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Abstract

The problem of one-against-all support vector machines (SVMs) for multil-
abel classification is that a data sample may be classified into a multilabel
class that is not defined or it may not be classified into any class. To solve
this problem, in this paper we propose fuzzy SVMs (FSVMs) for multilabel
classification, in which for each multilabel class, a region with the associated
membership function is defined and a data point is classified into a multilabel
class whose membership function is the largest. By computer experiments,
we show that the accuracy is improved by the FSVM over the conventional
one-against-all SVM.

Keywords: Multilabel Classification, pattern classification, support vector
machines, training

1. Introduction

In pattern classification, usually a data sample is classified into a single
class. But in real world applications there may be cases where a sample
belongs to more than one class. For instance, for classification of facial
expression, a person may express happiness and relaxation at the same time.
Classification of this type is called multilabel classification in contrast to
single-label classification.

Extensive work has been done to handle multilabel classification [1, 2].
Multilabel classification methods are classified into three categories: algo-
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rithm adaptation methods, problem transformation methods, and ensemble
methods.

In algorithm adaptation methods, conventional classification methods
such as support vector machines, decision trees, and boosting are adapted to
multilabel classification [3, 4, 5].

Problem transformation methods convert multilabel classification into
single-label classification [6, 1]. One of the widely used methods converts
multilabel classification into single-label classification defining a new class
to each multilabel. This method is called a label power-set method. The
converted classification problem is usually solved by one-against-one classifi-
cation. One of the problems with this method is that the number of classes
may be increased greatly if many multilabels are used. Another method uses
one-against-all classification. In determining a decision function that sepa-
rates class i from the others, we place the data with multilabels that include
the class i label on the positive side of the decision function and place the
remaining data on the negative side. In classification, a data sample is clas-
sified into a single-label or multilabel class associated with positive decision
functions. This method is sometimes called a binary relevance method.

In ensemble methods, each classifier in ensemble is based on either prob-
lem transformation or algorithm adaptation methods [7, 8].

By the binary relevance method, the number of classes does not increase
but a data sample is unclassifiable if there is no positive decision function,
and a data sample may be classified into a multilabel that is not included
in the multilabels contained in the training set. We can implement the bi-
nary relevance method using any classifier, but because SVMs realize high
generalization ability for a wide range of applications, SVMs are often used
for implementing the binary relevance method. In [6, 9], the unclassifiable
region is resolved by classifying a sample to the class associated with the
maximum decision function value. This is the heuristics used in single-label
classification.

To improve the generalization ability of one-against-all SVMs, in [9], one-
against-all SVMs are extended to enforce the slack variables to be zero.

There are several approaches to handle uncertainty in classification such
as belief function theory (or Dempster-Shafer theory) [10, 11] and fuzzy logic.
In fuzzy logic, there has been much work in developing trainable fuzzy clas-
sifiers, in which fuzzy rules are extracted from training data [12]. Each
class region is defined by fuzzy rules with membership functions. According
to the shape of membership functions, fuzzy regions defined by the mem-
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bership functions can be classified into hyperboxes [13, 14], hyper-ellipsoids
[15, 16, 17], and hyper-polyhedrons [18, 19, 20, 21].

In fuzzy SVMs for single-label classification [19, 20, 21], the decision func-
tions determined by SVMs are used to generate membership functions with
hyper-polyhedral regions. Using the membership functions, the existence
of unclassifiable regions and multilabel regions caused by multiclass SVMs
is resolved. It is proved that the classification result by the fuzzy SVM is
equivalent to the above heuristics [22].

In [23], based on the membership function discussed in [20, 21], unclassifi-
able regions obtained by the one-against-one SVM for multilabel classification
are resolved. However, the undefined multilabel classes are not resolved.

In this paper, we propose fuzzy SVMs (FSVMs) for multilabel classifica-
tion that resolve unclassifiable regions and undefined multilabel classes. For
each single-label or multilabel class that is defined in the training data set, we
define a fuzzy region using the decision functions. The degree of membership
of a data sample to the fuzzy region is determined by the decision hyper-
plane that is nearest to the data sample. The data sample is classified into
the single-label or multilabel class with the highest degree of membership.

This classification strategy is simplified for an unclassifiable region. If no
decision function is positive for a data sample, it is classified into a class with
the maximum degree of membership. This is the same as the fuzzy SVM for
single-class classification. This explains the validity of the heuristics used in
[6, 9] from the standpoint of fuzzy membership functions.

We demonstrate the effectiveness of the proposed fuzzy SVMs using sev-
eral benchmark data sets.

In Section 2, we overview conventional two-class SVMs. Then in Section
3, we explain the conventional one-against-all and one-against-one SVMs for
multilabel classification, and in Section 4 we propose the fuzzy SVM. In
Section 5, we compare the fuzzy SVM with the conventional one-against-all
and one-against-one SVMs using several benchmark data sets.

2. Support Vector Machines

In this section, according to [24], we briefly summarize the two-class L1
SVM, which is widely used among several SVM variants.

In the SVM, nonlinear separation is realized by using the nonlinear vec-
tor function ϕ(x) that maps the m-dimensional input vector x into the l-
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dimensional feature space. In the feature space, we determine the decision
function that separates Class 1 data from Class 2 data:

D(x) = w⊤ϕ(x) + b, (1)

where w is the l-dimensional vector and b is the bias term. Then the L1
SVM is formulated in the primal form as follows:

minimize Q(w, b, ξ) =
1

2
w⊤w + C

M∑
i=1

ξi (2)

subject to yi D(xi) ≥ 1− ξi for i = 1, . . . ,M, (3)

where C is the margin parameter that controls the trade-off between the
training error and the generalization ability, xi areM m-dimensional training
inputs and belong to Class 1 or 2 and the associated labels are yi = 1 for
Class 1 and −1 for Class 2, and ξi (≥ 0) are the slack variables for xi.

Because in some cases the dimension of the feature space is infinite, usu-
ally we solve the following dual form, instead of solving (2) and (3):

maximize Q(α) =
M∑
i=1

αi −
1

2

M∑
i,j=1

αiαj yi yjK(xi,xj) (4)

subject to
M∑
i=1

yi αi = 0, 0 ≤ αi ≤ C for i = 1, ...,M, (5)

where αi are Lagrange multipliers associated with xi andK(x,x′) = ϕ⊤(x)ϕ(x′)
is a kernel function. Using a kernel function, we can avoid treating the feature
space directly.

Among several kernels, polynomial kernels and radial basis function (RBF)
kernels are often used for pattern classification, but because in most cases
RBF kernels perform better [24], in the following study we use RBF kernels:

K(x,x′) = exp(−γ||x− x′||2/m), (6)

where m is the number of inputs for normalization and γ is a spread of a
radius.
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3. Multilabel Classification

First we explain multilabel classification using an example [1] shown in
Table 1. In the table, for example, Sample 1 belongs to Classes 1 and 4.

Multilabel classification can be converted into single-label classification.
One way is to define a new class label for the multilabel for each data sam-
ple. This method is called a label power-set method. For Sample 1, we define
a new class label 1&4, for Sample 3, 1&3, and for Sample 4, 2&4. Table 2
shows the resulting data set, which is converted to a single-label classification
problem. The converted classification problem can be classified by any clas-
sifier, but in the following we consider classifying it by the one-against-one
(OAO) SVM and thus we call this method OAO.

Another approach is to adopt the one-against-all (OAA) strategy: we
train the binary classifier for class i so that the class i training samples are
separated from the remaining samples. In classification, x is classified into a
multilabel class [1]

Lc = {k |Dk(x) > 0 for k = 1, . . . , n}, (7)

where n is the number of classes. This method is called a binary relevance
method, but in the following we call it OAA. This is an extension of single-
label one-against-all classification. By this formulation, however, x may not
be classified into any class when all the decision functions are negative or
may be classified into a multilabel class that is not defined in the training
set.

Consider a two-class problem shown in Fig. 1. In the figure, the filled
circle, the filled square, and the filled ellipsoid belong to Classes 1, 2, and 1
& 2, respectively. Then the decision functions D1(x) and D2(x) are obtained

Table 1: Example of a multilabel data set

Sample Class
1 2 3 4

1 1 0 0 1
2 0 1 0 0
3 1 0 1 0
4 0 1 0 1
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0 x1

x2

Class 1 

Class 1&2

Class 2 

D1(x) = 0 
D2(x) = 0

Figure 1: An unclassifiable region by one-against-all classification

as in the figure. According to (7), the data samples that satisfy D1(x) > 0
and D2(x) > 0 are classified into Class 1&2, and those that satisfy D1(x) > 0
and D2(x) < 0 or D1(x) < 0 and D2(x) > 0 are classified into Class 1 or
Class 2. But those that satisfy D1(x) < 0 and D2(x) < 0 (the shaded region
in the figure) are not classified into any class.

Reconsider the four-class problem shown in Table 1. Assuming that the
dimension of the input variable is two and that each sample is placed as in
Fig. 2, the obtained separating lines are as shown in the figure. According
to (7), the regions separated by the lines are labeled as shown in the figure.
Because D1(x) and D2(x) are the same, there is no unclassifiable region.

Table 2: Conversion to single-label classification by defining new classes

Sample Class
1&4 2 1&3 2&4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
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0 x1

x2

3

1

Class 1&3

Class 2

Class 1&4
Class 2&4

Class 1

D2(x) = 0 
D1(x) = 0

D4(x) = 0

D3(x) = 0

Class 2&3

Class 
1,3&4

Figure 2: Undefined multilabel regions by one-against-all classification

Notice that single-label Classes 3 and 4 do not exit and multilabel classes
1,3&4 and 2&3 are generated according to (7) although they are not included
in the training set.

4. Fuzzy Support Vector Machines

We now discuss how to resolve unclassifiable regions and undefined mul-
tilabel regions. Resolution of undefined multilabel regions is based on the
assumption that all the multilabels for a given classification problem appear
in the targets of the training set. If this assumption is violated, the correct
prediction of multilabels that do not appear in the targets of the training set
may be changed to one of the existing multilabels.

For an n class problem with classes 1 to n, we define new classes from
class n+1 to class o for the distinct multilabels in the targets of the training
data set, where o − n is the number of newly defined classes. We call these
classes multilabel classes and classes 1 to n, single-label classes. Multilabel
class k consists of single-label classes k1 to ke, where Lke = {k1, . . . , ke} ⊆
Ln = {1, . . . , n}.

We assume that the optimal separating hyperplane Di(x) = 0 for class
i (i = 1, . . . , n) separates class i training samples from the remaining class

7



samples. Then, the convex region Rk

Rk = {x |Di(x) > 0 for i ∈ Lke , Di(x) < 0 for i ∈ Ln − Lke}
for k = 1, . . . , o (8)

is the region for class k and includes all the class k training samples, where
if class k is a single-label class, i.e., for 1 ≤ k ≤ n, k1 = ke = k. We denote
the region associated with multilabel Lc given by (7), Rc.

Regions Rk (k = 1, . . . , o) do not overlap. Therefore, if x is in Rk, it
is classified into class k. But in general, the union of the regions does not
occupy the whole feature space. In Fig. 1, R1 and R2 are given by D1(x) >
0, D2(x) < 0 andD1(x) < 0, D2(x) > 0, respectively. AndR3 for Class 1&2 is
D1(x) > 0, D2(x) > 0. Therefore, the region given by D1(x) < 0, D2(x) < 0
does not belong to any class.

Consider classifying x into one of o classes. To do this we define a mem-
bership function of x to Region Rk (k = 1, . . . , o). We define the membership
of x to the decision function Di(x) for i ∈ Lke by

mki(x) = min(1, Di(x)) for i ∈ Lke . (9)

If Di(x) ≥ 1, mki(x) = 1, namely, the membership function saturates to 1
but we allow negative membership if Di(x) < 0.

Likewise, we define the membership of x to the decision function Di(x)
for i ∈ Ln − Lke by

mki(x) = min(1,−Di(x)) for i ∈ Ln − Lke . (10)

If Di(x) < 0, x is on the negative side of Di(x) = 0, and if Di(x) < −1,
mki(x) = 1. We also allow negative degree of membership if Di(x) > 0,
namely, x is on the positive side of the hyperplane.

We consider the membership of x to Rk as the minimum of mki(x) as
follows:

mk(x) = min
i=1,...,o

mki(x). (11)

The above membership function means that the degree of membership of x
to Rk is measured by the nearest hyperplane from x among n separating
hyperplanes. If the value is positive, x is in Rk and if negative, it is outside
of Rk. Thus, if mk(x) > 0, mj(x) < 0 (j ̸= k, j = 1, . . . , o). Therefore, we
classify x into class k.
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If all the membership functions are negative, namely, x is outside of any
Rk (k = 1, . . . , o), we classify x into the class with the maximum membership
value:

arg max
i=1,...,o

mi(x). (12)

This means that x is classified into the class with the nearest Rk.
Classification by (11) and (12) is more complicated than classification by

(7). Therefore, in the following we consider improving classification by (11)
and (12) using (7).

We consider the following three cases:

Case 1: Lc = Lk for k ∈ {1, . . . , o}.
Sample x is in Rk. Thus we classify x into class k.

Case 2: Lc ̸= Lk for k = 1, . . . , o.
Because Lc does not match any multilabel in the training data set, Lc is

an undefined multilabel. Thus, we need to find Rk nearest to x. To search
for such Rk, we impose that Lk ∩ Lc ̸= ∅, namely, Rk and Rc overlap. In
addition, we allow a single-label class k as a candidate if k ∈ Lc and no
multilabel including k exists in the target labels in the training data set.
Then the candidate class set Fc is defined by

Fc = {k | k ∈ {1, . . . , n} for k /∈ Lj, j = n+ 1, . . . , o

or Lk ∩ Lc ̸= ∅ for k = n+ 1, . . . , o}. (13)

Then (12) is reduced to

argmax
k∈Fc

mk(x). (14)

By (14), x is classified into the single-label or multilabel class whose associ-
ated region is nearest to x.

Now we consider calculating mk(x). Because Dj(x) > 0 for j ∈ Lk ∩ Lc,
we need not consider them. For j ∈ Lc−Lk, Dk(x) > 0. Because x is outside
of Rk,

mkj(x) = −Dk(x). (15)

For j ∈ Lk − Lc, x is outside of Rc. Thus,

mkj(x) = Dk(x). (16)
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Thus, the calculation of mk(x) is simplified as follows:

mk(x) = min
j∈Lk

⊕
Lc

mkj(x), (17)

where
⊕

is the exclusive-or operator.

Case 3: Lc = ∅.
Sample x is in the unclassifiable region. Thus, we can classify x using

(12). In the following we consider simplifying (12). The unclassifiable region
is defined by Di(x) < 0 for i = 1, . . . , n and each separating hyperplane
Di(x) = 0 separates the unclassifiable region from the corresponding adjacent
region. Now if we delete the hyperplane Di(x) = 0, the two regions are
combined into one. Therefore, the adjacent region is expressed by Di(x) > 0,
Dj(x) < 0 for j ̸= i, j = 1, . . . , n, namely, the adjacent region is Ri. This
is the same situation with that for single-label one-against-all classification.
Therefore, x is classified into class

argmax
i∈Ln

Di(x). (18)

The above classification rule is the same as that discussed in [6, 9]. Thus,
our method explains the validity of the heuristics from the standpoint of
fuzzy logic.

Now by the fuzzy SVM, the filled-circle sample in the undefined region
shown in Fig. 3, is classified into Class 1, which is nearer, and the unclassi-
fiable region is resolved and the dotted line shows the class boundary.

Consider the filled-circle sample in the undefined multilabel class {1, 3, 4}
shown in Fig. 4. The candidate multilabel classes are 1, 1&3, 1&4, and 2&4.
Calculating the membership functions, we find that the sample is nearest to
the region for Class 1&3. Thus, it is classified into the multilabel class 1&3.
The dotted lines in the figure are decision boundaries.

5. Computer Experiments

We evaluated the proposed FSVM using the 12 benchmark data sets
downloaded from [25, 26]. They are from biology, multimedia, and text
categorization and are widely used for evaluating multilabel classification
methods. Eleven of the data sets were extensively used in [2] to compare
12 multilabel classification methods: problem transformation methods and
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Class 1 

Class 1&2

Class 2 

D1(x) = 0 
D2(x) = 0

Figure 3: Resolving an unclassifiable region by one-against-all classification
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D4(x) = 0

D3(x) = 0

Figure 4: Resolving undefined multilabel regions by one-against-all classification
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ensemble methods based on SVMs and decision trees. For comparison with
the FSVM, we used the one-against-all SVM and the one-against-one SVM.
We also compare performance of the FSVM with the best performance among
12 methods shown in [2]

The accuracy is one of the most important measures for single-label classi-
fication, and is also very important for multilabel classification. The accuracy
A is defined by

A =
1

M

M∑
i=1

|Pi ∩ Ti|
|Pi ∪ Ti|

, (19)

where Pi is the set of predicted labels, Ti is the set of target labels, and M
is the number of training data.

But because multilabel classification is usually very difficult to classify
and thus the accuracies are usually low, several other measures are consid-
ered. One such measure is the subset accuracy (exact match ratio) AS defined
by

AS =
1

M

M∑
i=1

I(Pi = Ti), (20)

where I(Pi = Ti) is 1 when Pi = Ti and 0, otherwise. For single-label
classification, the accuracy and the subset accuracy are the same and reduce
to the conventional accuracy.

Other measures include the microaverage F-measure and macroaverage F-
measure. In our preliminary study, we evaluated the above four measures and
found that they behave similarly: in almost all cases the best performance for
each measure was obtained for the same parameter conditions. Therefore, in
the following study, we only show the results using the accuracy and subset
accuracy.

We implemented the proposed FSVM into the multilabel SVM classifier
code, binary.py, downloaded from [27]. The multilabel processing is writ-
ten in Python and LIBSVM [26] is used as an SVM tool. We modified the
Python code and also the LIBSVM code written in c/c++. We also down-
loaded trans class.py that converts multilabel classification into single-label
classification and coded the one-against-one SVM for multilabel classifica-
tion.

We used the L1 SVM with RBF kernels given by (6). We determined
the γ value and the value of the margin parameter C, which controls the
trade-off between the classification error and the generalization ability by
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fivefold cross-validation. For the one-against-one SVM, we used conventional
cross-validation for multiclass classification. But for the one-against-all and
FSVMs, we carried out cross-validation for each binary classifier and took
the average of cross-validation accuracies. This is a simplified measure but
as will be shown later, it worked very well.

We selected the C value from {1, 2, . . . , 210}. To speedup cross-validation
we assumed that the optimum γ value is near 1/m and that around the opti-
mum value the cross-validation error curve is convex for the change of the γ
value. According to the assumption, first we carried out cross-validation with
γ = 1/m and C = 1 to 1024. Then we carried out cross-validation selecting
the γ value that is near 1/m from {10−5, 5 × 10−4, 10−4, . . . , 1, 5, 10}. We
iterated cross-validation until the γ value for the minimum cross-validation
error is within the minimum and the maximum γ values tested. Because
cross-validation of the bookmarks data set listed in Table 3, which will be
explained immediately, was very slow, we only carried out cross-validation
for γ = {0.001, 0.000465, 0.001, 0.005} and C = {1, 32, 1024}.

In [2], the γ value was selected from 2−15 = 3.05−5, 2−13, . . . , 21, 23, and
the C value from 2−5, 2−3, . . . , 213, 215. Therefore, the ranges of the γ value
of the both methods are comparable, but the range of the C value in [2] is
wider but the increment was twice as large as that in our experiment.

Table 3 lists the data set specifications and the determined parameter val-
ues for 12 data sets. Because unlabeled data were included in the delicious
and bookmarks data sets, we assigned a new label to them. For mediamill,
delicious, and bookmarks data sets, we could not carry out cross-validation
for the one-against-one SVM, because training was terminated because of er-
rors. From the table, the parameter values determined by cross-validation for
one-against-all (OAA) and one-against-one (OAO) were usually very similar.

Table 4 shows the accuracy, the subset accuracy, and elapsed time in
training the SVM with the determined parameter values using the training
data and classifying the test data. We used a windows 7 machine with 3.4
GHz processors and 16 GB memory. “FSVMc” denotes the result that only
the unclassifiable regions are resolved. We show the best (subset) accuracy
among the FSVM, FSVMc, and OAA in bold face. And “Best” shows the
best value listed in [2] among 12 methods including the binary relevance
method (the one-against-all SVM) [1], the classifier chaining method [8],
the HOMER (hierarchy of multi-label classifiers) method [35], multi-label
C4.5 [4], and ensembles of classifier chains [8]. Accuracies of some of the
benchmark data sets are also shown in [8]. Comparing their best accuracies
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Table 3: Data set specifications and parameter values

Data Inputs Classes Train Test γ value C value
OAA OAO OAA OAO

emotions [28] 72 6 391 202 0.00005 0.00005 1024 1024
scene [6] 294 6 1211 1196 0.1 0.1 4 2
yeast [3] 103 14 1500 917 1 1 2 2
medical [29] 1449 45 333 645 0.005 0.01 64 32
enron [30] 1001 53 1123 579 0.01 0.0005 2 128
corel5k [31] 499 374 4500 500 0.1 0.05 2 4
tmc2007 [32] 30438 22 21519 7077 0.5 0.01 2 64
rcv1v2 [33] 47236 102 3000 300 0.005 0.001 256 1024
mediamill 120 102 30993 12914 10 — 4 —
bibtex [34] 1836 159 4880 2515 0.005 0.0001 8 1024
delicious [35] 500 984 12920 3185 0.05 — 4 —
bookmarks [34] 2150 208 60000 27856 0.0001 — 32 —

with those in Table 4, the accuracy of the medical data set in [8] is 0.7721,
and is higher but others are lower. For the tmc2007 data set, the accuracy
is 0.5492, which is much lower and is near to that by OAA.

Comparing the FSVM, FSVMc, and OAA, OAA shows the worst (subset)
accuracy. In most cases the FSVM shows better accuracy than the FSVMc

and this tendency is more evident for the subset accuracy. The reason why
sometimes the FSVMc performs better than the FSVM is that resolution of
undefined labels sometimes fails as will be explained later.

In most cases, the (subset) accuracies of OAO are better than those of
OAA but those of the FSVM and OAO are comparable. So are those of the
FSVM and Best.

The time for training and classification by OAO was the shortest. This is
because the number of samples per binary classifier for OAO is much smaller
than that for OAA, although the number of binary classifiers is larger. The
time difference between the FSVM and OAA is caused by calculations of
membership functions. Python is an interpretive list processing language and
thus if the code is rewritten by c/c++, the overhead caused by membership
calculations will be reduced.

Using the scene and medical data sets, we analyzed the behavior of the
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Table 4: Evaluation results

Data Accuracy Subset Accuracy Time (s)
FSVM FSVMc OAA OAO Best FSVM FSVMc OAA OAO Best FSVM OAA OAO

emotions 0.5351 0.5363 0.5025 0.5488 0.536 0.2772 0.2772 0.2772 0.3267 0.307 3.9 2.6 0.8
scene 0.7699 0.7678 0.6888 0.7701 0.735 0.7224 0.7166 0.6421 0.7316 0.694 9.9 7.2 2.3
yeast 0.5208 0.5190 0.5172 0.5503 0.559 0.2246 0.1985 0.1985 0.2737 0.239 17.6 12.7 2.8
medical 0.7822 0.7893 0.7056 0.7311 0.730 0.7008 0.7039 0.6264 0.6512 0.646 13.5 12.2 0.5
enron 0.4613 0.4479 0.4388 0.4148 0.478 0.1675 0.1399 0.1382 0.1710 0.149 40.7 37.5 6.0
corel5k 0.1354 0.1323 0.0568 0.1572 0.195 0.0060 0.0060 0.0020 0.0600 0.012 1160.0 992.3 149.7
tmc2007 0.5896 0.5897 0.5593 0.5538 0.914 0.3510 0.3510 0.3249 0.3442 0.816 4555.2 4203.2 1857.3
rcv1v2 0.6668 0.6533 0.6468 0.6748 — 0.4433 0.4107 0.4103 0.5163 — 272.3 212.7 54.8
mediamill 0.4739 0.4711 0.4671 — 0.441 0.1415 0.1370 0.1347 — 0.122 13921.7 12785.4 —
bibtex 0.3869 0.3847 0.3050 0.3451 0.352 0.2231 0.2195 0.1722 0.2243 0.202 445.4 370.4 236.9
delicious 0.1702 0.1557 0.1495 — 0.207 0.0163 0.0100 0.0097 — 0.018 8669.3 7156.2 —
bookmarks 0.3401 0.3400 0.2058 — 0.237 0.2713 0.2712 0.1867 — 0.209 80228.2 71019.3 —

FSVM. Figure 5 shows the accuracy change of the scene data set for the
change of the γ value. For each γ value, the C value was set to the value
selected by cross-validation. From the figure, the accuracy of the FSVM is
higher than or equal to that of the FSVMc. The accuracies of the FSVM,
FSVMc, and OAO around the peak accuracies are almost the same, but those
of OAA are always much lower.

Figure 6 shows the subset accuracy change of the scene data set for the
change of the γ value. The tendency is the same as that of the accuracy
but difference between the subset accuracies of the FSVM and those of the
FSVMc are much clearer.

Table 5 lists the results of the data that caused different (subset) accu-
racies between the FSVM and FSVMc for the parameter values as listed in
Table 3. In the table, the “Predicted” column shows the predicted label set
by OAA, “Modified”, the modified label set by the FSVM, and “Target”,
the target label set. In the “Explanation” column, whether the accuracy is
improved or not is explained. For example, for the 169th sample, the label
set {0, 3} is changed to {0, 5}, which is exactly the same with the target
label set. For the 565th sample, because the label set {1, 2} was changed
to 1, which is not equal to the target label of 2, the accuracy was degraded.
Accordingly, the number of exact matches increased by 7 by the FSVM.

Figure 7 shows the accuracy change of the medical data set for the change
of the γ value. The accuracy for the FSVMc shows the best among the four
methods, that for the FSVM, second best, and OAO, the worst. Unlike the
scene data set, the accuracies of OAA were not so good compared to those
of the FSVM and FSVMc.
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Figure 5: Accuracies for the scene data set
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Figure 6: Subset accuracies for the scene data set
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Table 5: Classification analysis for the scene data set

Sample Predicted Modified Target Explanation
169 0, 3 0, 5 0, 5 Exact match
229 1, 4 1 1 Exact match
242 1, 4 1 1 Exact match
283 1, 4 1 1 Exact match
328 1, 2 1 1 Exact match
339 1, 5 1 1 Exact match
565 1, 2 1 2 Degraded
668 0, 3 0, 4 3 Degraded
987 0, 3, 4 3, 4 3, 4 Exact match

Figure 8 shows the subset accuracy change for the change of the γ value.
The tendency is similar to that in Fig. 7.

Now we analyze why the FSVMc performed better than the FSVM. Table
6 lists the samples in which the classification results are different between the
FSVM and FSVMc for the determined parameter values. In the “Explana-
tion” column, “Not defined” means that the target label set is not included
in the label sets of the training data set. For example, for the 194th sample,
the predicted label set of {32,44} was equal to the target label set. But be-
cause it is not included in the label sets of the training data set, the FSVM
found the nearest label set of {3, 32, 34}, which resulted in mismatch. Ac-
cordingly, the number of exact matches is five but the number of mismatches
is seven. Thus, the number of exact matches decreased by two by the FSVM.
This means that to improve the generalization ability by the FSVM, possible
label sets need to be defined in the training data set.
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6. Conclusions

In this paper we proposed fuzzy SVMs (FSVMs) for multilabel classifi-
cation. Using the decision functions obtained by training the one-against-all
SVM, we define a membership function for each label set included in the
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Table 6: Classification analysis for the medical data set

Sample Predicted Modified Target Explanation
19 4, 23 23 23 Exact match
71 4, 31 4, 44 31 Degraded
143 4, 31, 44 4, 44 4, 44 Exact match
161 32, 44 32, 34 44 Degraded
194 32, 44 3, 32, 34 32, 44 Not defined
224 9, 32 32, 34 9 Degraded
273 4, 32, 34 4, 34 4, 32, 34 Not defined
290 24, 41 36, 41 24, 41 Not defined
328 24, 38 38 38 Exact match
338 4, 32, 44 4, 32 4, 32, 44 Not defined
346 0, 36, 41 0, 41 0, 41 Exact match
349 9, 32 32, 34 9 Degraded
355 38, 43 38 38, 43 Not defined
360 32, 44 32, 34 32, 44 Not defined
367 9, 38 38 36, 38 Improved
379 31, 44 4, 44 4, 44 Exact match
421 0, 24 0, 11, 41 24, 41 Degraded
427 0, 38 38 0 Degraded
433 31, 32 10, 31, 44 32 Degraded
451 23, 32 23 32 Degraded
463 4, 31 4, 32 4, 32, 44 Improved
567 23, 32 32, 34 23, 32 Not defined

training data set. For a given test sample, we classify the sample into the
multilabel associated with the largest membership. By the FSVM, we can
resolve unclassifiable regions and classification to undefined label set that
occur in the conventional one-against-all SVM. We also show that resolution
of unclassifiable regions results in classifying a sample into the class asso-
ciated with the maximum decision function. This is a heuristic to resolve
unclassifiable regions. By computer experiments using 12 benchmark data
sets, we showed that the accuracies were improved by the FSVM over the
conventional one-against-all SVM and, in most cases, over the one-against-all
SVM with the heuristic to resolve unclassifiable regions.
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