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Abstract

Image segmentation and image restoration are two important topics in image processing with great achievements. In

this paper, we propose a new multiphase segmentation model by combining image restoration and image segmentation

models. Utilizing image restoration aspects, the proposed segmentation model can effectively and robustly tackle high

noisy images, blurry images, images with missing pixels, and vector-valued images. In particular, one of the most

important segmentation models, the piecewise constant Mumford-Shah model, can be extended easily in this way

to segment gray and vector-valued images corrupted for example by noise, blur or missing pixels after coupling a

new data fidelity term which comes from image restoration topics. It can be solved efficiently using the alternating

minimization algorithm, and we prove the convergence of this algorithm with three variables under mild condition.

Experiments on many synthetic and real-world images demonstrate that our method gives better segmentation results

in comparison to others state-of-the-art segmentation models especially for blurry images and images with missing

pixels values.
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1. Introduction

Image segmentation and image restoration are two important subjects in image processing. Image segmentation

consists in partitioning a given image into multiple segments to transfer the representation of the image into a more

meaningful one which is easier to analyze. It is typically used to locate objects and boundaries within an image. Image

restoration is the operation of estimating the desired clean image from its corrupted version. Corruption may come in

many forms, such as blur, noise, camera misfocus, or information lost. Obviously, image segmentation can be used as

preprocessing or postprocessing of image restoration. In other words, these two topics can influence each other.

Let Ω ⊂ R2 be a bounded, open, connected set, and f : Ω → R a given image. Without loss of generality, we

restrict the range of f to [0,1]. Let g : Ω→ R denote the desired clean image, then f = g + n f , when n f is the additive
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noise. Many image restoration models can be written in the form

E(g) = λΦ( f , g) + φ(g), (1)

where Φ( f , g) is the data fidelity term, φ(g) is the regularization term, and λ > 0 is a regularization parameter balancing

the trade-off between terms Φ( f , g) and φ(g). If set Φ( f , g) =
∫

Ω
( f − g)2dx and φ(g) =

∫
Ω
|∇g|dx (total variation term),

then model (1) goes to the ROF model proposed by Rudin, Osher and Fatemi in 1992 [35], i.e.,

E(g) = λ

∫
Ω

( f − g)2dx +

∫
Ω

|∇g|dx. (2)

One important advantage of model (2) is that it preserves the edge information of f very well, but also introduces the

staircase effect. To remove the staircase effect, many works are designed based on higher-order derivative terms, see

[5, 14, 28, 36, 42]. For example in [5], the tight-frame technic was used in φ(g) to obtain more details of the higher-

order derivative information from f . The relationship between the total variation and the tight-frame can be found in

[39]. As we know, the data fidelity term Φ( f , g) =
∫

Ω
( f − g)2dx is especially effective for Gaussian noise [35]. For

removing other types of noise than Gaussian noise, Φ( f , g) =
∫

Ω
(g− f log g)dx and Φ( f , g) =

∫
Ω
| f −g|dx are proposed

for Poisson noise and impulsive noise in [17] and [30], respectively. Please refer to [1, 11, 12, 17, 24, 30, 26, 37, 38]

and references therein for the details of the Poisson noise and impulsive noise removal. Note that the image restoration

model (1) can be extended to process blurry image after introducing a problem related linear operatorA in front of g

[34].

Let Γ ∈ Ω represent the boundary of the objects within an image, and Ωi be the parts of the segmented objects

fulfill Ω = ∪iΩi ∪ Γ. The Mumford-Shah model is one of the most important image segmentation models, and has

been studied extensively in the last twenty years. More precisely, in [29], Mumford and Shah proposed an energy

minimization problem which approximates the true solution by finding optimal piecewise smooth approximations.

The energy minimization problem was formulated as

E(g,Γ) =
λ

2

∫
Ω

( f − g)2dx +
µ

2

∫
Ω\Γ

|∇g|2dx + Length(Γ), (3)

where λ and µ are positive parameters, and g : Ω → R is continuous or even differentiable in Ω \ Γ but may be

discontinuous across Γ. Because model (3) is nonconvex, it is very challenging to find or approximate its minimizer,

see [8, 9, 21]. Many works [25, 41] concentrate on simplifying model (3) by restricting g to be piecewise constant
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function (g = ci in Ωi), i.e.,

E(g,Γ) =
λ

2

K∑
i=1

∫
Ωi

( f − ci)2dx + Length(Γ), (4)

where K is the number of phases. Using the coarea formula [20], model (4) can be rewritten as

E(ci, ui) = λ

K∑
i=1

∫
Ω

( f − ci)2uidx +

K∑
i=1

∫
Ω

|∇ui|dx,

s.t.
K∑

i=1

ui(x) = 1, ui(x) ∈ {0, 1},∀x ∈ Ω.

(5)

Moreover, model (5) with K = 2 is the Chan-Vese model [16], and with fixed ci is a special case of the Potts model

[33]. Due to the nonconvex property of (5), in [13], the exact convex version of (5) was proposed when K = 2 and ci

fixed. For K > 2, recently, several authors are focused on relaxing ui and solving the following model

E(ui, ci) = λ

K∑
i=1

∫
Ω

( f − ci)2uidx +

K∑
i=1

∫
Ω

|∇ui|dx,

s.t.
K∑

i=1

ui(x) = 1, ui(x) ≥ 0,∀x ∈ Ω.

(6)

Please refer to [2, 23, 27, 32, 43] and references therein for more details related with (6). One drawback of model (6)

is that it can not segment images corrupted by blur or information lost, which is one main problem to solve in this

paper.

In [31], a model of coupling image restoration and segmentation based on a statistical framework of generalized

linear models was proposed, but the analysis and algorithm therein are only focused on two-phase segmentation

problem. In our previous work [6], a two-stage segmentation method which provides a better understanding of the

link between image segmentation and image restoration was proposed. The method suggests that for segmentation,

it is reasonable and practicable to extract the different phases in f from using image restoration methods first and

thresholding followed. Moreover, in our recent work [7], we proved that the solution of the Chan-Vese model [16] for

certain λ can actually be given by thresholding the minimizer of the ROF model (2) using a proper threshold, which

clearly provides one kind of relationships between image segmentation and image restoration.

In this paper, start from extending the piecewise constant Mumford-Shah model (4) to manage blurry image, a

novel segmentation model by composing model (4) with a data fidelity term which comes from image restoration

topics is proposed. Since only a new fidelity term is added, and usually the fidelity term possesses good property

such as differentiable, the solution of the proposed model is not more involved comparing with solving model (4).

It can be solved efficiently using the alternating minimization (AM) algorithm [18] with the ADMM or primal-dual
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algorithms [4, 10, 22]. We prove that under mild condition, the AM algorithm converges for the proposed model.

The proposed model can segment blurry images easily but model (4) can not. Moreover, it can also deal with images

with information lost and vector-valued images for example color images. Due to the advantage of two data fidelity

terms, one from image restoration and the other from image segmentation, our model is much more robust and stable.

Experiments on many kinds of synthetic and real-world images demonstrate that our method gives better segmentation

results in comparison with other state-of-the-art segmentation methods especially for blurry images and images with

missing pixels values.

Contributions. The main contributions of this paper are summarized as follows.

1) Coupling the variational image segmentation models and the image restoration models, which provides a new

way for multiphase image segmentation.

2) Extend the piecewise constant Mumford-Shah model (4) by cooperating the image restoration achievements so

that the new constructed variation segmentation model can handle blurry case easily.

3) Thanks to the image restoration achievements, the new variation segmentation model has the potential to process

many different types of noises, for example Gaussian, Poisson, and impulsive noises.

4) The kinds of vector-valued image for example the color image and the observed image with information lost

are also covered in the proposed variational segmentation model.

5) The convergence of the AM algorithm with three variables to the proposed variational model is proved.

The rest of this paper is organized as follows. In Section 2, we propose our new segmentation model and extend

it so that it can deal with vector-valued images and images with some pixels values missing. In Section 3, the AM

algorithm to our model will be introduced. The convergence of it will be proved in Section 4. In Section 5, the

comparison of the proposed method on various synthetic and real-world images with the state-of-the-art multiphase

segmentation methods will be shown. Conclusions are given in Section 6.

2. The Proposed Variational Image Segmentation Model

We propose our image segmentation model by combining the piecewise constant Mumford-Shah model (5) with

the fidelity term Φ( f , g) which comes from the image restoration model (1). More precisely, our proposed segmenta-
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tion model aims to minimize the energy

E(ui, ci, g) = µΦ( f ,Ag) + λΨ(g, ui, ci) +

K∑
i=1

∫
Ω

|∇ui|dx,

s.t.
K∑

i=1

ui(x) = 1, ui(x) ∈ {0, 1},∀x ∈ Ω,

(7)

where g ∈ L2(Ω) andA is the problem related linear operator. For exampleA can be the identity operator for a noisy

observed image f or a blurring operator if there are noise and blur in f . The first term Φ( f ,Ag) is the data fidelity

term arising from the image restoration model (1). It controls g not far away from the given corrupted image f , in

other words, it aims to deblure and denoise according to the types of noises in f . Term Ψ(g, ui, ci) is also the data

fidelity term but comes from the image segmentation model, which aims to separate g into K specified segments. In

this paper, we restrict ourselves to

Ψ(ui, ci, g) =

K∑
i=1

∫
Ω

(g − ci)2uidx.

The last term in (7) is the regularization term which controls the length of the boundaries of the segmented parts ui.

The type of the used data fidelity term Φ( f ,Ag) changes according to different noise models, for example,

i. Gaussian noise: Φ( f ,Ag) =
∫

Ω
( f −Ag)2dx;

ii. Poisson noise (I-divergence): Φ( f ,Ag) =
∫

Ω

(
Ag − f log(Ag)

)
dx;

iii. Impulsive noise: Φ( f ,Ag) =
∫

Ω
| f −Ag|dx.

Compared with model (5), the model (7), in addition to the ability of segmenting blurry images, its two data fidelity

terms make it much more robust and stable to process the observed corrupted image f .

Obviously, for fixed g, model (7) is reduced to model (5). The following theorem 1 gives the uniqueness of g when

minimizingl (7) for fixed ci and ui.

Theorem 1. Assume Φ( f ,Ag) in (7) is convex and continuous, then there exists one and only one g which minimizes

energy (7) for fixed ci and ui.

Proof. See the Appendix.

In the following, we restrict ourselves to Φ( f ,Ag) =
∫

Ω
( f −Ag)2dx as one example to show how to extend model

(7) so that it can handle images with missing information and vector-valued images. Let Ω′ be the set containing the

pixels whose pixels values are missing. Then model (7) can be extended to segment images with missing information
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as

E(ui, ci, g) = µ

∫
Ω

( f −Ag)2ωdx + λ

K∑
i=1

∫
Ω

(g − ci)2ωuidx +

K∑
i=1

∫
Ω

|∇ui|dx, (8)

where

K∑
i=1

ui(x) = 1, ui(x) ∈ {0, 1}, ω(x) =


1, if x ∈ Ω \Ω′,

0, otherwise.
(9)

For the observed vector-valued image represented as f = ( f1, · · · , fN), let g = (g1, · · · , gN) and ci = (ci,1, · · · , ci,N),

model (7) can be extended to segment vector-valued images with missing pixels values as

E(ui, ci, g) = µ

N∑
j=1

∫
Ω

( f j −A jg j)2ωdx + λ

K∑
i=1

N∑
j=1

∫
Ω

(g j − ci, j)2ωuidx +

K∑
i=1

∫
Ω

|∇ui|dx, (10)

where ui and ω are defined in (9).

3. The AM Algorithm

We first transfer (7) by relaxing ui to the following version

E(ui, ci, g) = µΦ( f ,Ag) + λ

K∑
i=1

∫
Ω

(g − ci)2ωuidx +

K∑
i=1

∫
Ω

|∇ui|dx, (11)

s.t.
K∑

i=1

ui(x) = 1, ui(x) ≥ 0,∀x ∈ Ω. (12)

Using the AM algorithm, a partial minimizer (g, ci, ui) of (11) can be computed alternatively as follows:

i. Find g as minimizer of (11) for fixed ui and ci. Obviously, g is only contained in the first two terms of (11),

and the second term can be regarded as one kind of Tikhonov regularizations when solving g, see [40]. The

algorithm to find g depends on the choice of Φ( f ,Ag). For example when Φ( f ,Ag) =
∫

Ω
( f − Ag)2ωdx, since

it is differentiable, we have

g = (µATA + λ)−1(µAT f + λ

K∑
i=1

ciui
)
ω. (13)

For solving g according to the choice of Φ( f ,Ag) to Poisson noise or impulsive noise, we leave this problem in

our future work.

ii. Find ci as minimizer of (11) for fixed ui and g. Let c = (c1, · · · , cK), clearly, ci is just related with the second

term of (11), therefore

ci =

∫
Ω

gωuidx∫
Ω
ωuidx

. (14)
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iii. Find ui as minimizer of (11) for fixed g and ci. The discussion of this is given in the following.

Note that when g is fixed, the first term of model (11) is constant, hence the problem of finding ui is reduced

to minimize model (6) with ω. Therefore, there are many methods we can use, for example the ADMM method in

[4, 22, 23] which will be given explicitly in the following. Alternatively, one can apply the primal-dual algorithm

[10, 32] or the max-flow approach [43].

Let u( j) = (ui( j))K
i=1, s = (si)K

i=1 =
(
(g − ci)2ω

)K
i=1, then our problem can be transferred to be

min
v,u,d

λ〈v, s〉 + ‖d‖1 + ιS (u), s.t. ∇v = d, v = u, (15)

where ιS (·) is the indicator function defined as

ιS (y) :=


0, if y ∈ S ,

+∞, otherwise,

and S := {y ∈ RK |
∑K

i=1 yi = 1, y ≥ 0}. Then iterate the following steps until converge

vk+1 = argmin
v

{
λ〈v, s〉 + σ(‖bk

d + ∇v − dk‖2 + ‖bk
u + v − uk‖2)

}
,

dk+1 = argmin
d

{
‖d‖1 + σ‖bk

d + ∇vk+1 − d‖2
}
,

uk+1 = argmin
d

{
ιS (u) + σ‖bk

u + vk+1 − u‖2
}
,

bk+1
d = bk

d + ∇vk+1 − dk+1,

bk+1
u = bk

u + vk+1 − uk+1.

(16)

After u = (ui)K
i=1 is solved, each segment Ωi can be obtained by

Ωi =
{
x|ui(x) = max

{
u1(x), · · · , uK(x)

}
,∀x ∈ Ω

}
. (17)

In summary, the AM algorithm to solve model (11) is given in Algorithm 1.

4. Convergence Analysis

In this section, we discuss the convergence property of Algorithm 1. We first give the very general conclusion to

the AM algorithm for three variables. Let X ⊂ Rm1 ,Y ⊂ Rm2 and Z ⊂ Rm3 be closed sets, and the energy function
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Algorithm 1 The AM Algorithm to Model (11)
Input: Observed image f , number of phases K, c(0), and u(0).

1: while ‖c(k+1) − ck‖ > ε do
2: find g(k+1) as minimizer of (11) for fixed u(k), and c(k) using (13);
3: find c(k+1) as minimizer of (11) for fixed g(k+1) and u(k) using (14);
4: find u(k+1) as minimizer of (11) for fixed g(k+1) and c(k+1) using (16);
5: end while
6: return Ωi, i = 1, . . . ,K using (17)

E : X × Y × Z → R be continuous and bounded from below. To process the AM algorithm, we start with some initial

guess y(0), z(0), then one successively obtains the alternating sequence (between z, y and x) of conditional minimizers

z(0), y(0) → x(0) → z(1) → y(1) → x(1) → · · ·

from solving, for k = 0, 1, . . .,

x(k) ∈ argmin
x

E(x, y(k), z(k)),

z(k+1) ∈ argmin
z

E(x(k), y(k), z),

y(k+1) ∈ argmin
y

E(x(k), y, z(k+1)).

(18)

Theorem 2. (Monotonicity of Alternating Minimization). Let X ⊂ Rm1 ,Y ⊂ Rm2 and Z ⊂ Rm3 be closed sets, and

E : X × Y × Z → R be continuous and bounded from below. Then, for each k ≥ 0, the following relations are satisfied

E(x(k), y(k+1), z(k+1)) ≤ E(x(k−1), y(k), z(k)),

E(x(k), y(k), z(k+1)) ≤ E(x(k−1), y(k−1), z(k)),

E(x(k+1), y(k+1), z(k+1)) ≤ E(x(k), y(k), z(k)).

Hence, the sequence
{
E(x(k), y(k), z(k))k∈N

}
converges monotonically.

Proof. See the Appendix.

Theorem 3. Let X ⊂ Rm1 ,Y ⊂ Rm2 and Z ⊂ Rm3 be closed sets, and E : X × Y × Z → R be continuous and bounded

from below. Then, for any convergent subsequence (x(ki), y(ki), z(ki))i∈N of (x(k), y(k), z(k))k∈N generated from formula (18)

with

(x(ki), y(ki), z(ki)) −→ (x∗, y∗, z∗), as i→ ∞,
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the following relations are satisfied:

E(x∗, y∗, z∗) ≤ E(x, y∗, z∗) ∀x ∈ X,

E(x∗, y∗, z∗) ≤ E(x∗, y, z∗) ∀y ∈ Y,

E(x∗, y∗, z∗) ≤ E(x∗, y∗, z) ∀z ∈ Z.

(19)

(x∗, y∗, z∗) is called the the partial minimizer of E(·, ·, ·) if (19) is satisfied.

Proof. See the Appendix

Let O be the set of all the partial minimizers of model (11) defined in Theorem 3. The following theorem 4 gives

the convergence property of Algorithm 1.

Theorem 4. Assume the operatorA in model (11) is a continuous mapping and Φ( f ,Ag) is continuous and nonneg-

ative. As k → ∞, if (u(k), g(k), c(k)) → (u∗, g∗, c∗), then (u∗, g∗, c∗) ∈ O. If (u(k), g(k), c(k))k∈N does not converge, it must

contain a convergent subsequence and every convergent subsequence converges to a partial minimizer of model (11).

Proof. See the Appendix.

5. Experimental Results

We compare our segmentation model (11) with three state-of-the-art multiphase segmentation methods [6, 23, 43]

for different phases synthetic and real-world images corrupted by noise, blur and missing pixels. More precisely,

methods [43] and [23] minimize model (6) by using the max-flow approach and the ADMM algorithm, respectively.

The difference between methods [43] and [23] is that method [43] minimizes ui with fixed ci, while method [23]

minimizes ui and ci both. Method [6] is a two-stage segmentation method, which solves a convex variant of the

Mumford-Shah model (3) first and a thresholding technique followed. Moreover, method [6] is very effective in

segmenting general kind of images including blurry images. All the codes of methods [6, 23, 43] are provided by the

authors, and the parameters in them are chosen by trial and error to give the best results of the respective methods.

Note that all the methods [6, 23, 43] can only segment gray images. In order to compare the effectiveness of our

model (11) with model (6) in color images, we first extend model (6) using the strategy in (10) so that it can handle

color images, then method [23] will be adopted to solve the extended model (6). That means the comparison in color

images will be executed between our method and the extended method [23].

The initial codebook ci for methods [23, 43] are computed by the fuzzy C-means method [3] with 100 iteration

steps, and the thresholds chosen in the thresholding technique of method [6] is using the automatic strategy therein.
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The tolerance ε and the step size σ respectively in Algorithm 1 and (16) are fixed to be 10−4 and 2. The parameters λ

and µ in model (11) are chosen empirically.

For adding Gaussian noise to the given image f ∈ [0, 1], we apply the MATLAB command imnoise with zero

mean and different variances for different kinds of images. In particular, the variance used to add noise into the blurry

images is fixed to be 10−4. If there is no special explanation, to blur an image, the Gaussian kernel used is size

15 × 15 with standard deviation 15 and the motion kernel is 15 pixels with an angle of 90 degrees. We apply the

MATLAB command rand to remove some information from the corrupted images randomly, and set the percentage

of information lost to be 40% unless special explanation. The segmentation accuracy (SA) defined as

SA =
#correctly classified pixels

#all pixels
× 100,

which will be used to evaluate the accuracy of the involved methods in detail. All the results were tested on a MacBook

with 2.4 GHz processor and 4GB RAM.

5.1. Gray image segmentation

Example 1: two-phase synthetic images. To illustrate the ability of our method in high level noisy images and

images with information lost, we first test it in two two-phase synthetic images, i.e. one contains different shapes, and

the other is the 2D barcode image which represents data relating to the object it is attached and is the most frequently

used type to scan with smartphones, see Fig. 1. Fig. 1(A1)–(A4) give the images corrupted by Gaussian noise with

variance 0.2, and Fig. 1(A2) and (A4) give the images with part information removed randomly. The columns two

to four of Fig. 1 are the results of methods [43, 23, 6], respectively. The last column of Fig. 1 is the results of our

method. From the rows one and three of Fig. 1, the results of segmenting the given noisy images, we see that all the

methods can give very good results. However, after comparing the segmentation accuracy given in the braces under

each result, we get that our method gives the highest SA compared with others three methods. That means our model

(11) can really improve the segmentation accuracy compared with model (6). From the second and the fourth rows of

Fig. 1, the results of segmenting the given images with part information lost, we can easily see that only our method

gives good results both in visual and segmentation accuracy.

Example 2: multiphase synthetic images. Two multiphase synthetic images will be tested in this example, i.e.,

one is four phases image with different shapes inside, and the other is five phases image including stars with different

intensities. In Fig. 2(A1)–(A4), the variances used to add noise on the four phases and five phases images are 0.05 and

0.01, respectively. Moreover, Fig. 2(A2) and (A4) give the noisy images with 20% of all pixels randomly removed.

From the results in Fig. 2, we can get very similar conclusions as those obtained in example 1, i.e., all the methods
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(A1) (B1) [43] (99.50) (C1) [23] (99.64) (D1) [6] (99.48) (E1) Our (99.65)

(A2) (B2) [43] (64.23) (C2) [23] (98.13) (D2) [6] (97.15) (E2) Our (99.29)

(A3) (B3) [43] (97.91) (C3) [23] (98.37) (D3) [6] (98.08) (E3) Our (98.43)

(A4) (B4) [43] (68.27) (C4) [23] (74.28) (D4) [6] (86.11) (E4) Our (95.66)

Figure 1: Segmentation of two-phase synthetic images (128 × 128 and 195 × 195). (A1) and (A3): the given noisy images; (A2) and (A4): the
given noisy images with 40% information lost; Columns two to five: the results of methods [43, 23, 6] and our method, respectively. Numbers in
braces are the segmentation accuracy.

give very good results for noisy images but our method gives the highest segmentation accuracy which illustrates our

model (11) is superior compared with model (6); and only our method can give good results when the given images

with information lost.

To illustrate the effect of our method in segmenting blurry images, we first test our method in two synthetic

multiphase images used in Fig. 2 but with Gaussion blur and motion blur involved, see Fig. 3. Fig. 3(A3) is blurred

by using the gaussian kernel with size 10 × 10 and standard deviation 10. After comparing with our method with

methods [43, 23, 6] in Fig. 3, we see that only method [6] and our method can give good results. More precisely,

after comparing the segmentation accuracy of method [6] and our method, we can see that our method gives much

higher SA which means our method gives better results than method [6]. Methods [43, 23] are not able to segment the

11



(A1) (B1) [43] (99.64) (C1) [23] (99.63) (D1) [6] (97.96) (E1) Our (99.65)

(A2) (B2) [43] (75.41) (C2) [23] (86.89) (D2) [6] (95.88) (E2) Our (99.48)

(A3) (B3) [43] (97.58) (C3) [23] (98.63) (D3) [6] (97.83) (E3) Our (98.72)

(A4) (B4) [43] (85.61) (C4) [23] (84.17) (D4) [6] (86.11) (E4) Our (97.45)

Figure 2: Segmentation of fourphase and fivephase synthetic images (256 × 256 and 91 × 91). (A1) and (A3): the given noisy images; (A2) and
(A4): the given noisy images with 20% information lost; Columns two to five: the results of methods [43, 23, 6] and our method, respectively.
Numbers in braces are the segmentation accuracy.

blurry images correctly. More precisely, for the results of methods [43, 23] in Fig. 3(A1) and (A2), the pixels around

the boundaries are segmented uncorrectly; for their results in Fig. 3(A3) and (A4), even one star located in the right

bottom corner is missed for both methods [43] and [23].

Example 3: real-world images. Test our method in two real-world images, i.e., camera man and MRI (magnetic

resonance imaging) brain image which comes from medical imaging subject, see Fig. 4. We first test our method

in noisy images and images with information lost. In Fig. 4, the variance used for adding noise is 0.01, and the

percentage of information lost is 20%. The conclusions we get are very close to those obtained when we test the

methods in synthetic images in examples 1 and 2. From the rows one and three of Fig. 4, we see that all the methods

give very good results in segmenting the two original real-world images. But for the images with information lost
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(A1) (B1) [43] (86.05) (C1) [23] (86.31) (D1) [6] (95.61) (E1) Our (99.44)

(A2) (B2) [43] (90.42) (C2) [23] (90.44) (D2) [6] (97.24) (E2) Our (99.92)

(A3) (B3) [43] (72.91) (C3) [23] (72.66) (D3) [6] (92.66) (E3) Our (96.38)

(A4) (B4) [43] (71.05) (C4) [23] (71.25) (D4) [6] (92.53) (E4) Our (96.96)

Figure 3: Segmentation of fourphase and fivephase synthetic blurry images (256×256 and 91×91). (A1) and (A3): the given images with Gaussion
blur; (A2) and (A4): the given images with motion blur; Columns two to five: the results of methods [43, 23, 6] and our method, respectively.
Numbers in braces are the segmentation accuracy.

especially for the image in Fig. 4(A4), the results of methods [43, 23] are worse than the results of methods [6] and

ours, see Fig. 4(B4), (C4), (D4), and (E4). Moreover, for the results of methods [6] and ours, we see that our result

gives much more details for the white matter, see Fig. 4(D4) and (E4).

The ability of our method in segmenting blurry images is given in Fig. 5. After comparing the results in Fig. 5, we

can see that method [6] and our method give very similar good results, on the contrary, the results of methods [43, 23]

are worse.

5.2. Color image segmentation

Example 4: two-phase rose image. Fig. 6(A1)–(A4) give the original rose image, and the original image corrupted
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(A1) (B1) [43] (C1) [23] (D1) [6] (E1) Our

(A2) (B2) [43] (C2) [23] (D2) [6] (E2) Our

(A3) (B3) [43] (C3) [23] (D3) [6] (E3) Our

(A4) (B4) [43] (C4) [23] (D4) [6] (E4) Our

Figure 4: Segmentation of real-world images: camera man and MRI brain (256 × 256 and 319 × 256). (A1) and (A3): the given images; (A2) and
(A4): the given noisy images with 20% information lost; Columns two to five: the results of methods [43, 23, 6] and our method, respectively.

by part information removed randomly, Gaussian blur and motion blur, respectively. The columns two and three in

Fig. 6 give the results of the extended method [23] and our method, respectively. After the comparison, we see that

both of the two methods can give good results for the original image, see the first row of Fig. 6; from the second

row of Fig. 6, we see that the boundary of the result of the extended method [23] is coarse compared with our result;

from rows three and four of Fig. 6, we can see that the boundaries of the results of the extended method [23] are over

smoothed compared with our results. Hence, we have that our model can get better results in segmenting blurry color

images, while the extended method [23] can not. Moreover, from the results of our method, we can see that the results

of our method for the corrupted images are as good as the result of our method for the original image, see the third
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(A1) (B1) [43] (C1) [23] (D1) [6] (E1) Our

(A2) (B2) [43] (C2) [23] (D2) [6] (E2) Our

(A3) (B3) [43] (C3) [23] (D3) [6] (E3) Our

(A4) (B4) [43] (C4) [23] (D4) [6] (E4) Our

Figure 5: Segmentation of real-world blurry images: camera man and MRI brain (256 × 256 and 319 × 256). (A1) and (A3): the given images
with Gaussion blur; (A2) and (A4): the given images with motion blur; Columns two to five: the results of methods [43, 23, 6] and our method,
respectively.

column of Fig. 6. This really demonstrates the ability of our method in segmenting images with information lost or

blur.

Example 5: multiphase images. Finally, in order to demonstrate the ability of our method in segmenting color

images with information lost and blur much more clearly, we test our method in two more multiphase color images,

i.e. three phases crown image and four phases flowers image, see Fig. 7 and Fig. 8, respectively. Fig. 7(A1) (Fig.

8(A1)) is the original crown (flowers) image, and Fig. 7(A2)–(A4) (Fig. 8(A2)–(A4)) are the images corrupted by

part information removed randomly, Gaussian blur and motion blur, respectively. Obviously, the extended method

15



(A1) (A2) (A3) (A4)

(B1) Extended [23] (B2) Extended [23] (B3) Extended [23] (B4) Extended [23]

(C1) Our (C2) Our (C3) Our (C4) Our

Figure 6: Segmentation of rose color image (303 × 250 × 3). Row one: the given image, and the given images corrupted by 40% information lost,
Gaussian blur, and motion blur, respectively. Rows two to three: the results of the extended method [23] and our method, respectively.

[23] fails for segmenting the images with information lost, see Fig. 7(B2) and Fig. 8(B2). Moreover, from Fig. 7(C2)

and (D2) and Fig. 8(C2) and (D2), we can see that the extended method [23] gives over smoothed results for blurry

color images. On the contrary, from the third column of Fig. 7 and Fig. 8, the results of our method, we see that all

the results of our method are very good. Moreover, the results of our method for the corrupted images are as good as

the results of our method for the original crown and flowers images.

6. Conclusions

In this paper, we proposed a new multiphase segmentation model by combining the image restoration approaches

with the variational image segmentation model. Utilizing image restoration aspects, the proposed segmentation model

is very effective and robust to tackle noisy images, blurry images, and images with missing pixels. In particular, the
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(A1) (B1) Extended [23] (C1) Our

(A2) (B2) Extended [23] (C2) Our

(A3) (B3) Extended [23] (C3) Our

(A4) (B4) Extended [23] (C4) Our

Figure 7: Segmentation of crown color image (225 × 300 × 3). Column one: the given image, and the given images corrupted by 40% information
lost, Gaussian blur, and motion blur, respectively. Columns two to three: the results of the extended method [23] and our method, respectively.

piecewise constant Mumford-Shah model was extended using our strategy so that it can process blurry images. More-

over, our model can also be extended to process vector-valued images for example the color images. It can be solved

efficiently using the AM algorithm, and we prove its convergence property under mild condition. Experiments on

many kinds of synthetic and real-world images demonstrate that our method gives better segmentation results in com-

parison with others state-of-the-art segmentation methods especially in blurry images and images with missing pixels
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(A1) (B1) Extended [23] (C1) Our

(A2) (B2) Extended [23] (C2) Our

(A3) (B3) Extended [23] (C3) Our

(A4) (B4) Extended [23] (C4) Our

Figure 8: Segmentation of flowers color image (188× 250× 3). Column one: the given image, and the given images corrupted by 40% information
lost, Gaussian blur, and motion blur, respectively. Columns two to three: the results of the extended method [23] and our method, respectively.

values. In our future work, we will test our model in images corrupted by other types of noise, for example the Poisson

noise and the impulsive noise, etc.
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Appendix

Proof of Theorem 1

Proof. Fix ci = c∗i and ui = u∗i . Note that L2(Ω) is a reflective Banach space, and E(g, c∗i , u
∗
i ) in (7) is convex and

lower semicontinuous. Using Proposition 1.2 in [19], for the existence of g, we just need to prove that E(g, c∗i , u
∗
i ) is

coercive over L2(Ω). The coercive of E(g, c∗i , u
∗
i ) can be given by

‖g‖2 = ‖

K∑
i=1

(g − ci)ui +

K∑
i=1

ciui‖2

≤ ‖

K∑
i=1

|g − ci|u
1
2
i ‖2 + ‖

K∑
i=1

ciui‖2

≤
√

K

√√√ K∑
i=1

∫
Ω

(g − ci)2uidx + ‖

K∑
i=1

ciui‖2

≤

√
K
√
λ

√
E(g, c∗i , u

∗
i ) + ‖

K∑
i=1

ciui‖2.

Moreover, since the middle term of energy (7) is quadratic with respect to g, hence energy (7) is strictly convex,

therefore it has unique minimizer g for fixed ci and ui.

Proof of Theorem 2

Proof. From (18), it can be verified easily that

E(x(k+1), y(k+1), z(k+1)) ≤ E(x(k), y(k+1), z(k+1))

≤ E(x(k), y(k), z(k+1))

≤ E(x(k), y(k), z(k))

≤ E(x(k−1), y(k), z(k))

≤ E(x(k−1), y(k−1), z(k)).

Hence, since E(·, ·, ·) is bounded from below, the sequence
{
E(x(k), y(k), z(k))

}
k∈N converges monotonically.

6.1. Proof of Theorem 3

Proof. Using (18) and the idea of [15, Theorem 5.5], for each i

E(x(ki), y(ki), z(ki)) ≤ E(x, y(ki), z(ki)) ∀x ∈ X.
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By the continuity of E(·, ·, ·), this gives, as i→ ∞,

E(x∗, y∗, z∗) ≤ E(x, y∗, z∗) ∀x ∈ X.

On the other hand, for each i, note that ki−1 ≤ ki − 1. From Theorem 2, we have for ∀y ∈ Y ,

E(x(ki), y(ki), z(ki)) ≤ E(x(ki−1), y(ki), z(ki))

≤ E(x(ki−1), y(ki−1+1), z(ki−1+1))

≤ E(x(ki−1), y, z(ki−1+1)),

and ∀z ∈ Z,

E(x(ki), y(ki), z(ki)) ≤ E(x(ki−1), y(ki), z(ki))

≤ E(x(ki−1), y(ki−1), z(ki))

≤ E(x(ki−1), y(ki−1), z(ki−1+1))

≤ E(x(ki−1), y(ki−1), z).

Coupled with the continuity of E(·, ·, ·), as i→ ∞, we have,

E(x∗, y∗, z∗) ≤ E(x∗, y, z∗) and E(x∗, y∗, z∗) ≤ E(x∗, y∗, z)

for ∀y ∈ Y and ∀z ∈ Z respectively.

Proof of Theorem 4

Proof. For model (11), because all of its three terms are continuous and nonnegative, we have E(·, ·, ·) is continuous

and nonnegative. If (u(k), g(k), c(k)) → (u∗, g∗, c∗), as k → ∞, using Theorem 3, we have (u∗, g∗, c∗) ∈ O. Obviously,

the whole components of u(k) are in [0, 1], hence u(k) is bounded. From (14), we get c(k) is bounded since it is just the

convex combination of g. From (13), we have

‖g‖2 ≤ ‖(µATA + λI)−1‖2‖
(
µAT f + λ

K∑
i=1

ciui
)
ω‖2

≤
(
µ‖AT ‖2‖ f ‖2 + λ

K∑
i=1

ci‖ui‖2
)
‖ω‖2/λ,
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hence g(k) is also bounded. Therefore (u(k), g(k), c(k))k∈N must contain convergent subsequence. Using Theorem 3, we

can get that any of these subsequences converges to a partial minimizer of model (11).
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