
 
 

University of Birmingham

A novel dynamic rough subspace based selective
ensemble
Guo, Yuwei; Jiao, Licheng; Wang, Shuang; Wang, Shuo; Liu, Fang; Rong, Kaixuan; Xiong,
Tao
DOI:
10.1016/j.patcog.2014.11.001

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Guo, Y, Jiao, L, Wang, S, Wang, S, Liu, F, Rong, K & Xiong, T 2015, 'A novel dynamic rough subspace based
selective ensemble', Pattern Recognition, vol. 48, no. 5, pp. 1638-1652.
https://doi.org/10.1016/j.patcog.2014.11.001

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication in Pattern Recognition. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was
subsequently published in Pattern Recognition, Vol 48, Issue 5, May 2015, DOI: 10.1016/j.patcog.2014.11.001.

Eligibility for repository checked March 2015

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 30. Apr. 2024

https://doi.org/10.1016/j.patcog.2014.11.001
https://doi.org/10.1016/j.patcog.2014.11.001
https://birmingham.elsevierpure.com/en/publications/566e6b8c-1eb7-4f22-b838-4104b4bbeab7


Author's Accepted Manuscript

A novel dynamic rough subspace based
selective ensemble

Yuwei Guo, Licheng Jiao, Shuang Wang, Shuo
Wang, Fang Liu, Kaixuan Rong, Tao Xiong

PII: S0031-3203(14)00451-8
DOI: http://dx.doi.org/10.1016/j.patcog.2014.11.001
Reference: PR5273

To appear in: Pattern Recognition

Cite this article as: Yuwei Guo, Licheng Jiao, Shuang Wang, Shuo Wang, Fang
Liu, Kaixuan Rong, Tao Xiong, A novel dynamic rough subspace based selective
ensemble, Pattern Recognition, http://dx.doi.org/10.1016/j.patcog.2014.11.001

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/pr

http://dx.doi.org/10.1016/j.patcog.2014.11.001
http://dx.doi.org/10.1016/j.patcog.2014.11.001
http://dx.doi.org/10.1016/j.patcog.2014.11.001
http://dx.doi.org/10.1016/j.patcog.2014.11.001
http://dx.doi.org/10.1016/j.patcog.2014.11.001
http://dx.doi.org/10.1016/j.patcog.2014.11.001


 

A novel dynamic rough subspace based selective ensemble 

Yuwei Guo
1
, Licheng Jiao

1
, Shuang Wang

1
, Shuo Wang

2
, Fang Liu

3
, Kaixuan Rong

1
, Tao Xiong

1 

1 
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, 

International Research Center for Intelligent Perception and Computation,  

Xidian University, Xi’an, Shaanxi Province 710071, China 

2 
CERCIA, School of Computer Science, University of Birmingham, UK 

3 
School of Computer Science and Technology, Key Laboratory of Intelligent Perception and 

Image Understanding of Ministry of Education of China, Xidian University 

 

 

Abstract 

Ensemble learning has been a hot topic in machine learning due to its successful utilization 

in many applications. Rough set theory has been proved to be an excellent mathematical tool 

for dimension reduction. In this paper, based on rough set, a novel framework for ensemble is 

proposed. In our proposed framework, the relationship among attributes in rough subspace is 

first considered, and the maximum dependency degree of attribute is first employed to 

effectively reduce the searching space of reducts and augment the diversity of selected reducts. 

In addition, in order to choose an appropriate reduct from the dynamic reduct searching space, 

an assessment function which can balance the accuracy and diversity is utilized. At last, a new 

method, i.e., Dynamic Rough Subspace based Selective Ensemble (DRSSE), which is derived 

from our framework is given. By repeatedly changing the searching space of reducts and 

selecting the next reduct from the changed searching space, DRSSE finally trains an ensemble 

system with these selected reducts. Compared with several available ensemble methods, 

experimental results with several datasets demonstrate that DRSSE can lead to a comparative 

or even better performance. 

 
Keywords: rough set, selective ensemble, dynamic reduct searching space, diversity



 

1.  Introduction 

Ensemble learning has been attracted much attention in machine learning for its good 

generalization ability since 1990s [ 1 ]. It is one of the most promising methods for 

constructing an accurate predictor by combining predictions of a number of base classifiers. It 

can also reduce overfitting problems and achieve good performance. Typically, building an 

ensemble system needs two steps. The first step is to train a set of weak classifiers as base 

learners. Here, “weak” means that the performance of classifier is not particularly good but 

slightly better than random guess. The second step is to integrate the weak classifiers through 

various combination strategies. Some typical ensemble learning methods include Boosting [2] 

and Bagging [3].  

It is commonly agreed that the success of ensembles is attributed to the accuracy of all base 

classifiers and diversity among base classifiers [4,5]. Diversity refers to the degree of 

disagreement among the base classifiers. Some pairwise and non-pairwise diversity measures 

have been proposed to estimate the diversity level, such as Q-statistic, double-default measure, 

entropy, etc. Different from the traditional ensemble methods which integrate the predictions 

of all available base classifiers, the selective ensemble learning algorithms choose a subset of 

base classifiers to contribute to the final prediction, based on the understanding that many 

could be better than all [6]. The advantages of selective ensembles over traditional ensembles 

lie in a smaller ensemble size and potentially better generalization ability. Therefore, the 

selective ensemble is believed to be much more effective than a single classifier and the 

traditional ensemble system. 

Rough set theory was first introduced by Polish Mathematician Pawlak in 1980s [7,8]. It is 

a useful mathematical tool to handle uncertain and vague data [9], and it has been applied 

successfully in machine learning, pattern recognition, and data mining [10]. The most 

important feature of rough set theory is its great ability in attribute reduction and feature 

selection [11,12]. The reduced attribute set based on rough set is named as reduct [13,14]. A 

reduct is a minimal subset of attributes which is sufficient to discern objects with different 

decision values. Theoretically, it has been proved that a classifier trained based on a reduct 



 

has comparable performance with a classifier trained based on the original information system 

[22,15]. There is always more than one reduct for any information system, so the classifier 

can be built in multiple ways. Based on the fact that different data subsets can be obtained by 

applying rough set theory, and ensemble learning is good at performance generalization. 

Many recent methods have been proposed to introduce the rough set theory into ensemble 

learning. These rough set ensembles have been applied to a wide range of practical problems, 

such as text classification, biomedical classification, tumor classification and web services 

classification [16-21].  

In this paper, a new selective ensemble method, i.e., Dynamic Rough Subspace based 

Selective Ensemble (DRSSE), which implies a novel rough set ensemble framework is 

proposed. In this framework, the procedures that using reducts to train base classifiers and 

selecting base classifiers to construct the ensemble system are no longer mutually 

independency, which is different from the available methods. The method under this 

framework takes into consideration the diversity of selected reducts as well as the accuracy 

and diversity of base classifers. Specifically, the maximum dependency attribute is first used 

to reduce the searching space of reducts. The aim of reducing the searching space is to 

increase the difference between alternative reducts and selected reducts as well as improve 

searching efficiency. A preliminary ensemble system is produced based on the selected reduct. 

Then, the next selected reduct considers the performance of the preliminary ensemble and the 

diversity of selected reducts. An assessment function, i.e., Accuracy-Diversity (AD for short) 

assessment function, which considers the accuracy of each base classifier and the diversity 

among base classifiers is used to help select reducts. The final ensemble system consists of 

classifiers trained with the selected reducts. 

The rest of this paper is structured as follows. Section 2 introduces the concept of rough set. 

In Section 3, an algorithm, named DRSSE, is proposed based on a novel framework of 

selective ensemble using rough set theory. The experiments and the results are presented in 

Section 4. Finally, Section 5 concludes this paper and points out the future work. 



 

2．．．．Basic Concepts for Rough Set Theory 

Before present the details of the proposed DRSSE method, the basic concepts for rough set 

theory and the methods for generating a set of reducts are given in the following subsection. 

2.1 Preliminary 

In rough set theory, an information system, which is also called a decision table, is defined 

as ( ), , ,S U C D V f= ∪ , where U  is a set of finite and nonempty objects, referred as the 

universe; C  is the condition attribute set characterizing the samples; D  is the decision 

attribute set; V  is the attribute values in C  and :f C V→ is a description function. Take 

the constructed data shown in Table 1 as an intuitive example. 

Table 1 
A constructed dataset. 

U C D 

 c1 c2 c3 c4  

x1 1 1 1 1 d1 

x2 1 3 1 3 d1 

x3 1 1 2 1 d1 

x4 2 2 2 1 d1 

x5 2 1 2 1 d1 

x6 2 3 2 2 d2 

x7 3 2 2 2 d2 

x8 3 3 3 2 d2 

x9 3 1 3 3 d2 

x10 3 2 1 2 d2 

 

In the constructed data shown in Table 1, each column represents an attribute (e.g., the 

condition attribute C  which are composed by four attributes 1 2 3 4, , ,c c c c  and the decision 

attribute D ) and each row (e.g., 1 10,...,x x ) denotes a sample. The condition attribute 

describes the property of the sample, and the decision attribute characterizes which category 

the sample belongs in. 

For any B C⊆ , there is an indiscernibility relation ( )I B , which is defined as follows: 



 

( ) ( ) ( ) ( ){ }, | , , ,I B x y U U a B f x a f y a= ∈ × ∀ ∈ = .                                  (1) 

That is, for any a B∈ , if and only if ( ) ( )a x a y=  where ( )a x  denotes the value of 

attribute a  for element x , then ( ) ( ),x y I B∈ . It is clear that the indiscernibility relation 

( )I B  is an equivalent relation that satisfies reflexivity, symmetry and transitivity. The family 

of all equivalence classes for ( )I B , i.e., a partition of an information system determined by 

B , can be denoted by ( )/U I B , or simplified by /U B . If ( ),x y  belongs to ( )I B , then 

x  and y  are B -indiscernible, i.e., there is no difference between x  and y  with respect 

to B . Equivalence classes which are generated by B  are referred as B -elemental granules 

or B -information granules, and definition of the equivalence class is as follows: 

[ ] ( ) ( ){ }| , ,
iB

x x x x I B x U= ∈ ∈ .                                           (2) 

That is, x  is a sample set and samples in x  have the same attribute value in terms of 

attribute B . As shown in the second column of Table 1, in terms of condition attribute 1c , 

the samples 1 2 3, andx x x  belong to an equivalence class, the samples 4 5 6, andx x x  belong 

to the other equivalence class, while the samples 7 8 9, ,x x x and 10x  belong to the third 

equivalence class. 

Given an information system ( ), ,S U A X U= ⊆ and B A⊆ . For any X U⊆ , two 

unions of elemental granules ( )B X  and ( )B X  can be defined, where ( )B X  and 

( )B X  are lower and upper approximations of X  regarding B , respectively. Eq. (3) 

shows the definitions of ( )B X  and ( )B X . 

( ) [ ]{ }

( ) [ ]{ }

|

|

B

B

B X x U x X

B X x U x X φ

 = ∈ ⊆


= ∈ ≠ ∩
.                                            (3) 

Here, the B -lower approximation is the union of all [ ]
B

x  which are included in the set 

X , whereas the B -upper approximation of a set is the union of all [ ]
B

x  which have a 



 

nonempty intersection with the set X . As illustrated in the second column of Table 1, in 

terms of decision attribute D , { }1 1 2 3 4 5, , , ,X x x x x x=  is an equivalence class. 

{ }1 2 3, ,x x x  and { }1 2 3 4 5 6, , , , ,x x x x x x  are the lower and upper approximations of 1X  in 

terms of attribute 1c . Besides, { }2 6 7 8 9 1o, , , ,X x x x x x=  is also an equivalence class 

regarding decision attribute D . { }7 8 9 1o, , ,x x x x and { }4 5 6 7 8 9 1o, , , , , ,x x x x x x x  are the 

lower and upper approximations of 2X  regarding attribute 1c , respectively. 

The set ( ) ( ) ( )BBN X B X B X= − , is defined as the B -boundary region of X . If 

( ) ( )B X B X= , it means that X  is a definable set, i.e., X can be crisp characterized with 

respect to B ; otherwise, X  is referred as rough regarding B . In other words, there are 

some samples that we are not sure whether they can be accurately classified. In this situation, 

samples in boundary region cannot be accurately characterized by the condition attribute. 

Given a decision table ( , , , )S U C D V f= ∪ , where C  is a set of condition attribute and 

D  is a set of decision attribute. The positive region regarding D  is the union of all low 

approximations in terms of C . Elements in the union of positive regions can be exactly 

classified into U / D  with respect to C , that is: 

( )
/

( )
C

X U D

POS D C X
∈

= ∪ ,                                                   (4) 

where ( ) [ ]{ }|
C

C X x U x X= ∈ ⊆  is the lower approximation of X  regarding C . 

When it comes to the second column of Table 1, the positive region of D  regarding attribute 

1c  is { }
1 1 2 3 7 8 9 1o( ) , , , , , ,cPOS D x x x x x x x= . 

The positive region completely belongs to one of the decision classes and the size of 

positive region reflects the approximation power of condition attribute C  with respect to the 

decision attribute D . In order to measure the importance of condition attribute, the 

dependency degree ( )Br D  is used as the criterion for attribute selection, and definition of 

( )Br D  is as follows: 



 

( )
( ) B

B

POS D
r D

U
= ,                                                      (5) 

where B  is a subset of condition attribute C . For each B C⊆ , the decision attribute set 

D  depends on B  in terms of ( )Br D , and ( )Br D  takes values [0, 1]. The larger the 

dependency degree value is, the more significant of the condition attribute for the 

approximation of the decision attribute. Take the second column of Table 1 as an example, 

the dependency degree value 
1
( )

c
r D  of the decision attribute set D  in terms of attribute 

1c  is 
1

1

( ) 7
( ) 0.7

10

C

c

POS D
r D

U
= = = . 

Given a subset B  for condition attribute set C , for any attribute c B∈ , the importance 

of c  regarding D  is defined as follows: 

( ) ( )
( ) ( ) ( ) B B c

B B B-c

POS D POS D
R D r D r D

U U

−
= − = − .                         (6) 

( )BR D  reflects the importance of c  by calculating the difference between ( )Br D  and 

( )B-cr D . The larger the ( )BR D  is, the more significant of the attribute c . Take the data 

shown in Table 1 as an example, considering the subset { }1 3= ,B c c  and 1c = c , then 

1
( ) ( ) ( ) 0.7 0.7 0B B B-cR D r D r D= − = − = . It demonstrates that the attribute 1c  is not 

essential to decision and classification and 1c  can be removed from the subset B . 

2.2 The generation of multiple reducts 

In order to produce multiple classifiers, a set of reducts should be utilized. This subsection 

briefly introduces three methods which can be used for generating multiple reducts. The first 

method is WADF [22]. In this method, condition attributes are sorted in terms of attribute 

significance degree firstly, and then the worst condition attribute will be deleted one by one. A 

good reduct can be found by using the concept of attribute significance. Here, in order to 

produce a set of reducts that are different from each other, a strategy of changing the order of 



 

condition attributes is applied. This strategy moves away only one dispensable attribute from 

an obtained good reduct at a time, and finds a new reduct using the remaining condition 

attribute. Authors in [23] presented another way to find reducts. Their algorithm starts with an 

indispensable attribute. First of all, the discernibility matrix of the decision system is created, 

and then according to the significance degree of attributes, the forward stepwise selection and 

backward elimination strategy are used to generate multiple reducts. The second reducts 

generating method is “Multiple_Reduct_Generation” [24]. To find multiple reducts, a score 

function is introduced to assess the importance of each condition attribute. The attribute with 

lower score means a higher opportunity to become a member of reduct. In terms of obtained 

scores, these condition attributes are partitioned into several parts. The first part possesses the 

most important attributes for finding a reduct. Each element in the first part will be deleted 

from this part and become a member of attributes forming reduct if this element satisfies 

some constraints. One reduct can be generated according to the previous step, and for finding 

other reducts, Cartesian product operation is applied iteratively among other parts to modify 

these parts and finally an approximate set of reducts will be found. As for the third reducts 

generating method, an existing software ROSETTA [25] can be directly used. ROSETTA has 

been developed for data processing in the framework of rough set theory. It provides a series 

of algorithms to generate one reduct or a set of reducts, such as genetic algorithm, Johnson’s 

algorithm and so on. Some rules are used to find multiple reducts, and the importance 

measure of rule is used to rank these rules. Indispensible attributes of a given dataset need to 

be computed to rank these rules. Here, the genetic algorithm is implemented for computing 

minimal hitting sets, as described by Vinterbo and Ohrn [26]. 

In this paper, ROSETTA software is used to generate a set of reducts as its simplicity. 

Genetic algorithm with the option of full discernibility is adopted for finding minimal 

attribute sets which retain the similar classification power as the original dataset.  

 

 



 

3．．．．A Novel Framework for Rough Set Theory based Selective Ensemble  

In most case, the sample set contains redundant attributes. Removing them may improve 

the performance of the classifier and save memory consumption. Rough set can be used as a 

dimension reduction tool to achieve this goal, which makes use of the relationship between 

the condition attribute and the decision attribute to generate reducts. A reduct is an irreducible 

subset of features, which keeps the same discernibility as the original set of features. As we 

know, hundreds of reducts can be generated for a given dataset. That is, for a given dataset, 

there are not merely one minimal attributes subset A  determining specified decision classes 

in the same degree as the original attribute set, but there exists other minimal attribute subsets 

with the same properties like A .  

 

Fig.1. The framework of the proposed algorithm use solid line. Additional procedures are traditional 

rough set ensemble, use broken line. 

 

 

 



 

Rough set theory provides a new way to produce different feature subsets for training a 

number of component classifiers. Different from random subspace method and attribute 

bagging, the selected attributes based on rough set do not lose the discrimination ability of the 

original information system. Therefore, rough set based ensemble is expected to achieve good 

classification quality. In the traditional rough set ensemble framework, the first step is to 

generate a set of reducts. The second step is to build base classifiers with all generated reducts 

[27,28]. Finally, different strategies are used to integrate these base classifiers. The traditional 

framework of rough set based ensemble is shown as the dashed line in Fig.1. It can be seen 

that the traditional framework does not consider the relationship among the generated reducts. 

As mentioned above, for a given information system, there may exists some redundancy 

attributes. The performance of classifier may be improved by using the attribute set without 

redundancy. For an ensemble system, combining some of base classifiers may be better than 

combining all of base classifiers [6]. This concept can be generalized to reducts based on 

rough set. That is, a set of reducts also have redundancy, and if we delete the redundant 

reducts, the efficiency of the built classifiers may be improved. 

Diversity among base classifiers is one of the key factors affecting ensemble performance. 

The classifiers trained with different reducts should have certain diversity inherently. 

However, this assumption is not always true; that is, different attribute subsets are not directly 

relevant to diversity among classifiers. For instance, there are two different reducts, but the 

classifiers trained by the two reducts may have the same classification results. Therefore, 

there is no diversity between these two classifiers. However, integrating classifiers trained by 

different attribute subsets should have a higher chance of producing more diversity than 

integrating classifiers trained by the same attribute subset. In order to obtain good 

generalization, it is an important task to select appropriate attribute subsets (reducts) for 

training the base classifiers. So, when we construct ensemble classifiers based on rough set, 

we not only consider accuracy of base classifiers and diversity among classifiers, but also 

consider the difference of training set. 

 



 

 

With these motivations in mind, we propose a new framework of rough set based selective 

ensembles, as shown in solid portions of Fig.1. This framework selects reducts to train the 

base classifiers, which consists of four steps. In the first step, one reduct is randomly chosen 

from original reducts pool. In the second step, the searching space of reducts is reduced by 

computing the maximum dependency attribute of selected reduct. In the third step, depending 

on the accuracy-diversity assessment function, a reduct from the newly searching space is 

selected. By repeating the second and the third step, a group of proper reducts are selected. 

Finally, the selected reducts are used to train a set of classifiers, by which the ensemble 

system is formed. Details of the proposed framework are given next. 

3.1 The dependency degree among attributes  

The relationship of attributes in reducts is first studied in rough set ensemble. In this 

subsection, the concept of maximum dependency of condition attributes is introduced [29]. 

This concept is developed from the criterion of the degree of dependency in rough set theory. 

The criterion measures the dependency of the decision attribute on the condition attribute, 

which reflects the approximation power of condition attributes to decision attribute. It is 

defined in Eq. (5) and considered as an evaluation of attribute important degree. The higher 

value of ( )Br D , the condition attributes B  are more important for determining decision 

attribute D .  

In order to choose different reducts from the original reduct pool, the relationship among 

attributes in a reduct is described. As mentioned earlier, the dependence degree of decision 

attributes on condition attributes is measured in Eq. (5). This formula can also be used to 

describe the dependency degree among attributes in a reduct. According to the relationship 

among attributes in a reduct, we can reduce the original reduct pool, which potential increase 

the difference between the left reducts and the selected reducts.  

 

 



 

Given a new decision system ,U A , where A C⊆  is a minimal attribute subset of the 

original attribute set C , and A  has a similar discrimination ability to the original decision 

system. For any c A∈ , the Eq. (5) can be rewritten as: 

( )
( ) , ,P

P

POS c
r c where P A c

U
= = −                                         (7) 

where ( )
/

( )P

X U c

POS c P X
∈

= ∪  is the positive region of c  regarding the attribute set P . 

As for the construction of ( )P X , for any attribute c  and attribute set P , two groups of 

equivalence classes [ ]
c

X  and [ ]
P

X  can be induced by c  and P , respectively. Then, for 

each equivalence class in [ ]
c

X , the size of its lower approximation ( )P X  can be added up 

by the equivalence classes that induced by P . 

When it comes to Eq. (7), the numerator of Eq. (7) indicates the total number of samples 

which are induced by the attribute set P , and these samples can be positively categorized 

into the sets induced by attribute c . The dependency degree ( )Pr c  denotes the proportion 

of such classifiable samples for which it satisfies the values of attributes in P  that 

determining the values of attribute in c . In other words, ( )Pr c  expresses the “re-construct” 

ability of attribute set P  to attribute c . If attribute c  can be completely “reconstructed” 

by attribute set P , then c  depends totally on P . In this case, c  can be removed from A , 

as the attribute set P  can well express c . ( )Pr c  indicates the dependency degree of 

attribute c  on the attribute set P . With the help of Eq. (7), we expect to find an attribute 

c A∈  which is strongly related to the attribute set P . 

 

 

 

 



 

3.2 Shrink of the reducts searching space  

For base classifiers utilized in ensemble system, a high diversity but with a low 

generalization error is a dilemma. Rough set theory can be employed to generate multiple 

attribute subsets, i.e., reducts. A reduct is thought of as a “sufficient set of features”, which 

can fully characterize the knowledge of the original data [30]. In other words, rough set 

theory can be used to complete attribute reduction with the aim to retain the discriminatory 

power of original attributes. A variety of works regarding classification based on rough set 

theory are studied [31-34]，which expect the classifiers trained from reducts can achieve a 

well accuracy performance. We also hope that the base classifiers trained by reducts can 

ensure a good accuracy performance than that trained from attribute subsets which are 

randomly selected from the original data. 

In the condition that attribute subsets are produced by rough set theory, we ignore the 

property of reducts for now. Or suppose the classifiers trained by these reducts have similar 

classification accuracy. Then we wish to select reducts which are different between each other. 

Just like the traditional bagging or boosting algorithm generates multiple datasets used for 

training classifiers by changing the distribution of samples. Classifiers trained by different 

datasets (based on samples) are thought of having potential for obtaining different result. 

Likewise, classifiers trained by different reducts (based on attributes) are more likely to 

produce results in diversity. Different reducts refer to reducts which contain different 

attributes. Simply to say, our goal is to select reducts with different attributes for the diversity 

of selected reducts. Eq. (7) measures the approximation ability of attributes, which can be 

employed to select proper reducts from the reduct pool. If an attribute (attri) in a reduct can 

be well approximation by other attributes, the attribute become relatively less necessary than 

other attributes. In other word, the influence of deleting this attribute is less than deleting 

other attributes. Note that, if we produce other reducts under the circumstance – original 

information system without attribute attri, the attribute attri will not appear in the newly 

produced reduct. Actually, a reduct pool can be generated by software. Thus, to ensure the 



 

next selected reduct not containing attri, the reducts with attri will be deleted from the 

original reduct pool. To select different reducts, we measure the relationship among attributes 

in a random selected reduct by Eq. (7), and find the attribute which can be well characterized 

by other attribute. Then reducts which containing this attribute will be deleted. Thus, this 

attribute will not appear in the next selected reduct. This process narrows down the searching 

space of reducts, and the alternative reducts are different from selected reduct. Meanwhile, 

deleting attribute attri causes relatively less impact. The pseudo code of how to shrink the 

original reduct pool in terms of attribute with maximum dependency degree is shown in 

Algorithm 1. 

 

 

 

Algorithm 1. Shrink the searching space of reducts in terms of attribute with maximum 
dependency degree. 

Input:  original reducts searching space RED , any reduct A in RED  

Output: a changed searching space _RED C  

1. for each ic A∈  

2.   using Eq.(7), compute the dependency degree ir  of attribute ic  upon the left  

attribute iA c−   

3. end for 

4. select mc  such that max( )
i

m i
a A

r d
∈

=  

5. delete reducts red  which contained the attribute mc  from original reducts pool 

RED , _RED C RED red← −  

 
Based on a set of produced reducts shown in Table 2, the procedures of choosing the 

different reducts are illustrated. 

 

 

 



 

 

Table 2  

A set of reducts. 

 Reducts 

1 c1，c2，c5，c6，c7 

2 c1，c2，c8，c9，c10 
3 c1，c4，c5，c8，c10 

4 c1，c4，c6，c7，c9 

5 c2，c4，c5，c7，c10 
6 c3，c5，c6，c7，c8 

7 c1，c2，c3，c5，c9，c10 

8 c1，c2，c6，c8，c9，c10 
9 c1，c3，c4，c5，c6，c7 

10 c1，c3，c4，c5，c6，c10 
11 c1，c3，c4，c6，c9，c10 
12 c2，c3，c4，c7，c8，c9 

13 c2，c3，c7，c8，c9，c10 

14 c2，c4，c6，c7，c8，c10 

15 c3，c6，c7，c8，c9，c10 
16 c1，c2，c3，c5，c6，c9，c10 

17 c1，c2，c4，c6，c7，c8，c10 

18 c1，c2，c5，c6，c7，c9，c10 
19 c2，c3，c4，c5，c6，c7，c8 
20 c2，c3，c4，c5，c6，c9，c10 

 
Firstly, we will select a reduct at random and suppose the random selected reduct is 

{ }2 4 5 7 1o5 , , , ,reduct c c c c c= . The information system of reduct5 is shown in Table 3. 

Table 3 
A information system constructed with a reduct. 

U c2 c4 c5 c7 c10 

x1 1 2 2 2 1 
x2 1 1 1 2 2 
x3 2 2 2 2 1 
x4 1 1 1 1 1 
x5 1 2 1 2 2 
x6 2 2 2 2 2 
x7 1 2 2 1 1 
x8 2 1 2 2 1 
x9 1 2 2 2 1 
x10 1 1 1 2 2 

 
 



 

 
Secondly, we calculate the dependence degree of each attribute on the other attributes in 

the random selected reduct by Eq. (7). The group of equivalence classes induced by singleton 

attribute and other attributes in reduct5 are given below. 

( ) { }2 1 2 4 5 7 9 1oa ( 1) , , , , , ,X c x x x x x x x= = , { }2 3 6 8( 2) , , .X c x x x= =  

For the set of attributes { }2 4 5 7 1o, , ,P x x x x= , we have the following equivalence classes: 

{ }1 3 9, ,x x x ,{ }2 1o,x x ,{ } { } { } { } { }4 5 6 7 8, , , , .x x x x x  

( ) { }4 2 4 8 1ob ( 1) , , ,X c x x x x= = , { }4 1 3 5 6 7 9( 2) , , , , , .X c x x x x x x= =  

For the set of attributes { }4 2 5 7 1o, , ,P x x x x= , we have the following equivalence classes: 

{ }1 9,x x ,{ }2 5 10, ,x x x ,{ } { } { } { }3 8 4 6 7, , , , .x x x x x  

( ) { }5 2 4 5 1oc ( 1) , , ,X c x x x x= = , { }5 1 3 6 7 8 9( 2) , , , , , .X c x x x x x x= =  

For the set of attributes { }5 2 4 7 1o, , ,P x x x x= , we have the following equivalence classes: 

{ }1 9,x x ,{ }2 1o,x x ,{ } { } { } { } { } { }3 4 5 6 7 8, , , , , .x x x x x x  

( ) { }7 4 7d ( 1) ,X c x x= = , { }7 1 2 3 5 6 8 9 1o( 2) , , , , , , ,X c x x x x x x x x= = . 

For the set of attributes { }7 2 4 5 1o, , ,P x x x x= , we have the following equivalence classes: 

{ }1 7 9, ,x x x ,{ }2 1o,x x ,{ } { } { } { } { }3 4 5 6 8, , , , .x x x x x  

( ) { }1o 1 3 4 7 8 9e ( 1) , , , , ,X c x x x x x x= = , { }1o 2 5 6 1o( 2) , , ,X c x x x x= = . 

For the set of attributes { }10 2 4 5 7, , ,P x x x x= , we have the following equivalence classes: 

{ } { } { } { } { } { } { }1 9 2 1o 3 6 4 5 7 8, , , , , , , , , .x x x x x x x x x x  

Thirdly, obtain the lower and upper approximation of X based on attribute 

( )2 4 5 7 1o, , , andc c c c c  with respect to the rest attributes in 5reduct . The lower 

approximation and upper approximation can be calculated using the formula in Eq. (4), which 

are shown as follow: 



 

(a) 2c  with respect to 2P : 

  ( )
22 1 {

c
P X = = 2x , 4x , 5x , 7x , 1o}x , ( )

22 1c
P X = = { }1 2 3 4 5 7 9 1o, , , , , , ,x x x x x x x x , 

  ( ) { } ( ) { }
2 22 2 6 8 2 2 1 3 6 8 9, , , , , , .

c c
P X x x P X x x x x x= == =  

(b) 4c  with respect to 4P : 

( ) { } ( ) { }

( ) { } ( ) { }

4 4

4 4

4 1 4 4 1 2 3 4 5 8 1o

4 2 1 6 7 9 4 2 1 2 3 5 6 7 8 9 1o

, , , , , , ,

, , , , , , , , , , , , .

c c

c c

P X x P X x x x x x x

P X x x x x P X x x x x x x x x x

= =

= =

= =

= =
 

(c) 5c  with respect to 5P : 

  ( )
55 1 {

c
P X

=
= 2x , 4 5, ,x x 1o}x , ( ) { }

55 1 2 4 5 1o, , ,
c

P X x x x x
=

= , 

  ( ) { } ( ) { }
5 55 2 1 3 6 7 8 9 5 2 1 3 6 7 8 9, , , , , , , , , , , .c cP X x x x x x x P X x x x x x x= == =  

(d) 7c  with respect to 7P : 

( ) { } ( ) { }
7 77 1 4 7 1 1 4 7 9, , , , ,c cP X x P X x x x x= == =      

  ( )
77 2 {cP X = = 2x , 3 5 6 8, , ,x x x x , 1o}x , ( )

77 2cP X = = { }1 2 3 5 6 7 8 9 1o, , , , , , , ,x x x x x x x x x . 

 

(e) 1oc  with respect to 1oP : 

  ( ) { }
1o1o 1 1 4 7 8 9, , , ,

c
P X x x x x x

=
= , ( ) { }

1o1o 1 1 3 4 6 7 8 9, , , , , , ,cP X x x x x x x x= =  

( ) { }
1o1o 2 2 5 1o, ,cP X x x x= = ,     ( ) { }

1o1o 2 2 3 5 6 1o, , , ,cP X x x x x x= = . 

  Fourthly, obtain the positive regions of X  with respect to P  by Eq. (4), which are given 

as follow: 

(a) The positive region of the partition 2X U c= with respect to 2P , 

2pPOS ( )2c ( )2P X=∪ = 2{x , 4x , 5x , 6 7 8, ,x x x , 1o}x . 

(b) The positive region of the partition 4X U c= with respect to 4P , 

4pPOS ( )4c ( )4P X=∪ 1 4 6 7{ , , ,x x x x= , 9}x . 



 

(c) The positive region of the partition 5X U c= with respect to 5P , 

  
5pPOS ( )5c ( )5P X=∪ = 1{x , 2x , 3x , 4x , 5x , 6x , 7x , 8x , 9x , 1o}x . 

(d) The positive region of the partition 7X U c= with respect to 7P , 

  
7p

POS ( )7c ( )7P X=∪ 2 3 4{ , ,x x x= , 5 6 8, ,x x x , 1ox }. 

(e) The positive region of the partition 1oX U c= with respect to 1oP , 

  ( ) ( )
1o 1o 1o 1 2 4 5 7 9{ , , , , ,

P
POS c P X x x x x x x= =∪ , 1o}x . 

  Fifthly, the dependency degree of each attribute, which indicates the approximation power 

of other attributes in a reduct to this attribute, is calculated by Eq. (7) are shown as follow: 

(a) The approximation power of 2P  to 2c  is measured by  

( )
2 2

2

7
0.7.

10

PPOS c
r

U
= = =  

(b) The approximation power of 4P  to 4c  is measured by  

( )
4 4

4

5
0.5.

10

P
POS c

r
U

= = =  

(c) The approximation power of 5P  to 5c  is measured by  

( )
5 5

5

10
1.

10

PPOS c
r

U
= = =  

(d) The approximation power of 7P  to 7c  is measured by  

( )
7 7

7

7
0.7.

10

P
POS c

r
U

= = =  

(e) The approximation power of 1oP  to 1oc  is measured by  

( )
1o 1o

1o

7
0.7.

10

PPOS c
r

U
= = =  

Sixthly, we find out the attribute (i.e. 5c ) with the maximal value of dependency degree, 



 

which means other attribute (i.e. 5P ) can relatively well express this attribute.  

At last, reducts contained attribute 5c  will be deleted for the difference between selected 

reducts. The remained reducts are shown in Table 4. The next reduct will be selected from this 

temporary reduct pool. 

Table 4  
The remained reducts. 

 Reducts 

2 c1，c2，c8，c9，c10 

4 c1，c4，c6，c7，c9 
8 c1，c2，c6，c8，c9，c10 

11 c1，c3，c4，c6，c9，c10 

12 c2，c3，c4，c7，c8，c9 
13 c2，c3，c7，c8，c9，c10 

14 c2，c4，c6，c7，c8，c10 
15 c3，c6，c7，c8，c9，c10 
17 c1，c2，c4，c6，c7，c8，c10 

 

3.3 The accuracy-diversity assessment function 

In this paper, we employ an assessment function [35], called the Accuracy-Diversity 

assessment function (AD assessment function), to choose appropriate reducts from the 

dynamic searching space of reducts. Reducts can be picked out as the training dataset of 

classifiers.  

AD assessment function balances accuracy and diversity. Generally speaking, if base 

classifiers have lower generalization error and higher diversity among each other, the 

performance of ensemble system is better. However, having a low generalization error and a 

high diversity may face a dilemma. That is, if there are two classifiers and both of them have 

perfect classification result, they may make the same predictions. Therefore, there are no 

differences between these two classifiers. So, in order to get a better ensemble performance, 

we should balance the trade-off between accuracy and diversity. When we construct an 

ensemble system based on rough set theory, both accuracy of base classifiers and diversity 

among classifiers should be explicitly considered. 



 

The basic idea of AD assessment function is to balance the diversity and accuracy of 

classifiers. The function is defined as follows: 

( , )AD f N =1 ( , )empA f N− ω+ × ( , )divD f N .                                   (8) 

Here, the second term ( , )empA f N  corresponds to the empirical loss of base classifiers f ; 

the third term ( , )divD f N  corresponds to the diversity among base classifiers f . ω  is a 

cost parameter balancing the importance of the second term and third term. In this paper, the 

term ( , )empA f N  in Eq. (8) is evaluated with 2l  loss: 

2

1 1

1
( , ) [ ( ) ]

m N

emp k i i

k i

A f N f x y
mN = =

= −∑∑ ,                                        (9) 

where, m  is the number of base classifiers, N  is the number of test objects. 

There is no widely accepted definition for diversity, however, some measures of diversity 

have been proposed. In [36], the relationship of four pairwise (Q statistic, Correlation 

coefficient, Disagreement measure and Double-fault measure) and six non-pairwise 

(Kohavi-Wolpert variance, Interrater agreement, Entropy measure, Measure of difficulty, 

Generalized diversity, and Coincident failure diversity) measures have been studied. The ten 

measures are deemed to have strong correlations between each other, and the experimental 

facts show that these measures can be categorized into three groups: the Coincident Failure 

Diversity (CFD), the Double Fault measure (DF) and all the remaining measures. Three 

typical measures DF, CFD and ENTropy measure (ENT) are chosen to measure the diversity 

among base classifiers depending on the analysis above.  

The definition of the Coincident Failure Diversity (CFD) is 

( )

( )
( )

1

0

0

10

1
1

0, 1.0

, 1
, 1.0

1 1

1

, 0

m

kjk

m

i

i
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i O
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i

p

CFD f N m i
p p

p m

p i m
N

=

=

 = −
 =  

 =


= − < − −

 ∑
 = ≤ ≤


∑

∑

,                                (10) 



 

where [ ]

1,
1

0

if predicate holds

otherwise
π

π
= 


，，  the definition of 
[ ]1
π

 is also used in [37]. 

Here, [ ]kj m NO O
×

=  is the oracle output matrix. That is, if the k -th base classifier correctly 

classifies the j -th object, where 1 ,1k m j N≤ ≤ ≤ ≤ , the value of 1kjO = , otherwise, 

0kjO = . 

The Double-Fault measure (DF) is determined by 

( )

( ) ( )

1

1 1

1

2
,

( 1)

1 1

m m

ik

i k i

N

ij kj

j

ik

DF f N df
m m

O O

df
N

−

= = +

=


= −




− ⋅ −
 =


∑∑

∑
.                                         (11) 

We usually use 1 DF− to instead of DF , the higher value of 1 DF− , the more diverse 

among base classifiers. 

The ENTropy measure (ENT) which is defined as follows: 

1 1 1

1 1
min ,

/ 2

N m m

ij ij

j i i

ENT o m o
N m m= = =

 
= − 

−     
∑ ∑ ∑ ,                               (12) 

where •    means the operation of rounding up to an integer. For example, 5 / 2    returns 

the value 3 in terms of this operation. 

From the above formulas, we can see that base classifier with higher accuracy is 

represented by the lower value of the second term, and larger value of ( , )divD f N  implies 

higher diversity among base classifiers. In order to keep the consistency of the second term 

that measures the accuracy and the third term which measures the diversity, ( , )empA f N is 

replaced by 1 ( , )empA f N− . Then, the classifiers which have the higher AD function value 

will be selected to construct an ensemble system. 

The parameter ω  is used to balance the relationship of diversity and accuracy. We 

adaptively adjust the value of ω  in the searching process [35]. Our purpose is to maximize 

the value of AD  function, so the value of ω  is not changed if AD  is increasing. When 



 

AD  is not increasing, we increase ω  if empA  is not increasing and divD  is decreasing, 

we decrease ω  if empA  is increasing and divD  is not decreasing. That is, we adjust the 

parameter ω  in deference to obtain 
empA  and 

divD , which determine to pay more attention 

to accuracy or diversity when we choose the next classifier. We set ω  to 1 as the initial 

value, and set the changing amount of ω  to 10% based on its current value. 

3.3 DRSSE 

Based on the concept of maximum dependency degree of attributes and accuracy-diverse 

assessment function, a novel algorithm, Dynamic Rough Subspace based Selective Ensemble 

(DRSSE), is proposed. DRSSE uses a new rough set based selective ensemble framework. In 

this new framework, the searching space of reducts is continually changing based on the 

selected reducts. Dynamic searching space formed by attribute with maximum dependency 

degree ensures that the deleted attribute has limited effect on the ensemble system, and the 

reducts in this dynamic searching space are more likely to differ from the selected reduct. The 

role of AD assessment function is to select proper reduct from the dynamic searching space. 

The DRSSE learning procedure is detailed in Algorithm 2.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Algorithm 2. Dynamic Rough Subspace based Selective Ensemble (DRSSE) 

Input:  a decision system , ,U C D f∪ , the amount of reducts required is M  

Output: ensemble system 

1. find multiple reducts RED  using ROSSETTA software 

2. _ , ,RED temp RED R Clsφ φ← ← ←  

3. choose a reduct 1A  randomly from the temporary reducts pool _RED temp ，
{ }1,R R A← ,  training a classifier 1f  with reduct 1A , { }1,Cls Cls f←  

4. do 

5.   jA A=  

6.   the same with the process 1-4 of Algorithm 1 

7.   produce a new temporary reducts pool _RED temp  through deleting reducts red   

which contained the attribute ma  from original reducts pool RED  

_RED temp RED red← −  

8.   choose a new reduct jA  from _RED temp , { },
j

Cls Cls f← , { },
j

R R A←     

jA  satisfies: ( ) ( )( ), max ,
k

j k
A RED

AD Cls f AD Cls f
∈

=  

9. until the number of reducts in R  is equal to M  

10. ensemble system is formed by classifiers trained with R  

In summary, the framework of DRSSE considers not only the diversity of training 

subspace but also the accuracy and diversity of classifiers in an ensemble system. It is 

worthwhile to highlight some outstanding characteristics of DRSSE: 

 

 

 

 

 

 

 



 

(1) A new rough set ensemble framework is proposed. The relationship among attributes in 

rough subspace is first considered in the framework of DRSSE. A number of studies show 

that the performance improvement of ensemble systems benefits from the difference of 

input attributes. Classifiers constructed with diverse attributes will increase their diversity. 

(2) The attribute dimension is reduced. In most case, there are usually some redundant 

attributes. Training classifier without redundant and irrelevant attributes can significantly 

increase the generalization power of base classifiers and improve the performance of 

ensemble. 

(3) High quality attribute subsets are used. According to the theory of rough set, a reduct is 

the essential part of the original dataset and has the same discernible power. DRSSE trains 

classifiers by using reducts that should have better performance than the algorithms using 

randomly selected attributes. 

(4) The concept of attribute with maximum dependency degree is first used to change the 

searching space of reducts. An assessment function, called accuracy-diversity, is also used 

to select suitable reducts based on the balance of accuracy and diversity.  

4. Experimental results and analysis 

In order to evaluate the performance of the proposed algorithm, we validate the proposed 

DRSSE method on ten datasets from UCI machine learning data repository [38], three face 

databases (FERET, ORL and CMU PIE) and a handwritten database (MNIST). The detailed 

description of these datasets is shown in Table 5. In our experiments, the original dataset is 

split into two parts, i.e., training dataset and test dataset. The proportion of training set is 50% 

of all samples, and the rest is the test set. 

 

 

 

 

 



 

 

Table 5 
Description of experimental datasets. 

Dataset Sample Attributes Classes 

air 359 65 3 

australian 690 15 2 

dermatology 366 35 6 

german 1000 25 2 

heart 270 14 2 

ionosphere 351 35 2 

sonar 208 61 2 

vowel 528 11 11 

wdbc 569 31 2 

wine 178 13 3 

 

It is clear that selecting different classifiers may lead to dissimilar effects on the results of 

the proposed algorithm. Thus, we select two different base classifiers, i.e., CART 

(Classification and Regression Trees) [39] and SVM (Support Vector Machine) [40]. The 

ensemble system is composed of base classifiers which are trained with different feature 

subsets (reducts). The combination strategy for ensemble is majority vote. The training 

method is run 20 times for each setting and we compare the averages. The size of ensemble 

should be specified in advance in DRSSE algorithm.  

The size of UCI datasets ranges between 178 and 1000, and the number of attributes varies 

from 11 to 65. The information about the datasets is shown in Table 5. FERET face database 

[41] consists of 1400 face images of 200 individuals, which were taken under varying pose, 

illumination and expression. The resolution of each face image is cropped to 32 32× . ORL 

face database [42] have 400 face images of 40 individuals. Each of the face images contains 

32 32×  pixels. As in [43], for CUM PIE face dataset [44], we choose the frontal pose (C27) 

with varying lighting, which leaves us 3329 face images of 68 individuals. In our experiments, 



 

the cropped images of size 32 32×  are used. MNIST handwritten digits database [45] 

contains 70,000 images, and each image consists of  28 28×  pixels. Fig.2 shows some 

images from these three face databases and the MNIST database. 

 

Fig.2. (a) all faces of the first person in the FERET database, (b) all faces of the first person in the ORL 
database, (c) partial faces of the first person in the PIE database, and (d) some images from digits 0 

through 9 in the MNIST database. 
 

  As introduced in Algorithm 2, the reducts are produced by the ROSSETTA software. The 

results of UCI dataset are shown in Table 6. Some examples of the obtained reducts with a 

different number of attributes are given in the second column of Table 6. The third column 

and the fourth column present the range of the number of attributes in reducts and the total 

number of generated reducts, respectively. From Table 6 we can see that: (1) There is no clear 

link between different reducts of the same dataset. (2) The number of attributes of generated 

reducts is less than half of the number of original attributes in most cases. (3) A large number 

of reducts exist in one dataset, e.g. air and sonar have more than 200 reducts. 

 

 

 

 

 

 

 

 



 

 

Table 6 
The detail of reduction results of UCI dataset. 

Dataset some reducts with different size 
the number 

of attributes 

in reducts 

The 

number 

of reducts 

air 

17, 26, 27, 31, 34, 37, 40, 45, 46 

1, 11, 18, 19, 24, 28, 31, 33, 41, 57, 62 

1, 11, 19, 23, 24, 28, 30, 31, 33, 34 , 35, 41, 49 

9-13 210 

australian 
2, 3, 7 
2, 7, 8, 14 
1, 2, 5, 6, 10 

3-5 28 

dermatology 
1, 3, 4, 14, 16, 34 
1, 3, 4, 11, 25, 28, 32, 34 
1, 3, 4, 7, 12, 20, 24, 28, 32, 34 

6-10 172 

german 
2, 4, 7, 10, 16 
1, 2, 4, 6, 10, 12, 20 
2, 4, 6, 7, 10, 15, 21, 22 

5-8 90 

heart 
1, 8, 10 
3, 5, 7, 10 
1, 3, 7, 9, 10 

3-5 66 

ionosphere 
4, 6, 10, 11, 13, 14, 18, 20, 23, 24, 27 
1, 4, 6, 9, 11, 13, 15, 16, 17, 22, 23 , 24, 25, 26 , 30 
1, 3, 4, 7, 8 , 11, 12, 13, 14, 18, 19, 20, 21, 26, 28, 30, 34 

11-17 193 

sonar 
1, 3, 12, 20, 27, 48, 55 
1, 5, 6, 9, 12, 24, 40, 59 
9, 12, 21, 25, 26, 38, 56, 58, 60 

7-9 245 

vowel 7, 9 2 44 

wdbc 
2, 13, 16, 18, 21, 22, 25, 27 
2, 5, 10, 11, 14, 17, 24, 26, 27, 28 
1, 5, 7, 9, 10, 11, 14, 17, 19, 20, 24, 25, 26, 30 

8-14 197 

wine 
4, 6, 9, 10, 12 
1, 3, 4, 6, 10, 12 
1, 3, 4, 6, 7, 8, 9 

5-7 94 

 

The produced reducts of these face databases and MNIST database are described in Table 

7. Min and Max indicates the minimal and maximum number of attribute that the produced 

reducts possess. The fourth column shows the number of attributes in original database. The 

fifth column to the eighth column shows the number of reducts when the range of the number 

of attributes in reducts is given. The last column presents the total number of the produced 

reducts. Table 7 shows that: (1) Hundreds of reducts can be produced by these face databases 

and MNIST database. (2) The number of attributes of original dataset can be down by about a 



 

third to a half. 

Our experiments consist of four parts. In Section 4.1, we first show the performance of base 

classifiers trained with different reducts. In Section 4.2, we present the classification 

accuracies of DRSSE with three different diversity measures and determine which measure 

should be selected for DRSSE. The impact of the number of classifiers on the result of 

DRSSE is presented in Section 4.3. Finally, we compare DRSSE with other available 

ensemble methods in Section 4.4. 

Table 7  
The detail of reduction results of UCI dataset. 

Database Min Max Original Min-400 400-500 500-600 600-Max Sum 

FERET 312 651 1024 39 41 42 15 137 

ORL 309 632 1024 33 40 40 20 133 

PIE 332 660 1024 37 39 45 14 135 

MNIST 267 477 784 107 21 0 0 128 

4.1 The performance of reducts 

CART and SVM are introduced to train base classifiers. Fig.3 evaluates the performance of 

classifiers trained with reducts which are produced by the ten UCI datasets. Box plot is used 

to show the results, which represents the lower quartile, median, and upper quartile values in 

lines. The x-axis represents the number of attributes in reducts and the last column is the total 

number of attributes in dataset. The y-axis is the accuracies of classifiers. In Fig.3, the left 

column and the right column present the classification results acquired by using CART and 

SVM as the base classifiers, respectively. It can be seen from Fig.3, firstly, the classifiers 

trained with reducts have much more opportunity to achieve even better (for CART, 

ionosphere, sonar, wdbc and wine; for SVM, sonar and wine) or comparative (for CART,  



 

 

Fig.3. Box plots of the classification accuracies of reducts. (a) air. (b) australian. (c) dermatology. (d) 
german. (e) heart. (f) ionosphere. (g) sonar. (h) vowel. (i) wdbc. (j) wine. 

 



 

german and heart; for SVM, dermatology, heart, ionosphere and wdbc) performance than that 

trained with original dataset. Secondly, as for vowel dataset, performance of the classifiers 

trained with reducts is poorer than that trained with the original dataset. This is because the 

number of attributes in vowel’s reduct is only two, which is too few to reflect the original 

dataset’s information. 

Table 8 shows the classification results of reducts generated by FERET, ORL, PIE and 

MNIST databases. Because the number of attributes in these reducts has a wide range, we 

divide the reducts into several groups according to the quantity of attributes in these reducts. 

Min and Max denote the minimal and the maximum amount of attributes, respectively. The 

second to the fifth columns show the average accuracy of classifiers trained by the reducts in 

the corresonding interval. The last column is the results acquired by the original database. 

CART and SVM are the two base classifiers. Note that, the symbol “--” means the value is 

non-exist, this is because the maximum attribute number in the reducts generated by MNIST 

database is 477. It can be concluded from Table 8 that: (1) For PIE and MNIST, with CART 

as the base classifier, the classification results using reducts are slightly poorer than that using 

original data. However, for FERET and ORL, the results are not satisfied. (2) When SVM is 

used as the base classifier, the classifiers trained by the reducts can reach a comparative 

performance than that trained with the original data. (3) For the three face dataset, the results 

in the interval [600-Max] are slightly better than that in the interval [Min-400]. 

Table 8  
The accuracies of classifiers trained by reducts.(Mean % ± Std %) 

Dataset 
Min-400 400-500 500-600 600-Max Original 

CART SVM CART SVM CART SVM CART SVM CART SVM 

FERET 
12.03 
± 2.1 

23.54 
± 1.9 

13.13 
± 1.6 

24.32 
± 1.0 

14.99 
± 1.1 

24.31 
± 0.7 

14.97 
± 1.7 

24.45 
± 0.9 

18.50 
± 1.5 

24.58 
± 1.5 

ORL 
42.17 
± 3.6 

77.10 
± 0.9 

41.97 
± 2.8 

75.60 
± 1.9 

43.75 
± 3.2 

77.56 
± 1.2 

43.27 
± 2.1 

78.42 
± 1.3 

52.75 
± 4.5 

77.05 
± 2.8 

PIE 
60.44 
± 1.3 

61.07 
± 1.9 

61.31 
± 1.7 

63.14 
± 1.4 

61.17 
± 1.8 

62.38 
± 1.0 

61.89 
± 1.4 

62.51 
± 0.9 

62.26 
± 1.4 

62.74 
± 2.4 

MNIST 
84.89 
± 1.1 

91.22 
± 2.3 

85.05 
± 0.8 

92.42 
± 1.9 

-- -- -- -- 
85.51 
± 2.8 

93.46 
± 1.5 



 

4.2 DRSSE with different diversity measures 

In DRSSE, we use CFD, DF and ENT to measure diversity among base classifiers. DRSSE 

with the three measurements are simply described as DRSSE_CFD, DRSSE_DF and 

DRSSE_ENT, respectively. Fig.4 (CART is used as the base classifier) and Fig.5 (SVM is 

used as the base classifier) show the performance of DRSSE with different diversity 

measurements on different datasets. Note that, the number 1 to 14 in the x-axis of the two 

figure denote the datasets air, australian, dermatology, german, heart, ionosphere, sonar, 

vowel, wdbc, wine, FERET, ORL, PIE and MNIST, respectively. From Fig.4 and Fig.5 we 

can observe the following: (1) There are differences in the performance of DRSSE with 

different measurements. (2) The performance of DRSSE_DF is relatively good, which 

achieves the best classification accuracy in 19 out of 28 cases. (3) For all these dataset, the 

accuracy of DRSSE_DF is superior to DRSSE_CFD. For DRSSE with CART, the maximum 

difference of classification accuracy for the two measures ranges from 0.29% (sonar) to 

2.76% (australian); for DRSSE with SVM, the accuracy difference of DRSSE_DF and 

DRSSE_CFD ranges from 0.37% (PIE) to 3.05% (FERET). (4) DRSSE_DF and 

DRSSE_ENT have merits and demerits on different datasets. However, on the whole, the 

performance of DRSSE_DF is slightly better than DRSSE_ENT. 
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Fig.4. The accuracies of DRSSE with different diversity measurements (base classifier is CART). 
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Fig.5. The accuracies of DRSSE with different diversity measurements (base classifier is SVM). 
 

4.3 The impact of the size of ensemble on the performance of DRSSE 

In the above experiments, for the UCI dataset, the number of classifiers in DRSSE is set to 

20, and the number of classifiers is set to 25 for the three face databases and MNIST. Here, 

we investigate the influence of the number of base classifiers on the performance of DRSSE. 

We investigate the classification accuracy of DRSSE with DF measurement when the size of 

ensemble is set to 5, 10, 15, 20, 25, and 30 respectively. Note that, for australian, because the 

total number of reducts is 28, so the maximum size of ensemble is set to 25. The experimental 

results are shown in Fig.6 and Fig.7. The left column in both figures shows the results of 

DRSSE with CART as the base classifier, and the right column represents the results of 

DRSSE with SVM as the base classifier. From Fig. 6 and Fig.7, the following conclusions can 

be summarized. 

 

 

 

 

 

 



 

 

(1) For all datasets, the performance of DRSSE with CART and SVM are influenced by the 

number of base classifiers. 

(2) In most case, as the number of base classifiers increases, the accuracy of ensemble system 

goes up at first, and reaches its culmination, then decreases or retains. However, the 

dataset vowel is an exception. The accuracy curves of vowel in Fig.6 (h) are continually 

rising when the number of classifiers is increasing. This is because the attribute amount in  



 

 

Fig.6. The classification accuracy of DRSSE versus the number of classifiers on different datasets. (a) 
air. (b) australian. (c) dermatology. (d) german. (e) heart. (f) ionosphere. (g) sonar. (h) vowel. (i) wdbc. 

(j) wine. 

 



 

each single vowel’s reduct is small, so we have to use more reducts to capture the original 

dataset’s information. 

(3) For the ten datasets from UCI, except for the dataset vowel and dermatology (DRSSE with 

SVM), DRSSE can obtain a well performance when the size of ensemble is 20. Therefore, 

in order to improve the efficiency of DRSSE, we set the ensemble size as 20 when deal 

with the UCI datasets. 

(4) For ORL dataset, DRSSE with CART can reach a better performance when the size of the 

ensemble system is 20. However, for other seven results shown in Fig.7, when the number 

of classifiers in the ensemble system is set to 25, the classification performance is much 

better. Therefore, it is appropriate to choose the size of the ensemble system as 25. 

 

Fig.7. The classification accuracy of DRSSE versus the number of classifiers on different datasets. (a) 
FERET. (b) ORL. (c) PIE. (d) MNIST. 

 

The average accuracy of DRSSE on all UCI datasets (without dataset australian) with the 

size variation of ensemble is shown in Fig.8. For australian, the maximum number of reducts 

is not come up to 30, so when we compute the average value, the dataset is not considered. 

The average performance of DRSSE on FERET, ORL, PIE and MNIST with the changed 

ensemble size is presented in Fig.9. 
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Fig.8. The average performance of DRSSE on the UCI datasets versus the number of classifiers. 
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Fig.9. The average performance of DRSSE on FERET, ORL, PIE and MNIST versus the number of 
classifiers. 

 
 
 
 



 

 
From Fig.8 and Fig.9, it is clear that as the ensemble size increases, the accuracy is 

increasing at first, then drops down or retains. Fig.8 denotes that when the ensemble size is 

small (eg. 5 and 10), DRSSE with CART has a better performance than DRSSE with SVM on 

the UCI datasets. In addition, the best results are acquired when the size of ensemble is 20. 

For the face datasets and MNIST, the number of the classifiers can be set to 25 according to 

the results shown in Fig.9. 

4.4 Comparison with other ensemble methods 

Adopted by UCI datasets, with CART as the base classifier, we first validate the 

effectiveness of both using the reduced searching space and AD assessment function. The 

experimental results are shown in Table 9. 

Table 9  

Comparison of proposed algorithm with random select method and SREMD. The best result for each 
dataset is in bold. 

Dataset RS SREMD DRSSE 

air 84.57 ± 4.4 87.16 ± 4.3 93.39 ± 3.6 

australian 82.41 ± 3.2 82.28 ± 1.9 86.46 ± 2.9 

dermatology 91.71 ± 3.4 91.37 ± 1.9 96.51 ± 1.7 

german 71.50 ± 3.4 71.83 ± 2.0 75.15 ± 2.3 

heart 75.74 ± 6.0 79.03 ± 3.9 84.07 ± 3.8 

ionosphere 90.14 ± 3.4 92.10 ± 2.7 93.89 ± 3.5 

sonar 73.90 ± 8.2 78.36 ± 5.2 84.01 ± 4.5 

vowel 70.40 ± 4.5 66.78 ± 3.3 77.50 ± 3.4 

wdbc 93.10 ± 2.3 94.90 ± 2.1 96.82 ± 1.0 

wine 91.18 ± 5.6 94.62 ± 4.6 97.81 ± 2.4 

Average 82.47 ± 4.4 83.84 ± 3.2 88.56 ± 2.9 

 

RS denotes the Random Select reducts from the original reducts pool that are used to train 

base classifiers. SREMD denotes the Select Reducts Ensemble based on attribute with 

Maximum Dependency degree. The ensemble size in RS and SREMD is also set to 20. The 

results shown in Table 9 imply the following two points. Firstly, both RS and SREMD select 

reducts randomly. The performance of selecting reducts from a reduced searching space is 

better than that choosing reducts from the original searching space. This can be attributed to 



 

the fact that SREMD deletes part of reducts from the original reducts pool based on the 

selected reduct. This procudure not only shrinks the reduct pool but also potentially increases 

the diversity between the next selecting and the selected reducts. In other words, the SREMD 

algorithm deletes reducts associated with the selected reducts and retains reducts that are 

different from the selected reducts. Therefore, the final selected reducts are different. 

Secondly, choosing reducts from a reduced searching space based on AD assessment function 

can receive a better performance. Classifiers trained by the selected reducts in DRSSE have a 

good accuracy and diversity with each other. 

Table 10  
Comparison of classification accuracies of different algorithms with CART. The best result for each 
dataset is in bold. (Mean % ± Std %) 

Dataset TCV ALL Bagging AdaBoost RS EROS DESCD DRSSE 

air 85.81 ± 6.2 87.29 ± 4.9 82.68 ± 6.6 88.83 ± 6.5 86.03 ± 5.9 89.14 ± 4.1 87.91 ± 3.5 93.39 ± 3.6 

australian 82.45 ± 4.6 84.45 ± 4.0 85.22 ± 4.5 84.93 ± 5.6 79.42 ± 4.1 85.11 ± 3.8 84.38 ± 5.9 86.46 ± 2.9 

dermatology 90.04 ± 6.8 92.86 ± 3.2 94.97 ± 3.5 90.50 ± 5.0 91.06 ± 6.7 95.86 ± 2.7 91.43 ± 2.8 96.51 ± 1.7 

german 69.30 ± 3.7 72.50 ± 1.5 73.00 ± 3.5 72.40 ± 3.3 71.40 ± 3.3 72.65 ± 3.6 73.14 ± 4.3 75.15 ± 2.3 

heart 74.44 ± 8.9 77.96 ± 2.4 82.22 ± 5.3 81.48 ± 8.1 79.60 ± 7.4 78.33 ± 6.8 83.00 ± 3.1 84.07 ± 3.8 

ionosphere 87.26 ± 6.9 91.29 ± 3.5 85.57 ± 6.4 88.57 ± 4.7 89.14 ± 7.0 92.86 ± 3.5 89.95 ± 4.2 93.89 ± 3.5 

sonar 70.74±11.5 74.15 ± 5.9 74.04 ± 8.5 78.85 ± 7.7 75.96 ± 9.4 77.07 ± 6.0 80.44 ± 5.6 84.01 ± 4.5 

vowel 62.40 ± 4.6 78.08 ± 4.5 72.73 ± 6.1 65.45 ± 3.4 64.24 ± 3.7 75.86 ± 4.1 79.02 ± 3.9 77.50 ± 3.4 

wdbc 90.50 ± 4.6 94.96 ± 2.1 94.72 ± 4.4 95.07 ± 3.9 95.07 ± 4.3 95.96 ± 1.8 94.20 ± 3.7 96.82 ± 1.0 

wine 86.94 ± 7.9 92.35 ± 6.1 88.76 ± 7.1 94.38 ± 3.7 89.89 ± 8.2 93.47 ± 5.9 95.35 ± 4.4      97.81 ± 2.4 

FERET 18.50 ± 1.5 33.91 ± 2.5 31.02 ± 2.2 34.10 ± 2.9 30.77 ± 3.2 33.30 ± 1.8 32.15 ± 3.9 34.50 ± 2.3 

ORL 52.75 ± 4.5 67.63 ± 5.3 69.38 ± 4.7 71.33 ± 4.3 68.91 ± 4.9 72.75 ± 5.3 74.68 ± 4.1 78.75 ± 3.9 

PIE 62.26 ± 1.4 86.01±1.9 87.32 ± 1.2 88.64 ± 1.7 86.99 ± 2.3 89.93 ± 3.2 87.26 ± 2.8 91.01 ± 2.8 

MNIST 85.51 ± 3.2 86.14 ± 2.8 85.47 ± 2.9 87.32 ± 3.3 84.28 ± 3.8 87.46 ± 4.6 86.59 ± 2.7 91.93 ± 3.2 

The comparison results among our proposed DRSSE method, some other classical 

ensemble learning methods and the rough set ensemble methods are shown in Table 10 and 

Table 11. The two tables give the classification accuracy comparisons with CART and SVM, 

respectively. The size of the ensemble system is set to 20 for UCI datasets and the size of the 

ensemble system is set to 25 for the other four datasets. The compared methods include the 

Ten-fold Cross Validation (TCV), integrating ALL the base classifiers (ALL), Bagging, 



 

AdaBoost, Random Subspace (RS), EROS proposed by Hu [27], and DES_CD proposed in 

[46].  

Table 11  
Comparison of classification accuracies of different algorithms with SVM. The best result for each 
dataset is in bold. (Mean % ± Std %) 

Dataset TCV ALL Bagging AdaBoost RS EROS DESCD DRSSE 

air 83.49 ± 4.3 86.23 ± 3.2 82.99 ± 4.5 87.64 ± 4.8 83.47 ± 3.6 90.51 ± 3.6 91.03 ± 4.2 95.71 ± 3.9 

australian 85.53 ± 3.9 85.90 ± 4.6 86.32 ± 3.2 85.81 ± 5.3 84.66 ± 3.7 86.26 ± 4.2 85.41 ± 3.8 87.59 ±4.1 

dermatology 88.96 ± 5.9 84.62 ± 3.7 90.12 ± 4.5 88.74 ± 5.4 91.43 ± 6.7 92.17 ± 6.3 90.23 ± 5.4 97.14 ± 6.1 

german 70.33 ± 3.2 70.05 ± 1.7 73.76 ± 3.6 72.54 ± 2.9 71.45 ± 3.4 73.00 ± 2.5 74.69 ± 3.9 76.15 ± 2.8 

heart 79.43 ± 4.8 80.99 ± 2.4 84.23 ± 4.9 84.36 ± 4.2 82.68 ± 3.6 82.14 ± 4.0 84.13 ± 2.9 87.04 ± 3.8 

ionosphere 90.11 ± 6.2 91.54 ± 3.8 90.46 ± 4.8 91.29 ± 6.7 90.24 ± 5.0 92.12 ± 4.8 90.41 ± 4.3 96.14 ± 5.3 

sonar 66.29 ±7.4 76.10 ± 5.3 76.43 ± 6.9 82.13 ± 7.3 79.41 ± 5.8 80.03 ± 6.0 85.24 ± 4.6 90.24 ± 6.7 

vowel 76.06 ± 3.5 78.61 ± 4.7 77.41 ± 4.1 74.34 ± 3.9 73.56 ± 4.2 77.62 ± 4.1 84.85 ± 3.7 81.13 ± 3.2 

wdbc 93.00 ± 3.1 94.06 ± 2.9 93.87 ± 4.3 96.96 ± 3.8 95.47 ± 3.7 95.76 ± 4.7 94.66 ± 3.7 98.23 ± 3.8 

wine 92.88 ± 4.9 95.77 ± 4.4 93.67 ± 3.5 95.28 ± 4.7 94.99 ± 3.2 96.19 ± 4.2 95.23 ± 5.0      98.97 ± 3.2 

FERET 24.58 ± 2.1 25.75 ± 1.6 32.74 ± 2.6 33.42 ± 2.4 32.64 ± 3.2 31.95 ± 2.3 37.62 ± 3.4 42.50 ± 1.9 

ORL 77.00 ± 4.5 79.33 ± 3.3 76.43 ± 4.1 77.02 ± 3.2 77.23 ± 4.9 80.21 ± 5.3 79.64 ± 3.8 82.25 ± 4.0 

PIE 80.69 ± 2.9 84.97 ± 3.0 83.14 ± 3.7 85.07 ± 1.7 84.11 ± 3.2 85.25 ± 3.3 84.13 ± 2.7 90.36 ± 2.4 

MNIST 93.46 ± 2.6 94.41 ± 1.3 93.27 ± 2.5 94.61 ± 3.3 93.61 ± 3.7 95.57 ± 3.5 93.21 ± 2.9 96.71 ± 1.9 

 

  The best result for each dataset is bolded. Both Table 10 and Table 11 demonstrate that the 

performance of our method is better than other methods on the same dataset in most of case. 

For vowel dataset, because each reduct contains only two attributes, so the ensemble 

performance by selecting part of reducts to train classifiers is poorer than DESCD which use 

all attributes to train classifiers. As presented in Table 10, compared with other algorithms 

(TCV, ALL, Bagging, AdaBoost, RS, EROS, DESCD), the maximum difference of accuracy 

is 28.75% (PIE), 11.12% (ORL), 10.71% (air), 12.05% (vowel), 13.26% (vowel), 6.94% 

(sonar), 5.48% (air), respectively. The corresponding minimum difference of classification 

accuracy is 4.01% (australian), -0.58% (vowel), 1.24% (australian), 0.4% (FERET), 1.75% 

(wdbc), 0.65% (dermatology), -1.52% (vowel), respectively. Note that, the minus sign denotes 

the performance of DRSSE is lower than the compared algorithm. From Table 10 and Table 



 

11, we can see that DRSSE with SVM have a better performance than DRSSE with CART. 

Fig.10. The average classification accuracy on all datasets (base classifier is CART). 

The average classification accuracies on all datasets with CART and SVM are plotted in 

Fig.10 and Fig.11, respectively. Both of the two figures show that DRSSE can obtain the best 

average performance. From Fig.10, we can see that DRSSE outperforms TCV, ALL, Bagging, 

AdaBoost, RS, EROS, DESCD algorithm by 11.64%, 4.44%, 5.34%, 4.28%, 6.36%, 3.00%, 

3.02%, respectively. As shown in Fig.11, the base classifier is SVM, compared with other 

algorithms, the maximum difference of average accuracy is 8.45% (DRSSE versus TCV), and 

the corresponding minimum difference is 3.55%. 

 



 

Fig.11. The average classification accuracy on all datasets (base classifier is SVM). 

5. Conclusions and future work 

In this paper, a new rough set based ensemble method is proposed. Instead of using all 

reducts to train base classifiers, we select diverse reducts from the reduct pool to train 

classifiers. First, a reduct is randomly selected from original reduct pool, and we narrow down 

the reduct searching space by deleting reducts containing attributes with the maximum 

dependency degree from the original reduct pool. Then, a new reduct is selected from the new 

searching space according to the AD assessment function. The AD function estimates both 

diversity between classifiers and accuracy of base classifiers. Finally, in each iteration, only 

one reduct is picked out, and our algorithm will not be terminated until the pre-defined size of 

ensemble is reached. Experimental results with a series of datasets demonstrate that DRSSE 

can lead to a better performance. 

In the future, the rough set ensemble will be investigated further. The traditional rough 

set based ensemble methods are limited to supervised learning. However, most practical 

problems involve unlabeled data. Therefore, it is worth to explore semi-supervised rough set 

to solve ensemble learning problem. 
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