2t), Hr =

Hr(ρ0, α, s, t) and % = (1 +
√

2)(κ+/κ− − 1)/4. There are two cases according to

the difference of supports of θ̂ and θ∗.

Case 1: supp(θ̂) = supp(θ∗). For this case, we have ∆i = 0 for i ∈ S̄ and

Σ = 0, with which and Lemma 5, we obtain that ‖∆‖2 = ‖∆S‖2 ≤ c1λ
∗, where

c1 = (1 +
√

2)(1 + η)
√
t/(2κ−).

Case 2: supp(θ̂) 6= supp(θ∗). Let T be the indices of the first s largest com-

ponents of ∆ in the sense of magnitudes. From the concavity of r(u), R(∆T ) ≤

sr(‖∆T ‖1/s) ≤ sr(‖∆T ‖2/
√
s). By Lemma 5, we have

R(∆T ) ≤ sr
(
‖∆T ‖2√

s

)
≤ sr

(
1 +
√

2

2
√
sκ−

(
κ+ − κ−

2
Σ +
√
t(1 + η)λ∗

))
. (28)

Combining with Lemma 3 and 4, it follows that

r−1

(
R(∆T )

s

)
− %
√
t

s
r−1

(
αR(∆T )

t

)
≤ (1 +

√
2)(1 + η)

2κ−

√
t

s
λ∗. (29)

By the definition of ρ0 in Eqn. (8) and supp(θ̂) 6= supp(θ∗), there exists j satisfying

|∆j | ≥ ρ0, which implies R(∆T ) ≥ r(ρ0). Since r−1(u/s)
r−1(αu/t) is a non-decreasing

function of u, we have that

r−1(R(∆T )/s)

r−1(αR(∆T )/t)
≥ r−1(r(ρ0)/s)

r−1(αr(ρ0)/t)
=

√
t

s
Hr(ρ0, α, s, t).

for ρ0 > 0. If ρ0 = 0, the left hand of the above inequality still holds sinceHr(0, α, s, t) =

limρ→0+Hr(ρ, α, s, t). Under the condition Hr − % > 0, we have

r−1 (αR(∆S)/t) ≤ r−1 (αR(∆T )/t) ≤ C2(1 + η)λ∗, (30)

where

C2 =
1 +
√

2

2(Hr − %)κ−
. (31)

Hence, we have Σ ≤
√
tC2(1 + η)λ∗ by Lemma 3 and Lemma 4. Invoking Lemma 5

and ‖∆‖2 ≤ ‖∆T ‖2 + ‖∆T1‖2 + Σ, the conclusion follows with some algebra. �
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8.6. Proof of Theorem 4

The proof is similar to Theorem 2 in Zhang and Zhang [38] except that we bound

R(∆S) and ‖X∆‖22/(2n) as follows. By Eqn. (30), we have R(∆S) ≤ t
αr(C2(1 +

η)λ∗) and 1
2n‖X∆‖22 ≤ αR(∆S) ≤ tr(C2(1 + η)λ∗).

8.7. The method to obtain Eqn. (14) and (15)

Suppose r(u) = Cuq (0 < q ≤ 1) for u ≥ λγ(1−φ). The continuity and the con-

cavity of r(u) require that C(λγ(1−φ))q = 0.5λ2γ(1−φ2) and Cq(λγ(1−φ))q−1 ≤

λφ. Thus, it is feasible that q = 2φ/(1 + φ) and C = 0.5λ2γ(1− φ2)/(λγ(1− φ))q .

Eqn. (14) follows. For this setting for C and q, r(u) is ξ-sharp concave over (0, ρ0)

with ρ0 = λγ(1− φ)( φ
ξγ(1+φ) )(1+φ)/2. We observe that r(ρ0)/s ≥ λ2γ(1− φ2)/2 =

αr(ρ0)/t holds under the condition that αt ( φ
γξ(1+φ) )φ = 1, i.e., γξ = φ

1+φ (α/t)1/φ.

Thus, r−1(αr(ρ0)/t) = λγ(1 − φ) and r−1(r(ρ0)/s) = λγ(1 − φ)(t/(αs))1/q with

q = 2φ/(1 + φ). Then, Eqn. (15) follows.

8.8. Proof of Theorem 5

Let ∆ = θ̂ − θ∗. By Lemma 3 in Section 8.5, we have RER(α,S)‖∆‖22 ≤

‖X∆‖22/n and RIFRτ (α,S)‖∆‖τ ≤ s1/τ‖XTX∆‖∞/n.Invoking null consistency,

we have eTX∆/n ≤ η‖X∆‖22/(2n) + ηR(∆). Then,

0 ≥ L(θ∗ + ∆)− L(θ∗) +R(θ∗ + ∆)−R(θ∗)

≥ ‖X∆‖22/(2n)− eTX∆/n+R(∆S̄)−R(∆S)

≥ (1− η)‖X∆‖22/(2n)− (1 + η)R(∆)

≥ (1− η)‖∆‖22RER(α,S)/2− (1 + η)
√
sṙ(0+)‖∆‖2.

Hence, we obtain ‖∆‖2 ≤ 2α
√
s

RER(α,S)
ṙ(0+). By Lemma 1, ‖XTX∆/n‖∞ ≤

‖XT (Xθ̂ − y)/n‖∞ + ‖XT e/n‖∞ ≤ (1 + η)λ∗. By the definition of RIF, we have

‖∆‖τ ≤ (1+η)λ∗s1/τ

RIFRτ (α,S)
. �

8.9. Proof of Theorem 6

The proof needs the following two lemmas, which are extensions of Lemma 3 and

Lemma 5 The notations are the same as Section 8.5 except that ∆ = θ̃ − θ∗.
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Lemma 6. Suppose θ̃ is a (θ∗, µ)-approximate global solution and the regularized

regression satisfies the η-null consistency condition. Then, ‖X∆‖22/(2n) +R(∆S̄) ≤

αR(∆S) + µ/(1− η).

Proof. Invoking η-null consistency condition, we have eTX∆/n ≤ η‖X∆‖22/(2n)+

ηR(∆). Since θ̃ = θ∗ + ∆ is a (θ∗, µ)-approximate global solution, we have

µ ≥ L(θ∗ + ∆)− L(θ∗) +R(θ∗ + ∆)−R(θ∗)

≥ ‖X∆‖22/(2n)− eTX∆/n+R(∆S̄)−R(∆S)

≥ (1− η)‖X∆‖22/(2n)− ηR(∆) +R(∆S̄)−R(∆S)

Hence, the conclusion follows. �

Lemma 7. Under η-null consistency,

max{‖∆T ‖2, ‖∆T1‖2} ≤
1 +
√

2

2κ−(2t)

[
κ+(2t)− κ−(2t)

2
Σ +
√
tε̃

]
. (32)

Proof. Since θ̃ is a ν-AS solution, we have ‖XT (Xθ̃ − y)/n‖∞ ≤ ṙ(0+) + ν.

From the triangle inequality and Eqn. (26), we have ‖XTX∆/n‖∞ ≤ ‖XT (Xθ̃ −

y)/n‖∞ + ‖XT e/n‖∞ ≤ ṙ(0+) + ηλ∗ + ν = ε̃. Eqn. (32) follows with the same

analysis as the proof of Lemma 5. �

Next, we turn to the proof of Theorem 6. The proof is similar to that of Theorem

3. Here we only provide some important steps. Let κ− = κ−(2t), κ+ = κ+(2t),

Gr = Gr(ρ̃0, α, s, t) and % = (1 +
√

2)(κ+/κ− − 1)/4.

Case 1: supp(θ̃) = supp(θ∗). Similar to Case 1 of Theorem 3, we have ‖∆‖2 =

‖∆S‖2 ≤ c3ε̃ where c3 = (1 +
√

2)
√
t/(2κ−).

Case 2: supp(θ̃) 6= supp(θ∗). Similar to Eqn. (29), we have

r−1

(
R(∆T )

s

)
− %
√
t

s
r−1

(
αR(∆T )

t
+

µ

(1− η)t

)
≤ 1 +

√
2

2κ−

√
t

s
ε̃ (33)

Since r(u) is non-decreasing and concave, r−1(u) is convex. Therefore,

r−1

(
αR(∆T )

t
+

µ

(1− η)t

)
≤ t− 1

t
r−1

(
αR(∆T )

t− 1

)
+

1

t
r−1

(
µ

1− η

)
. (34)

We observe that
r−1(R(∆T )/s)

r−1(αR(∆T )/(t− 1))
≥ Gr

t− 1√
st

(35)
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Combining Eqn. (33)-(35), we know that under the condition of Eqn. (20),

r−1(αR(∆S)/(t− 1)) ≤ c4ε̃+ c5r
−1(µ/(1− η))/(t− 1), (36)

where

c4 =
t

t− 1

1 +
√

2

2(Gr − %)κ−
(37)

and

c5 = %/(Gr − %). (38)

Hence, we have Σ ≤
√
tc4ε̃+ c5+1√

t
r−1

(
µ

1−η

)
. With this and Lemma 7, it follows that

‖∆‖2 ≤ C4ε̃+ C5r
−1
(

µ
1−η

)
, where

C4 =

√
t(1 +

√
2)

κ−

Gr + %/(t− 1) + 0.5t/(t− 1)

Gr − %
≥ c3, (39)

C5 =
(2%+ 1)Gr√
t(Gr − %)

. � (40)

8.10. Proof of Theorem 8

Let ∆0 = θ0 − θ∗. We have ‖X∆0‖2 ≤ ‖X∆0 − e‖2 + ε ≤ µ0

√
2n+ ε. So,

µ = L(θ0)− L(θ∗) +R(θ∗ + ∆0)−R(θ∗)

≤ L(θ0) +R(∆0)

≤ µ2
0 + (s+ s0)r(‖∆0‖2/

√
s+ s0)

≤ µ2
0 + (s+ s0)r(‖X∆0‖2/

√
nκ−(s+ s0)(s+ s0)

≤ µ2
0 + (s+ s0)r((ε/

√
n+
√

2µ0)/
√

(s+ s0)κ−(s+ s0)). �

8.11. Proof of Theorem 10

For any i = 1, · · · , p − 1, let zk,i = (θ
(k)
1 , · · · , θ(k)

i , θ
(k−1)
i+1 , · · · , θ(k−1)

p )T and

zk,0 = θ(k−1), zk,p = θ(k). By the definition of θ(k)
i in Eqn (21), we have

F(zk,i) ≤ F(zk,i) + ψ(θ
(k)
i − θ

(k−1)
i )2/2 ≤ F(zk,i−1). (41)

Thus, F(θ(k)) = F(zk,p) ≤ F(zk,i) ≤ F(zk,i) + ψ(θ
(k)
i − θ

(k−1)
i )2/2 ≤ F(zk,0) =

F(θ(k−1)). Note that F(θ(k)) ≥ 0 for any k. Thus, {F(θ(k))}, as well as {F(zk,i)}

and {F(zk,i) + ψ(θ
(k)
i − θ(k−1)

i )2/2} are non-increasing sequences and converge to

the same non-negative value.
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Summing up the right inequality of Eqn. (41) from i = 1 to p, we have ‖θ(k) −

θ(k−1)‖22 ≤ 2(F(θ(k−1))−F(θ(k)))/ψ. Summing up from k = 1 to K, we have

min
1≤k≤K

‖θ(k) − θ(k−1)‖22 ≤
∑K
k=1 ‖θ(k) − θ(k−1)‖22

K
≤ 2F(θ(0))

ψK
(42)

The directional derivative of Eqn. (21) at θ(k)
i is non-negative, i.e.,

dix
T
i (Xzk,i − y)/n+R′(θ(k)

i ; di) + ψ(θ
(k)
i − θ

(k−1)
i )di ≥ 0 (43)

for any di ∈ R. Summing up Eqn. (43) from i = 1 to p, we have for any d ∈ Rp

0 ≤
∑p
i=1 ψ(θ

(k)
i − θ

(k−1)
i )di +R′(θ(k); d) +

∑p
i=1 dix

T
i (Xzk,i − y)/n

≤ ψ‖d‖∞‖θ(k) − θ(k−1)‖1 +R′(θ(k); d)

+ dT∇L(θ(k)) +
∑p
i=1

∑p
j=i+1 di(θ

(k−1)
j − θ(k)

j )xTi xj/n

≤ F ′(θ(k); d) + ψ‖d‖∞‖θ(k) − θ(k−1)‖1 + ξ‖d‖∞
∑p
i=1

∑p
j=i+1 |θ

(k−1)
j − θ(k)

j |

≤ F ′(θ(k); d) + (ψ + pξ)‖d‖∞‖θ(k) − θ(k−1)‖1
≤ F ′(θ(k); d) + (ψ + pξ)

√
p‖d‖∞‖θ(k) − θ(k−1)‖2

(44)

Hence, F ′(θ(k); d) ≥ −(ψ+ pξ)
√
p‖d‖∞‖θ(k) − θ(k−1)‖2. When CD stops iteration,

‖θ(k) − θ(k−1)‖2 ≤ τ = ν/((ψ + pξ)
√
p) and ‖θ(j) − θ(j−1)‖2 ≥ τ for j ≤ k − 1,

which implies F ′(θ(k); d) ≥ −ν for any ‖d‖2 = 1. Invoking Eqn. (42), we have

τ2 ≤ 2F(θ(0))/(ψ(k − 1)). Thus, k ≤ 2p(ψ + pξ)2F(θ(0))/(ψν2) + 1. �
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