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Abstract

We present a novel technique for the 3D segmentation of unknown objects from cluttered

dual-energy Computed Tomography (CT) data obtained in the baggage security-screening

domain. Initial materials-based coarse segmentations, generated using the Dual-Energy Index

(DEI), are refined by partitioning at automatically-detected regions. Partitioning is guided

by a novel random forest based quality metric, trained to recognise high-quality, single-object

segments. A second novel segmentation quality measure is presented for quantifying the

quality of full segmentations based on the random forest metric of the constituent parts and

the error in the number of objects segmented. In a comparative evaluation between the

proposed approach and three state-of-the-art volumetric segmentation techniques designed

for single-energy CT data (two region-growing [1, 2] and one graph-based [3]) our method is

shown to outperform both region-growing methods in terms of segmentation quality and speed.

Although the graph-based approach generates more accurate partitions, it is characterised by

high processing times and is significantly outperformed by the proposed method in this regard.

The observations made in this study indicate that the proposed segmentation technique is

well-suited to the baggage security-screening domain, where the demand for computational

efficiency is paramount to maximise throughput.

Keywords: Segmentation, Dual-energy computed tomography, Random forests,

Baggage-CT imagery

1. Introduction

The central role of baggage screening in the aviation-security domain has lead to an

increased interest in the development of image-processing and computer-vision techniques to
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advance the automated analysis of baggage imagery. 3D X-ray Computed Tomography (CT),

which has enjoyed much success in medical imaging, has fairly recently been introduced to the

security-screening domain in an attempt to mitigate the limitations of conventional 2D X-ray

imagery (e.g. occlusion, clutter and density confusion) [4, 5]. Material-based discrimination

is thus possible using the correlations between the effective atomic numbers and densities of

materials and has formed the basis of automated explosives detection in security-screening

applications.

The foremost application of CT within the security-screening domain has been the materials-

based detection of explosives [6]. Dual-Energy Computed Tomography (DECT) [7], whereby

objects are scanned at two distinct energies, provides an effective means for performing such

materials-based discrimination. Owing to this primary explosives detection-based objective

of imaging within the aviation-security domain, DECT machines have been the baggage-CT

scanners of choice. The primary, non-object recognition-based objective of typical dual-energy

baggage-CT scanners, however, coupled with the demand for high throughput, means that

3D baggage-CT imagery typically presents with substantial noise, metal-streaking artefacts

and poor voxel resolution and is thus generally of a poorer quality than medical CT imagery

[6] (Figure 1). Recent work in this domain has been concerned primarily with the automated

classification of illicit materials in baggage-CT imagery [8–10]. Although promising results

have been presented, these have been achieved on manually segmented subvolumes. The au-

tomated segmentation of low-resolution, cluttered volumetric baggage-CT imagery remains

an open problem.

While image segmentation is a core problem in computer vision and has been the source

of an extensive resource of literature, prior work addressing the automated segmentation of

unknown objects from low-resolution, cluttered volumetric baggage-CT imagery in particular

is limited [1, 11, 12]. The differences in the quality and the nature of security-screening imagery

compared to medical imagery, have limited the success of medical-segmentation techniques in

this domain [13]. Furthermore, the dependence of the majority of the state-of-the-art medical-

segmentation techniques on a priori information in particular, detracts from their suitability

to the security-screening imagery, where the segmentation of multiple, unknown objects is

required. This has been substantiated by the comparative study of Megherbi el al. [13],

where popular medical-segmentation techniques are shown to perform poorly on baggage-

CT data. A recent study [14] presents a novel technique, using curvature estimation of 2D

contours, for the automated segmentation of knots in 3D CT images of wet wood. Although
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the study presents state-of-the-art results (both in terms of accuracy and speed), the contour

estimation exploits a geometric prior and therefore, similarly to the aforementioned medical

segmentation techniques, is ill-suited to baggage CT segmentation.

Unsupervised (blind) segmentation of unknown objects from cluttered volumetric imagery

is considerably more challenging and comparatively few solutions exist. The majority of the

prior work in this domain has originated from the US Department of Homeland Security’s

Awareness and Localization of Explosives-Related Threats (ALERT) initiative [11] which

led to the development of five dedicated baggage-CT segmentation techniques. Wiley et al.

[1] present a 3D flood-fill region-growing method based on the Stratovan Tumbler medical-

segmentation technology [15]. Although high-quality segmentations are presented, perfor-

mance is shown to rely on near isotropic voxel resolutions in all three dimensions. Song et al.

[11] present a sequential segment-and-carve approach using the seedless (i.e. unsupervised)

Symmetric Region-Growing (SymRG) technique [2] coupled with extensive post-segmentation

processing (splitting and merging). The approach is extremely convoluted (characterised by

a large parameter set) and optimal performance is shown to rely on careful parameter tun-

ing. Grady et al. [12] perform unsupervised segmentation of baggage-CT data via recursive

partitioning using the linear-time isoperimetric distance-tree algorithm [3]. Segmentation is

guided by a novel Automated Quality Assessment (AQUA) measure, which automatically

computes the quality of a given segmentation without a priori knowledge of the object being

segmented. High-quality segmentations are achieved at relatively low processing times. Har-

vey et al. [11], present a multi-scale baggage-CT segmentation approach using the sieves class

of algorithms [16] and Sedgewick’s connected component analysis technique [17], while Feng

et al. [11] present an approach which appears to be largely based on the region-growing and

merging technique of Ugarriza et al. [18]. While the approach is shown to yield high-quality

segmentations, satisfactory results are again reliant on careful parameter tuning.

It is worth emphasising that each of the five aforementioned baggage-CT segmentation

techniques were developed and evaluated using a fully labelled volumetric baggage-CT data set

captured on a single-energy medical-grade CT scanner with a near isotropic voxel resolution

of 0.98× 0.98× 1.29mm. Furthermore, the data was entirely free of threats/contraband and

contained comparatively low numbers of metallic objects. Such data is not representative of

the current benchmark in baggage screening [8, 10, 19]. The segmentation of low, anisotropic

resolution volumetric baggage-CT imagery (obtained on dual-energy scanners) in the presence

of multiple metal objects has not been considered previously.
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Figure 1: Baggage-CT scans illustrating poor image quality, low resolution, artefacts and clutter (obtained on

Reveal CT80-DR dual-energy baggage scanner).

Here, we address these limitations by presenting a dual-energy-based segmentation tech-

nique which is shown to produce fast, high-quality segmentations of low-resolution volumetric

baggage-CT images. Our approach is based on four novel contributions: 1) a materials-

based coarse segmentation technique using the Dual-Energy Index (DEI) [7] (Section 2) and

connected component analysis; 2) a random-forest-based model for measuring the quality of

individual object segments, which is used to guide the segmentation process; 3) a random-

forest-based model for measuring the quality of entire segmentations and 4) an efficient

segmentation-refinement procedure for splitting fused objects. The current state-of-the-art

in baggage-CT-image classification [8, 20] relies on the manual generation of subvolumes con-

taining at most a single target object (akin to the use of a sliding window in traditional

image-based object recognition). The objective of the segmentation techniques developed in

this study thus seek to automate this procedure by segmenting every object in a given scan

and generating a corresponding subvolume for each.

We thus extend upon the prior literature [1, 11, 12] by considering the segmentation of

low-resolution, cluttered baggage-CT imagery obtained on a dual-energy CT scanner, which

is representative of that encountered within an aviation security environment [19, 21].

2. Dual-Energy Computed Tomography (DECT)

Conventional, single-energy CT systems produce reconstructions representative of the Lin-

ear Attenuation Coefficients (LAC) of the object under investigation [22]. That is to say, the

greyscale intensity values (i.e. CT numbers, in Hounsfield Units (HU)) in the CT image are

dependent on the LAC of the scanned object. Consequently, it becomes challenging and in

some cases, impossible, to distinguish between materials that share similar LACs. In con-

trast, Dual-Energy CT (DECT) techniques, whereby attenuation data is captured using two

distinct X-ray spectra, offer a means for characterising the chemical composition (e.g. atomic
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Figure 2: Relative contribution of different modes of

interactions as a function of energy (for water) [22].

Figure 3: Energy transfer percentage of the different

interactions (in water) [22].

number and/or density) of the material under investigation based on its response under these

different spectral conditions.

The physical basis of DECT imaging relies on the energy dependence of the interaction

of X-ray photons with matter (Figures 2 and 3). More particularly, within a photon energy

range of approximately 30 keV to 200 keV, these interactions are known to be dominated

by the photoelectric effect and Compton scattering [23]. Dual-energy CT involves acquiring

attenuation measurements for an object at two different tube voltages (usually 80 kVp and

140 kVp for medical applications), resulting in two separate attenuation profiles. The dual-

energy decomposition problem is then to determine the Compton scatter and the photoelectric

absorption coefficients of the material from the measured high and low-energy projections.

Alternatively, it has been shown that the attenuation coefficients for any material may be

expressed as a linear combination of the coefficients of two basis materials, provided that

the two chosen materials are sufficiently different in their atomic numbers (and hence in

their Compton and photoelectric coefficients) [24]. The decomposed dual-energy data may

then be used to compute the effective atomic numbers and electron densities of the materials

present in a scan [25] (this is the basis for traditional explosives detection systems in aviation

security-screening [6]).

DECT techniques typically fall into one of three categories [26]: 1) post-reconstruction

techniques; 2) pre-reconstruction techniques and 3) iterative-reconstruction techniques. Pre-

reconstruction [27] and iterative reconstruction [28] techniques are generally concerned with

solving the material decomposition problem and subsequently determining the effective atomic

number and density images. While a variety of DECT-decomposition techniques exist (e.g.

direct approximation [23]; iso-transmission lines [29]), they typically require access to raw

projection data and rely on physical calibration procedures [27].
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A more rudimentary estimation of the chemical characteristics of a scan may be obtained

via post-reconstruction (or image-based) DECT techniques. In contrast to pre-reconstruction

and iterative reconstruction DECT, these do not require a calibration procedure or the avail-

ability of raw-data. The Dual Energy Index (DEI) [7] is a post-reconstruction DECT measure

that offers a crude estimate of the chemical characteristics of a scan. For a material in air

(i.e. not dissolved in water) the DEI is given by [7]:

DEI =
xL − xH

xL + xH + 2000
(1)

where xL and xH are the pixel values, in Hounsfield Units (HU), for the low and high-

energy scans respectively. While the DEI is an indicator of the effective atomic number of a

material, in contrast to the true effective atomic number [25], its value does not rely on the

photoelectric cross-section characteristics of the material (which are not precisely known) [7].

Despite its ease of computation, the DEI has demonstrated potential in material differentiation

for a variety of clinical tasks, including: the differentiation of air and tagged faecal materials

from soft-tissue colonic structures in CT colonography [30] and the chemical characterisation

of urinary stones in abdominal CT imagery [31].

The predominant limitation of post-reconstruction DECT is its susceptibility to artefacts

in the reconstructed images [28]. Therefore, although the DEI has been successfully applied to

a variety of clinical tasks [7, 31–33], it has not previously been considered in the baggage-CT

domain.

3. Proposed Segmentation Approach

The refinement of initial coarse segmentations is a popular approach in both the medical

[34–36] and security-screening [12] segmentation literature. We consider a similar approach,

composed of the following three components: 1) coarse segmentation/foreground determina-

tion; 2) segmentation refinement; 3) segmentation quality measurement.

3.1. Coarse Segmentation

Low and high-energy volumes are pre-processed with a Metal Artefact Reduction (MAR)

technique [37]. The artefact-reduced images are used to compute the Dual-Energy Index

(DEI) image according to Equation 1 [7] (Section 2).
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Based on the assumption that different materials are relatively well separated by their

DEI, a set of Nτ material-specific images is generated by subjecting the DEI image to a

multiple-thresholding procedure:

Iτi =


1 if τi−1 ≤ Idei ≤ τi

0 otherwise

i = 1, . . . , Nτ (2)

where the number of thresholds Nτ is a user specified parameter. Connected component

analysis [38] is performed on each of the Nτ thresholded images. All connected components

smaller than a predefined minimum object size are discarded while the remaining connected

components are assigned individual labels and represent the image foreground (or coarse

segmentation) to be passed to the refinement algorithm. While it is likely that an improvement

in the quality of the coarse segmentations will result from a case-by-case fine-tuning of the

DEI thresholds (e.g. by DEI histogram analysis), to ensure automation and maintain low

processing times, a predefined, constant set of thresholds is used. To this end, a constant

uniformly-space threshold range is chosen to optimise processing times and to ensure that

consistent material types are segmented across all images. Further segmentation, or refinement

(driven by a segmentation-quality metric), of each of the coarsely segmented components in

an image is used to generate the final segmented image.

3.2. Segmentation Quality Measure

The segmentation-quality measure is intended to provide a quantification of the likelihood

that a given segment represents a single object (i.e. does not require further segmenta-

tion). For the purposes of online segmentation evaluation (i.e. evaluation in the absence of

ground-truth), the feature-based generative model of high-quality segmentations presented by

Kohlberger et al. [39] has been met with success in related studies [12]. More specifically,

Grady et al. [12] present the Automated QUality Assessment (AQUA) measure to quantify

segmentation quality and control the splitting of connected components within their graph-

partitioning approach. Using a variety of segmentation metrics as features [39], the AQUA

module is trained (using a Gaussian Mixture Model (GMM)) on a training set of single-object

features to recognise high-quality (i.e. high likelihood of consisting of only a single object)

segmentations. The model is shown to provide meaningful separation of good (or single) and

bad (or multi) object segments [11].
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Figure 4: Object segment mask examples. Top row: manually generated single-object segments. Bottom row:

manually generated multi-object segments.

We examine the suitability of the AQUA measure, using the current dataset, and the 42D

feature vector described in [12, 39]. The feature vector quantifies the shape and appearance

of object segments by computing 42 feature attributes falling into one of five categories: 1)

unweighted geometric features (quantifying the size and regularity of the segmentation); 2)

weighted geometric features (locally emphasising the geometric features when intensity values

are similar to each other); 3) intensity features (measuring absolute intensity and intensity

distributions within segmentations); 4) gradient features and 5) ratio features (computed as

ratios of previously computed features). For a detailed description of the features used, the

reader is referred to [39] and [12]. Similarly to [12], the features are extracted from a set

of manually segmented single-object segments. A large range of objects are included in this

training set (Figure 4). Principal Component Analysis (PCA) [40] is applied to reduce the

dimensionality of the feature space. The GMM is fitted over the PCA coefficients of all

the segments in the training set using the Expectation-Maximisation (EM) technique [41].

In determining the optimal GMM, the number of Gaussians and the covariance matrix type

(diagonal or full-rank) are varied and the model minimising the Bayesian Information Criterion

(BIC) [42] cost function is selected. The AQUA measure of a given object segment S ⊆ V

(where V is the volume) is then given by [12]:

AQUA(S) =

10∑
i=1

wiN (f(S);µi,Σi) (3)

Although the motivation for using a generative model for discriminating between single

and multi-object segments is based on the premise that multi-object segments exhibit greater

variability in feature space than single-object segments [12], the most significant contribu-

tions in the related field of multi-organ segmentation in 3D CT imagery have been achieved

using random forest-based classifiers [43–45]. In fact, random forests have enjoyed increasing
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popularity in complex medical-image segmentation tasks in general and have been success-

fully applied to the segmentation of adrenal gland abnormalities in CT imagery [46]; synaptic

contacts in electron microscopy images [47]; foetal brain structures in ultrasound images [48];

the myocardium in real-time 3D echocardiography [49] and a range of structures in MR im-

agery (e.g. multiple sclerosis [50, 51]; high-grade gliomas [52]; left ventricle [53], neurological

structures [54, 55]). In accordance with these trends in the prior literature, we thus propose

investigating the efficacy of a novel random-forest-based discriminative model to distinguish

between good and bad object segments. In addition to the aforementioned 42D descriptor

(hereafter denoted Kohlberger) [12, 39] and as an additional novel aspect within this work,

the performance of three shape-based descriptors are considered as it is expected that the

characteristics of the surface of a single-object segment will differ from that of a segment

representing multiple objects. 3D shape-based descriptors have been successfully applied to a

variety of similar object-recognition, retrieval and classification tasks [56–58]. Based on these

prior works, the following three 3D shape-based descriptors are considered: 1) 3D Zernike

descriptors (denoted Zernike) [59]; 2) the Histogram-of-Shape Index (denoted HSI ) [60] and

3) a hybrid 3D shape descriptor (denoted Shape) [58].

Novotni and Klein [59] developed the 3D Zernike descriptors by expanding upon the

mathematical concepts of 3D Zernike moments as laid out by Canterakis [61]. 3D Zernike

polynomials are a set of basis functions that are orthogonal on the unit sphere. The 3D

Zernike descriptor is an extension of the spherical harmonics-based descriptors of Kazhdan et

al. [62] and have been shown to be compact, robust to noise and invariant to rotation [59]. By

combining a set of radial basis functions with spherical harmonics, the nth-order 3D Zernike

functions may be computed as [61]:

Zmnl(r, θ, φ) = Rnl(r)Y
m
l (θ, φ) (4)

where Y m
l are complex valued spherical harmonics defined on the spherical coordinate

system given by (θ, φ); n, l,m are integers such that |m| ≤ n and n− |m| is even and Rnl(r)

are orthogonal radial basis polynomials [63]. Equation 4 may be rewritten in Cartesian coor-

dinates:

Zmnl(x) =
k∑
v=0

qvkl|x|2veml (x) (5)
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where 2k = n − l and eml = rlY m
l (θ, φ) are the harmonic polynomials as defined by [62].

The coefficients qvkl are computed such that the functions are orthonormal in the unit sphere

[59]. The Zernike moments are then the projection of a given 3D shape function onto this

orthonormal basis:

Ωm
nl =

3

4π

∫
||x||≤1

f(x)Zmnl(x)dx (6)

where the voxelised 3D shape function f(x) : x ∈ R3 is a binarised representation of the

object surface, defined on a regular cubic grid. While these moments are not invariant under

rotations, Novotni and Klein [59] achieved rotational invariance by collecting the moments

into (2l+ 1)-dimensional vectors: Ωnl = (Ωl
nl,Ω

l−1
nl , . . . ,Ω

−l
nl )

t. The rotationally-invariant, 3D

Zernike descriptors Fnl are subsequently defined as the norms of the vectors Ωnl [59]:

Fnl = ||Ωnl||2 =

√√√√ l∑
m=−l

(Ωm
nl)

2 (7)

Dorai and Jain [60] present the Histogram-of-Shape Index (HSI) for the representation and

recognition of arbitrarily curved rigid 3D objects. The Shape Index (SI) is a scalar-valued

quantitative measure of the shape of a surface at a point p:

SI(p) =
1

2
− 1

π
tan−1

κ1(p) + κ2(p)

κ1(p)− κ2(p)
(8)

where κ1 and κ2 (κ1 ≥ κ2) are the principal curvatures of the surface at the point p [60].

Given a smooth, plane unit-speed (parametrised) curve γ(t), where t is the arc-length, the

curvature is defined as:

K(t) = ||γ̈|| :=
1

r
(9)

where r is the radius of the osculating (kissing) circle. If M is defined as differentiable

surface in R3, then at each point p on M , the surface has two principal curvatures κ1 and κ2,

computed as follows [64].
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Let n be the unit normal vector to M at p and determine the normal plane P ∈ R3

containing n. The unit-speed curve γP (t) = P ∩ M (i.e. the plane curve resulting from

the intersection of P and M) is then determined. Subsequently, the curvature KP of γP (t)

is computed according to Equation 9 and finally, the principal curvatures are defined as

(κ1, κ2) = (min
P
KP ,max

P
KP ). According to this definition, every distinct shape may be

mapped onto a unique value in the interval SI ∈ [0, 1]. The exception to this is the planar

shape, for which SI is undefined since κ1 = κ2 = 0 for all points on a planar surface [60].

Megherbi et al. [58] propose combining the HSI and Zernike descriptors (by direct con-

catenation) yielding a hybrid 3D shape descriptor. The proposed descriptor demonstrates

potential in the classification of threats in CT-baggage imagery and is included in the eval-

uation here. Prior to the extraction of the aforementioned shape-based features, the object

segments are pose-normalised to ensure invariance to changes in scale and translation. This is

achieved by translating and rescaling (voxel resampling by nearest-neighbour interpolation)

each object segment based on its approximate minimum-bounding box within the original CT

image [58].

For a given descriptor type, individual trees in the random forest are constructed in a

top-down recursive manner using a simple thresholding function as the node split function for

all internal nodes. The optimality criterion used for node splitting is the classical Information

Gain (IG) [65]. Randomness is injected into the trees via random node optimisation, whereby

a random subset of the available node test parameter values is considered at each node. Trees

are grown to a maximum depth DT and leaf nodes are generated if the IG falls below a

minimum threshold IGmin. The quality of any given segmentation - denoted the Random

Forest Score (RFS) - is computed by averaging the corresponding posterior probabilities of

each of the leaf nodes reached in the forest:

RFS = p(c|v) =
1

T

T∑
t=1

pt(c|v) (10)

where T is the number of trees in the forest; p(c|v) is the estimated conditional probability

that a given test point v belongs to the class c and c is a discrete class label (i.e. (0, 1) →

(bad,good)).

3.3. Segmentation Refinement

Based on the results of preliminary experimentation (see Section 5.1) regarding the afore-

mentioned segmentation-quality measures, a simple yet efficient technique for refining the
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Figure 5: Segmentation refinement examples using CCA and IDT [12]. Hot-points (red) and RFS indicated.

initial, coarse segmentation using a random-forest-based approach is proposed. The RFS is

computed for each of the Nc components (or objects) in a given coarse segmentation. Those

components yielding an RFS below a given threshold τRFS are considered to be composed

of multiple objects and are passed to a partitioning approach. Coarse components with

RFS> τRFS are left unchanged and assigned a unique label in the final image. Poor-quality

objects (RFS< τRFS) are partitioned at the estimated intersection (or touching) points of

the multiple objects comprising the given segment. These points are found by detecting the

perimeter voxels of the original object that are likely to be common to two objects. Non-zero

(i.e. object) voxels are assumed to lie on the perimeter of the object if they are connected

to at least one zero (i.e. background) voxel. The assumption is made that those voxels cor-

responding to the intersections of multiple objects will be surrounded by higher numbers of

object voxels compared to regular (non-intersection) perimeter points [11]. The total number

of object voxels in a predefined local cubic neighbourhood (11 × 11 × 11) of each perimeter

voxel is thus determined. If this number is greater than a predefined threshold, τHP , the

perimeter voxel is considered to be an intersection point [11] (red points in Figure 5). For a

given object, this analysis may result in multiple clusters of such points (denoted hot-points),

in which case it is assumed that the object requires splitting at multiple regions. Each clus-

ter of hot-points is considered individually. It has previously been suggested that splitting

of touching objects may be performed by fitting a plane (e.g. by RANSAC [66]) to such

hot-points [11]. Such planes, however, are likely to intersect the object at multiple regions

(not just at the locations of the hot-points) leading to over-segmentations. Restricting the

planes to local regions is challenging, especially when determining which voxels lie above or

below the plane. The plane-based approach becomes particularly problematic when an object

requires splitting at multiple locations.

A simpler approach is proposed here, whereby Connected Component Analysis (CCA) is
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performed on a mask obtained by removal (i.e. setting to zero) of the hot-points. The two

connected components returning the highest RFS (computed with the hot-points reinserted)

are retained. If the CCA results in only a single connected component, morphological dilation

of the zeroed-out region is performed until the CCA returns at least two components. In the

case where the RFS of one of the regions falls below the RFS of the original region, or the

region is smaller than the minimum permissible size of an object, the region is assumed to be

noise or artefact-induced and is discarded. If both components result in a decrease relative

to the original RFS, then the original object is retained (Figure 5). Although objects split

in this way are not guaranteed to produce segments with RFS> τRFS , only splits resulting

in improved scores are permitted. The procedure thus performs both splitting as well as

denoising of the coarse segmentations. For objects containing multiple hot-point clusters, the

RFS of the final split objects are affected by the order in which the clusters are considered.

As the described splitting procedure is fast and the numbers of hot-point clusters per object

are generally low (typically ≤ 3), the optimal order (i.e. that which results in the individual

objects with the highest RFS) may be determined by testing all possible orders.

4. Comparative Methodologies

The performance of the proposed segmentation approach (denoted CCA) is evaluated in

comparison to the isoperimetric distance tree approach [3], symmetric region-growing [2] and

3D flood-fill region-growing [1]. A brief overview of each technique is presented here, for

detailed explanations the reader is referred to the original works [1–3, 12, 67].

Isoperimetric Distance Trees (IDT) [3] are evaluated as an alternative to the proposed

segmentation-refinement procedure. IDT has previously demonstrated success as part of an

automated segmentation approach for medical-grade CT imagery [3, 12]. As opposed to

applying the identical techniques used in [12], IDT is used as a direct alternative to the

proposed segmentation-refinement method - that is to say, the technique is applied to the

DEI coarse segmentations and is driven by the RFS (Equation 10). The IDT technique is

applied recursively to each individual connected component in the DEI mask until one of three

criteria is met [12]: 1) the input mask has a sufficiently high quality (as determined by the

RFS); 2) the partitioned objects have RFS below a given threshold τγ and an isoperimetric

ratio greater than that of the input mask (i.e. further partitioning produces low-quality

segmentations) or 3) the input mask is smaller than the minimum permissible object size.

Symmetric Region Growing (SymRG) [2] is a seedless (parameter-free), single-pass
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region-growing technique which has demonstrated success in a variety of 3D segmentation

tasks [2, 68]. For any voxel p ∈ Ri where Ri ⊂ V is an evolving region and V is the input

volume, a neighbouring voxel q will be included in the region Ri if the function g(p, q) is true,

where g(., .) is a symmetric function satisfying:

g(p, q) = g(q, p) ∀p, q ∈ V (11)

The main advantage of SymRG is its invariance to the region start points (seed points) and

its low processing times - it is not claimed to provide higher-quality segmentations compared

to existing methods [2]. Nonetheless, its fully-automated nature and low processing times

make SymRG an attractive option in the security-screening domain.

3D Flood-Fill Region-Growing [1] (denoted FloodFill) traverses a volume in a flood-

fill manner using a 3D spherical kernel of varying sizes. The seed-points and kernel dimensions

are determined automatically based on image content (e.g. local gradients), while the kernel

movement criteria for specific kernels are inferred from a set of training examples. This

approach is composed of five stages: 1) definition of the 3D kernel; 2) determination of the

movement criteria; 3) automatic seed initialisation; 4) flood-fill region growing and 5) region

merging.

Performance Evaluation: The most widely adopted approach for the evaluation of

segmentation techniques is the comparison of algorithm-generated segmentations to manually

delineated ground-truth data using some similarity measure [69, 70]. The manual delineation

of volumetric data, however, is a laborious task - particularly when the dataset is large and

each data sample contains a large number of objects. Furthermore, we note several additional

factors detracting from the suitability of this traditional evaluation protocol in the current

context.

Firstly, we emphasise that the data used in this study was collected for an independent

study [71] and ground-truth delineations were not performed during this initial data-gathering

procedure. Furthermore, exhaustive records of the objects present in each of the scans were

not kept, making the generation of ground-truth data impractical (and likely inaccurate).

Secondly, we stress that in the context of baggage security screening, segmentation is

seen as an intermediate step in the classification and/or recognition of illicit materials within

the scans. The objective of the segmentation algorithm is thus to generate sub-volumes or

regions of interest for which the performance of the subsequent classifier is optimal. In related
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studies [8, 20] it has been shown that optimal threat recognition is achieved on subvolumes

containing single objects. In these prior studies, subvolumes were randomly cropped from

whole-volume scans such that each approximately contained a single object. In order to

retain some degree of contextual information, a margin of 30mm was then extended around

each of the cropped objects. The importance (in terms of classification performance) of the

inclusion of context via the extended margin has been demonstrated in a concurrent study

[72], where classification performance increases significantly when context is included. The

most important objective of the segmentation phase in the current context is thus to generate

a subvolume that approximately contains a single object, the exact boundary of which is not

critical. In light of this observation, the performance of a baggage-CT segmentation algorithm

is best quantified by the number of objects in a given segmentation and the quality of those

objects.

Considering the aforementioned limitations of the traditional reference-based evaluation

techniques, we propose a novel quantitative analysis procedure which rewards scans segmented

into the correct number of high-quality subvolumes, where high-quality refers to the single-

objectness of the subvolume. The proposed evaluation technique thus relies only a set of test

images containing known numbers of objects - no knowledge of the actual object boundaries

is required. In particular, the overall segmentation score for a given image is computed as the

average RFS of each segmented object multiplied by the error in the number of segmented

objects:

RFSS =

(
1

NS

NS∑
i=1

RFSi

)
︸ ︷︷ ︸

Average RFS

×
∣∣∣∣1− |NT −NS |

NT

∣∣∣∣︸ ︷︷ ︸
Penalty Term (PT)

(12)

where NT is the true number of objects in the image; NS is the number of segmented

objects and RFSi is the quality score for the object i. Note that PT ∈ [0, 1) ∀NS 6= NT and

PT = 1 otherwise. All segmentations containing the incorrect number of components will

thus be penalised. Grady et al. [12] have suggested a similar measure obtained by averaging

the AQUA scores for each segmented object in a given image. This approach does not penalise

cases where the incorrect numbers of objects are segmented from a given image. We addresses

this shortcoming via the introduction of the penalty term in Equation 12. It should be noted

that the proposed measure is likely to be biased in favour of refinement by CCA and IDT (as

both are inherently controlled by it).
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Finally, all performance evaluations are performed with and without metal artefact re-

duction [37]. A more comprehensive investigation of the impact of artefacts and artefact

reduction on segmentation and classification performance within baggage-CT security screen-

ing has been conducted in a concurrent study [72]. Within this study, it is demonstrated that

dedicated artefact reduction techniques have limited impact on overall performance.

4.1. Data

Various datasets were used in the experiments presented in this study. All images are

represented in Modified Hounsfield Units (MHU) where the CT densities at each pixel fall

in the range [0, 60000] with air calibrated to 0 MHU and water calibrated to 10 000 MHU.

Images are characterised by anisotropic voxel resolutions of 1.56× 1.61× 5mm.

Quality measure evaluations: The GMM used in the AQUA model is built using a

training set composed of 80 manually cropped single-object segments. In order to evalu-

ate each of the quality measures (AQUA and random-forest based models) a separate test

set containing 194 manually-cropped single-object segments and 415 manually-cropped and

algorithm-generated multi-object segments has been created (e.g. Figure 4). The test samples

vary in size (depending on the object(s) in the scan).

The performance of the AQUA measure is evaluated by examining the histogram of AQUA

scores for each of the samples in the test set. In order for the AQUA measure to be successfully

incorporated into the proposed segmentation framework, it is required to provide a good

separation between the good and bad object segments in this histogram.

The performance of each of the random-forest-based scores is evaluated by a Leave-One-

Out (LOO) cross-validation procedure. Note that the process is considered a binary clas-

sification task where single-object segments represent the positive class. Receiver Operat-

ing Characteristic (ROC) curves (computed by varying the discrimination threshold on the

forest posterior - Equation 10), the Area Under the Curve (AUC) and the optimal (false-

positive;true-positive) operating points are computed to illustrate the performance of each

of the descriptor types. Finally, the histograms of RFS are generated for each method to

illustrate the separation of single and multi-object segments.

Segmentation evaluations: Qualitative analysis of the four segmentation algorithms is

performed using four, cluttered whole volume baggage-CT scans obtained on the Reveal CT-

80DR scanner (Figure 12 (a) - (d)). Quantitative analysis of the four segmentation algorithms

is performed using a set of 30 cropped baggage-CT scans obtained on the Reveal CT-80DR

scanner. Each of the volumes in the set are cropped such that they contain a known number
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of objects. All volumes are composed of 512×512 axial slices and the number of slices in each

volume ranges from 92 to 112. The random forests used to guide the segmentation refinements

in these experiments are built using a set of 80 manually-cropped single-object segments (the

same set used to build the GMM) and 80 manually-cropped multi-object segments (a subset

of the 415 multi-object test set mentioned above).

5. Results

Performance was evaluated on 3D volumetric baggage-CT imagery obtained on a CT-80DR

dual-energy baggage scanner manufactured by Reveal Imaging Inc which produces volumes

with low anisotropic resolutions of 1.56× 1.61× 5mm. The following restrictions were placed

on the segmented objects. All voxels with intensities lower than a predefined threshold of

1000 Modified Hounsfield Units (MHU) were considered to belong to the background and

thus set to zero prior to segmentation. The minimum permissible object volume was set to 50

cm3 and all objects in the final segmentations smaller than 50 cm3 were thus discarded (set

to zero).

5.1. Quality Measure Results

In order to evaluate the performance of the AQUA measure when applied to the CT-80DR

data, a GMM using 9 Gaussians and a full-rank covariance matrix was fitted over the PCA-

reduced feature vectors of the GMM training segments (Section 4.1). The number of PCA

coefficients retained was selected such that approximately 99% of the feature variance in the

training set was retained. The resulting AQUA scores for the 609 object test set (Section

4.1) are shown in Figure 6. Considerable overlap between the two object classes (single and

multi-object) is evident, such that no clear separation boundary can be established. It is

unlikely that this formulation of the AQUA measure will lead to satisfactory segmentations

using the current dataset.

In the evaluation of the random-forest-based quality measures, the forest parameters were

fixed for all feature types. The number of tests performed for each node split was set to

0.7DimF (where DimF is the dimensionality of the feature vector under consideration) - this

value was fixed for all nodes in a given forest; trees were grown to a maximum depth of

DT = 10, with a lower bound of IGmin = 10−4 on the information gain and forests contained

30 trees. It was found that using these settings resulted in tree growth terminating prior to

maximum depth and thus no tree pruning was performed.
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Figure 6: Separation of good and bad object segments

using AQUA score [12]

.

Figure 7: ROC curve for leave-one-out cross vali-

dation testing of random forest segmentation-quality

measures.

Descriptor AUC
Optimal Operating Point

(TPR, FPR)

Kohlberger [39] 0.971 (0.960, 0.098)

Zernike [59] 0.863 (0.862, 0.240)

HSI [60] 0.901 (0.871, 0.160)

Shape [58] 0.942 (0.800, 0.036)

Table 1: LOO cross validation results for random forest segmentation-quality measures: Area Under (ROC)

Curves (AUC) and optimal operating points.

The ROC curves and corresponding AUC and optimal operating points for the LOO eval-

uation of the random forest quality measures are shown in Figure 7 and Table 1 respectively.

Additionally, the histogram analysis results for each descriptor type are shown in Figures 8

- 11. Based on the results and recommendations of Megherbi et al. [58], the 3D Zernike

descriptors were generated using a maximal order of 20, yielding a 121-dimensional descrip-

tor. The HSI was computed using a bin-width of 0.005, resulting in a 200-dimensional HSI

descriptor. These settings resulted in a 321-dimensional combined 3D shape descriptor.

The Kohlberger descriptor yielded the best LOO cross-validation results (Figure 7 and

Table 1) with an AUC = 0.971 and an optimal operating point on the ROC curve of (0.098,

0.960) - significantly outperforming all 3 shape-based descriptors. All four random-forest-

based measures yielded superior separations of the single and multi-object segments (Figures

8 - 11) compared to the GMM-based AQUA results (Figure 6). The Kohlberger descriptor, in

particular, resulted in good separation of the classes, despite the relatively high false-positive

rate at its optimal operating point (Table 1). It is also worth noting that the computation

of the Kohlberger descriptor [39] is considerably less computationally demanding than the

Zernike [59], HSI [60] and 3D shape [58] descriptors. Based on the results of this preliminary
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Figure 8: RFS histogram for Kohlberger descriptor

[39]

.

Figure 9: RFS histogram for Zernike descriptor [59]

.

Figure 10: RFS histogram for HSI descriptor [60]

.

Figure 11: RFS histogram for 3D shape descriptor

[58]

.

experimentation, the random forest measure using the Kohlberger descriptor was used in all

subsequent evaluations. The optimal operating point for the Kohlberger descriptor occurred

at a threshold of 0.73 (i.e. (v ∈ R42) = single-object if p(c|v) > 0.73). This threshold was

used for τRFS in the segmentation-refinement procedure.

5.2. Segmentation Results

The coarse segmentations were created using Nτ = 10 equally-spaced thresholds. In ad-

dition to the reasons discussed in Section 3.1, prior experimentation determined that this

threshold range favoured under-segmentations (as desired) and reduced the number of ob-

jects eliminated/missed during the coarse segmentations. CCA segmentation refinement was

performed using an RFS threshold of τRFS = 0.73 and a hot-points threshold of τHP = 300

(chosen empirically). IDT refinement [3] was implemented using a lattice-connectivity of 6

and a hot-points threshold of τHP = 300. The optimal value for the quality threshold τγ ,

used as a termination criterion in the recursive application of IDT [12] was determined em-

pirically by visually comparing candidate segmentations. FloodFill [1] was performed using
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Figure 12: Segmentation test images and coarse segmentations: (a) - (d) Input scans (e) - (h) Coarse seg-

mentations (with MAR pre-processing). Objects missed by coarse segmentation are indicated (circles and

arrows).

four spherical kernels with radii r = {1, 2, 3, 4}. The movement polynomial was fitted over 70

training points obtained from 25 separate scans. SymRG was implemented using the following

symmetric function:

g(p, q) =


TRUE if|f(p)− f(q)| ≤ τc

FALSE otherwise

(13)

where f(p) and f(q) are the intensities of voxels p and q respectively and τc is a user-defined

constant threshold.

Figures 12 (e) - (h) show the coarse segmentations produced by the DEI thresholding

process, which were used as input to the CCA and IDT segmentation-refinement procedures.

Metal artefact reduction [37] was applied to the input images prior to generating the coarse

segmentations. As expected, several objects are under-segmented (e.g. pliers and dumbbells in

(a) and (e)). While the majority of the objects appear to have been well segmented in all four

examples, two object types were commonly eliminated/missed by the coarse segmentations:

1) small cylindrical objects - encircled in red in Figure 12 and 2) thin, low-density magazines -

indicated with arrows in Figure 12. The paperback book in Figure 12 (c) was well segmented in

(g) - indicating that it is not the material characteristics alone of the magazines that resulted

in their elimination. A more likely cause is the positioning and geometry of the magazines: in

both scenarios, the magazines are lying flat against the bottom of the case/bag making them

difficult to distinguish (even for the human observer) from the actual bag (on account of similar

densities, their lack of bulk and noise). It is worth noting that low-density objects and thin,

sheet-like objects have been known to pose difficulties for all previous baggage-segmentation
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Figure 13: CCA results. Figure 14: IDT [3] results.

approaches [1, 11, 12].

The final segmentation results produced by each of the approaches (with metal artefact

reduction) are shown in Figures 13 - 17. CCA (Figure 13) and IDT (Figure 14) produced

similar results as both rely on the same coarse segmentations and RFS to determine which

components require refinement. The results thus differed only in those components which

required refinement. In general, IDT produced superior refinements - especially evident in

the test images (a) and (b). Consider, for example, the test image in Figure 13 (a) (CCA)

and Figure 14 (a) (IDT), where IDT produced superior partitions in five hot-points regions.

Figure 15 illustrates these regions in the original coarse segmentations and shows the computed

hot-points and the post-refinement RFS. The object boundaries produced by IDT are better

defined in all five cases, resulting in higher RFS (for the individual objects). Nonetheless,

CCA correctly split the coarse segmentations at all hot-point regions (with the exceptions of

regions 3 and 4) and produced corresponding improvements in the RFS. CCA refinements at

regions 3 and 4 (Figure 15) were most likely rejected based on the resulting components not

meeting the minimum permissible object size. Note that segmentation refinement, in addition

to splitting merged objects, possesses denoising characteristics, as illustrated in test image

(c). The coarse segmentation (Figure 12 (g)) exhibits what appears to be noise/artefacts to

the right of the sole of the shoe. This noise has been removed in the corresponding regions in

both the CCA (Figure 13 (c)) and IDT (Figure 14 (c)) refinements.

The segmentations produced by SymRG (Figure 16) were noticeably poorer compared to

CCA and IDT. In particular, the results are characterised by under-segmentations (indicated

by solid circles) and missed segmentations - where object regions have been incorrectly set as
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Figure 15: Segmentation refinement using CCA and IDT [12]. Hot-points in red.

background (indicated by dotted circles). This suggests the necessity for post-segmentation

splitting and merging operations and explains the complexity in this regard of the segment-

and-carve baggage-segmentation approach of Song et al. [11] (which employs a total of 5 split-

ting and/or merging operations). Refining the segmentations in this way significantly expands

the input parameter space and hence the degree of user interaction. Accurate segmentations

consequently depend on careful parameter tuning and suffer from increased computational de-

mand. It is worth noting, however, that SymRG did capture several objects (or parts thereof)

which were missed by the DEI coarse segmentations (Figures 12) - notably, the cylindrical

structures in Figures 16 (a) (turquoise) and (c) (blue). Furthermore, the segmentations of

the regions corresponding to the hot-point regions 3 and 4 in Figure 15, were more accurately

segmented by SymRG compared to CCA (Figure 13 (a)).

Similarly to SymRG, FloodFill [1] (Figure 17) produced segmentations characterised by

ill-defined object boundaries, under-segmentations (indicated by solid circles) and missed

segmentations (indicated by dotted circles). The most evident shortcomings of FloodFill,

however, are the poorly-defined object boundaries. This is particularly apparent for the

handguns in Figures 17 (a) and (c) (compared to the equivalent CCA (Figure 13) and IDT

(Figure 14) segmentations). Similarly to SymRG, the FloodFill segmentation of test image

(a) captured objects which were missed by the DEI coarse segmentations (and hence the CCA

and IDT results). In general, the segmentations produced by SymRG and FloodFill were of

an inferior quality to the corresponding CCA and IDT segmentations.

Segmentation results without the application of metal artefact reduction are shown in

Figures 18 - 22. The discriminative power of the coarse DEI segmentations (Figure 18) de-

teriorated significantly when metal artefact reduction was not applied. As expected, CCA
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Figure 16: SymRG [2] results. Examples of under-

segmentations (solid circles) and incorrect back-

ground assignments (dotted circles) indicated.

Figure 17: FloodFill [1] results. Examples of under-

segmentations (solid circles) and incorrect back-

ground assignments (dotted circles) indicated.

Figure 18: Coarse DEI image segmentations without MAR pre-processing.

(Figure 19) and IDT (Figure 20) segmentations suffered as a result. CCA produced seg-

mentations characterised by a considerably higher number of under-segmentations (multiple

objects labelled as a single object) and background noise (compared to the corresponding

results with MAR - Figure 13). The results suggest that the high-frequency streaking arte-

facts result in the merging of nearby objects, making object spitting by simple connected

component analysis less effective. Although IDT (Figure 20) was able to successfully split

several fused objects which CCA could not (e.g. pliers and dumbbell in test image (a)), the

segmentations are similarly corrupted by background noise and exhibit an increase in the

number of under-segmentations.

SymRG (Figure 21) and FloodFill (Figure 22) showed a similar decline in performance

in the absence of MAR. In addition to several cases of under-segmentations and missed-

segmentations, similar to those produced by CCA and IDT, SymRG and FloodFill segmen-

tations are further characterised by several examples of over-segmentations (e.g. dumbbell in
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Figure 19: CCA results without MAR pre-processing. Figure 20: IDT [3] results without MAR pre-

processing.

Figures 21 and 22 (a) and handgun in Figures 21 and 22 (c)).

The processing times of each of the segmentation techniques when applied to the test

images with and without MAR pre-processing are shown in Figure 23. With the exception

of SymRG [2], all techniques exhibited an increase in processing time when metal artefact

reduction was not performed. The computational demand of SymRG is by nature dependent

only on the dimensions of the input image [2] and the resulting processing times were thus

consistent (∼ 165s) for the artefact-reduced and original volumes. CCA was the most efficient

of the four techniques when operating on the artefact-reduced images, with processing times

ranging from 94s to 155s. These times, however, increased by approximately 90% when MAR

was not performed, making it less efficient than SymRG. The processing times of FloodFill [1]

varied significantly from image-to-image (ranging from 249s to 548s for the artefact-reduced

images) and appear to be largely dependent on the complexity of the image. IDT [12] was, as

expected, the most computationally intensive and yielded consistently high processing times

(ranging from 352s to 1238s for the artefact-reduced volumes). Both IDT and FloodFill

exhibited significant increases in processing times when applied to the original volumes, with

times in excess of 20 minutes. Such high processing times detract from the practical usability

of these approaches (in their current states), particularly in the security-screening domain,

where the demands on low processing times are paramount.

The quantitative results, with and without metal artefact reduction, are illustrated in

Figures 24 - 27 and summarised in Tables 2 - 3. Figure 24 shows the total segmentation RFS

for the artefact-reduced test images computed according to Equation 12. CCA and IDT [12]
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Figure 21: SymRG [2] results without MAR pre-

processing.

Figure 22: FloodFill [1] results without MAR pre-

processing.

Figure 23: Segmentation processing times for test images (Figures 12 (a)-(d)) with and without MAR pre-

processing.

yielded significantly higher segmentation scores compared to SymRG [2] and FloodFill [1] for

all 30 test images. In particular, IDT produced on average the highest quality segmentations

(RFSS = 0.94), which may be attributed to both the high quality of the individual components

in each segmentation (as observed in the qualitative results) as well as the high accuracy in

the number of objects segmented in each test image (an average error of only 0.1 - Table

2). Figure 25 shows that IDT segmented the correct number of objects in 27/30 images and

the remaining 3 images (test images 11,23,24) each contained a discrepancy of only a single

object. Although CCA produced the incorrect number of objects in 15/30 test images (Figure

25), the discrepancies were low (≤ 2). Furthermore, the mean segmentation quality remained

high (RFSS = 0.89 - Table 2), indicating that the segmentation quality of the individual

objects in each image was high. SymRG and FloodFill performed significantly poorer with

mean scores of (RFSS = 0.51) and (RFSS = 0.57) respectively (Table 2) and the incorrect
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Method RFSS |NT −NS |

CCA 0.89± 0.05 0.53± 0.57

IDT [12] 0.94± 0.02 0.10± 0.31

SymRG [2] 0.51± 0.08 1.73± 1.14

FloodFill [1] 0.57± 0.11 1.37± 1.25

Table 2: Quantitative results of four segmentation approaches with MAR: total Random Forest Score (Equation

12) and error in number of objects segmented. Results averaged over 30 volumes containing known numbers

of objects.

Method RFSS |NT −NS |

CCA 0.58± 0.09 1.80± 1.13

IDT [12] 0.69± 0.09 1.13± 0.78

SymRG [2] 0.39± 0.17 2.93± 1.31

FloodFill [1] 0.41± 0.21 2.80± 2.33

Table 3: Quantitative results of four segmentation approaches without MAR pre-processing: total Random

Forest Score (Equation 12) and error in number of objects segmented. Results averaged over 30 volumes

containing known numbers of objects.

number of segmented objects in 26/30 images and 23/30 images respectively (Figure 25).

Figure 26 shows a decline in the segmentation quality for each method for all 30 images

when metal artefact reduction was not applied. Figure 27 additionally shows that the number

of over and/or under-segmented images also increased for all four methods (CCA = 27/30;

IDT = 24/30; SymRG = 30/30; FloodFill = 25/30). The decline in performance was fairly

consistent for all four techniques, with IDT again producing on average the highest quality

segmentations (RFSS = 0.69), followed by CCA (RFSS = 0.58), FloodFill (RFSS = 0.41)

and SymRG (RFSS = 0.39) (Table 3). This significant decline in performance, coupled with

the increase in processing time (Figure 23), demonstrates the detrimental effects that image

noise and artefacts have on the segmentation process and emphasises the importance of an

effective metal-artefact-reduction process.
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Figure 24: Overall segmentation quality scores for 30

artefact-reduced test images containing known num-

bers of objects.

Figure 25: Errors in numbers of objects segmented

for 30 artefact-reduced test images containing known

numbers of objects.

Figure 26: Overall RFS (Equation 12) without MAR

pre-processing.

Figure 27: Errors in numbers of objects segmented for

30 test images without MAR pre-processing.

6. Conclusion

We have presented a novel materials-based technique for the 3D segmentation of un-

known objects from low-resolution, dual-energy volumetric baggage-CT imagery. Within the

proposed approach, four novel contributions have been made: 1) a materials-based coarse

segmentation technique based on the Dual-Energy Index (DEI) [7]; 2) a random-forest-based

model for measuring the quality of individual object segments; 3) a random-forest-based model

for measuring the quality of entire segmentations and 4) a segmentation-refinement procedure

for splitting fused objects.

Initial coarse segmentations are generated using a characterisation of the chemical compo-

sition of an image using the DEI [7], simple thresholding operations and connected component

analysis. The quality of the individual components of the coarse segmentations is determined

using a novel random-forest-based evaluation metric (the Random Forest Score (RFS)), which

is trained to recognise high-quality, single-object segments. Segmented objects are represented
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using the 42D (Kohlberger) descriptor described in [39], which is shown to outperform three 3D

shape-based descriptors: 1) the 3D Zernike descriptor [59]; 2) the Histogram of Shape Index

(HSI) [60] and 3) a hybrid shape descriptor [10]. Preliminary experimentation has demon-

strated the superiority, in the current context, of the proposed RFS using the Kohlberger

descriptor over the related Automated QUality Assessment (AQUA) measure [12]. Based on

the RFS of a given coarse segmentation, low-quality individual object segments are subjected

to an object-partitioning operation which splits fused objects at automatically-detected re-

gions using a simple connected component analysis. A second novel segmentation-quality

measure is presented for quantifying the quality of full segmentations based on the RFS of

the constituent objects and the error in the number of objects segmented.

An experimental comparison between the proposed segmentation approach (denoted CCA)

and three state-of-the-art volumetric segmentation techniques (the Isoperimetric Distance

Tree (IDT) [3, 12, 67]; Symmetric Region Growing (SymRG) [2] and 3D flood-fill region

growing (FloodFill) [1]) has been performed. Qualitative performance analysis, using four

realistic, cluttered baggage scans, has demonstrated that IDT and CCA generate higher (vi-

sual) quality segmentations relative to SymRG and FloodFill. Although IDT is shown to

outperform CCA in partitioning fused objects in the DEI-generated coarse segmentations, it

is characterised by high processing times and is significantly outperformed by CCA in this

regard. Low-density, sheet-like objects (e.g. magazines) are shown to pose difficulties for

all four methods (an observation which has been made in the majority of related studies

[1, 11, 12]).

A quantitative analysis, using the proposed Random Forest Score (RFS) for image segmen-

tations and a set of volumes containing known numbers of objects, substantiates the obser-

vations made in the qualitative analysis. Particularly, IDT and CCA consistently outperform

SymRG and FloodFill in terms of segmentation quality and in terms of segmentation accuracy

(with reference to the number of objects segmented from each image). Finally, the impor-

tance of metal artefact reduction is demonstrated by the significant decline in performance

for all four segmentation techniques, across all evaluation metrics considered (qualitative and

quantitative), when MAR was not considered.

The observations made in this study indicate that the proposed CCA segmentation ap-

proach is well-suited to the task of volumetric image segmentation - particularly in the baggage

security-screening domain, where the demands for low processing times are paramount.

Throughout this study, we have highlighted several areas for future work. Due to the

28



sensitivity of security data and the related challenges in data gathering, a relatively limited

dataset has been used in this study (particularly in terms of the availability of ground-truth

information). An important direction for future work is thus the expansion of the current

dataset, including a rigorous documentation of the baggage contents, including geometric and

material properties. A case-by-case fine-tuning of the DEI thresholds used for coarse segmen-

tations (e.g. by DEI histogram analysis) is highlighted as an additional area for future work.

Finally, the incorporation of the proposed segmentation approach into a fully-automated 3D

object-classification technique will be evaluated.
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