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Abstract—This paper proposes two robust statistical techniques for outlier detection and robust saliency 

features, such as surface normal and curvature, estimation in laser scanning 3D point cloud data. One is based 

on a robust z-score and the other uses a Mahalanobis type robust distance. The methods couple the ideas of 

point to plane orthogonal distance and local surface point consistency to get Maximum Consistency with 

Minimum Distance (MCMD). The methods estimates the best-fit-plane based on most probable outlier free, 

and most consistent, points set in a local neighbourhood. Then the normal and curvature from the best-fit-

plane will be highly robust to noise and outliers. Experiments are performed to show the performance of the 

algorithms compared to several existing well-known methods (from computer vision, data mining, machine 

learning and statistics) using synthetic and real laser scanning datasets of complex (planar and non-planar) 

objects. Results for plane fitting, denoising, sharp feature preserving and segmentation are significantly 

improved. The algorithms are demonstrated to be significantly faster, more accurate and robust. 

Quantitatively, for a sample size of 50 with 20% outliers the proposed MCMD_Z is approximately 5, 15 and 

98 times faster than the existing methods: uLSIF, RANSAC and RPCA, respectively. The proposed 

MCMD_MD method can tolerate 75% clustered outliers, whereas, RANSAC and RPCA can only tolerate 

47% and 64% outliers respectively. For outlier detection, with a data size of 50 with 20% outliers, MCMD_Z 

has an accuracy of 99.72% , 0.4% false positive rate and 0% false negative rate; for RPCA, RANSAC and 

uLSIF, the accuracies are 97.05%, 47.06% and 94.54% respectively, and they have misclassification rates 

higher than the proposed methods. The new methods have potential for local surface reconstruction, fitting, 

and other point cloud processing tasks.   

Keywords- feature extraction; outlier detection; plane fitting; point cloud denoising; robust curvature; robust 

normal; saliency feature; segmentation; surface reconstruction 
 

1. Introduction  

Many algorithms for point cloud processing use information about local saliencies, such as surface normal 

and curvature, at each point of the data. Reliable surface reconstruction, object modelling and rendering 
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applications heavily depend on how well the estimated local surface normals and curvatures approximate the 

true normals and curvatures of the scanned surface [1,2]. Many studies on accurate normal and curvature 

estimation have been carried out over the years in computer graphics, computer vision, pattern recognition, 

photogrammetry, reverse engineering, remote sensing and robotics [2-7].  

One of the first attempts by Hoppe et al. [3] for normal and curvature estimation assumed that the 

underlying surface is locally smooth throughout the entirety of the data. This assumption has the advantage of 

approximating the local neighbourhood of a given point by a planar surface. Following the work of Hoppe et 

al. [3], PCA based local saliency features have been a focus for point cloud processing including plane fitting, 

feature extraction, surface segmentation and reconstruction [8-10] mainly because of its simplicity and speed. 

However, it has been shown that PCA is sensitive to outliers and fails to reliably fit planar surfaces in their 

presence, therefore saliency features based on PCA are not robust and the resultant analyses can be erroneous 

and misleading [11,12]. In addition, in the vicinity of geometric singularities (e.g. corners or edges) where the 

normals are discontinuous, PCA fails to preserve sharp features since neighbouring points are used non-

distinctively to compute the planar fit. The effect is smoothed normal estimates along the edges [13]. As such, 

there is a great interest in applying robust and accurate methods in presence of outliers efficiently.  

The word ‘outlier’ has been defined by many ways depending on the applications. Simply, an outlier is an 

observation that is (a) so far from the majority of observations, or (b) somehow can be differentiated by the 

general behaviour (pattern) of the majority, that it should be treated differently [14,15]. The presence of outliers 

or gross errors is an unavoidable phenomenon in point cloud data as it is one of the main problems facing 

accurate normal and curvature estimation. Outliers occur mainly because of the physical limitations of the data 

collection sensors, discontinuities at boundaries between 3D features, occlusions, multiple reflectance, and 

noise that produces off-surface points [7]. Outlier detection in point cloud data becomes complex because the 

points are usually unorganized, noisy, sparse, inconsistent in point density, have geometrical discontinuities, 

arbitrary surface shape with sharp features, and there is little to no knowledge about the theoretical statistical 

distribution of the points. Besides, it is common to get multiple model structures in the data that can create 

clustered outliers to one structure of interest but inliers to another structure, e.g. a pole in front of a flat wall, 

may appear as pseudo outliers. Fleishman et al. [16] stated that when the underlying surface contains sharp 
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features, the requirement of being resilient to noise is especially challenging since noise and sharp features are 

ambiguous, and most techniques tend to smooth important sharp features. Despite recent progress in pattern 

recognition, statistics, computer vision, data mining and machine learning techniques for processing point data, 

the problem of outlier (specially clustered outliers) detection in unstructured point clouds is still a challenging 

task [7, 14, 17-20].  

This paper proposes two robust outlier detection algorithms that can identify a large percentage of clustered 

outliers as well as uniform outliers. The outlier detection algorithms couples with PCA used to estimate robust 

local saliency features such as normals and curvature. The key idea is to use local neighbourhood information 

instead of global information of the data, assuming that in a certain sufficiently small local neighbourhood, the 

points are on a planar surface [3]. The proposed algorithms have the two following stages: 

• First, outliers and/or noise are identified in a local neighbourhood for every point in the data. The outliers 

are identified by using robust statistical approaches based on measures of the distance of a point to the plane 

(based on its local neighbours) and the local surface point variation along the normal. 

• Second, the best-fit-plane and the relevant parameters such as normal and curvature, are estimated using 

PCA after the outlying cases found by the first stage have been removed.  

We compare the results of the proposed methods with the statistical methods PCA [21] and robust PCA 

[22], computer vision methods RANSAC [23, 24] and MSAC (M-estimator SAmple Consensus) [24, 25], 

machine learning method uLSIF; [26, 27], and data mining method 𝑞𝑠!; [28]. The accuracy, robustness and 

speed of the computation of the methods are compared with respect to size of the data, outlier percentage, and 

point density variation. We also evaluate the saliency features estimated using the new methods for different 

applications including point cloud denoising, sharp feature preserving and segmentation.  

The remainder of the paper is organized as follows. Relevant literature is reviewed in Section 2. In Section 

3, the related principles and methods of outlier detection in statistics, computer vision, machine learning and 

data mining are briefly discussed. Section 4 proposes two variants of outlier detection and saliency feature 

estimation algorithms. In Section 5, the algorithms are demonstrated and evaluated through comparison with 

the established techniques mentioned above using simulated and real laser point cloud data. Section 6 

concludes the paper.  
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2. Literature review 

This paper proposes methods for outlier detection and determining robust normal and curvature. The 

relevant literature is reviewed in two sections: (i) robust normal and curvature estimation, and (ii) outlier 

detection.  

2.1 Robust normal and curvature estimation methods 

A number of methods have been developed to improve the quality and speed of normal and curvature 

estimation in point cloud data. Methods are proposed and tailored according to their suitability for the 

particular application e.g. plane fitting [29, 30], surface reconstruction [3, 31], sharp feature preserving [6,16] 

and normal estimation [11,32,33].  

Algorithms for normal estimation can be categorized into two major approaches: combinatorial and 

numerical approaches [2,13]. The first approach is based on the information extracted from Delaunay and 

Voronoi properties [2,32]. Dey et al. [2] developed combinatorial methods for estimating normals in the 

presence of noise, but in their comparative study it is shown that in general, this approach becomes infeasible 

for large datasets. Numerical approaches find a subset of points in the local neighbourhood that may represent 

the local surface of an interest point and is known to perform better in the presence of outliers and noise. Then 

the best-fit-plane to the selected subset is computed and the normal of the plane is treated as the estimated 

normal for the point of interest. Hoppe et al. [3] estimated the normal at each point to the fitted plane of the 

nearest neighbours by applying regression. The total least squares is regarded as a numerical approach that is 

computed efficiently by PCA. PCA based plane fitting is also known as PlanePCA [4], which is a geometric 

optimization which can be shown to be equivalent to the Maximum Likelihood Estimation (MLE) method 

[29]. Klasing et al. [4] compared a number of optimization and averaging methods and concluded their paper 

by stating that in the case in which a k-Nearest Neighbour (k-NN) graph is maintained and updated, the 

PlanePCA is the universal method of choice because of its superior performance in terms of both quality and 

speed. It is known that the PCA based method minimizes the LS cost function. Hence, the results from PCA 

are affected by outlying observations because of the covariance matrix used here has an unbounded ‘influence 

function’ and a zero ‘breakdown point’ [19,22]. Distance weighting [34], changing neighbourhood size [11] 

and higher-order fitting [9] algorithms have been developed to adjust PCA for better accuracy near sharp 
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features. Castillo et al. [13] claimed that such improvements in PCA fail to address the fundamental problem 

of determining which points contained in a given neighbourhood should contribute to the normal estimation. 

Fleishman et al. [16] proposed a forward search approach based robust moving least squares technique for 

reconstructing a piecewise smooth surface and reliable normal estimation. The method can deal with multiple 

outliers but requires very dense sampling and a robust initial estimator to start the forward search algorithm. 

Sheung and Wang [31] showed that the forward search misclassifies the region when it fails to obtain a good 

initial fit. Hence the resultant estimates may be erroneous. Oztireli et al. [35] used local kernel regression to 

reconstruct sharp features. Weber et al. [6] claimed the reconstruction from Oztireli et al. [35] does not have a 

tangent plane at a discontinuous sharp feature, but only gives the visual effect of a sharp feature during 

rendering. There are two solutions developed for handling outliers in the literature: (i) outlier detection and 

(ii) robust methods. The following section gives a summary of existing outlier detection and robust methods.  

2.2 Outlier detection  and robust methods  

Most of the work that has been performed for outlier detection exist in statistics. However, many outlier 

detection approaches have been developed in machine learning, pattern recognition and data mining and are 

referred to by different names e.g. novelty detection, anomaly detection, exception mining or one-class 

classification. These also depend on application areas, which include information systems, network systems, 

news documentation, industrial machines, and video surveillance [17, 18, 20, 27, 36-39].  Existing methods 

can be broadly arranged into four groups as follows. First, statistical methods:  broadly categorised into 

distribution and depth based methods, where outliers are identified based on standard probability distributions 

that fit the data best, and in a k-dimensional space assigning a depth, respectively [14, 19].  One of the main 

limitations of distribution based approaches is that the information about the underlying data distribution may 

not always be available. The second type of outlier detection method is distance and/or density based 

methods: Knorr and Ng [37] generalize the distribution based approach and formulated the notion of Distance 

Based (DB) outlier detection for large data. In contrast to DB methods that take a global view of the data, 

Breunig et al. [36] introduced a density based approach assuming that objects may be outlier relative to their 

local neighbourhood. Distance and density based approaches triggered interest in the development of many 

variants of the algorithms, which are more spatially oriented [20, 28, 40]. Thirdly, clustering based methods 
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apply unsupervised clustering techniques mainly to group the data based on their local data behaviour [41]. 

Small clusters that contain significantly less data points are identified as outliers. The performance of the 

clustering based methods is highly sensitive to the clustering techniques that are involved in capturing the 

cluster structure of the normal (inlier) data [39]. The last approach is the model based approach that is used to 

learn a model (classifier) from a set of known data, i.e. training data, and then classifies test observations as 

either normal or outlier using the learnt model [38, 39, 42].  In this category, Tax and Duin [42] introduced 

Support Vector Data Description (SVDD). Usually, model based approaches can detect outliers in high-

dimensional data but require much more time to construct a classifier [39].  Hido et al. [26] pointed that the 

solutions of the One-class Support Vector Machine (OSVM) and SVDD depend heavily on the choice of the 

tunning parameters and there seems to be no reasonable method to appropriately fix the values of the tuning 

parameters. Several survey papers [15, 18, 20, 43] have been published in the last decade that explored a 

variety of algorithms covering the full range of statistics, machine learning and data mining techniques. 

Hodges and Austin [18] concluded: there is no single universally applicable or generic outlier detection 

approach.   

Robust approaches have been developed to avoid (or reduce) the outlier/noise influence on the estimates. 

Many robust versions of PCA have been introduced in the statistical literature [22, 44]. Nurunnabi et al. [12] 

used fast-MCD [45] based robust PCA [22] for planar surface fitting.  The RANSAC [23] paradigm 

introduced in computer vision is a model-based algorithm known as a robust technique, that is very often used 

in laser scanning for planar surface detecting, fitting, extraction and normal estimation [46]. Deschaud and 

Goulette [30] showed that RANSAC is very efficient at detecting large planes in noisy point clouds.  

 
3. Related principles and methods  

This section briefly describes the basic principles and the relevant methods used for comparison.  

3.1 PCA and local covariance statistics 

PCA is a statistical technique that explains the covariance structure of the data by means of a small number 

of variables called Principal Components (PCs) [21]. PCs are the linear combinations of the mean centred 

original variables that rank the variability to the orthogonal directions. The first PC shows the direction in 

which the projected observations have the largest variance; the second PC shows the direction of the next 
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largest variance not explained by the first PC, and so on. Based on the information of the local neighbourhood 

of a point 𝑝! = (𝑥! , 𝑦! , 𝑧!), where 𝑝! is a 3D point in a point cloud P, the covariance matrix Σ is defined as:  

Σ!×! =
!
!

(𝑝! − 𝑝)!
!!! (𝑝! − 𝑝)!,                                                                                                                        (1) 

where 𝑝 = !
!

(𝑝!! ,      𝑝!! ,      𝑝!!)
!
!!!  is the mean of the k-size neighbourhood 𝑁𝑝!. The covariance matrix Σ in Eq. 

(1) is able to define the geometric information of the underlying local surface. Using Singular Value 

Decomposition (SVD), Σ is decomposed into eigenvectors (PCs) usually sorted in descending order of the 

eigenvalues 𝜆!   (𝑖 = 2,1,0). The eigenvalues 𝜆!,  𝜆!, and 𝜆! correspond to the eigenvectors v2, v1, and v0 , 

respectively. For a sampled surface,  the first two PCs explain most of the variability, and they are enough to 

define a locally planar surface in 3D. For a set of 3D points, a planar equation is defined as: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0,                                                                                                                                        (2)  

where a, b and c are the slope parameters and d is the distance of the plane to the origin. Thus 𝑣! approximates 

the surface normal (𝑛) for the point 𝑝!  [3], and the elements of the eigenvector 𝑣! are the estimated plane 

parameters. The least eigenvalue λ0 describes the variation along the surface normal and can measure how the 

points are consistent among themselves. Pauly et al. [8] used the eigenvalues to get surface variation along the 

direction of the corresponding eigenvalues and defined surface variation as the curvature at 𝑝! as:   

𝜎 𝑝! = !!
!!!!!!!!

,      𝜆! > 𝜆! > 𝜆! .                                                                                                                   (3) 

Unfortunately, both the classical variance and the classical covariance matrix, which is being decomposed, are 

very sensitive to outliers. As a result, attributes calculated through PCA  are highly sensitive to  outlying points 

[22].   

3.2. Methods used for comparison  
 

We briefly discuss the methods that can make PCA results robust. We consider several robust and outlier 

detection methods from different disciplines, which are popular and/or have been considered state-of-the-art.   

3.2.1. Robust principal component cnalysis 
The aim of robust PCA (RPCA) is to obtain the PCs that are not influenced by outliers/noise in the data. 

Many versions of RPCA have been developed based on the appropriateness to the number of dimensions of 

the data [44, 47]. We are dealing with 3D point cloud data, so the low dimensional RPCA methods are 
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considered. These types of methods can be categorized mainly into: robust covariance based and Projection 

Pursuit (PP) based [48]. Hubert et al. [22] combined the ideas of both robust covariance estimation and PP, 

and proposed a RPCA. They claimed that their method yields accurate estimates for outlier free datasets and 

more robust estimates for outlier contaminated data, and has the further advantage of outlier detection.  

The RPCA [22] algorithm is performed as follows. First, the PP technique is used to make sure that the 

transformed data are lying in a subspace whose dimension (m) is less than the number (n) of observations. 

Second, an ‘outlyingness’ measure is computed by projecting all the data points onto many univariate 

directions. To reduce computation time the dataset is compressed to PCs defining potential directions. Then, 

every direction is scored by the Stahel-Donoho outlyingness measure defined as in [15, 22]: 

𝑤! = argmax!
!!!!!!!"#$ !!!!

!!"#$ !!!!
 ,       𝑖 = 1,… , 𝑛                                                                                            (4) 

where 𝑝!𝑣! denotes a projection of the 𝑖!! observation onto the v direction, 𝑐!"#$ and Σ!"#$ are the fast-

MCD [45] based mean and covariance matrix for the univariate direction v. An assumed portion h (  ℎ > 𝑛/2) 

of observations with the smallest outlyingness values is then used to construct a robust covariance matrix Σ!. 

A larger h can give a more accurate RPCA but a smaller h gives more robust results. We choose ℎ = 0.5𝑛  

unless the data is contaminated with more than 50% outliers. Finally, the PCA model is built on the robust Σ!. 

Based on the PCA model, the remaining observations are projected onto the d dimensional subspace spanned 

by the d largest eigenvectors of Σ!. The RPCA algorithm is able to find and score orthogonal outliers. An 

orthogonal outlier is identified by a large orthogonal distance which is the distance between the observation p 

and its projection 𝑝. A scored outlier is identified by the score distance which is separated in the PCA 

subspace. The reader is referred to [22] for full details on the RPCA algorithm. 

3.3.2.  RANSAC and MSAC  
RANSAC [23] is a well-known robust method developed in computer vision. This has been used for robust 

parameter estimation for a given model. The iterative algorithm is composed of two steps: Hypothesize and 

Test. In Hypothesize, a minimal subset, e.g. three points for a plane, is randomly selected and the required 

parameters are computed based on the subset. In Test, the estimates are tested for support from the whole set of 

putative correspondences, i.e. the consensus set. The support is the number of correspondences or inlier 

candidates with error below a predefined threshold. RANSAC finally chooses the most probable hypothesis 



 
 
 

9 
 
 

from a number of iterations supported by the most inliers evaluated by a Least Squares (LS) cost function. 

RANSAC can fit the model with a high percentage of outliers, but breaks down when the error thresholds are 

incorrectly defined regardless of the number of outliers, and in the presence of multiple models [25, 49]. Torr 

and Zisserman [25] adopted a bounded cost function, an M-estimator, and proposed MSAC [25], which 

minimizes the robust cost function 𝐶! = 𝜌 𝑒!!! , where e is the error term and 𝜌  (𝑒!) is defined as:  

𝜌 𝑒! = 𝑒! 𝑒! < 𝑇!
𝑇! 𝑒! ≥ 𝑇!,                                                                                                                                       (5) 

and where inliers are scored according to their goodness-of-fit to the data. The authors claim that MSAC yields 

a modest to hefty benefit for all robust estimations with absolutely no additional computational burden. 

Although a probabilistic iteration number [19, 23] is used in RANSAC to ensure the likelihood of at least one 

outlier-free model, it has been argued that an outlier-free model estimated from all inliers does not guarantee a 

good solution due to noise disturbance and others phenomena [50]. Methods have been proposed to update the 

number of iterations [24, 50]. We use the MATLAB® code of Zuliani [24] for performing RANSAC and 

MSAC algorithms which adopts the developments in [24, 50] and gives better results in the presence of noise.  

3.3.3. Direct density ratio based method 
A well-known method in the statistical and machine learning literature performs outlier detection using a 

density ratio based approach which takes the ratio of the two probability density functions of test and training 

datasets. The approach for identifying outliers in a test or validation dataset based on a training or model 

dataset that only contains regular or inlier data [27, 38]. Density estimation is not trivial and getting an 

appropriate parametric model may not be possible. Therefore, Direct Density Ratio (DDR) estimation 

methods have been developed without going through the density estimation.  Recently, Hido et al. [26] 

introduced an inlier based outlier detection method based on DDR estimation that calculates an inlier score or 

importance defined as: 

𝑤 𝑝 = !!"(!)
!!"(!)

,                                                                                                                                                    (6) 

where 𝑝!"(𝑝) and 𝑝!"(𝑝) are the densities of identically and independently distributed (i.i.d.) training  

{𝑝!!"}!!!
!!"  and test {𝑝!!"}!!!

!!"  samples respectively. The observations with small inlier scores are potentially 

outliers. The authors [26] use unconstrained Least Squares Importance Fitting (uLSIF), which originated from 
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the idea of LSIF [27]. In uLSIF, the closed-form solution is computed by solving a system of linear equations. 

The importance 𝑤(𝑝) in Eq. (6) is modelled as: 

𝑤 𝑝 = 𝛼!!
!!! 𝜑!(𝑝),                                                                                                                                       (7) 

where {𝛼!}!!!! are parameters and {𝜑!(𝑝)}!!!! are basis functions such that 𝜑!(𝑝) ≥ 0. The parameters are 

determined by minimizing the following objective function:  

!
!

𝑤 𝑝 − !!" !
!!" !

!
𝑝!" (𝑝)𝑑𝑥.                                                                                                                         (8) 

The solution of uLSIF is computed through matrix inversion, and the leave-one-out-cross-validation score 

[27] for uLSIF computed analytically. Hido et al. [26] showed that the uLSIF is competitively accurate and 

computationally more efficient than the existing best methods e.g. OSVM [38] and Local Outlier Factor 

(LOF) [36]. The reader is referred to Hido et al. [26] for further details about uLSIF.  

3.3.4. Distance based outlier detection 
Knorr and Ng [37] first introduced the new paradigm of Distance Based (DB) outlier detection that 

generalises the statistical distribution based approaches. In contrast to statistical distribution based 

approaches, it does not need prior knowledge about the data distribution.  In DB outlier detection, a point 𝑝 is 

considered as an outlier w.r.t. parameters 𝛼, 𝛿 if at least a fraction 𝛼 of data has a distance from 𝑝 larger than 

𝛿, that is:  

𝑞 ∈ 𝑃|𝑑(𝑝, 𝑞) > 𝛿 ≥ 𝛼𝑛,                                                                                                                             (9)  

where 𝑞 ∈ 𝑃, and (𝛼, 𝛿)   ∈   ℝ; and 0 ≤ 𝛼 ≤ 1 are the user defined parameters. But the problem is to fix the 

distance threshold  𝛿. Ramaswamy et al. [51] proposed 𝑘!!Nearest Neighbour (𝑘!!NN) distance as a measure 

of outlyingness to overcome the limitation. The score of a point is defined as:  

𝑞!!!!! 𝑝 ∶= 𝑑! 𝑝;𝑃 ,                                                                                                                                   (10) 

where 𝑑! 𝑝;𝑃  is the distance between 𝑝 and its 𝑘!!NN. Since this method is computationally intensive, Wu 

and Jermaine [52] proposed a sampling algorithm to efficiently estimate the score in Eq. (10), defined as: 

𝑞!!!!! 𝑝 ∶= 𝑑!(𝑝, 𝑆!(𝑃)),                                                                                                                             (11) 

where 𝑆!(𝑃) is a subset of 𝑃, which is randomly and iteratively sampled for each point in 𝑃. To save 

computation time without losing the accuracy, recently Sugiyama and Borgwardt [28] suggested sampling  

only once. They define the score as: 
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𝑞!! 𝑝 ∶=min!∈!! 𝑑 𝑝, 𝑞 ,                                                                                                                              (12) 

where min!∈!! 𝑑 𝑝, 𝑞  is the minimum distance between 𝑝 and 𝑞, where 𝑞 is a point in the subset 𝑠!. The 

authors name the algorithm 𝑞!!, and state that it outperforms state-of-the-art DB algorithms including LOF 

[36], Angle Based Outlier Factor (ABOF) [53] and OSVM [38] in terms of efficiency and effectiveness.   

4. Proposed methods for outlier detection and robust saliency features estimation 

This section proposes two algorithms for outlier detection and robust saliency feature estimation in point 

cloud data. The algorithms perform four sequential tasks shown in the following diagram (Fig. 1).  

 

Fig. 1. Outlier detection and robust saliency features estimation process. 

It is known that finding outliers globally in a point cloud is not appropriate because of the presence of 

multiple object surfaces, as well as clustered and/or pseudo-outliers. So the aim of the proposed algorithms is to 

find outliers locally. We find outliers for each and every point within their local neighbourhood to get the 

benefits from the fact that an outlier free local neighbourhood will produce more accurate and robust local 

saliency features. In the case of neighbourhood based point cloud processing, it can be assumed that within a 

local neighbourhood of appropriate size, data points can be assumed to be sampled from a locally planar 

surface. Therefore, we need to find a local region (surface) for an interest point 𝑝! by searching its local 

neighbourhood. The two well-known neighbourhood searching methods in point cloud analysis are the Fixed 

Distance Neighbourhood (FDN) and the k-Nearest Neighbourhood (k-NN). The FDN method selects all points 

within a fixed radius r around 𝑝!, whereas k-NN finds the k points having the least distance from 𝑝!. We prefer 

k-NN, because it can avoid the problem of point density variation and lack of adequate number of redundant 

observations. We know point density variation is a common event when dealing with Mobile Laser Scanning 

(MLS) data because of the variation in movement and the geometry of the data acquisition sensors or vehicles. 

In addition to that, this type of local neighbourhood can produce local statistics e.g. normals with support of the 

same number of points.  
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We follow the basic philosophy of diagnostic statistics, which proceeds with identifying outliers, removes 

them and then fitting to the remaining data in the classical way [19]. Hence, after finding outliers in a local 

neighbourhood, we fit the plane to the outlier free data using classical PCA, and estimate the local saliencies, 

that is normal and curvature, using the best-fit-plane parameters and estimated eigenvalues. The algorithms 

serve two purposes: (i) outlier detection in the point cloud data, and (ii) robust saliency feature estimation. 

Outlier detection can also be used in point cloud denoising, as illustrated in Section 5.2.1. Estimated robust 

saliency features can be used for local neighbourhood based point cloud processing such as sharp feature 

preserving and segmentation, which is presented in Sections 5.2.2 and 5.2.3.   

The two proposed robust outlier detection methods use the robust z or Rz-score and robust Mahalanobis 

Distance (RMD). To identify outliers, the algorithms couple the idea of using point to plane Orthogonal 

Distances (OD) and the surface points variation 𝜆! along the normal. Only the h-subset (a subset of size h) of 

the majority of good points in a local neighbourhood that are most reliable, homogenous and have the 

minimum sorted ODs are used to fit the plane and to calculate respective 𝜆! values. The decision based on the 

majority of consistent points is a fundamental idea in robust statistics [19]. Fixing h removes the problem of 

choosing an explicit value of the error threshold that is a major problem in the RANSAC paradigm [23]. In 

general, we set ℎ = 0.5𝑘  to get the majority of consistent points. In order to get the best h-subset, the 

algorithm starts with a random ℎ!-subset, where the ℎ!-subset has the minimal number of points. In the case of 

plane fitting, ℎ! = 3. The technique of finding the h-subset by using the ℎ!-subset reduces the iteration time, 

because ℎ! is considerably smaller than h. Using the outlier-free minimal subset (MS) the h-subset can produce 

better plane parameters. Consequently it gives a better and more accurate normal and the relevant error scale, 

or point to plane orthogonal distance, for the most consistent h-subset, which is used to get the best-fit-plane 

and robust saliency features. To get an outlier free ho-minimal subset, one could iterate by randomly sampling 

k𝐶!! times, where C mean combination, but the number of iterations increases rapidly with the increase of k. 

We employ a Monte Carlo type probabilistic approach [19] to calculate the number of iterations It. Given the 

outlier rate 𝜖 which is the probability that a point is an outlier, if we set 𝑃! for the desired probability that at 

least one outlier free ho-subset can be found from the percentage 𝜖 of outlier contaminated data, then 

𝑃! = 1 − (1 − (1 − 𝜖)!!)!!, and It can be defined as: 



 
 
 

13 
 
 

𝐼! =
!"#(!!!!)

!"#  (!!(!!!)!!)
.                                                                                                                                         (13) 

Therefore, 𝐼! = 𝑓 𝑃! , 𝜖, ℎ! , where ℎ! = 3 is fixed. In this paper, we use 𝑃! = 0.9999 although users have the 

freedom to choose 𝑃! based on their knowledge about their data. Fixing a larger probability increases the 

number of iterations giving a more accurate, more consistent subset with a high probability of the subset 

being outlier free. It is known that the number of iterations is a trade-off between accuracy and efficiency. 

The outlier rate 𝜖 is generally unknown a priori. A smaller 𝜖 than the real outlier percentage in the data can be 

influenced by the masking effect. However, an excessively large value of 𝜖 can create swamping. Masking 

occurs when an outlying case is unidentified and misclassified as a good one, and swamping occurs when 

regular observations are incorrectly identified as outliers [15, 43]. Experience of MLS data reveals that 

generally, the majority or more than 50% of points are inliers within a local neighbourhood. To keep the 

computation safe, we assume 𝜖 = 0.5 for real data. The user can change 𝜖 based on knowledge about the 

presence of outliers. We find an h-subset for every iteration, based on the minimum orthogonal distance with 

respective to the corresponding fitted plane of the ℎ!-subset, and calculate  𝜆!values for all the h-subsets from 

the 𝐼! iterations. It is reasonable to assume that the plane w.r.t. to the least 𝜆! value also has maximum surface 

consistency, that is the least variation along the normal, among all the h-subsets. Theoretically, the maximum 

consistency is attained at 𝜆! ≈ 0. In this way, we get maximum surface point consistency from the points that 

have minimum ODs to the fitted plane. We dub the method Maximum Consistency with Minimum Distance 

(MCMD).  

The algorithms for robust outlier detection and saliency feature estimation can be summarized and 

organized as described in the following three subsections. 

4.1. Getting the maximum consistent set 
 

The proposed outlier detection algorithms are inspired by the concept of robust outlier detection in 

statistics: detecting the outliers by searching for the model fitted by the majority of the data [15, 19]. The subset 

of majority points used in our algorithms includes the most homogenous and consistent points w.r.t. to each 

other. The Maximum Consistent Set (MCS) can be derived by the following steps in Algorithm 1.  

Algorithm 1: MCS 
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Step 1. To get the h-subset for the MCS in a local neighbourhood of a point of interest 𝑝!, we 

randomly choose ℎ! points, in our case ℎ! = 3, to fit a plane. If the rank of this subset is less 

than ℎ!, randomly add more points gradually to the subset until the rank is equal to ℎ!. 

Step 2. For the above ℎ!-subset, we fit a plane by PCA and calculate ODs for all the points in the 

local neighbourhood to the fitted plane and sort them according to their ODs (Fig. 2a) as: 

𝑂𝐷(𝑝!) ≤,… ,≤ 𝑂𝐷 𝑝! ,… ,≤ 𝑂𝐷(𝑝!) ,  

where 𝑂𝐷 𝑝! = (𝑝! − 𝑝)! . 𝑛 is the OD for the point pi to the fitted plane, and 𝑝 and 𝑛 are the 

mean and the unit normal of the fitted plane, respectively.   

Step 3. Fit the plane to the above sorted h-subset in Step 2, and calculate the λ0 value for that plane and 

add it to the list of previous 𝜆! values, defined as 𝑆 𝜆! .  

Step 4.   Iterate Step 1 to Step 3 𝐼! times as defined in Eq. (13). We add the 𝜆! values for the 𝐼! times in 

𝑆 𝜆! . 

Step 5.   

 

Find the h-subset of points for which 𝜆! is minimum in 𝑆 𝜆! . This is the required MCS (red 

ellipse in Fig. 2c) in the local neighbourhood (𝑁𝑝!) of a point 𝑝!.  

 

                                 
                                 (a)                                                                     (b)                                                                 (c) 
Fig. 2. (a) Point to plane orthogonal distance 𝑂𝐷(𝑝!) or 𝑑𝑝! (b) robust MD ellipse, and (c) blue dotted big circle is a local 
neighbourhood 𝑁𝑝!, black dotted circles/ellipses are ℎ!-subsets, red ellipse is the MCS, and the green dash-dotted ellipse is 
the ℎ!-subset w.r.t. the MCS which produces the least 𝜆! value.  

 
4.2.   Outlier detection  

 
We employ an outlier detection method from statistics [14, 15, 19]. Outlier detection methods can be 

distinguished depending on the number of dimensions of the data. One of the simplest methods in statistics is 

the distance-based approach using the data distribution that aims to find outliers by computing the distances of 

the points in a dataset from its majority (centre), and a point that is significantly far from the centre of the data 

treated as an outlier. 

In the univariate case, the well-known z-score is a distance-based measure that can be defined as the 

standardized residual:  

𝑧! =
|!!!!  |
!!

,      𝑖 = 1,… , 𝑘                                                                                                                                  (14) 



 
 
 

15 
 
 

where 𝑝 and 𝜎! are the mean and standard deviation (StD) of the variable P.  Although the z-score is very 

simple and easy to compute, the inclusion of the mean and StD makes its Breakdown Point (BP) zero [19]. 

That means a single outlier can move the mean and scatter arbitrarily far from the real values. The most 

popular robust alternatives to the mean and standard deviation are the median and Median Absolute Deviation 

(MAD) respectively, both of which have the best possible BP of 50%, where MAD = 𝑎.median! |𝑝! −

median!(𝑝!) |; with a =1.4826 set as a correction factor used to make the estimator consistent [15]. To reduce 

the outlier sensitivity of the z-score, the median and MAD are utilised in place of the mean and StD in Eq. 

(14) to produce the robust z-score (Rz):  

𝑅𝑧! =
|!!!!"#$%&!(!!)|

!"#  (!)
,       𝑖 = 1,… , 𝑘                                                                                                                (15) 

which is much more reliable and robust than the z-score.  Observations with 𝑧! or 𝑅𝑧! values greater than 2.5 

are considered as outliers [15].  

In the case of multivariate outlier detection, the scatter of the data is as equally important as the centre. One 

of the most well-known multivariate outlier detection methods is the Mahalanobis Distance (MD), defined as:  

MD! = 𝑝! − 𝑝 !Σ!!(𝑝! − 𝑝),     𝑖 = 1,… , 𝑘                                                                                                 (16) 

where 𝑝 and Σ are the sample mean and covariance matrix. MD follows a Chi-square (𝜒!) distribution with the 

number of degrees of freedom equal to the number of variables m, and the observations that exceed √(𝜒!,!.!"#! ) 

= 3.075 are identified as outliers. The non-robust mean and covariance matrix influence MD, and the results no 

longer suffice for multiple and clustered outliers because of masking and swamping effects [45]. Hence, 

obtaining robust estimators of mean and covariance matrix is a precondition for a robust MD type outlier 

detection method. 

The proposed algorithms identify outliers in a local neighbourhood of 𝑝! in two ways: (i) using the robust z-

score, and (ii) using the Robust Mahalanobis Distance (RMD). The methods are dubbed as MCMD_Z and 

MCMD_MD, respectively. The two outlier detection algorithms are summarized in the following algorithms.  

 
Algorithm 2. MCMD_Z 
Input: 𝑁𝑝!: Neighbourhood of point 𝑝!, 
MCS: Maximum consistent set.  

Output: 𝐼𝑁𝑑𝑥: Inlier indices of 𝑁𝑝!, 

𝑂𝐼𝑁𝑑𝑥: Outlier indices of 𝑁𝑝!.  

1 Fit the plane using the h-MCS from Algorithm 1 
and estimate the plane normal 𝑛! 

2 Calculate the robust mean 𝑝! from MCS:  

 𝑝! =
!
!

(𝑝!  , 𝑝! , 𝑝!)!
!!!  
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3 Calculate robust ODs (as shown in Fig. 2a) for all 
points 𝑁𝑝!: 
𝑂𝐷 𝑝! = (𝑝! − 𝑝!)! . 𝑛!,    𝑖 = 1,2,… , 𝑘          

4 Calculate the Rz-score for all points using the 
ODs: 

𝑅𝑧! =
!"!!!"#$%&!(!"!)

!"#(!")
,    𝑖 = 1,2,… , 𝑘         (17) 

5 for 𝑖 = 1  𝑡𝑜  𝑘  𝐝𝐨 
6 If  𝑅𝑧! < 2.5 then 
7 𝐼𝑁𝑑𝑥 ← 𝑖 
8 else 
9 𝑂𝐼𝑁𝑑𝑥 ← 𝑖 

10 end if 
11 end for 
12 Return:  𝐼𝑁𝑑𝑥 and 𝑂𝐼𝑁𝑑𝑥. 
 
 
 
 
Algorithm 3. MCMD_MD 

Input: 𝑁𝑝!: Neighbourhood of point 𝑝!, 
MCS: Minimum consistent set.  

Output: 𝐼𝑁𝑑𝑥: Inlier indices of 𝑁𝑝!, 
𝑂𝐼𝑁𝑑𝑥: Outlier indices of 𝑁𝑝!.  
1 Calculate the robust mean 𝑝! and covariance 

matrix Σ!!! from MCS:  𝑝! =
!
!

(𝑝!  , 𝑝! , 𝑝!)!
!!!  

3 Calculate the robust MDs (as shown in Fig. 2b) for 
all points as:                 
RMD! = (𝑝! − 𝑝!)!Σ!!! 𝑝! − 𝑝! ,𝑖 = 1, . , 𝑘 (18)   

4 for 𝑖 = 1  𝑡𝑜  𝑘  𝐝𝐨 
5 If	
  	
  	
  RMD! < 3.075  	
  then	
  
6 𝐼𝑁𝑑𝑥 ← 𝑖 
7 else 
8 𝑂𝐼𝑁𝑑𝑥 ← 𝑖 
9 end if 

10 end for 
11 Return:  𝐼𝑁𝑑𝑥 and 𝑂𝐼𝑁𝑑𝑥.  
 

 
 
4.3. Robust saliency features estimation 

By removing the outliers, we get an outlier free neighbourhood for the ith point 𝑝! as described in Section 

4.2. We now fit the plane without the outliers using PCA. Estimated eigenvalues and eigenvectors are used to 

get the required robust saliency features normal and curvature. The least eigenvector, that is the third PC, is 

used as the robust normal 𝑛, and the surface variation defined in Eq. (3) is known as the robust curvature 𝜎! 

[8]. The algorithm for estimating the robust saliency features normal and curvature is as follows.  

Algorithm 4. Robust saliency features estimation 

Input: P: Point cloud, 𝑘: neighbourhood size.  

Output:   𝜎 𝑝 : set of curvature values,{𝑛}: set of normals, and {𝜆!}: set of eigenvalues.  

1 for 𝑖 = 1  𝑡𝑜  𝑛  𝐝𝐨 

2 Find the k-nearest neighbourhood 𝑁𝑝!   for point 𝑝! 

3 Find the MCS in 𝑁𝑝! using Algorithm 1 

4 Remove outliers using Algorithm 2 or Algorithm 3 from 𝑁𝑝! 

5 Perform classical PCA on the cleaned 𝑁𝑝!  

6 Arrange	
  the	
  three	
  PCs	
  associated	
  with	
  their	
  respective	
  eigenvalues	
  

7 Find the two PCs with the largest eigenvalues that form the basis for the fitted plane 
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8 The 3rd PC with the smallest eigenvalue can be used as the normal 𝑛! of the fitted plane 

9 Calculate 𝜎(𝑝!) using Eq. (3) 

10 end for 

11 Return: {𝜎 𝑝 }, {𝑛} and {𝜆!}.  

 

5. Experiments and evaluation 

The proposed algorithms are demonstrated and evaluated in terms of accuracy, robustness, breakdown 

points, classification into outliers and inliers, and speed of computation using synthetic and real MLS 

datasets. Estimated local saliencies of normal and curvature values are evaluated for point cloud denoising, 

sharp feature preserving and segmentation of 3D point clouds. We compare our methods (MCMD_Z and 

MCMD_MD) with PCA, RANSAC, MSAC, RPCA, uLSIF and 𝑞!!.  

To evaluate the performance, we fit the planar surface for a local neighbourhood 𝑁𝑝! of an interest point 

𝑝! using the different methods, estimate normal and eigenvalue characteristics 𝜆!  and 𝜎!, and use them for 

point cloud processing. We calculate three measures: (i) the bias or dihedral angle 𝜃 between the planes fitted 

to the local neighbourhood with and without outliers, which is defined in [29] as:  

𝜃 = arccos 𝑛!! . 𝑛! ,                                                                                                                                         (19) 

where 𝑛! and 𝑛! are the two unit normals from the fitted planes with and without outliers, respectively, (ii) 

the variation along the plane normal or the least eigenvalue  𝜆!, and (iii) the curvature 𝜎(𝑝!) as defined in Eq. 

(3).  

5.1. Synthetic datasets 
 

The synthetic datasets used in the following sections are generated by randomly drawing samples from 

two sets of multivariate 3D (x, y, z) Gaussian normal distributions, one set for regular observations and the 

other set for outlying cases. We create the Regular R observations assuming that they are from a planar 

surface, hence the variations among the points in the z or out-of-the-plane direction is significantly lower that 

the variations in the in-plane x and y directions. The regular observations in 3D have means of (2, 2, 2) and 

variances of (6, 6, 0.01). Usually, the Outlying O cases are far from the planar surface, so we create the 

outlying cases with means (7, 6, 8) and variances (2, 2, 1.5). We simulate the datasets for different sample 

sizes (n) and Outlier Percentages (OP) as needed.  
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5.1.1. Accuracy and robustness  
To evaluate the accuracy of the plane parameters, we calculate the bias angle 𝜃 in Eq. (19). To get 

statistically significant results, we simulate 1000 sets of 50 3D points including 10 or 20% outliers which 

follow a Gaussian normal distribution with the same mean and variance parameters as described in Section 5.1. 

Fig. 3a depicts the pattern of a dataset of 50 points including 10 outlying cases, with regular points marked as 

black and the outliers marked as red stars that appear to be clustered. Planes fitted by the different methods are 

shown in Fig. 3b, in which PCA, 𝑞𝑠! and uLSIF planes of all the points is tilted away from the real plane of 40 

regular points with a large 𝜃, and the planes of all the points from the robust methods (RANSAC, MSAC, 

RPCA, MCMD_Z and MCMD_MD) are almost aligned with the plane without outliers. From the results from 

the 1000 runs, we calculate various descriptive measures including mean, median and Standard Deviation 

(StD) of 𝜃 as shown in Table 1. Results show that in every case of mean, median and StD the proposed 

methods have lower values than the others. PCA has the largest values for all the measures. Based on the 

values of average 𝜃 in Table 1 we can arrange the methods according to their rank of overall superiority in 

descending order as: MCMD_Z, MCMD_MD, RPCA, MSAC, RANSAC, uLSIF, 𝑞𝑠! and PCA. We use the 

well-known box plot as a robust visualisation tool, which gives insight into the descriptive measures of 𝜃 from 

the 1000 runs. In Fig. 4a, it is seen that the PCA and 𝑞𝑠! boxes stand out from the boxes of the other methods. 

Results from column 7 in Table 1 and the lengths of the boxplots support the fact that MCMD_Z and 

MCMD_MD have the 50% of θ values within the minimum Quartile Range (QR=3rd quartile -1st quartile) 

0.295 and 0.402, respectively. That means the two proposed methods produce more robust results than the 

others. In Fig. 4b, we exclude the boxplots for PCA and 𝑞𝑠!  so that the figure better presents the robustness for 

the robust and diagnostic statistical methods (RPCA, MCMD_Z and MCMD_MD) than RANSAC, MSAC and 

uLSIF. The ‘+’ signs in the box plots show that the proposed methods have less outlying results. We see in 

Table 1 and Fig. 4, that RANSAC and MSAC perform almost equally. Since RANSAC is more popular in the 

literature, for the rest of the paper we do not consider MSAC.  

To investigate the influence of uniform outliers on different methods for plane fitting, we simulate 1000 

sets of 50 points including 10 or 20% outliers which follow an Uniform distribution within -9 to +9 for all three 

axes(x, y, z) and the regular observations are as in the previous experiment. Fig. 3d portrays a dataset with 
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uniform outliers. Results in columns 8-13 of Table 1 show that uLSIF and 𝑞𝑠! has been improved significantly 

having values for 𝜃 of mean 2.55 and 4.61 degrees, respectively. That means 𝑞𝑠! and uLSIF perform well in 

the presence of uniform outliers. Box plots for the results are shown in Fig. 4d.  

To visualize the performance for a high percentage of outlier contamination, we generate two datasets of 50 

points contaminated with 70% cluster outliers and 80% uniformly scattered outliers, with the fitted planes 

presented in Figs. 3c and 3f, respectively. We see that only MCM_MD and uLSIF successfully fit the planes. 

The other methods cannot tolerate such a high percentages of outliers which is discussed in Section 5.1.2. Fig. 

3f shows that in the presence of 80% scattered outliers, RANSAC fits the plane almost at the right orientation. 

However it is influenced by outliers and the size of the plane is enlarged. That means some outlying points 

work as inliers, which is the well-known masking effect. Figs. 3 (b, c, e and f) show that MCMD_MD is not 

affected by such a limitation. We carry out 1000 runs for the datasets of 50 points with 70% clustered outliers. 

Results are in the boxplots in Fig. 4c that shows that only MCMD_MD gives robust estimates in the presence 

of 70% outliers.  

 

Fig. 3. (a) Dataset of 50 points with 20% clustered outliers, fitted planes: (b) n=50, OP=20, (c) n=50, OP=70; and (d) 
dataset of 50 points with 20% uniform outliers, fitted planes: (e) n=50, OP=20, (f) n=50, OP=80.  
 
Table	
  1 
Descriptive measures for bias angles (in degrees) from different methods.  
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Methods 
Cluster outliers  Uniform outliers 

Mean Min. Max. Median StD QR  Mean Min. Max. Median StD QR 
PCA 34.483 3.807 52.690 34.255 3.973 4.758  27.593 0.442 89.819 25.339 16.231 19.237 
RANSAC 1.188 0.000 6.367 0.832 1.167 1.618  1.184 0.005 9.140 0.824 1.204 1.574 
MSAC 1.140 0.000 7.378 0.687 1.215 1.605  1.157 0.000 7.379 0.730 1.202 1.569 
RPCA 0.694 0.022 2.698 0.599 0.489 0.550  0.675 0.025 3.326 0.550 0.504 0.547 
uLSIF 6.097 0.562 17.938 5.731 2.304 2.769  2.550 0.056 12.277 2.116 1.874 2.146 
𝑞𝑠! 24.144 0.017 43.968 30.262 15.302 30.168  4.611 0.034 18.722 3.603 3.775 4.666 
MCMD_Z 0.389 0.007 1.896 0.328 0.268 0.295  0.427 0.016 1.905 0.366 0.286 0.353 
MCMD_MD 0.514 0.005 2.119 0.450 0.319 0.402  0.522 0.012 2.244 0.452 0.335 0.420 

	
  

	
  
Fig. 4. Box plots of bias angles for n=50, OP=20, clustered outliers: (a) all the methods (b) all methods excluding PCA and 
𝑞𝑠!, (c) all the methods n=50, OP=70,  and (d) box plot for all methods n=50, OP=80, uniform outliers.    
 

Results in Table 1 illustrates that the proposed methods significantly perform better with more robust 

results than other methods for clustered as well as uniform outliers. For brevity of space, in the next sections 

for simulated data, we evaluate the performances only in the presence of clustered outliers as shown in Fig. 3a.  

 
5.1.2. Breakdown point evaluation 

We use the bias angle 𝜃 to calculate the Breakdown Point (BP), which is used as a robustness measure [19]. 

A bias angle between the best-fit-planes from the data with and without outliers for a robust method should be 

virtually zero. We generate 1000 datasets of 100 points using the same parameters as for the previous 

experiment with clustered outlier percentages of 1 to 80. We calculate the values of θ from the fitted planes 

from different methods for every dataset. Fig. 5 show the results for average θ calculated from 1000 samples. 

Fig. 5a clearly shows that PCA breaks down in the presence of just one outlier. That means PCA has a BP = 

0%. The values of average θ from PCA differ greatly from the zero line for every 1% to 80% of outlier 

contamination. Even for 1% of outliers uLSIF produces an average  𝜃 = 3.626o, and continues with an 

approximately linear pattern with between 1% to 80% outliers present. For PCA and 𝑞𝑠!, 𝜃 is increasing with 



 
 
 

21 
 
 

the increase of outlier percentage, which indicates that the influence of outliers for those is unbounded. Fig. 5a 

shows that RPCA, MCMD_Z, RANSAC, and MCMD_MD break down approximately at 47%, 49%, 64% and 

74% of outliers, respectively. The results show that MCMD_MD attains the highest BP. RPCA and MCMD_Z 

produce more accurate results with lessvalues of 𝜃 than RANSAC until they break down at 47% and 49% 

respectively. To explore the deviations of the methods, we exclude PCA and 𝑞𝑠! from Fig. 5b, and also uLSIF 

from Fig. 5c. Figures 5(a, b and c) clearly reveal the better performance of the proposed methods in the 

presence of outliers.  

 

Fig. 5. Average θ versus outlier percentage, n=100: (a) all methods, (b) excluding PCA and 𝑞𝑠!, and (c) excluding 
PCA, 𝑞𝑠! and uLSIF.  
5.1.3. Influence of sample size and outlier percentage on bias angles 

To see the effect of sample size and different percentages of outlier presence in the data, we generate 

datasets for various sample sizes n of 20, 50 and 200, and outlier percentages 1% to 45%. We carried out 

1000 runs for each and every sample size and outlier percentage. In the previous experiment, Fig. 5 shows 

that there are big gaps between non robust (PCA and 𝑞𝑠!) and the robust (RANSAC, RPCA, MCMD_Z and 

MCMD_MD) methods. Although uLSIF is not a robust method, we consider it with the robust methods 

because it produces significantly less values of 𝜃. Results for average 𝜃 are shown in Fig. 6. In Fig. 6a, for a 

small sample n= 20, we see RANSAC gives inconsistent results for outlier percentages around 30% and more, 

and RPCA breaks down at 40% outliers. Results for n of 20, 50 and 200 (Figs. 6 a, b and c) show that uLSIF 

and RANSAC have larger values of 𝜃 than the other robust methods. MCMD_Z and MCMD_MD always 

perform better than RPCA, RANSAC and uLSIF. MCMD_Z has the least bias angles for almost all the cases 

of sample sizes and outlier percentages.  
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                                    (a)                                                             (b)                                                          (c)  

Fig. 6. Average  𝜃 versus outlier percentage for: (a) n=20, (b) n=50, and (c) n=200. 
 

5.1.4. Effects of point density variation on bias angles  
It is known that variations in point density affects plane parameter estimation and consequently θ. To see 

the effect, we simulate datasets with different variations in the two surface or x and y directions. We generate 

1000 datasets of 50 points including 10 or 20% outliers for different combinations of variances in x and y. The 

rows of Table 2 show the combinations of variances for Regular R and Outlier O data. Other necessary 

parameters for the datasets are the same as used previously for clustered outliers. The results in Fig. 7a show 

that robust methods give low θ values. That is they are less influenced by outliers in the presence of point 

density variation, compared with PCA, 𝑞𝑠! and uLSIF. Fig. 7b shows that when we remove the results for 

PCA, 𝑞𝑠! and uLSIF, the proposed MCMD_Z and MCMD_MD values of 𝜃 are clearly lower than for 

RANSAC and RPCA.  

Table 2  
Variances for Regular R and Outlier O data.  

Datasets I II III IV V VI 
x(R,O) variances (2,1) (6,2) (8,4) (10,6) (12,8) (15,10) 
y(R,O) variances (2,1) (6,2) (8,4) (10,6) (12,8) (15,10) 

 

As well as point density variation, surface roughness influences surface fitting methods. To measure the 

effect of roughness on the estimates, we change the variance along the out-of-the-plane or z axis.  We simulate 

1000 datasets of 50 points with 20% outliers as for the previous experiments. The z variances for regular 

observations are 0.001, 0.01, 0.02, 0.05, and 0.1. Fig. 7c shows PCA, 𝑞𝑠! and uLSIF are markedly worse than 

the robust methods. Fig.7d excludes the results for PCA, 𝑞𝑠! and uLSIF, and shows that RANSAC has a larger 

and near steady increase in θ with respect to increase in z variance compared to the other robust methods. All 
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the methods have increasing errors with the increase of z variance. MCMD_Z and MCMD_MD have improved 

accuracy than the other methods for all values of the z variance.  

 

(a)                                      (b)                                         (c)                                     (d) 

Fig. 7. Line diagrams of average θ versus: (a) variances in x-y axes for all the methods, (b) variances in x-y axes for robust 
methods, (c) variances in z axis for all the methods, and (d) variances in z axis for robust methods.  
 
5.1.5. Speed of processing   

A major advantage of the proposed algorithms is speed of computation. We evaluate speed as a function of 

sample size and outlier percentage. We generate 1000 datasets of (i) different sample sizes 20, 50, 100, 1000, 

and 10,000 with a fixed percentage of 20% of outliers (shown in Table 3, columns 2 to 6), and (ii) different 

percentages of 5%, 10%, 20%, 40% and 50% outliers with a fixed 50 sample points (Table 3, columns 7 to 11). 

All the results for plane fitting in Table 3 are counted in seconds using the MATLAB® profile function. Results 

are average computation time from 1000 runs for each and every sample. The proposed methods always take 

significantly less time than RPCA, RANSAC and uLSIF. For example, for a sample size of 50 (Table 3, 

column 3), MCMD_Z and MCMD_MD take only 0.0085s and 0.0084s, respectively for fitting a plane. A 

simple calculation shows MCMD_Z (0.0085s) is approximately 5, 15 and 98 times quicker than uLSIF 

(0.0420s), RANSAC (0.1282s), and RPCA (0.8365s), respectively. These time gaps between existing (uLSIF, 

RANSAC and RPCA) and the proposed methods increase when the sample size increases to 10,000. However 

the times for the proposed methods increase at much lower rates than the times for uLSIF, RANSAC and 

RPCA. Time increases at a very high rate for uLSIF with the increase of sample size. For the different 

percentages of outliers, for example for 5% outliers, column 7 shows uLSIF (0.0430s), RANSAC (0.0734s) 

and RPCA (0.7937s) are approximately 9, 16 and 168 times slower, respectively than MCMD_Z (0.0047s).  

MCMD_Z takes slighly more time than MCMD_MD. Although PCA and 𝑞𝑠! take less time than the others, 
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their accuracy is significantly worse (Table 1). Since after fitting a plane we get the saliency features, we can 

consider that the time for plane fitting would be same as the time for saliency feature estimation.  

Table 3 
Average computation time (in seconds) for different sample sizes and outlier percentages.  

Methods 
Sample size  Outlier Percentage 

20 50 100 1000 10000  5 10 20 40 50 

PCA             0.0004 0.0004 0.0005 0.0005 0.0016  0.0005 0.0004 0.0004 0.0005 0.0005 
RANSAC     0.0714 0.1282 0.1845 0.4318 2.3934  0.0734 0.0934 0.1278 0.2562 0.3640 
RPCA         0.8289 0.8365 0.8553 1.0751 1.2691  0.7937 0.7990 0.8007 0.8010 0.7937 
uLSIF 0.0147 0.0420 0.1507 2.4642 139.7496  0.0430 0.0405 0.0440 0.0431 0.0409 
𝑞𝑠! 0.0009 0.0019 0.0037 0.0329 0.2910  0.0017 0.0019 0.0020 0.0019 0.0020 
MCMD_Z    0.0088 0.0085 0.0098 0.0123 0.0400  0.0047 0.0064 0.0091 0.0238 0.0407 
MCMD_MD 0.0079 0.0084 0.0092 0.0110 0.0376  0.0042 0.0054 0.0085 0.0228 0.0395 

 
5.1.6.  Outlier detection and performance as a classifier 

In this section, we investigate the performance of all methods excluding PCA for outlier detection and as 

classifiers to categorize the points into inliers and outliers. We generate random datasets for sample size 100 

with outlier percentages of 5%, 20% and 40% using the same input parameters used previously, for example as 

used for Fig. 3a.. We perform 1000 runs for each outlier percentage. We find and classify the points into inliers 

and outliers, and calculate the Correct Outlier Identification Rate (COIR), Correct Inlier Identification Rate 

(CIIR), number of inliers identified as outliers, and number of outliers identified as inliers, which are 

considered as True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR) or Swamping 

Rate (SR), and False Negative Rate (FNR) or Masking Rate (MR), respectively. We also compute accuracy 

based on true identification of outliers and inliers. The measures in percentages are defined in [54] as:  

TPR  (COIR) = !"#$%&  !"  !"#$%&'(  !"##$!%&'  !"#$%!&!#"
!"#$%  !"#$%&  !"  !"#$%&'(

×100,                                                                            (20) 

TNR  (CIIR) = !"#$%&  !"  !"#!$%&  !"##!"#$%  !"#$%!&!#"
!"#$%  !"#$%&  !"  !"#!$%&

×100,                                                                               (21) 

FPR  (SR) = !"#$%&  !"  !"#!$%&  !"#$%!&!#"  !"  !"#$%&'(
!"#$%  !"#$%&  !"  !"#!$%&

×100,                                                                                 (22)  

FNR  (MR) = !"#$%&  !"  !"#$%&'(  !"#$%!&!#"  !"  !"#!$%&
!"#$%  !"#$%&  !"  !"#$!"#$

×100,                                                                                       (23) 

Accuracy = !"!!"
!"#$%  !"#$%&  !"  !"#$%&

×100,                                                                                                    (24)                                                  

where TP (True Positive) is the number of correctly identified outliers, and TN (True Negative) is the number 

of correctly identified inliers. Table 4 shows the average TPR, TNR, FPR, FNR and accuracy from 1000 runs. 
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Results show that RANSAC has the lowest rate of correctly identified inliers with a TNR of 33% and it is 

significantly affected by the swamping phenomenon as shown by a FPR of 67%. This means it misclassifies 

inliers as outliers at a very high rate. For uLSIF and 𝑞𝑠! with 20 % outliers (columns 9, 10), FNR is 6.2% and 

51.2% , respectively. The methods are affected by the outliers and have larger values of 𝜃 (see Table 1) 

compared to the other robust methods. Our methods correctly identifies outliers with a very low FPR and 

without any FNs. For example, for the dataset with 20% of outliers; MCMD_Z and MCMD_MD have 

accuracies of 99.72% and 98.20% and SR of 0.4% and 2.3% respectively whereas RANSAC, RPCA, uLSIF, 

and 𝑞𝑠! have FPR of 66.2%, 3.7%, 5.3% and 25.3%, respectively. Hence, RANSAC fits a plane with a very 

high rate of misclassification error with lower support of inliers. For example, for 20% outliers, the RANSAC 

plane is fitted based on only 34 points (TNR of 33.8). Table 4 reveals: the proposed methods have the higher 

rate of TPR, TNR and accuracy with a very low rate of swamping and without masking for all the cases of 

outlier percentages.  

To explore the variation in performance for classification (accurate inlier identification), we generate 

datasets of 100 points with 20% outliers and run the experiment 100 times. We calculate the number of inliers 

correctly identified and generate the histogram of the number of runs versus the number of inliers correctly 

identified for every run. In Fig. 8, the histograms show that most of the time the proposed methods perform 

better than the other methods and successfully identify inliers, whereas, RANSAC identifies inliers only around 

20% to 40% out of the possible 80% inliers.   

Table 4 
Accuracy measures with classification into inliers and outliers with.    

Methods 

Outlier percentage 

5  20  40 

TPR TNR FPR FNR Accuracy  TPR TNR FPR FNR Accuracy  TPR TNR FPR FNR Accuracy 

RANSAC      100.0 33.0 67.0 0.0 36.35  100.0 33.8 66.2 0.0 47.06  100.0 35.7 64.3 0.0 61.44 

RPCA         100.0 94.3 5.7 0.0 94.62  100.0 96.3 3.7 0.0 97.05  100.0 98.3 1.7 0.0 98.97 

uLSIF 76.8 96.6 3.3 23.2 95.68  93.9 94.7 5.3 6.2 94.54  96.9 87.9 12.1 3.1 91.50 
𝑞𝑠! 71.8 95.3 4.6 28.2 94.18  48.9 74.7 25.3 51.2 69.54  36.8 57.9 42.2 63.2 49.43 

MCMD_Z     100.0 98.0 1.9 0.0 98.14  100.0 99.7 0.4 0.0 99.72  100.0 100.0 0.0 0.0 100.00 

MCMD_MD 100.0 97.8 2.1 0.0 97.94  100.0 97.8 2.3 0.0 98.20  100.0 98.3 1.7 0.0 98.97 
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Fig. 8. Histograms for the number of runs versus the number of correctly identified inliers. 
 

5.2. Real mobile laser scanning data  
 

This section evaluates the performance of the proposed outlier detection methods for (i) outlier denoising, 

and estimating 𝜆!, curvature 𝜎! and the normal 𝑛 for: (ii) sharp feature preserving, and (iii) segmentation in 

real Mobile Laser Scanning (MLS) data analysis.   

5.2.1 Denoising in point cloud data  
To demonstrate that the proposed algorithms are able to remove noise and to recover the detail from real 

point cloud data, we consider a vehicle-borne MLS dataset which is presented in Fig. 9a. The dataset contains 

13,664 points of planar objects including a sign and the road surface, and non-planar objects including a pole 

and signposts. The data is very clean and contains a small amount of noise. However we deliberately add 10% 

(i.e. 1,366 points) Gaussian noise with mean 0 and StD 0.2 to determine how well the method deals with such 

high levels of noise. The noisy dataset is shown in Fig. 9b. To identify noise with the proposed algorithms we 

calculate the 𝑅𝑧 score defined in Eq. (17) and used in Algorithm 2, and the RMD defined in Eq. (18) and used 

in Algorithm 3, for all the points based on their respective local neighbourhoods. The point 𝑝! is defined as 

noise if 𝑅𝑧! or RMD! exceeds their respective cut-off values. We perform all the methods with neighbourhood 

size k of 50, and calculate the values of correct noise or outlier identification rate, inliers or real points 

identification rate, false positive rate and accuracy, which are similar to COIR (TPR) in Eq. (20) and CIIR 

(TNR) in Eq. (21), FPR in Eq. (22), and Accuracy in Eq. (24), respectively. We also count the number of 

Correctly Identified Noise/Outlier (CIN) and Correctly Identified Inlier (regular) points (CIR), FPR 

(swamping rates), and FNR (masking rates), respectively, with results given in Table 5. Results show that 

MCMD_Z has the highest accuracy of 93.57% with a minimum FPR of 6.58% and FNR of 4.90%. RPCA 

produces better results than RANSAC, uLSIF and 𝑞𝑠! but RPCA has higher rates of swamping of 12.08% and 



 
 
 

27 
 
 

masking of 7.25% compared with the proposed methods. Although uLSIF and 𝑞𝑠! give better accuracies than 

RANSAC,both of them have higher values for FNR or masking. Figs. 9c and 9d are the results after removing 

the noise using MCMD_Z and MCMD_MD, respectively. These look similar to Fig. 9a before noise was 

added. Results also demonstrate that a few real noise points in the red circle in Fig. 9a (top left of the light) 

are removed in Fig. 9c and in Fig. 9d.  

Table 5 
Performance evaluation for outlier denoising.  

Methods CIN CIR TPR (%) TNR (%) FPR (%) FNR (%) Accuracy (%) 
RANSAC       1086 10926 79.50 79.96 20.04 20.50 79.92 
RPCA             1267 12014 92.75 87.92 12.08 7.25 88.36 
uLSIF 658 12164 48.17 89.02 10.98 51.83 85.31 
𝑞𝑠! 641 12082 46.93 88.42 11.58 53.07 84.65 
MCMD_Z      1299 12765 95.10 93.42 6.58 4.90 93.57 
MCMD_MD  1282 12550 93.85 91.85 8.15 6.15 92.03 

 

 
Fig. 9. (a) Real point cloud data, (b) point cloud data with 10% noise (red points), point cloud data after denoising: (c) 
results for MCMD_Z, and (d) MCMD_MD.  
 
5.2.2. Sharp feature preserving 

Many methods have been introduced for sharp features recovery [5, 6,16]. This task is not easy because 

normals on or near sharp features become overly smooth mainly for two reasons: (i) neighbourhood points 

come from multiple regions, and (ii) the presence of outliers and/or noise. The advantage of the proposed 

algorithms is they remove outliers and noise from the local neighbourhood and depend only on the majority of 

consistent observations. Hence they can automatically avoid the influence of outliers/noise and the points 

from other regions that are a minority in the local neighbourhood. The normal represents the best-fit-plane 

and the real surface from which the Maximally Consisten Set (MCS) comes from. 

Regression-based techniques tend to smooth sharp features, and thus fail to correctly estimate normals 

near edges [32]. To illustrate this, we pick a part (Fig.10b) near an edge in a real MLS dataset (Fig. 10a), and 
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estimate normals with neighbourhood k = 20. Fig. 10c shows that PCA fails to get perfect normals and makes 

the edge smooth. Results for uLSIF in Fig. 10f and for 𝑞𝑠! in Fig. 10g are similar to PCA. Fig. 10e show that 

the normal for RPCA appear to be more accurately classified than those for RANSAC shown in Fig. 10d. The 

results for MCMD_Z in Fig. 10h and for MCMD_MD in Fig. 10i show they efficiently construct the normals 

with correct orientation near edges and are hence able to retrieve sharp features better than the others.  

For sharp feature recovery, we pick two small MLS datasets. Fig. 11a shows a box like object that 

contains 3,339 points and consists of edges and a corner. This we name the  ‘box	
  like’ dataset. Fig. 13a shows 

another dataset that is part of a crown shaped roof extracted from a roadside building. This we name the 

‘crown’ dataset. The crown dataset is of 3,017 points and represents a polyhedral having bilinear surfaces 

with common edges and corners. We know that the angle of the tangent planes for bilinear surfaces varies 

along the edges and could cause problems for feature detecting and reconstructing systems using global sets 

of parameters [6]. 

We use a recently proposed algorithm [55] to extract the sharp features for the two datasets. The algorithm 

considers the ith point as a sharp point on an edge or corner if its corresponding least eigenvalue is: 

𝜆! > mean   𝜆! + 𝑎×standard  deviation  (𝜆!) ;      𝑎 = 1.                                                                        (25) 

We fit planes for every point in the dataset with neighbourhood size k= 30, and calculate the least 

eigenvalues 𝜆!. Figs. 11b and 13b show that PCA is not good for recovering the edge or corner points 

correctly for both the datasets. RANSAC, uLSIF and 𝑞𝑠! do not successfully classify surface, edge or corner 

points. Many surface points appear as edge or corner points because of the smoothing effect around edges and 

corners. The results for MCMD_Z and MCMD_MD in Fig. 11g and Fig. 11h show that the new methods 

perform significantly more accurately than the others. In Figs. 13g and 13h, it can be seen that the proposed 

methods efficiently recover sharp features even in the presence of bilinear surfaces. To illustrate the 

performance of the methods in the presence of noise, we deliberately add 20% artificial Gaussian noise with 

mean 0.0 and StD. 0.1 to the dataset in Fig. 11a. The noisy boxlike dataset is in Fig. 12a. The results for PCA, 

RANSAC, uLSIF and 𝑞𝑠! show that in the presence of noise they are more greatly affected by noise than the 

earlier noise free results. More surface points are misclassified on and/or near edges and corners. The 
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proposed methods still produce better results than the existing methods for edge and corner points as shown in 

Figs. 12g and 12h.  

 
Fig.10. (a) Real point cloud data (b) sample data for normal estimation, normals plots: (c) PCA, (d) RANSAC, (e) RPCA, 
(f) uLSIF, (g) 𝑞𝑠!, (h) MCMD_Z, and (i) MCMD_MD. 
 

 
Fig. 11. (a) Boxlike dataset, edge and corner points recovery: (b) PCA, (c) RANSAC, (d) RPCA, (e) uLSIF, (f) 𝑞𝑠!, (g) 
MCMD_Z, and (h) MCMD_MD.  
 

 
Fig. 12. (a) Boxlike dataset with noise, edge and corner points recovery: (b) PCA, (c) RANSAC, (d) RPCA, (e) uLSIF, (f) 
𝑞𝑠!, (g) MCMD_Z, and (h) MCMD_MD.  
 

 
Fig. 13. (a) Crown dataset, edge and corner points recovery: (b) PCA, (c) RANSAC, (d) RPCA, (e) uLSIF, (f) 𝑞𝑠!, (g) 
MCMD_Z, and (h) MCMD_MD.  
 

 
5.2.3. Segmentation   

This section evaluates the estimated normals and curvatures from the proposed MCMD_Z and 

MCMD_MD based robust method realised in Algorithm 4, and the existing methods using a recently 

proposed segmentation algorithm [56]. Real MLS point cloud data is used and segmentation extracts 

homogenous points in the data and labels them as belonging to the same regions. 

The segmentation algorithm is based on a region growing approach that starts by searching for a seed 

point, which has the minimum curvature value in the dataset. The algorithm grows regions using local surface 

point criteria, that is normal and curvature. The local surface point criteria for all the points in the data are 
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calculated based on the k-nearest neighbourhood 𝑁𝑝!. The algorithm considers Euclidian Distance ED!" 

between the seed point 𝑝! and one of its neighbours 𝑝!, Orthogonal Distance OD! for the 𝑗!! point to the best-

fit-plane of the ith seed or interest point, and the angle difference 𝜃!" in Eq. (19) between the seed point 𝑝! and 

𝑝!. A neighbour 𝑝! of the seed point 𝑝! will be added to the current region 𝑅! and the current seed point list 𝑆! 

if: 

i   OD! < OD!! , ii   ED!" < ED!! , and   iii   𝜃!" < 𝜃!!,  

where OD!! ,   ED!!  and  𝜃!! are the thresholds of the respective characteristics. OD!!  and  ED!! are fixed 

automatically within the segmentation algorithm, and 𝜃!! is user defined. The region 𝑅! will grow until no 

more candidate points are available, and a segment is considered as significant if its size is larger than a user 

defined threshold 𝑅!"#. The reader is referred to [56] for more details about the segmentation algorithm.  

Dataset 1 : Fig. 14a shows the first dataset acquired by a MLS system and consisting of 127,898 points. It 

describes parts of a road, kerb and footpath, and contains road side furniture including road signs, and long 

and approximately cylindrical surfaces (signs and light poles). These 21 objects can be classified as 10 planar 

and 11 non-planar surfaces. We label the dataset as the ‘traffic	
  furniture’ dataset. For the segmentation 

algorithm, we set k=50 and θth =15°, and minimum region size Rmin=10. The segmentation results are shown 

in Table 6 and Fig. 14.  

To measure the accuracy of the segmentation results, we calculate the recall (r, surface segmentation rate), 

precision (p, correctness of the segmented surface) and F-score (F, overall accuracy) using the rules [54,57] :  

r = !"
!"!!"

×100,                                                                                                                                             (26) 

p = !"
!"!!"

×100,                                                                                                                                             (27) 

F = 2× !×!
!!!

 ,                                                                                                                                                    (28) 

where PS=Proper Segmentation, US = Under Segmentation, and OS = Over Segmentation. 

The segmentation results for PCA and 𝑞𝑠! are very poor with PS of 5 and 6 respectively. RANSAC has a 

better PS of 12 but this is combined with an OS of 4 and a US of 3. PCA, RANSAC, uLSIF and 𝑞𝑠! (Figs. 

14b-f) all fail to segment the road, kerb and footpath, which are under segmented into one surface. RPCA 

performs better than PCA, RANSAC, uLSIF and 𝑞𝑠!. MCMD_Z and MCMD_MD (Figs. 14g-h) segment all 
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10 planar and 11 non-planar surfaces without any OS or US. The results in Table 6 show that RPCA has 

97.44% accuracy (column F) value, whereas PCA, RANSAC, uLSIF and 𝑞𝑠! have only 43.48%, 77.42%, 

75.86% and 60.00% accuracy respectively. The proposed methods have perfect or 100% accuracy for all r, p 

and F measurements.  

 

Fig. 14. (a) Traffic furniture data; segmentation results: (b) PCA, (c) RANSAC, (d) RPCA, (e) uLSIF, (f) 𝑞𝑠!, (g) 
MCMD_Z, and (h) MCMD_MD. 
 
Table 6 
Performance evaluation in segmentation.  

Methods 
Traffic	
  furniture dataset  Bus	
  stop dataset 

TS PS OS US r (%) p (%) F (%)  TS PS OS US r (%) p (%) F (%) 

PCA 22 5 7 6 45.45 41.67 43.48  50 12 27 5 70.59 30.77 42.86 
RANSAC 20 12 4 3 80.00 75.00 77.42  42 20 16 2 90.91 55.56 68.97 
RPCA 20 19 0 1 95.00 100.00 97.44  43 26 13 0 100.00 66.67 80.00 
uLSIF 18 11 2 5 68.75 84.62 75.86  46 21 13 1 95.45 61.76 75.00 
𝑞𝑠! 13 6 0 8 42.86 100.00 60.00  44 20 15 2 90.91 57.14 70.18 
MCMD_Z 21 21 0 0 100.00 100.00 100.00  37 29 5 0 100.00 85.29 92.06 
MCMD_MD 21 21 0 0 100.00 100.00 100.00  40 29 4 0 100.00 87.88 93.55 

 
 

Dataset 2: Fig. 15a shows the next dataset of 33,719 points also acquired by anMLS system. This dataset 

includes a bus shelter, bench, umbrella, light post, signs, road, kerb, footpath and a tree. We label this dataset 

as the ‘bus	
  stop’ dataset. We use the same segmentation algorithm used for Traffic	
  furniture dataset with the 

parameters k=50, θth =5° and Rmin=10. It is clear from Fig. 15a that several surfaces are incomplete and the 
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point density is not homogenous. The dataset contains 31 different planar and non-planar surfaces. Fig. 15b 

shows that PCA fails to segment the road, kerb and footpath. uLSIF, 𝑞𝑠!, RANSAC and the other robust 

methods were able to segment the three surfaces namely the road, kerb and footpath properly. They also 

successfully preserve sharp features and segment the part of the roofs of the two umbrellas. Results for the 

bus	
  stop dataset in Table 7 show that both of the proposed methods more accurately segment 29 surfaces out 

of 31 surfaces without any US. MCMD_Z and MCMD_MD have only 5 and 4 OS respectively, but for PCA 

the number of OS is 27 and for other methods RANSAC, RPCA, uLSIF and 𝑞𝑠! the OS is 13 or more. All the 

robust statistical methods have r = 100% without any US. RPCA, uLSIF and 𝑞𝑠! have 80%, 75% and 

70.18% accuracy respectively. The proposed MCMD_Z and MCMD_MD attain the accuracy (column F) of 

92.06% and 93.55%, respectively.  

 
Fig. 15. (a) Bus stop data; segmentation results: (b) PCA, (c) RANSAC, (d) RPCA, (e) uLSIF, (f) 𝑞𝑠!, (g) MCMD_Z, 
and (h) MCMD_MD. 
 
 
6. Conclusions  

Using robust and diagnostic statistical approaches, two outlier detection and robust saliency feature 

estimation methods are proposed for mobile laser scanning 3D point cloud data analysis. In the proposed 

methods, basic ideas of robust and diagnostic statistics are coupled. First, the algorithms fit the best plane based 

on the majority of consistent data or inliers within the local neighbourhood of each point of interest. Then  the 

outliers are found locally for every neighbourhood based on the results from the majority of good points. In the 

second stage, the required saliency features of normals and curvatures are estimated for every point by PCA 
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based on the inlier points found in its local neighbourhood. Results show that PCA and 𝑞𝑠! are quicker than the 

proposed methods, but they are not as accurate. Although uLSIF produce significantly more accurate results 

than PCA and 𝑞𝑠!, all three are not robust. Results for artificial and real data show that the methods have 

various advantages over other techniques including: (i) being computationally simpler, (ii) being able to 

efficiently identify high percentages of clustered and uniform outliers, (iii) being more accurate than PCA, 

RANSAC, uLSIF and 𝑞𝑠!, (iv) being significantly faster than RPCA, uLSIF and RANSAC, (v) being able to 

denoise point cloud data, and (vi) being more efficient for sharp features recovery. In addition, the robust 

saliency features based on the proposed techniques can reduce over and under segmentation, and give 

significantly better segmentation results than existing methods for planar and non-planar complex surfaces. 
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