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Abstract

Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the 

performance of a binary classification system. The area under the ROC curve (AUC) is a 

performance metric that summarizes how well a classifier separates two classes. Traditional AUC 

optimization techniques are supervised learning methods that utilize only labeled data (i.e., the 

true class is known for all data) to train the classifiers. In this work, inspired by semi-supervised 

and transductive learning, we propose two new AUC optimization algorithms hereby referred to as 

semi-supervised learning receiver operating characteristic (SSLROC) algorithms, which utilize 

unlabeled test samples in classifier training to maximize AUC. Unlabeled samples are 

incorporated into the AUC optimization process, and their ranking relationships to labeled positive 

and negative training samples are considered as optimization constraints. The introduced test 

samples will cause the learned decision boundary in a multidimensional feature space to adapt not 

only to the distribution of labeled training data, but also to the distribution of unlabeled test data. 

We formulate the semi-supervised AUC optimization problem as a semi-definite programming 

problem based on the margin maximization theory. The proposed methods SSLROC1 (1-norm) 

and SSLROC2 (2-norm) were evaluated using 34 (determined by power analysis) randomly 

selected datasets from the University of California, Irvine machine learning repository. Wilcoxon 

signed rank tests showed that the proposed methods achieved significant improvement compared 

1Matlab code of the proposed methods will be released on http://clinicalcen ter.nih.gov/drd/summers.html once the paper is published.
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with state-of-the-art methods. The proposed methods were also applied to a CT colonography 

dataset for colonic polyp classification and showed promising results.1
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1. Introduction

Receiver operating characteristic (ROC) analysis is a standard methodology to evaluate the 

performance of a classification system [1–12]. It is applied extensively within clinical 

medicine [13–15]. The ROC curve is a two-dimensional plot which illustrates the 

relationship between the true positive rate (sensitivity) and the false positive rate (1 – 

specificity) of a binary classifier. In essence, a classifier seeks the optimal mapping of 

samples from a multi-dimensional feature space to a one-dimensional decision space during 

the training process. After the training process, the classifier can be applied to test samples 

whose labels are unknown and make a prediction for each test sample. The value of the 

prediction should be numerical (not binary categories) in order to make ROC analysis. 

Based on the predictions of the test set from a trained classifier, user of the classifier can 

select a specific diagnostic threshold to differentiate positive from negative samples for his 

or her specific application by finding the threshold along the ROC curve which maximizes 

sensitivity at the highest acceptable false positive rate (or cost).

The area under the ROC curve (AUC) is a univariate description of the ROC curve [1]. It 

ranges from 0.5 to 1, with larger values representing higher system performance. The AUC 

is equal to the probability that the decision value assigned to a randomly-drawn positive 

sample is greater than the value assigned to a randomly-drawn negative sample. Flach et al. 

proved that AUC is coherent and linearly related to expected loss [12]. The AUC statistic is 

commonly used to compare different classification systems. Previous studies have shown 

that AUC is statistically consistent and a more discriminative measure than classification 

accuracy [3,4].

Although some researchers have recommended the use of AUC for the evaluation of 

machine learning algorithms when a single performance metric needs to be used for the 

evaluation [1], others have pointed out some shortcomings of the use of the AUC. Lobo et 

al. cited a number of limitations of the use of AUC in evaluating the performance of species 

distribution (presence–absence) models [16] in ecology. Among the more general limitations 

are that the AUC summarizes performance over regions of the ROC space in which one 

would rarely operate, and that the goodness-of-fit of a model is ignored by the AUC. 

Hanczar et al. studied the problem of comparing estimates of AUC, true positive rate (TPR) 

and false positive rate (FPR) with true metrics when classifier training and performance 

estimation are performed on small-sample datasets [17]. They found that generally there is 

weak regression of the true metric on the estimated metric for all three figures of merit 

(AUC, TPR and FPR) studied. Clearly, AUC needs to be carefully considered as an endpoint 

in both classifier evaluation and classifier design. However, when a single figure of merit 
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needs to be used for classifier design, and the operating point of the classifier (a specific 

desired FPR or TPR) is not defined a priori, AUC remains a strong alternative to other 

figures of merit. AUC continues to be a very widely used endpoint in classifier evaluation 

and design, and many approaches to classifier design only indirectly maximize the AUC by 

optimizing some other cost functions, such as classification accuracy [18]. Our study does 

not try to define the scenarios for which AUC is an appropriate metric, but to instead discuss 

and compare approaches for optimizing AUC when it is deemed appropriate. Direct 

optimization of the AUC for a binary classifier is an interesting problem that may lead to 

improved performance for such applications.

In previous work, Rakotomamonjy first showed that support vector machines (SVMs) can 

maximize both AUC and accuracy [5]. He proposed a quadratic programming-based 

algorithm for AUC maximization by considering the margins between positive and negative 

training samples. Hereafter, we will refer this method as “SVMROC”. Subsequently, 

Brefeld and Scheffer presented a rigorous derivation of an AUC-maximizing SVM by 

imposing a convex bound and a margin item to the optimization problem [6]. They not only 

gave a strict analytical solution to the AUC-maximizing problem, but also showed an 

approximate solution based on clustering the constraints for large datasets.

Learning by an ensemble of classifiers is a very effective learning mechanism and a 

mainstream scheme used in machine learning [19,20]. Ensemble learning refers to a 

collection of methods that learn a target function by training a number of individual learners 

and combining their predictions together. Bagging [21] and boosting [22] are two of the 

best-known ensemble learning methods. Inspired by the “collaborative filtering” problem of 

ranking movies for a user based movie ratings from other users, Freund et al. proposed an 

efficient algorithm, termed RankBoost, for combining preferences based on the boosting 

approach [23]. RankBoost was originally designed for ranking problems. AUC optimization 

promotes ranks of positive training samples and decreases ranks of negative training 

samples, and is therefore essentially a ranking problem. RankBoost can thus be applied to 

AUC optimization, and has been widely used as a baseline method for this problem.

To maximize AUC for large scale and high dimensional data, Gao et al. proposed a one-pass 

AUC optimization technique called OPAUC [24]. The most prominent feature of this 

technique is that it only scans the data once as a single sequence and, therefore, does not 

require storage of the whole training set. OPAUC employs a square loss to measure the 

ranking error between two instances from different classes. A regression based algorithm 

was developed to calculate the first and second-order statistics of the training data and store 

them in memory. By this way, the storage requirement of OPAUC is only determined by the 

dimension of the data, not the number of instances of the data.

In recent years, semi-supervised learning (SSL) has emerged as an alternate approach to 

supervised learning in machine learning with advantages in many real life applications. 

Semi-supervised learning falls between supervised and unsupervised learning [25,26]. It 

utilizes both labeled data (usually a small amount), in which the true class is known, and 

unlabeled data (usually many), in which the data class is unknown, during the training 

process. Semi-supervised learning algorithms were developed primarily because the labeling 
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of data is typically expensive, and even impossible in some applications. It is especially 

useful for medical problems because the acquisition of labels is very expensive and time 

consuming for many clinical trials. Previous studies of semi-supervised learning focused on 

classification and clustering problems [25,26]. For classification problems, classification 

accuracy is a widely-used evaluation indicator to test semi-supervised learning methods.

Traditional AUC optimization techniques are supervised learning methods, which only 

utilize labeled data in classifier training. Previous studies on SSL have shown that by 

utilizing distribution or manifold information of test samples, SSL algorithms can achieve 

higher classification performance compared with supervised learning algorithms. Thus, one 

natural idea will be to apply the mechanism of SSL to the problem of AUC optimization. In 

addition, SSL also has a close connection to transductive learning. Traditional supervised 

learning algorithms attempt the difficult task of learning general rules from training data, but 

transductive learning reasons from observed training data to test cases directly [27,25]. This 

is quite different from traditional inductive learning, which only considers functions learned 

from a training set and ignores statistical connection between training and test sets. In 

transductive learning, an unlabeled test dataset is used during classifier training in order to 

predict class membership for the given test dataset based on the labels of training samples. 

Trans-ductive learning focuses on how to transfer the knowledge gained from the training 

samples to the unlabeled test samples in an efficient and accurate way. The motivation 

behind transductive learning is also applicable to the AUC optimization problem.

As an example of transductive learning, Sindhwani and Keerthi proposed semi-supervised 

linear support vector classifiers (named “SVMlin”) to handle partially-labeled large scale 

datasets with possibly very large and sparse features [28,29]. They applied modified finite 

Newton techniques to linear transductive SVM which is significantly more efficient and 

scalable than traditional dual optimization techniques for solving quadratic programming 

problems.

In the literature, there is little work on applying SSL or transductive learning to AUC 

optimization explicitly. Amini et al. proposed a boosting algorithm (“SSRankBoost”) for 

learning bipartite ranking functions with partially labeled data [30]. Bipartite ranking 

problem refers to a ranking problem which assigns higher scores to relevant examples than 

to irrelevant ones for a given dataset which has wide applications in document analysis area. 

Along the same line, Ralaivola proposed a semi-supervised bipartite ranking algorithm with 

the normalized Rayleigh coefficient [31]. Later, Usunier et al. proposed a multiview semi-

supervised learning algorithm for ranking multilingual documents [32]. Since AUC 

optimization has close relationship with ranking problem, works on learning bipartite 

ranking functions can also be applied to AUC optimization problems.

In this work, inspired by semi-supervised and transductive learning, we propose two new 

AUC optimization algorithms hereby referred to as semi-supervised learning receiver 

operating characteristic algorithms (SSLROC1 and SSLROC2), which utilize unlabeled test 

samples for classifier training. Unlabeled test samples are incorporated into the AUC 

optimization process, and their ranking relationships to positive and negative training 

samples are considered as optimization constraints. The introduced test samples make the 
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learned decision boundary in a multi-dimensional feature space to adapt not only to the 

distribution of labeled training data, but also to the distribution of unlabeled test data. We 

formulate the semi-supervised AUC optimization problem as a semi-definite programming 

(SDP) problem [33] based on the margin maximization theory.

The paper is organized as follows: we first introduce the AUC optimization problem in 

Section 2. The AUC optimization problem is then formulated as a semi-supervised learning 

problem based on the margin maximization theory and solved using semi-definite 

programming in Section 3. In Section 4, we list 34 datasets (from University of California, 

Irvine machine learning repository) which are used to evaluate the proposed method, and 

show comparisons with state-of-the-art classification or AUC optimization methods. We 

also show results from the proposed method for a colonic polyp classification problem based 

on a biomedical imaging dataset. In Section 5 we conclude our findings and discuss 

computational complexity issues and future research directions.

2. Maximizing AUC with large margin learning

For a two-class classification problem, given training samples {(x1, y1), …, (xn, yn)}, yi ∈

{−1, + 1}, the optimization problem for maximizing the area under the ROC curve is 

defined as follows:

Optimization problem 1

(1)

with , i = 1, 2, …, n+, j = 1, 2, …, n−, where n+ and n− are the 

numbers of positive (+1) and negative (−1) training samples, respectively; ϕ: X → F denotes 

a mapping function which maps the input space X into a new feature space F; w is the 

weight of the linear classifier; I is the indicator function (1: when condition holds; 0: 

otherwise). The key idea of above formulation of AUC maximization is to assign higher 

prediction values for positive training samples compared with negative training samples and 

make the learned classifier work for as many positive–negative sample pairs as possible.

Since optimization problem 1 is not differentiable, Rakotomamonjy proposed the following 

approximately equivalent problem (1-norm or 2-norm) based on a large margin learning 

theory [5]:

Optimization problem 2

(2)

with
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The above constrained quadratic programming optimization problem 2 can be solved using 

the Lagrange multiplier optimization method [5]. Optimization problem 2 attempts to 

identify a linear classifier in the reproducing kernel Hilbert space, which makes correct 

predictions for every positive–negative pair in the training set with certain relaxation ξij ≥ 0, 

i = 1, 2, …, n+, j = 1, 2, …, n−.

3. A semi-supervised learning method for AUC optimization

In optimization problem 2 we consider only training samples during the AUC optimization 

process. Therefore, this is a supervised learning algorithm in essence. It has been shown in 

the semi-supervised learning literature that adding information from unlabeled test samples 

can be helpful in identifying a more accurate decision boundary in classification problems 

[25,26]. One natural question is how to best utilize the information contained in the 

unlabeled test set to help maximize the AUC during optimization in large margin leaning 

classifiers (e.g., SVMs).

To extend large margin learning to the semi-supervised learning domain, Bennett and 

Demiriz proposed a semi-supervised support vector machine (S3VM) [34]. S3VM minimizes 

both the classification accuracy and the function capacity based on available data in both 

training and test sets. The key idea in the formulation of S3VM is the incorporation of 

unlabeled test sample constraints within the large margin learning framework. Because the 

labels for the test samples are unknown, two constraints are imposed in the optimization 

problem for each test sample. This corresponds to the situation in which the unknown test 

sample is first assumed to be a positive sample, and then a negative sample. Later, 

Sindhwani and Keerthi proposed semi-supervised linear SVMs to handle large scale data 

[28,29].

Inspired by the above-mentioned work on semi-supervised SVMs, in this paper we proposed 

two new semi-supervised algorithms to solve the AUC optimization problem 2. The basic 

idea is to incorporate unlabeled data in the AUC optimization framework shown in problem 

2 and guess labels of unlabeled data during the optimization process. For each test sample, 

we first assume it is positive and compare it with all negative training samples; then we 

assume it is negative and compare it with all positive training samples. By this way, we hope 

we can rank potential positive samples higher compared with potential negative samples in 

the test set with the guidance of labeled training samples. In another words, here we propose 

to utilize unlabeled test data which is the essence of semi-supervised learning and try to rank 

as many positive test samples higher (compared with negative samples) as possible which is 

the essence of AUC optimization. More specifically, for a two-class classification problem, 

given positive training samples  i = 1, 2, …, p, 

negative training samples , j = 1, 2, …, q, and test 
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samples {(x1), …, (xr)} without labels, the optimization problem for maximizing the AUC 

under the semi-supervised learning settings is defined as

Optimization problem 3 (1-norm)

(3)

where w is the linear classifier to be identified; margin size parameter M is a sufficiently 

large constant introduced to handle the margins between test samples and positive/negative 

training samples; C1 and C2 are trade-off parameters to balance classifier complexity, 

training error of training samples, and impact from unlabeled test samples; ξij ≥ 0, i = 1, 2, 

…, p, j = 1, 2, …, q, are margins introduced to accommodate non-linear separable positive–

negative pairs in the training set; ηmj ≥ 0, m = 1, 2, …, r, j = 1, 2, …, q, are margins 

introduced for test-negative sample pairs; μmi ≥ 0, m = 1, 2, …, r, i = 1, 2, …, p, are margins 

introduced for test-positive sample pairs. dm ∈ {0, 1}, m = 1, 2, …, r, are estimated labels of 

the unlabeled test samples (0 means negative sample). The objective function shown in Eq. 

(3) contains three parts: the first part is a penalty item on the complexity of the classifier; the 

second part weighted by C1 contains training errors on positive–negative pairs; the last part 

weighted by C2 deals with the empirical errors from unlabeled test data. In the constraints 

shown above, there are also three parts: the first part shows the pair-wise empirical errors 

from the training set; the second/third part shows empirical errors when compare test 

samples with negative/positive training samples (labels of test samples are estimated during 

the optimization process). Based on dm and M, for each test sample, although there are two 

constraints in Eq. (3), actually only one constraint will take effect. In our experiments, we 

kept C1 and C2 equal to make the algorithm simple. A key advance in this approach is the 

inclusion of manifold information of test samples as part of the AUC maximizing (or 

ranking) constraints regarding positive/negative training samples.

Theorem 1—The optimal solution for quadratic optimization problem 3 can be found by 

solving the following semidefinite programming (SDP) problem:

(4)

where
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kij = 〈ϕ(xi), ϕ(xj) 〉, ϕ(x) is a chosen kernel function, xi and xj are samples from the set 

denoted by the corresponding superscripts, KPNUP = KUPPNT
, KPNUN = KUNPNT

, KUNUP = 

KUPUNT
 and

The proof of this theorem is shown in Appendix A. In the above definitions, P means 

positive training samples; N means negative training samples; U means unknown test 

samples. Each block in the block matrix K contains kernel function values from four 

datasets denoted by its superscript.

The AUC optimization problem using semi-supervised learning can also be formulated 

using 2-norm soft margin:

Optimization problem 4 (2-norm)

(5)

Theorem 2—The optimal solution for quadratic optimization problem 4 can be found by 

solving the following SDP problem:
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where

and

The proof of Theorem 2 is similar to Theorem 1.

4. Experimental validation

4.1. Experimental settings

To evaluate the proposed SSLROC1 (1-norm) and SSLROC2 (2-norm) AUC optimization 

methods, we compared them with SVMs [35] and three state-of-the-art supervised AUC 

optimization methods: SVMROC [5], RankBoost [23] and OPAUC [24]. We also compare 

the proposed methods with two semi-supervised classifiers SSRank-Boost [30] and SVMlin 

[28,29] to show the advantages unlabeled data bring to the AUC optimization problem. For 

each tested method and dataset we used 5 × 2-fold cross validation, which contains 5 

repetitions of 2-fold cross validation (CV). The validation method was inspired by 

Dietterich’s 5 × 2 CV paired t-test study [36], which has a low probability of incorrectly 

detecting a difference when no difference exists (type-I error), and a reasonable probability 

of detecting a difference when it exists (power). We calculated the AUC for each test fold of 

the 5 × 2-fold CV using prediction values from each method, and used the AUC average of 

the ten test folds to evaluate the performance of each method on each dataset. To determine 

whether two compared methods have a significant difference across multiple datasets, we 

used a Wilcoxon paired signed rank test.

For all datasets, we used z-score to normalize all features available such that each feature is 

centered to have mean of zero and scaled to have standard deviation of one. For SVMs, 

SVMROC, SSLROC1 and SSLROC2 (the four kernel based learning methods), we used a 

Gaussian radial basis function (RBF) as a kernel function for the similarity calculation, and 

the width factor σ was set as the 90th percentile of pairwise distances (in ascending order) 

between all instances or samples for each dataset. For SVMs and SVMROC, the classifier 
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complexity and training error trade off parameter C was varied from 1 × 10−4 to 1 × 102, 

increasing linearly in log 10 scale. For RankBoost, we tuned the number of weak learners 

from 30 to 90 to identify the optimal parameter. We explored the same parameter space for 

OPAUC as the authors proposed in ref. [24] to identify the optimal parameter combinations: 

learning rate η changes from 2−12 to 210 and regularization parameter λ changes from 2−10 

to 22 (change linearly in log 2 scale). For SVMlin [28,29], we tested the following parameter 

combinations: regularization parameter λ [10−4, 104] and λu [10−2, 102] (linearly changing 

in the log 10 scale). The parameters used for SSRankBoost [30] are discount factor [0:0.2:1] 

and the number of unlabeled examples K [1:10]. For the proposed methods SSLROC1 and 

SSLROC2, trade off parameter C was set from 10−3 to 101 (change linearly in log 10 scale) 

and margin size parameter M was set as one of the three values: 0.1, 1 and 10.

Matlab was used as the programming environment in this study. We employed the public 

open source Matlab toolboxes SDPT3 [37], Sedumi [38] and YALMIP [39] as the SDP 

solver. For SVMROC and RankBoost we employed the SVM-KM kernel learning toolbox 

[40] (http://asi.insa-rouen.fr/~arakotom/toolbox/index). SVMlin was downloaded from 

http://vikas.sindhwani.org/svmlin.html. OPAUC was from Prof. Zhihua Zhou’s lab (http://

lamda.nju.edu.cn). SSRankBoost was downloaded from http://ama.liglab.fr/~amini/

SSRankBoost/.

4.2. Experimental results on UCI datasets

4.2.1. UCI datasets—To test the proposed ROC optimization algorithm and compare it 

with SVMs and traditional ROC optimization methods, we employed the University of 

California, Irvine (UCI) machine learning repository [41]. The UCI machine learning 

repository contains more than 200 datasets contributed from various application domains 

and is widely used in the machine learning community to evaluate various algorithms such 

as clustering, feature extraction, classification, and regression.

To determine the number of datasets needed for the experiments, we performed power 

analysis [42] using a Wilcoxon paired signed rank test. Power analysis showed that 34 

datasets were needed in order to secure a 10% probability of getting a type I error and a 20% 

probability of getting a type II error (alpha=0.1, power=0.8) for the comparison between the 

proposed method and SVMs. Thus, we randomly selected 34 classification datasets from the 

UCI Repository. Note, we did not account for multiple hypotheses in our sample size 

calculation. All datasets had an attribute that could be used as a class label. Some were 

multi-class classification problems converted to binary classification problems based on 

previous published work using these datasets. In Table 1 we list all datasets used in this 

study along with the number of instances, attributes, and class label for each dataset. Due to 

computational considerations, we randomly selected 100 instances or samples from each 

dataset if it contained more than 100 instances.

4.2.2. Results—In Table 2 we show the average AUC of the eight compared methods 

tested on each of the 34 UCI datasets using the 5 × 2-fold CV. For each dataset and each 

method tested, the AUC shown was from the optimal parameters which achieved the highest 

AUC performance. We also show the corresponding standard deviation for each method on 
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each dataset. Standard deviation was calculated based on the ten AUC values from 5 × 2-

fold CV. In Table 3 we list the numbers of win-tie-loss between the eight methods 

(pairwise) on the 34 UCI datasets. We observed that compared with state-of-the-art 

classification methods, SSLROC1 and SSLROC2 showed superior performance on more 

datasets. In Table 4 we show p values of the Wilcoxon signed rank tests between the eight 

methods (pairwise) on the 34 UCI datasets. Since the highest p-value is less than α=0.05, 

Hochberg’s method for multiple tests of statistical significance [43] indicates that SSLROC1 

and SSLROC2 have significantly improved performance compared with other methods. 

Also from the table we find that the difference between the proposed methods SSLROC1 (1-

norm) and SSLROC2 (2-norm) does not reach statistical significance.

For the proposed SSLROC1 and SSLROC2 methods, there are two critical parameters 

which control their generalization ability. They are training error trade-off parameter C and 

margin size parameter M. To identify the influence of C and M on the performance of the 

proposed methods, in Fig. 1 we show the average AUC of SSLROC1 and SSLROC2 on 

three example UCI datasets when different C and M were used in the experiment. From 

these four example cases, we can find a trend in the parameter combinations which leads to 

better performance. To reduce computation load, we only explored a small parameter space 

spanned by M and C. There were 15 combinations of them in total which are few. For 

example, in the work of OPAUC, the authors tested a parameter space spanned by the 

learning rate eta (2−12−210) and regularization parameter lambda (2−10−22), 299 parameter 

combinations in total. From the trends shown on the four UCI datasets, we see that there is a 

high probability that exploring a larger parameter space will lead to better AUC 

performance.

4.3. Experimental results on CTC dataset

Colorectal cancer is the second-leading cause of cancer death in Americans [44]. Computed 

tomographic colonography (CTC), also known as virtual colonoscopy, provides a less 

invasive alternative to optical colonoscopy in screening patients for colonic polyps [45]. In 

Fig. 2, we show 3D volume rendering of a segmented colon and a typical colonic polyp on 

the fold. Previous studies showed that computer-aided detection systems can assist 

radiologists in CTC reading and improve their detection performance [46–49]. To show the 

effectiveness of our proposed methods and their potential applications in the CTC computer-

aided detection system (CAD), we tested all four methods on a CTC dataset and analyzed 

the results using ROC analysis.

4.3.1. CTC datasets—Our dataset consisted of CTC examinations of 50 patients collected 

from three medical centers. Each patient had one or more polyps ≥6 mm confirmed by 

histopathological evaluation following optical colonoscopy (OC). Each patient was scanned 

in the supine and prone positions, and each scan was performed during a single breath hold 

using a 4- or 8-channel CT scanner. CT scanning parameters included 1.25- to 2.5-mm 

section collimation, 15 mm/s table speed, 1-mm reconstruction interval, 100 mAs, and 120 

kVp. For each CT scan in the dataset, we segmented the colon first from the original 3D 

image [50]. Then we searched the inner surface of the colon to identify initial colonic polyp 

candidates. Our initial detection scheme based on surface curvature analysis reported 60 
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colonic polyps 5–30 mm in size and 5234 false positives. The labels of initial detections 

were determined by OC examination which is a golden standard in CTC. Each initial 

detection defined as a CAD detection represents a candidate polyp. After initial detection we 

extracted 157 3D geometric features from each colonic polyp candidate [47]. The polyps 

were confirmed by traditional optical colonoscopy. To make the problem computationally 

feasible we filtered the initial dataset to 100 CAD detections, which included 49 true 

detections and 51 false positives by removing true and false positives with low SVM vote 

values predicted by a SVM committee classifier [51]. 5 × 2-fold CV was performed on the 

filtered dataset and test set in CV was treated as unlabeled samples under our SSL learning 

framework.

4.3.2. Results—In Fig. 3, we show AUCs of eight methods on the CTC dataset. 

RankBoost showed the highest performance with an AUC of 0.914. The proposed 

SSLROC2 method was ranked as the second highest performance with AUC of 0.909. 

Please note that both SSLROC1 and SSLROC2 outperformed all other semi-supervised 

learning methods for AUC maximization. In Fig. 4, we show comparisons of SSLROC1 and 

SSLROC2 with different parameters C and M. They both achieved highest performance 

when log 10(C) = −1 and log 10(M) = 0.

5. Discussion and conclusion

We proposed two new AUC optimization methods called SSLROC1 and SSLROC2, which 

introduce test samples in the optimization of margins in a binary classification problem for 

the purpose of AUC maximization. We tested the proposed methods on 34 randomly 

selected UCI machine learning datasets. The SSLROC algorithms were found to have 

superior AUCs in a significantly larger fraction of UCI datasets compared with SVMs, 

SVMROC, RankBoost, OPAUC, SVMlin, and SSRankBoost which are state-of-the-art 

classification and AUC optimization methods. The proposed methods also showed 

advantages in a colonic polyp classification problem for a dataset of CT colonography cases 

compared with other methods except RankBoost.

SVMs have a complexity of O(kn2) for RBF kernels and O(kn) for linear kernels, where n 

and k are the number of training samples and features, respectively. For our proposed 

method the computational complexity will increase to O(25kn4/16) and O(25kn2/16) for 

RBF and linear kernels, respectively, due to the introduction of test samples during AUC 

optimization. Here we assume that the training and testing sets have the same number of 

instances, which is the case for 5 × 2-fold cross validation; we also assume that the number 

of positive and negative samples is equal. For SVMROC, the computational complexity are 

O(kn4/4) and O(kn2/4) for RBF and linear kernels, respectively, under the assumption that 

the number of positive and negative samples is equal. The computational complexity 

analysis shows that the computational complexity is two orders of magnitude higher for both 

SVMROC and SSLROC over SVMs. For this reason the proposed method was applied to 

only small datasets in our study. However, the increased complexity of our method is 

balanced by its significantly higher performance over the other techniques. In future work 

we will investigate how to develop a more computationally efficient algorithm, likely using 
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more efficient algorithms to approximate the solution of the AUC maximization problem in 

large datasets [8].

Another potential disadvantage of the SSLROC method (and all transductive learning 

algorithms) is that when a new test dataset is acquired, the algorithm needs to be re-trained 

using the new test set as unlabeled data. This is in contrast to inductive learning algorithms 

(including all supervised algorithms), where the trained classifier can be directly applied to a 

new test dataset. In the field of computer-aided detection and diagnosis for radiological 

images, it is preferred to have a well trained CAD system and deploy it to hospitals or 

clinics without further training. Thus, a future research topic of interest will be to combine 

online and transductive learning to address the retraining issue in transductive AUC 

learning.

As we showed in the previous section, SSLROC1 and SSLROC2 did not reach statistical 

significance on the 34 UCI datasets. In the literature, Ng showed that sample complexity 

which is the minimum number of training examples required to train a good classifier grows 

only logarithmically as the number of irrelevant features increases in the dataset when L1 

regularization is employed [52]; L2 regularization has a worst sample complexity that grows 

at least linearly. In the work of Zhu et al. on 1-norm SVMs, they also argue that 1-norm 

SVM has some advantages over 2-norm SVM when data contains redundant noise features 

[53]. For the proposed methods, the major difference is that we use different norms for the 

regularization. So based on studies shown above, SSLROC1 should beat SSLROC2 when 

data contain irrelevant noisy features. However, from experimental results shown in Table 2, 

we did not observe such kind of trend when we compare average AUCs of SSLROC1 and 

SSLROC2. We suspect that it might be related with small size data employed in this study. 

In the future, it will be interesting to investigate how the data size affects the generalization 

performance of the two proposed methods.

In conclusion, we developed new methods of AUC optimization based on semi-supervised 

learning and transductive learning that yield improved classifier performance on multiple 

public datasets. The proposed methods may lead to improved classification performance in 

diverse realms of data analysis including medical imaging and computer vision.
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Appendix A. Proof of Theorem 1

Proof

By using the Lagrange multipliers optimization method [54], we transfer the constrained 

optimization problem 3 into the following unconstrained primal Lagrange function:

The Karush–Kuhn–Tucker (KKT) conditions [54] for optimal primal variables w, ξ, η, and μ 
are

Stationarity:
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Primal feasibility:

Dual feasibility:

Complementary slackness:

where

, e is a vector filled with all ones.

The optimal w can be achieved at:
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Let us define: , kij = 〈ϕ(xi), ϕ(xj)〉, xi and xj are 

samples from the set denoted by the corresponding superscripts.

In the above definitions, P means positive training samples; N means negative training 

samples; U means unknown test samples. KPNPN defines the kernel matrix between 

positive–negative training sample pairs; KPNUN defines the kernel matrix between positive–

negative training sample pairs and test-negative sample pairs; KPNUP defines the kernel 

matrix between positive–negative training sample pairs and test-positive sample pairs; 

KUNUN defines the kernel matrix between test-negative sample pairs; KUNUP defines the 

kernel matrix between test-negative sample pairs and test-positive sample pairs; KUPUP 

defines the kernel matrix between test-positive sample pairs. Here negative and positive 

samples are only from training set and test samples are only from test set.

Therefore:

After removing primal variables, we get dual representation of the optimization problem as 

follows:

with constraints: 0 ≤ α ≤ C1/2, 0 ≤ χ C2/2, 0 ≤ κ C2/2. Thus, the Lagrangian of the 

maximization problem can be defined as

Wang et al. Page 18

Pattern Recognit. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where , m = 1, 2, …, r, j = 1, 2, …, q, , 

m = 1, 2, …, r, i = 1, 2, …, p, s.t. ν ≥ 0, ο ≥ 0, θ ≥ 0, ρ ≥ 0, σ ≥ 0, τ ≥ 0.

Let us define

where KPNUP = KUPPNT
, KPNUN = KUNPNT

, KUNUP = KUPUNT
.

Let us define

Therefore

Based on duality, we have the following equivalent problems:

Wang et al. Page 19

Pattern Recognit. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The inner maximization could be achieved at:

So

Let t ≥ 0 be the upper limit of the minimization problem:

Using the Schur complement [54], we will get

So we have the following SDP problem:

In practice, we found that adding a regularizer diag(I1/C1, I2/C2, I3/C2) to K will increase 

the positive definiteness of K and lead to better performance, where diag is a diagonal 

matrix and I1, I2, and I3 are identify matrices having the same size as KPNPN, KUNUN, and 

KUPUP, respectively.
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Fig. 1. 
Average AUCs of 5 × 2-fold CV on three example UCI datasets. The first column 

corresponds to SSLROC1 and the second column corresponds to SSLROC2. Each row 

corresponds to one dataset. For both SSLROC1 and SSLROC2, we show results in the same 

parameter space spanned by log 10(C) and log 10(M).

Wang et al. Page 21

Pattern Recognit. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
3D volume rendering of a segmented colon (left figure) with spine and ribs; a typical colonic 

polyp on the fold (right figure).
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Fig. 3. 
Comparison of AUCs of eight methods on the CTC dataset.
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Fig. 4. 
Average AUC of SSLROC1 (a) and SSLROC2 (b) on the CTC dataset when different C 

values (classifier complexity and training error trade-off parameter) and M values (margin 

size parameter) were used in the experiment. (a) SSLROC1 and (b) SSLROC2.
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