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Abstract

Dempster-Shafer theory (DST) is particularly efficient in combining multiple

information sources providing incomplete, imprecise, biased, and conflictive

knowledge. In this work, we focused on the improvement of the accuracy rate

and the reliability of a HMM based handwriting recognition system, by the use

of Dempster-Shafer Theory (DST). The system proceeds in two steps: First,

an evidential combination method is proposed to finely combine the probabilis-

tic outputs of the HMM classifiers. Second, a global post-processing module

is proposed to improve the reliability of the system thanks to a set of accep-

tance/rejection decision strategies. In the end, an alternative treatment of the

rejected samples is proposed using multi-stream HMM to improve the word

recognition rate as well as the reliability of the recognition system, while not

causing significant delays in the recognition process. Experiments carried out on

two publically available word databases (RIMES for Latin script and IFN/ENIT

for Arabic script) show the benefit of the proposed strategies.
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1. Introduction

After about forty years of research in off-line handwriting recognition, the

performances of current systems are still insufficient, as for many applications,

more robust recognition is required. The use of Hidden Markov models (HMMs)

in handwriting recognition systems has been widely studied during the last5

decade [1, 2, 3, 4, 5]. In fact, HMMs have a huge capacity to integrate con-

textual information and to absorb the variability. Furthermore, these models

benefit from the experience accumulated in the domain of automatic speech

recognition. Multiple HMM classifier combination is an interesting solution to

overcome the limitations of individual classifiers [6, 7, 8, 9]. Various combination10

strategies have been proposed in the literature. They can be grouped into two

broad categories: feature fusion methods and decision fusion techniques. The

first category commonly known as early integration [10], consists in combining

the input feature streams into a unique feature space, and subsequently use a

traditional HMM classifier to model the combined observations in the unique15

input feature space. In contrast, decision fusion, known as late integration [11],

consists in combining the single stream classifier outputs (decisions). A par-

ticular method within the decision fusion framework of sequence models falls

into the multi-stream hidden Markov model paradigm. Such an approach has

been successfully applied in [3] for handwritten word recognition. Beside, some20

research works stress the real interest of the Dempster-Shafer Theory (DST)

[12, 13, 14, 15, 16, 17] to combine classifiers in a manner which is both accurate

and robust to difficult conditions (set of weak classifiers, degenerated training

phase, overly specific training sets, large vocabulary, etc.).

Generally, in the overall recognition process, high recognition rates is not the25

only measure to characterize the quality of a recognition system. For practical

applications, it is also important to look at reliability. Reliability is related to

the capability of a recognition system not to accept false word hypotheses and

not to reject true word hypotheses. Rejection strategies are able to improve

the reliability of handwriting recognition systems. Contrarily to classifier com-30
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bination, rejection strategies do not increase the recognition rate but, at least,

reduce the number of errors and suggests an alternative treatment of the re-

jected samples [18, 19, 20, 21]. The rejection strategies are typically based on a

confidence measure. If the confidence measure exceeds a specific threshold, the

recognition result is accepted. Otherwise, it is rejected. Generally, this rejection35

may occur when 1) more than one word appears adequate; 2) no word appears

adequate. As presented by Chow in [22], a pattern x is rejected if the word

of maximal probability (among the possible words referred to as ωi, i ∈ [1, N ])

conditionally to x is lower to some threshold:

max
i=1,...,N

P(ωi|x) < T (1)

where T ∈ [0, 1]. On the other hand, the pattern x is accept and assigned to the40

class i, if maxi=1,...,N P(ωi|x) ≥ T . Fumera et al [23] point out that Chows rule

provides the optimal error-reject trade-off, only if the posteriori probabilities

are exactly known, which does not happen in real applications since they are

affected by significant estimation errors. In order to overcome such a problem,

Fumera et al. have proposed the use of multiple rejection thresholds for the45

different classes to obtain the optimal decision and reject regions, even if the

a posteriori probabilities are affected by errors. It has been demonstrated that

class-dependent rejection thresholds provide a better error reject trade-off than

a single global threshold. In handwriting recognition field, many works have

tested these two strategies. In [20], varieties of rejection thresholds including50

global, class-dependent and hypothesis-dependent thresholds are proposed to

improve the reliability in recognizing unconstrained handwritten words. In [19],

the authors present several confidence measures and a neural network to either

accept or reject word hypothesis lists for the recognition of courtesy bank check

amounts. In [24], a general methodology for detecting and reducing the errors in55

a handwriting recognition task is proposed. The methodology is based on con-

fidence modeling and its main originality is the use of two parallel classifiers for

error assessment. In [25], the authors propose multiple rejection thresholds to

verify word hypotheses. To tune these rejection thresholds, an algorithm based
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on dynamic programming is proposed. It focuses on maximizing the recogni-60

tion rate for a given prefixed error rate. It was demonstrated in [26] that the

class-dependent reject thresholds can be further improved if a proper search

algorithm is used to find the thresholds. In [26], the authors use Particle Swarm

Optimization (PSO) to determine class-related rejection thresholds. PSO is a

population based stochastic optimization technique developed by Eberhart and65

Kennedy in 1995 [27]. It shares many similarities with evolutionary computa-

tion techniques such as genetic algorithms, but unlike genetic algorithms, PSO

has no evolution operators such as crossover and mutation. In order to show

the benefits of such an algorithm, the authors have applied it to optimize the

thresholds of a cascading classifier system devoted to recognize handwritten70

digits.

In this article, we present a novel DST strategy to improve the performances

and the reliability of a handwriting recognition system. Thus, the first contri-

bution of this paper is to propose a DST combination method that can be

applied for classification problems with large number of classes. Then, the sec-75

ond goal is to take advantage of the expressivity of DST to characterize the

quality/reliability of the classification results. To do so, we compare differ-

ent acceptation/rejection strategies for the classified words. In the end, an

alternative treatment of the rejected samples is proposed using multi-stream

HMM to improve the word recognition rate as well as the reliability of the80

recognition system, while not slow down the recognition process. The article

is organized as follows: In Section 2, we recall the basis of a HMM classifier

for handwriting recognition, and we present a background review on the basis

of the Dempster-Shafer Theory. Section 3 describes the different steps of the

DST-based ensemble classification method. Section 4 addresses in details the85

proposed post-processing module, where different acceptance/rejection strate-

gies are presented. In Section 5, the overall system organization is presented,

and each processing step is described. In section 6, we evaluate the performance

of the proposed approaches. The conclusion and perspectives of this paper are

presented in the last section.90
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2. Preliminaries on handwriting recognition and DST

In this work, we focus on an improvement of a multi-script handwriting

recognition system using a HMM based classifiers combination. We combine the

probabilistic outputs of three HMM classifiers, each working on different feature

sets: upper contour, lower contour and density. A post-processing module based95

on different acceptance/rejection strategies, for reducing the error rate of the

recognition system. In the end, an alternative treatment of the rejected samples

is proposed using multi-stream HMM to improve the word recognition rate as

well as the reliability of the overall recognition system. In the next subsection,

we recall the basis of a HMM classifier for handwriting recognition, the multi-100

stream formalism, and we present a background review on the basis of the

Dempster-Shafer Theory.

2.1. Markovian models for handwritten word recognition

One of the most popular technique for automatic handwriting recognition is

to use generative classifiers based on Hidden Markov Models (or HMM) [28].105

For each word ωi of a lexicon Ωlex = {ω1, ..., ωV } of V words, a HMM λi is

defined. Embedded training is used where all character models are trained in

parallel using Baum-Welch algorithm applied on word examples. The system

builds a word HMM by concatenation of the character HMM corresponding to

the word transcription of the training utterance, so that practically, its training110

phase is conducted by using the Viterbi EM or the Baum-Welch algorithm.

In the recognition phase, feature vectors extracted from a word image ω∗

are passed to a network of lexicon entries formed of V word HMM built by

the concatenation of their character HMM. The character sequence providing

the maximum likelihood identifies the recognized entry. The Viterbi decoding115

algorithm provides a likelihoods P(ω∗ = ωi|λi), ∀i ≤ V , and the ω∗ is recognized

as the word ωj for which P(ω∗ = ωj |λj) ≥ P(ω∗ = ωi|λi),∀i ≤ V . The overall

recognition process is presented in Figure 1).
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Figure 1: Handwritten word recognition scheme using HMM

2.2. Multi-stream HMM

The multi-stream formalism is an adaptive method to combine several indi-120

vidual feature streams using cooperative Markov models. This problem can be

formulated as follows: assume an observation sequence X composed of K input

streams Xk (with {k = 1, . . . ,K}) representing the utterance to be recognized,

and assume that the hypothesized model M for an utterance is composed of J

sub-unit models Mj (with j = {1, . . . , J}) associated with the sub-unit level at125

which we want to perform the recombination of the input streams (e.g., char-

acters). To process each stream independently of each other up to the defined

sub-unit level, each sub-unit model Mj is composed of K models Mk
j (possibly

with different topologies). Recombination of the K stream models Mk
j is forced

at some temporal anchor states (⊗ in Figure 2). The resulting statistical model130

is illustrated in Figure 2. Detailed discussion of the mathematical formalism is

given in our previous work [3].

We have shown in [3] that the multi-stream framework improves the recog-

nition performance compared to the mono-stream HMM and to the classical135

combination strategies. However, this improvement is extremely demanding
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from a computational point of view, as complexity is a major concern of the

multi-stream approach, specially when dealing with a large lexicon [29]. This

is why, in this work, the multi-stream decoding is introduced after a first clas-

sification stage that allows to reduce the size of lexicon and decide whether a140

second classification stage is needed or not. Such a strategy does not slow done

the recognition process.

In this work, we have 3 feature sets (streams), one is based on lower contour

features, the second one is based on the upper contour features and the last one

is based on density feature as described in section 5.2145

Figure 2: General form of K-stream model with anchor points between sub-units models

2.3. Basics of Dempster-Shafer theory

Let Ω = {ω1, ..., ωV } be a finite set, called the frame, or the state-space,

made of exclusive and exhaustive classes (for instance, the words of a lexicon).

A mass function m is defined on the powerset of Ω, noted P(Ω) and it maps

onto [0, 1] so that
∑
A⊆Ωm (A) = 1 and m(∅) = 0. Then, a mass function is150

roughly a probability function defined on P(Ω) rather than on Ω. Of course, it

provides a richer description, as the support of the function is larger: If |Ω| is

the cardinality of Ω, then P(Ω) contains 2|Ω| elements.

It is possible to define several other functions which are equivalent to m by

the use of sums or Möbius inversions. The belief function bel is defined by:155

bel (A) =
∑

B⊆A,B 6=∅

m (B) , ∀A ⊆ Ω (2)
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bel (A) corresponds to the probability of all the evidences that imply A. Dually,

the plausibility function pl is defined by :

pl (A) =
∑

B∩A 6=∅

m (B) ,∀A ⊆ Ω (3)

It corresponds to a probabilistic upper bound (all the evidences that do not con-

tradict A). Consequently, pl(A)− bel(A) measures the imprecision associated

to subset A of Ω.160

A subset F ⊆ Ω such that m (F ) > 0 is called a focal element of m. If

the c focal elements of m are nested (F1 ⊆ F2 ⊆ . . . ⊆ Fc), m is said to be

consonant. If there is at least one focal element A of cardinality |A| = k

and no focal element of cardinality > k, then, the mass function is said to be

k-order additive, or simply, k-additive [30].165

Two mass functions m1 and m2, based on the evidences of two independent

and reliable sources, can be combined into a new mass function by the use of

the conjunctive combination, noted ∩©. It is defined ∀A ⊆ Ω as:

[m1 ∩©m2] (A) =
1

1−K12

∑
B∩C=A

m1 (B) ·m2 (C) (4)

where K12 =
∑

B∩C=∅

m1 (B) ·m2 (C) measures the conflict between m1 and m2.

K12 is called the mass of conflict.170

The most classical way to convert a mass function onto a probability (for

instance, to make a decision), is to use the pignistic transform [13]. Intuitively,

it is based on the idea that the imprecision encoded in the mass function should

be shared equally among the possible outcomes, as there is no reason to promote

one of them rather than the others. If |A| is the cardinality of the subset A ⊆ Ω,175

the pignistic probability m of m is defined as:

m (ωi) =
∑
A3ωi

m (A)

|A|
∀ωi ∈ Ω (5)

Dually, it is possible to convert a probability distribution onto a mass func-

tion. The inverse pignistic transform [31] converts an initial probability
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distribution p into a consonant mass function. The resulting consonant mass

function, denoted by p̂, is built as follows: First, the elements of Ω are ranked180

by decreasing probabilities such that p(ω1) ≥ . . . ≥ p(ω|Ω|). Second, we define

p̂ as:

p̂
({
ω1, ω2, . . . , ω|Ω|

})
= p̂ (Ω) = |Ω| × p(ω|Ω|) (6)

∀ i < |Ω|, p̂ ({ω1, ω2, . . . , ωi}) = i× [p(ωi)− p(ωi+1)]

p̂ (.) = 0 otherwise.

In this work, we refer to m̂ as the pignistic discounting of m, i.e. the

application of the inverse pignistic transform to the pignistic probability derived

from a mass m. The interest [31] of the pignistic discounting is that it associates185

to m the least specific (according to the commonality value) consonant mass

function which would lead to the same decision as m.

3. Evidential combination strategy

In order to improve the recognition accuracy, it is possible to define several

HMM classifiers, each working on different features. Here, we summarize our190

previous works to derive an efficient ensemble classification technique based on

DST [32, 33]. Our aim is to combine the outputs of HMM classifiers in the best

way. To do so, we have to (1) build the frame, (2) convert the probabilistic

output of each of our Q classifiers into a mass function, (3) compute the con-

junctive combination of the Q mass functions, and (4) design a decision function195

by using the pignistic transform.

3.1. Building dynamic frames

In handwritten word recognition, the set of classes is very large compared

to the cardinality of the state space in classical DST problems (up to 100, 000

words). When dealing with a lexicon set of V words, the mass functions involved200

are defined on 2V values. Moreover, the conjunctive combination of two mass
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functions involves up to 22V

multiplications and 2V additions. Thus, the com-

putational cost is exponential with respect to the size of the lexicon. Dealing

with 100, 000 word lexicon is not directly tractable.

To remain efficient, even for large vocabularies, it is mandatory either to205

reduce the complexity, or to reduce the size of the lexicon involved. To do

so, as noted in the previous section, consonant mass functions (with only V

focal elements) may be considered. Moreover, it is also possible to dynamically

reduce the size of the lexicon by eliminating all the word hypothesis which are

obviously not adapted to the test image under consideration. This can be done210

using a two stage classification scheme where the first stage selects a restricted

list made of the most likely word hypothesis. Hence, we consider only the few

word hypothesis among which a mistake is possible because of the difficulty

of discrimination. Consequently, instead of working on Ωlex = {ω1, ..., ωV },

we select dynamically another frame ΩW , defined according to each particular215

test word W we aim at classifying. That is why we say that such a frame is

dynamically defined.

This strategy is rather intuitive and simple. On the other hand, to our

knowledge, no work has been published on a comparison of the different strate-

gies which can be used to define such frames. We have presented in [32] a220

detailed description of the dynamic definition of the state-space. In this work,

we consider the union of increasing Top N lists, until M words are common to

these lists. This method has given the best performance in our previous work

[32]. We recall here the main principles of this method. Let us consider Q clas-

sifiers. Each classifier q provides an ordered list lq = {ωq1, ..., ω
q
N} of the TOP225

N best classes. Here, the frame ΩW is made of the union of all the words of

the output lists lq, ∀q < Q. Obviously, |ΩW | depends on the lists: if the Q

classifiers globally concur, their respective lists are similar and very few words

belong to the union of the lists. On the contrary, if the Q classifiers mostly

disagree, an important proportion of their N words are likely to be found in230

their union. Hence, we adjust the value of N to control the size of the powerset,
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in practice a powerset size between 15 and 20 is used. The idea motivating this

strategy is the following: if a single classifier fails and provides too bad a rank to

the real class, the other classifiers will not balance the mistake when considering

the intersection strategy. Then, the union may be preferable.235

3.2. Converting log-likelihoods into mass functions

The conversion of the probabilistic outputs into mass functions rises two

difficulties. First of all, in case of HMM classifiers, the “real” probabilities are

not available as output: the probability propagation algorithm underlying HMM

implies a very wide range of numerical values that leads to overflows. This is240

why, instead of a classical likelihood, a log-likelihood is used. Moreover, it is

regularly re-scaled during the computation, so that, at the end, R-values are

given rather than [0, 1]-values.

The second problem is that, a mass function provides a richer description

than a probability function. Thus, the conversion from a probability into a mass245

function requires additional information.

Finally, we have to convert a R-valued set of V scores onto a mass function

which is a richer description, as it is defined with 2V distinct values. Amongst

the various methods that have been tested to achieve this conversion [34], we

have chosen the following procedure for each of the Q classifiers:250

1. Convert the set of Lq(ωi) onto a new subjective probability distribution

pq, where Lq(ωi) design the likelihood of the q-th classifier for ωi. Note

that pq(ωi) is supposed to be a fair evaluation of P(ω ∗ |λi, q), in spite of

that
∑
i P(ω ∗ |λi, q) 6= 1, whereas

∑
i pq(ωi) = 1.

2. Convert this subjective probability into a mass function by adding the con-255

straints that (1) the mass function is consonant, (2) the pignistic transform

of the mass function corresponds to the subjective probability pq. Under

these two assumptions, it is proved that the mass function is uniquely

defined [35].

Practically, the conversion from the R-valued scores Lq(ωi), i ≤ V to subjec-260

tive probabilities pq(ωi) is achieved by applying the following sigmoid function
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that maps R onto [0, 1]:

pq(ωi) =
1

1 + e−λ(Lq(ωi)−L̃q)
with λ =

1

max
i
|Lq(ωi)− L̃q|

(7)

where L̃q is the median of the Lq(ωi),∀q. Then, the set of pq(ωi), i ≤ V is

re-scaled so that it sums up to 1. Finally, the mass functions mq are defined

using equation (6). Once built, the mass functions mq are combined together265

into a new mass function m∩ using the conjunctive combination (equation (4)).

4. Decision making and rejection strategies

At this level, it would be most natural to directly use the pignistic trans-

form to make a decision on m∩. However, we propose here to improve the

reliability of the proposed recognition system, by the introduction of an accep-270

tance/rejection stage of the words to classify. As the DST has a rich semantic

interpretation, we propose two different strategies for this acceptance/rejection

post-processing. The point is not necessarily to compare them with respect to

their performances, but rather to chose the one which is the most adapted to

the scenario, as each strategy does not reject or accept the words on the basis275

on the same assumptions. The two strategies are based on a measure of conflict

and a measure of conviction respectively [36]. The first one aims at evaluating

the extent to wish the classifiers concur or not. The second one aims at evalu-

ating if the knowledge resulting from the combination of the classifier is precise

enough or not. By applying a threshold on one of these measures, it is possible280

to tune the importance of the rejection.

Let us first introduce some additional notations: After applying the pignistic

transform on m∩, one denotes by ω(i) the word the pignistic probability of

which is the ith greatest (in other words, w(1) corresponds to the decision made

according to the pignistic transform).285

4.1. The conflict-based strategy

The first measure aims at quantifying the conflict among the evidence that

have led to the classification. Intuitively, a high measure of conflict is supposed
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to correspond to a situation where it is sound to reject the item, as there is

contradictory information, whereas, low measure of conflict indicates that the290

evidences concur, and that rejection should not be considered. Several measures

are available to quantify the conflict between several sources (such as described

in [37]), among which, the mass of conflict from the conjunctive combina-

tion. This latter is really interesting, but in this work, we have chosen another

measure, which is highly correlated with the mass of conflict, while being both295

easier to tune and more meaningful. Let us note that recent axiomatic works on

measuring the conflict between various sources in the framework of DST justify

the use of the measure we use here [38, 39].

Let ω∗ be an unknown word from the test set, and ω1 the class that have

been ranked first by the classification process (the output of which is the mass300

function m∩). We define Flict, the measure of conflict, as:

Flict(ω∗) = 1− pl∩({ω(1)}) = bel∩({Ω \ ω(1)}) (8)

It corresponds to the sum of the mass of the evidences which do not support

the decision which has been made. This measure is really interesting, as it is

easy to interpret, and as it takes its value in [0, 1]. On the other hand, if one

wants to be really discriminative by rejecting a huge proportion of the test set,305

this measure is not adapted, as potentially too many test words may have a null

measure of conflict.

Finally, all the words which have been accepted are classified according to

the decision promoted by the pignistic transform given in equation (5).

4.2. The conviction-based strategy310

For a dedicated word, the second measure aims at quantifying the conviction

of the decision which has been made, i.e. whether at the end of the classification

process, a class is clearly more likely than the other, or, on the contrary, whether

the choice relies on a very weak preference of a class with respect to the others.

Of course, we expect that a low measure of conviction corresponds to a situation315

where there is not enough evidence to make a strong choice (and thus, rejection
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is an interesting option), and a high measure of conviction indicates that there

is no room for hesitation, nor rejection. As with the measure of conflict, we

do not detail the comparative study of several measures of conviction, and we

focus on the chosen one. We define the measure of conviction as:320

V iction(ω∗) =
1∑

A⊆Ω p̂l∩(A)− b̂el∩(A)
(9)

i.e. the inverse of the sum over P(Ω) of the measure of imprecision of the

pignistic discounting m̂∩ of m∩. Indeed, V iction is a fair measure of conviction

(lower values corresponding to strong impercision and thus to decision supported

by a weak conviction), however, in case
∑
A⊆Ω p̂l∩(A) − b̂el∩(A) = 0, it is

undefined. Finally, this is why, we consider 1
V iction :325

V iction(ω∗) =
∑
A⊆Ω

p̂l∩(A)− b̂el∩(A) (10)

Unfortunately, it loses the semantics of a conviction (as the greatest values

corresponds to the weakest decision support), yet, it does not changes its use

for tuning and prevent any division by zero, and simplifies the implementation.

Contrarily to Flict, V iction can be tuned according to the whole rejection

spectrum, however its tuning is more difficult, as its bounds depend on |Ω|. As330

with the conflict-based strategy, all the words which have been accepted are

classified according to the decision promoted by the pignistic transform given

in equation (5).

Remark 1. The main interest of V iction is that it can be defined in a completely

probabilistic context, without an ensemble classification based on DST. As a335

matter of fact, m∩ corresponds to a probability distribution (such as the one

provided by any probabilistic classifier). As a consequence, in a probabilistic

case, the classifier provides a probability distribution p, and then, a consonant

mass mp = p̂ is derived by applying the inverse pignistic transform to p. If plp

and belp are the plausibility and belief functions of mp, we have:340

V iction(ω∗) =
∑
A⊆Ω

plp(A)− belp(A) (11)
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and this measure does not require any DST-based classifier nor any DST-based

ensemble classification to be used.

Example 1. Let us illustate the computation of Viction on a small example:

the frame is made of two possible options A and B. The output of the ensemble

classification is either a mass function, the pignistic transform of which reads345

BetP (A) = 0.6 and BetP (B) = 0.2, or directly a probability distribution, which

reads P(A) = 0.6 and P(B) = 0.2. If one applies the inverse pignistic transform

to this distrubtion, one obtains m({A}) = 0.2 and m({A,B}) = 0.8, so that:

• pl({A})− bel({A}) = 1− 0.2 = 0.8

• pl({B})− bel({B}) = 0.8− 0 = 0.8350

• pl({A,B})− bel({A,B}) = 1− 1 = 0

So that finally, on this example, the Viction coefficient equals 1.6.

5. System description

The input of our system is a word image. In the first step, pre-processing

is applied to the word image and three feature sets are extracted corresponding355

to lower contour features, upper contour features and density features. In the

second step, we combine the outputs of HMM classifiers using the evidential

combination approach as described in section 3. Another module decides if the

word hypothesis is accepted or rejected1. Finally, if the word is accepted, a

decision is made according to the pignistic transform. For rejected samples, an360

alternative processing is proposed using multi-stream HMM. As multi-stream

HMM are more efficient, this improves the word recognition rate as well as the

reliability of the recognition system. Moreover, as this alternative processing

is conducted only for difficult words (those for which classification is difficult)

1In the experimental section, we compare the influence of the various rejection strategies

(presented in the previous section) to select the best one to use in the final global system.
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it does not cause significant delays in the recognition process (in spite of the365

computational burden of multi-stream HMM). The whole system is depicted on

figure 3. In the following sections we will provide details of the preprocessing,

feature extraction and training stages.

Figure 3: The global system description

5.1. Preprocessing

Preprocessing is applied to word images in order to eliminate noise and to370

get more reliable features less sensitive to noise and distortion.

• Normalization: In an ideal model of handwriting, a word is supposed to

be written horizontally and with ascenders and descenders aligned along

the vertical direction. In real data, such conditions are rarely respected.

We use slant and slope correction so as to normalize the word image [40].375

• Contour smoothing: Smoothing eliminates small blobs on the contour.

• Base line detection: Our approach uses the algorithm described in [2]

based on the horizontal projection curve that is computed with respect

to the horizontal pixel density (show Figure 4). Baseline position is used

to extract baseline dependent features that emphasize the presence of380

descenders and ascenders.
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Figure 4: Base line detection

5.2. Features extraction

An important task in multi-stream combination is to identify features that

carry complementary information. In order to build the feature vector sequence,

the image is divided into vertical overlapping windows or frames. The sliding385

window is shifted along the word image from right to left and a feature vector

is computed for each frame.

Two feature sets are proposed in this work. The first one is based on direc-

tional density features. This kind of features, initially proposed for latin script

[40], has proved to be discriminative for arabic script [41]. The second one is390

based on foreground (black) pixel densities [4].

5.2.1. Densities features

The feature set inspired by [4], which has shown its efficiency in the 2009

ICDAR word recognition competition [3]. It is based on density and concavity

features. From each frame 26 features are extracted for window of 8-pixel width395

(and 32 features for window of 14-pixel width). There are two types of features:

features based on foreground (black) pixel densities, and features based on con-

cavity. In order to compute some of these features (for example, f2 and f15 as

described next) the window is divided into cells where the cell height is fixed (4

pixels in our experiments) as presented in Figure 5.400

Let H be the height of the frame in an image, h be the fixed height of a

cell, w the width of a frame (see figure 5). The number of cells in a frame nc

is equal to : nc = H/h. Let rt(j) be the number of foreground pixels in the

jth row of frame t, nt(i) the number of foreground pixels in cell i, and bt(i) the

density level of cell i : bt(i) = 0 if nt(i) = 0 else bt(i) = 1 Let LB the position405

of the lower baseline, UB the position of the upper baseline. For each frame t,

the features are the following:

17



Figure 5: Word image divided into vertical frames and cells

• f1 : density of foreground (black) pixels : f1 =
∑nc

i=1 nt(i).

• f2 : number of transitions between two consecutive cells of different density

levels : f2 =
∑nc

i=2 |bt(i)− bt(i− 1)|.410

• f3 : difference in y position of gravity centers of foreground pixels in

the current frame and in the previous one : f3 = g(t) − g(t − 1) where

g(t) =
∑H

j=1 j.rt(j)∑H
j=1 rt(j)

.

• f4 − f11 : densities of black pixels for each vertical column of pixels in

each frame (note that the frames here are of 8-pixel width).415

The next features depend of the base line position :

• f12 : vertical position of the center of gravity of the foreground pixels in

the whole frame with respect to the lower baseline : f12 = g(t)−LB
H .420

• f13− f14 : density of foreground pixels over and under the lower baselines

for each frame : f13 =
∑H

j=LB+1 rt(j)

H.w , f14 =
∑L−1

j=1 rt(j)

H.w

• f15 : number of transitions between two consecutive cells of different den-

sity levels above the lower baseline : f15 =
∑nc

i=k |bt(i)− bt(i− 1)| Where

k is the cell that contains the lower baseline.425

• f16 : zone to which the gravity center of black pixels belongs with respect

to the upper and lower baselines (above upper baseline, a middle zone,

and below lower baseline).
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• f17−f26 : five concavity features in each frame and another five concavity

features in the core zone of a word, that is, the zone bounded by the upper430

and lower baselines. They are extracted by using a 3× 3 grid as shown in

Figure 6.

Figure 6: Five types of concavity configurations for a background pixel P

5.2.2. Contour features

These features are extracted from the word contour representation. Each

word image is represented by its lower and upper contours (see Figure 7). A435

sliding window is shifted along the word image, two parameters characterize a

window: window width (8 pixels) and window overlap between two successive

positions (5 pixels). For each position of a window, we extract the upper contour

points (similarly, the lower contour points). For every point in this window,

we determine the corresponding Freeman direction and the directions points440

are accumulated in the directional histogram (8 features). In addition to the

Word image contour

Upper contour Lower contour

Figure 7: Word image contours

directional density features, a second feature set is computed at every point of

the upper contour (similarly, it is done for every point on lower contour). The

last (black) point (say, p∗) in the vertical black run started at an upper contour

point (say, p) is considered and depending on the location of p∗, one of the four445

situations may arise. The point (p∗) can belong to a:
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• Lower contour (see corresponding p points as marked red in Figure 8).

• Interior contour on closure (see blue points in Figure 8).

• Upper contour (see yellow points in Figure 8).

• No point found (see green points in Figure 8).450

The black points in Figure 8 represent the lower contour.

Figure 8: Contour feature extraction

The histogram of the four kinds of points is computed in each window.

This second feature set provides additional information about structure of the

contour like the loops, the turning points, the simple lines, and the end points

on the word image (altogether, four different features).455

The third feature set indicates the position of the upper contour (similarly,

lower contour) points in the window. For this purpose, we localize the core zone

of the word image. More precisely, we extract the lower and upper baselines of

word images. These baselines divide the image into 3 zones: 1) a middle zone,

2) the lower zone, 3) the upper zone. This feature set (3 features) provides ad-460

ditional information about the ascending and the descending characters, which

are salient characteristics for recognition of arabic script. Hence, in each win-

dow we generate a 15-dimensional (8 features from chain code, 4 features from

the structure of the contour and 3 features from the position of the contour)

contour (for upper or lower contour) based feature vector.465

5.3. Character Models

In order to model the Latin characters, we have considered 72 models corre-

sponding to lower case letters, capital letters, digits and accented letters. In the

case of the Arabic characters, we built up to 159 character HMMs. An Arabic
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character may actually have different shapes according to its position within the470

word (beginning, middle, end word position). Other models are specified with

additional marks such as “shadda”. Each character HMM is composed of 4 emit-

ting states. The observation probabilities are modeled with Gaussian Mixtures

(3 per state). Embedded training is used where all character models are trained

in parallel using Baum-Welch algorithm applied on word examples. The system475

builds a word HMM by concatenation of the character HMM corresponding to

the word transcription of the training sample.

6. Experiments and results

In this section, we evaluate the performances of the global system described

above and we compare it to an equivalent technique in a probabilistic setting.480

6.1. Datasets

Experiments have been conducted on two publicly available databases: IFN/ENIT

benchmark database of arabic words and RIMES database for latin words. The

IFN/ENIT [42] contains a total of 32,492 handwritten words (arabic symbols)

of 946 Tunisian town/villages names written by 411 different writers. The sets485

a,b,c,d and e are predefined in the database for training and the set f for test-

ing. In order to tune the HMM parameters, we performed a cross validation

over sets a,b,c,d and e. The RIMES database [43] is composed of isolated hand-

written word snippets extracted form handwritten letters (latin symbols). In

our experiments, 36000 snippets of words are used to train the different HMM490

classifiers, 6000 word images are used for validation and 3000 for the test. At

the recognition step, we use predefined lexicons composed of 2100 words in the

case of IFN/ENIT database and 1600 words in the case of RIMES database.

6.2. Combination step

Table 1 provides the performances of each of the three HMM classifiers. In495

this table, not only the “best” class is given, but an ordered list of the TOP

N best classes is considered. Then, for each value of n ≤ N , a recognition
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Table 1: Individual performances of the HMM classifiers.

IFN/ENIT RIMES

Top 1 Top 2 Top 1 Top 2

Upper contour 73.60 79.77 54.10 66.40

Lower contour 65.90 74.03 38.93 51.57

Density 72.97 79.73 53.23 65.83

rate is computed as the percentage of words for which the ground truth class is

proposed in the first n elements of the TOP N list. We note that the reported

results in table 1 are given without rejecting any sample.500

It clearly shows that the two data sets are of heterogeneous difficulty. More-

over, the lower contour is always the less informative feature, and in the case

of the RIMES database, it is really not informative. In Table 2, we present the

performance of the combination of these HMM classifiers. We use the DST-

based combination classifier presented in the previous sections and we compare505

it to the sum, the product and the Borda count rules.

Table 2: Accuracy rates of the various strategies on the two datasets.

IFN/ENIT RIMES

Top 1 Top 2 Top 1 Top 2

Product 80.07 83.23 64.80 73.10

Borda

count

79.43 83.20 63.47 74.13

Sum 78.47 82.87 63.03 70.63

Proposed

approach

82.00 86.53 68.30 79.80

we notice that the proposed combination approach improves the performance

obtained with any of the single stream HMM. The gain is 8.4% on the IFN/ENIT
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database and 14.2% on the RIMES database compared to the best single stream

recognition rate. In addition, we notice that our evidential approach performs510

better than the product approach (which appears to be the best non eviden-

tial combination method) on the two databases with a gain of 1.93% on the

IFN/ENIT database and 3.5% on the RIMES database.

Thus, the next point is to check whether the pairwise differences in the

accuracy rates are significant or not. As addressed in [44], McNemars test can515

be used for determining whether one learning algorithm is better than another.

If a difference is significant, it means that the first method is clearly better than

the second one. On the contrary, if the difference is not statistically significant,

then, the difference of performance is too small to decide the superiority of

one method over another (as the results would be slightly different with other520

training/testing sets).

We first calculate the contingency table assuming there are two algorithms

I and II, illustrated in Table 3, where :

• n00 is number of samples misclassified by both algorithms.

• n01 number of samples misclassified by algorithm I but not II.525

• n10 number of samples misclassified by algorithm II but not I.

• n11 are correctly classified by both algorithms.

In our case, the null hypothesis assumes that the performance of two dif-

ferent strategies is the same. In Tables 4 and 5, we consider all the pairwise

comparisons between two methods, and for each, we compute the p-value, i.e.530

the probability that the null hypothesis is true. The smaller the p-value, the

more the difference of accuracy is likely to be significant. We may reject the

null hypothesis if the p-value is less than 0.05.

The proposed approach is significantly different from the other combination

methods on the two databases.535
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n00 n01

n10 n11

Table 3: 2 × 2 CONTINGENCY TABLE

Table 4: The p-values of McNemar’s test for all the pairwise comparisons on the RIMES

dataset. NA: not a number.

S1 S2 S3 S4

S1: Proposed approach NA 0.0041 1.22× 10−9 7.17× 10−5

S2: Product NA 3.36× 10−16 2.2× 10−6

S3: Borda Count NA 0.01948

S4: Sum NA

Table 5: The p-values of McNemar’s test for all the pairwise comparisons on the IFN/ENIT

dataset.

S1 S2 S3 S4

S1: Proposed approach NA 1.89× 10−11 0.08283 0.00248

S2: Product NA 5.76× 10−13 3.81× 10−14

S3: Borda Count NA 0.12

S4: Sum NA
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6.3. Acceptance/rejection strategies

For comparison purpose with the rejection policies proposed in the literature,

we have chosen the one proposed in [20] which provides the best result. It is

sound to choose this strategy, as it shares the same philosophy as ours: it is

based on the comparison of a simple measure computed for each test word to a540

fixed threshold, and it does not require extra classification process. Let ω∗ be

an unknown word from the test set, it is based on the following measure:

Diff(ω∗) =
m∩(ω(1))

m∩(ω(1))−m∩(ω(2))
(12)

where ω(1) is the best word hypothesis and ω(2) is the second best word hy-

pothesis. The Diff measure varies within [0, 1]. Thus, a threshold in [0, 1] is

selected on the validation set according to the expected Rejection Rate, and545

words with a Diff measure greater than the threshold are rejected.

The acceptance/rejection strategies described in Section 4.1 and 4.2 have

been applied to both databases. The considered measure is compared to a

threshold, which has been determined on a validation set, in order to reach a

particular Rejection Rate. Depending on the sign of the difference between the550

measure and the threshold, the test word is classified or rejected. Of course, our

two motivations for the rejection (too much conflict or too few conviction) are

supposed to be independent. In practice, as the classifiers are not completely

independent, and as the scores provided by the classifiers are normalized (so that

they add up to one whatever the conflict and the conviction), the conviction and555

conflict measures appeared as rather correlated in the preliminary tests. Hence,

it makes sense to combine them, to stabilize the rejection performances. As

advised in [36], we do so by simply rejecting a word if at least one of the two

measures is beyond the threshold corresponding to the chosen Rejection Rate.

Rejection performance is evaluated using the Receiver Operating Character-560

istic (ROC) curve, which is a graphical representation of the trade-off between

the True Rejection Rate (TRR) and the False Rejection Rate (FRR). The TRR

(resp. FRR) is defined as the number of miss (resp. well) recognized words that
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are rejected divided by the number of well (resp. miss) recognized words. Since

we have a N-class problem, these rates are calculated as follows:565

Let us consider a testing set of Ntest words. We have:

Ntest =

Nproc︷ ︸︸ ︷
Nrec +Nerr +Nrejhit +Nrejmiss︸ ︷︷ ︸

Nrej

= Nhit +Nmis

where Nrec is the number of correctly classified words, Nerr is the number of

incorrectly classified words, and Nrej is the number of words which are not

classified, as they have been rejected. The latter are divided into Nrejhit, the

number of words that would have been correctly classified if not rejected, and570

Nrejmiss, the number of words that would have been misclassified if processed.

Finally, Nproc is the number of words which have been processed (i.e. not

rejected), and Nhit and Nmis corresponds to the number of words that would

have been respectively correctly and incorrectly classified in case of absence of

rejection strategies. Then, the following rates are classically defined:575

Recognition Rate =
Nrec
Ntest

Error Rate =
Nerr
Ntest

Rejection Rate =
Nrej
Ntest

=
Nrej

Nrej +Nproc

Reliability =
Nrec
Nproc

=
Recognition Rate

1− Rejection Rate

True Rejection Rate =
Nrejmis
Nmis

False Rejection Rate =
Nrejhit
Nhit

The ROC curves, as well as the Error Rate, the Recognition Rate and Re-

liability with respect to the Rejection Rate are represented on Fig. 9. On the

RIMES dataset, results are slightly better than with the reference strategy de-

scribed above. Indeed, the value of the Area Under Curve (AUC)is 75.95% with

the reference strategy, whereas it is 79.01% with ours. On the other hand, re-580

sults on the IFN/ENIT dataset are by far better using our rejection strategy. In
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Figure 9: Comparison of the presented (dotted) and the reference (lined) methods for the

RIMES (above) and IFN/ENIT (below) datasets. On the left, the ROC curve; on the right,

the reliability, error and recognition rates.

fact, the AUC value is 72.79% with the reference strategy, whereas it is 88.05%

with ours.

Moreover, we observe from this figure that for low Rejection Rates, the

proposed rejection strategy produces interesting trade-offs between error and585

reject, which is the more important point in practical applications. Practically,

the word Error Rates can be reduced from 18% to 6.37% on IFN/ENIT dataset

and from 30.47% to 17.77% on RIMES at the cost of rejecting 20% of the input

words.

27



Finally, these first series of experiments lead us to a use a logical OR on590

the thresholding induced by the Viction and the Flict strategies (displayed on

Fig.10), and from that point on, the whole system is evaluated in this setting.

Figure 10: The global system description, refined according to the specification of the rejection

module.

6.4. Treatment of the rejected samples

In the next evaluations, we apply to the words rejected by the selected ac-

ceptance/rejection strategy, a second classification level using the multi-stream595

HMM as described in [3]. To overcome the high complexity of the multi-stream

decoding step, we use a small lexicon, so that, the delay introduced in the over-

all recognition process is almost negligible. The multi-stream HMM is tested

using a lexicon composed of the 15 best word hypothesis that were also used to

define the dynamic frame (Section 3.1). The rejection rate is tuned to 20% of600

the test set.

In table 6 we present the obtained results of the global system including the

multi-stream HMM decoding for the rejected samples. The obtained results are

compared to those of the system prior to any acceptance/rejection strategies

(see Section 6.2), and they show that the second classification step based on the605

multi-stream HMM improves the performance of the global system in terms of
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recognition rate while not increasing the recognition time. When compared to

the reference system, the gain is 5.55% on IFN/ENIT database and 6.75% on

RIMES database using the acceptance/rejection strategy.

In addition, we have used McNemar to determine if the two classification610

methods have significantly different recognition rates. The obtained p-value is

equal to 2.22×10−5 which confirm that post-treatments of the rejected samples

improve significantly the classification results.

Table 6: Accuracy rates of the various strategies

IFN/ENIT RIMES

Top 1 Top 2 Top 1 Top 2

Simple

DST com-

bination

82.00 86.53 68.30 79.80

Complete

system

87.55 91.07 75.05 83.25

In order to compare our results to the most recent works presented in the

literature, we report on table 7 the obtained results at the last international615

competition in Arabic handwriting recognition systems at ICDAR 2011 [45].

During this competition, 4 different handwriting recognition systems have been

tested using IFN/ENIT database. We compare also our result to those of IC-

DAR 2009, ICFHR 2010 and ICDAR 2011 competitions. We notice that our

system provides promising results, as it ranks in TOP 3 for all competitions,620

which is remarkable as our system does not contain any specific preprocessing

adapted for the Arabic script (as it is initially proposed for the recognition of

multi-script handwriting).
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Table 7: Competition results comparison

System ID Performance

ICDAR 2011 results [45]

JU-OCR 63.86

CENPARMI-OCR 40.00

RWTH-OCR 92.20

REGIM 79.03

Results of the 3 best systems at ICFHR 2010 [46]

UPV PRHLT 92.20

CUBS-AMA 80.32

RWTH-OCR 90.94

Results of the 3 best systems at ICDAR 2009 [47]

MDLSTM 93.37

A2iA 89.42

RWTH-OCR 85.69

Proposed system 87.55
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7. Conclusion

In this article, we have presented novel DST strategies to improve the per-625

formance and the reliability of a handwriting recognition system. The first con-

tribution is the combination classifier based on Dempster-Shafer theory, which

combines the outputs of several HMM classifiers. This combination classifier is

interesting as (1) it can easily be generalized to other classifiers, as long as they

provide a probabilistic output, (2) it improves the results with respect to clas-630

sical probabilistic combination of HMM classifiers, (3) the complexity is kept

under control in spite of the use of the DST, which is known for its computa-

tion cost (due to the manipulation of the power set). The second contribution

is to propose a post-processing module based on different acceptance/rejection

strategies, for reducing the Error Rate and improving the Reliability of the635

off-line handwritten word recognition system. The experimental results have

shown through two different publicly available datasets (one with Latin script

and the other with Arabic script) that the proposed system show significant

improvement using DST strategies.
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