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Abstract

In this paper, we investigate ways to learn efficiently from uncertain data us-
ing belief functions. In order to extract more knowledge from imperfect and
insufficient information and to improve classification accuracy, we propose a
supervised learning method composed of a feature selection procedure and a
two-step classification strategy. Using training information, the proposed fea-
ture selection procedure automatically determines the most informative feature
subset by minimizing an objective function. The proposed two-step classification
strategy further improves the decision-making accuracy by using complemen-
tary information obtained during the classification process. The performance of
the proposed method was evaluated on various synthetic and real datasets. A
comparison with other classification methods is also presented.

Keywords: Dempster-Shafer theory, evidence theory, belief functions,

uncertain data, feature selection, classification

1. Introduction

According to whether prior probabilities and class conditional densities are
needed, supervised learning methods can be divided into two main categories,

namely, parametric (model-based) and nonparametric (case-based) methods [1].
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Because they do not need any prior knowledge other than training samples, case-
based classifiers (e.g., K-nearest neighbor rule [2], multilayer perceptrons [3],
support vector machines [4] and decision trees [5]) are widely used in practice,
and have proved to very efficient. However, in the case of uncertain and im-
precise data, many samples may be corrupted with noise or located in highly
overlapping areas; consequently, it becomes difficult for these traditional meth-
ods to obtain satisfactory classification results.

Learning effectively with partial knowledge is drawing increasing attention in
statical pattern recognition. Various theories from the uncertainty management
community (e.g., fuzzy set theory [0l [7], possibility theory [8], rough set the-
ory [9] and imprecise probability theory [10]) have been used to build learning
methods dealing specifically with uncertain data. The theory of belief functions,
also known as Dempster-Shafer theory or Evidence theory, is an extension of
both probability theory and the set-membership approach [IT], [12]. It has been
shown to be a powerful framework for representing and reasoning with uncertain
and imprecise information. A growing number of applications of belief function
theory has been reported in unsupervised learning [I3] 14} [I5], ensemble learn-
ing [16], 17, 18], model parameter estimation [19, [20] and partially supervised
learning [211 22].

Apart from the publications mentioned above, the use of belief functions
in pattern recognition has been firstly focused on supervised learning methods.
In [23], an evidence-theoretic K-nearest neighbor classification (EK-NN) rule
was proposed. It provided a global treatment of imperfect knowledge regard-
ing training data, and was further optimized in [24]. In [25], a neural network
classifier based on belief functions was introduced as an adaptive version of the
EK-NN. Methods for building decision trees from imperfect data were presented
in [26, 27]. Regression methods using belief functions were proposed in [28], [29].
Using the notion of credal partition introduced in [I3], and in order to reflect
the imprecision degree of the classification, a belief-based K-nearest neighbor
(BK-NN) method was proposed by Liu et al. in [30]. To cope with the high

computational complexity of the nearest-neighbors strategy, a Credal Classifi-
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cation Rule (CCR) was further developed by Liu et al. in [31], as a simplified
version of the BK-NN. The BK-NN and CCR methods assign objects not only
to specific classes, but also to the disjunction of specific classes (meta-classes).
This strategy allows a reduction of misclassification rate, at the cost of leaving
the class of some objects unspecified. However, in many applications, a specific
decision has to be made.

In this paper, we explore two complementary ways to extract more useful

knowledge from the training data:

e It often happens that the dataset contains irrelevant or redundant features.
So as to efficiently learn from such imperfect training information, it is

essential to find the most informative feature subset;

e Additional knowledge can be gained from the testing dataset itself to help
reduce the possibility of misclassification. The “easy to classify” objects in
the testing dataset can provide complementary evidence to help determine

the specific class of the “hard to classify” objects.

To this end, a novel supervised learning method based on belief functions is
proposed in this paper. The proposed method is composed of a feature selection
procedure and a two-step classification strategy, both based on a specific mass
function construction method inspired by [32]. This method, called the “Demp-
ster+Yager” combination rule, uses features of Dempster’s rule, Yager’s rule [33]
and Shafer’s discounting procedure [I1] to achieve a better representation of un-
certainty and imprecision in the EK-NN classifier. Through minimizing a new
criterion based on belief functions, the proposed feature selection procedure
searches for informative feature subsets that yield high classification accuracy
and small overlap between classes. After feature selection, the proposed two-step
classification strategy uses test samples that are easy to classify, as additional
evidence to help classifying test samples lying in highly overlapping areas of the
feature space.

The rest of this paper is organized as follows. The background on belief

functions and the traditional EK-NN classification rule is recalled in the next
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section. The proposed feature selection procedure and two-step classification
strategy are discussed in Section [8] In Section[d the proposed method is tested
on different synthetic and real datasets, and a comparison with other methods

is presented. Finally, conclusions are given in Section

2. Background

2.1. Belief functions

The theory of belief functions, also known as Dempster-Shafer or Evidence
theory, was introduced by Dempster and Shafer [34], [IT] and further elaborated
by Smets [35, [12]. As a generalization of probability theory and set-membership
approaches, the theory of belief functions has proved to be an effective theoret-
ical framework for reasoning with uncertain and imprecise information. In this
section, only the basic definitions will be recalled.

Let X be a variable taking values in the frame of discernment Q = {w1,- -+ ,wc}-
Uncertain and imprecision knowledge about the actual value of X can be rep-
resented by a mass function, defined as a mapping m from 2 to [0,1] such that
m(0) = 0 and

> m(A) =1. (1)

ACQ
The subsets A of € such that m(A) > 0 are called the focal elements of mass
function m. If all focal elements are singletons, m is said to be Bayesian; it is
then equivalent to a probability distribution. A mass function m with only one
focal element is said to be categorical and is equivalent to a set.
For any subset A C Q, the probability that the evidence supports A can be
defined as

Bel(A) = Y m(B), (2)

BCA

while the probability that the evidence does not contradict A is
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Functions Bel and Pl are called, respectively, the belief function and the plau-
sibility function associated to m. Belief and plausibility functions are in one-
to-one correspondence with mass functions. They can be regarded as providing
lower and upper bounds for the degree of belief that can be attached to each
subset of €.

Two mass functions m; and ms derived from independent items of evidence
can be combined by Dempster’s rule [I1] to obtain a new mass function m; ®ma,

defined as

(mem)(A) = =5 3 m(B)ma(C), (1
BNC=A

for all nonempty A C €, where Q = ) 5oy mi1(B)ma(C) is the degree of
conflict between my and ma.

When the degree of conflict () between m; and ms is large, the combination
result obtained by Dempster’s rule may become unreliable. To cope with this
problem, Yager [33] proposed to transfer the conflicting mass to the frame of

discernment (2, yielding the following combined mass function,

> pno=ami(B)ma(C) ifA#0,ACQ;
m(A) = < my (Q)ma(Q) + X proep i (B)ma(C) i A= (5)
0, if A=0.

A mass function m can be transformed into a probability function for decision-
making. In Smet’s Transferable Belief Model [12), B5], the pignistic probability
transformation transforms a mass function into the following probability distri-

bution:

BetP(wg) = Y mid) (6)

Al
ACQ:wg €A

for all wy € €.

2.2. Evidential K-NN classifier
In [23], an evidence-theoretic K-nearest neighbor classification (EK-NN) rule
was proposed. In this rule, each neighbor of a sample to be classified is treated

as an item of evidence that supports certain hypotheses regarding the class label
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of this sample. The strength of this evidence decreases with the distance to the
test sample. Evidence from the K nearest neighbors is pooled using Dempster’s
combination rule to make the final decision.

Let {(X;,Y;),i = 1,--- N} be a collection of N training examples, in
which X; = [x1, -, %y,] is the ith training sample with m features and Y; €
{w1,- -+ ,we} is the corresponding class label. Given an input test sample X*,

the EK-NN classifier uses the following steps to determine its class label:

e Let X; be one of the K nearest neighbors of X* with class label Y; = w,.
Then the mass function induced by X, which supports the assertion that

X' also belongs to w, is

my,;({wg}) = anp(_'qu?,j)v (7a)
my () =1-— aexp(—’yqdf’j), (7h)

where d, ; is the distance between X; and X*. According to [23], param-
eter o can be heuristically set as 0.95, and v, > 0 (¢ € {1,---,¢}) can
be determined separately for each class as 1/d3, where d, is the mean
distance between two training samples belonging to class w,. The value

of o and 7, > 0 can also be optimized using the training data [24];

e Dempster’s rule is then used to combine all neighbors’ mass functions.

Test sample X! is then assigned to the class with the maximum pignistic

probability @

Besides Dempster’s rule, some other methods were also proposed in recent
publications to combine neighbors’ mass functions. For instance, in the eviden-
tial classifier method [32], a new combination rule was developed specifically for

outlier detection.

3. Proposed Method

Both the feature selection procedure and the two-step classification strategy

proposed in this paper need proper handling of the uncertainty and imprecision
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in the data. To this end, a simple and specific mass function construction pro-
cedure will first be introduced in Section [3.1] The proposed feature selection

procedure and two-step classification strategy will then be presented, respec-

tively, in Sections [3.2] and

8.1. Construction of mass functions

We developed a specific combination rule to compute a mass function about
the class label of a test sample, based on the evidence of its K-nearest neighbors.
The proposed hybrid combination rule shares some features with Dempster’s
rule, Yager’s rule [33] and Shafer’s discounting procedure [I1]. It will be referred
to as the ”Dempster+ Yager” rule for short. In this rule, only singletons and
the whole frame of discernment are considered as focal elements. Hence, all
the imprecision will be succinctly represented by masses assigned to the whole
frame of discernment.

As before, let {(X;,Y;),i = 1,---, N} be the training data. For an input
instance X; under test, the frame of discernment is Q@ = {w1,- -+ ,w.}. Using the
Dempster+ Yager rule, the determination of X;’s mass function can be described

as follows.

Step 1 As in the classical E-KNN method [23], the K-nearest neighbors of
X; in the training set according to the Euclidean distance measure are
first found. Let X; be the jth nearest neighbor of X; with Y; = w,.
The evidence regarding X;’s class label provided by X; is quantified as
described by (7).

Step 2 Nearest neighbors with the same class label w, are then grouped in a
set 'y (¢ =1,...,¢). As the mass functions in the same set I'; have the
same focal elements, there is no conflict between them. So, regardless of
outliers (a particular situation that is not considered in our approach),
Dempster’s rule is appropriate to combine the pieces of evidences in I'y.

As a result, the evidence provided by nonempty I'y is represented as a
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simple mass function,
Fq
my " ({wg}) = 1= [T mes(), (8a)
j€T,

my (Q) = [] mes(9). (8b)

jer,

If I'y is empty, then mf ? is defined as the vacuous mass function defined

by qu(Q) =1;

Step 3 When most neighbors of a testing instance X; belong to a specific class

(e.g., wq), the degree belief that X, also belongs to this class should be
large. Consequently, we can postulate that the reliability of the evidence
provided by each set Ty is increasing with its cardinality |T';|. The mass

functions obtained in last step should thus be further discounted as

i ) = (L) il ) (99)

‘Fmar|
Iy _ |Fq| ! Ty
dmt (Q) =1- |F | my (wq)a (gb)
where |4 is the maximum cardinality within {|T'1|,-- -, |T¢|}, and n >

0 is a coefficient that controls the discounting level. A larger value of
7 results in stronger discounting. In particular, when n = 0, there is
no discounting at all. The value of 1 can be determined by minimizing
the leave-one-out cross-validation error rate. Generally, good results are

obtained if we take 7 € [0, 2].

Step 4 After the discounting procedure described in the previous step, the

mass functions at hand may still be partially conflicting, especially when
there are similar numbers of nearest neighbors with different class labels.
Since Yager’s rule can have a better behavior that Dempster’s rule when
combining highly conflicting evidences [36, [33], it is chosen at this step to
fuse the probably conflicting mass functions in sets I'; to I'. obtained in

the previous step. As the result, the global mass function regarding the
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class label of object X; is finally given by

me({wg}) = dm;"(wg)  [[  dmi*(Q), a=1,....c, (10a)
he{l,...c}\q

C

me(Q) =13 [dm;*({ws}) ] dmi*(@)|,  (10b)

q=1 he{l,...c}\q
The focal elements of m; are singletons and the whole frame of discern-

ment. Consequently, the credibility and plausibility criteria (i.e., Bel; and
Pl;) will lead to the same hypotheses about X;.

The mass function construction procedure discussed above is summarized as
a flowchart in Figure |1} It combines the advantages of Dempster’s and Yager’s
rules. Hence, in classification applications, this specific procedure allows for
a more robust representation of uncertainty than that obtained using any of
the two classical combination rules. To better illustrate the performance of the

proposed Dempster+ Yager rule, two examples are given below.

Example 1. To simulate a situation with conflicting pieces of evidence, we let
the number of nearest neighbors be K = 3, and we assume that the test sample
X, lies at the same distance to all the three nearest neighbors. The first two
neighbors of X; belong to class wy, and the third one belongs to class ws. We
assume that Q = {wi,ws} and n = 2. The three mass functions and the result
of their combination by Dempster’s rule, Yager’s rule and our Dempster+ Yager
rule are shown in Table [1 In this case, the Dempster+Yager rule is more
conservative than Dempster’s rule (it assigns a larger mass to ), while being

more specific than Yager’s rule.

Example 2. Table |4 illustrates an even more conflicting situation, in which
two neighbors belong to wi and two neighbors belong to we. We still assume that
the test sample X, is at the same distance to all nearest neighbors, and we take
n = 2. In this case, the Dempster+ Yager rule yields the same result as Yager’s

rule. Both rules assign a large mass to the whole frame of discernment.
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8.2. Feature selection based on belief functions

In pattern recognition applications, the data may contain irrelevant or re-
dundant features. Feature selection techniques are intended to cope with this
issue. They aim to select a subset of features that can facilitate data inter-
pretation while reducing storage requirements and improving prediction perfor-
mance [37]. Filter, wrapper and embedded methods are three main categories of
algorithms that are widely used for feature selection [38]. Filter methods such
as described in [39, [40] [41], which use variable ranking as the principal selec-
tion mechanism, are simple and scalable. However, they may produce a sub-
optimal subset because they do not take into account the correlation between
features [37]. In contrast, wrapper and embedded methods, such as sequential
selection algorithms [42] [43] and direct objective optimization methods [44], use
the prediction accuracy of given classifiers as the criterion for selecting feature
subset. They are more likely to find optimal feature subsets than filter methods.
However, up to now, none of the available wrapper or embedded methods were
designed to work for imperfect data with high uncertainty and/or imprecision.
Such a feature selection procedure, based on belief functions, is introduced in
this section.

The proposed method tackles the feature selection issue from a novel per-

spective. It aims to meet the following three requirements:

1. The selected features should be informative regarding the class labels, i.e.,
they should not yield lower classification accuracy than the complete set
of features;

2. The selected feature subset should have the ability to reduce the uncer-
tainty of the data, i.e., it should result in a small overlap between different
classes in the feature space;

3. The selected features should be as sparse as possible. A feature subset
with smaller cardinality implies lower storage requirement and lower risk

of overfitting.

The above three requirements can be met simultaneously by minimizing an

10



200

205

210

objective function derived from the training samples. In order to present this
objective function clearly, a simple form of weighted Euclidean distance should
be discussed at first. Depending on the values of a binary coefficient vector, this
weighted Euclidean distance will generate different sets of K nearest neighbors
for a sample under test. The weighted distance between a test sample X* and

a training sample X; with m features is defined as

where df,i (1 < p < m) is the difference between the values of the pth compo-
nents of the two feature vectors and A, € {0,1} is the corresponding coefficient.
Obviously, the feature subset can be selected by changing the values of the co-
efficient vector. As the result, the pth component of the feature vector will be
selected when A, = 1 and it will be eliminated when A\, = 0.

Based on the weighted Euclidean distance measure (L1f), and using the mass
function construction procedure introduced in Section we can propose an
objective function satisfying the above three requirements for a qualified feature
subset. Let {(X;,Y:),i =1, -+, N} be a training set. The proposed three-term
objective function is

LSS 2 P =

obj =~ ; ; (Pli(wq) = tiq)* + ; mi() + 57);[1 —exp(—pAy)]. (12)
In , the first term is a squared error corresponding to the first requirement
discussed above, Pl; is the plausibility function of training sample X; and ¢; ,
is the gth component of a c-dimensional binary vector t; such that ¢; ;, = 1 if
Y; = wqg and t; ¢ = 0 otherwise. The second term is the average mass assigned to
the whole frame of discernment. It penalizes feature subsets that result in high
uncertainty and imprecision, thus allowing us to meet the second requirement.
The last term, which is an approximation of the lp-norm as used in[45], forces
the selected feature subset to be sparse. Here, p and § are two hyper-parameters
in [0, 1], which influence, respectively, the number of uncertainty samples and

the sparseness of resulting feature subset. Their values should be tuned to

11



maximize the classification accuracy. Coefficient u is kept constant; according
to [45], it is often set to 5.
Using —, the objective function can be written as

2

obj:%zz l1—tig— Y B +§Z<1— 41B,§>
=1 q

i=1 q=1 h#q

+6 ) [1—exp(—pp)], (13)

p=1
with
Bi=4A, [] @-4) (14)
se{l,...c}\q

and

Afz = <|1_|3;| ) 1-— H [1— avexp(—vq - dij)] ) (15)

Froc] i
a5 where d; ; is the distance between the training sample X; and its jth nearest
neighbor computed using ,with coefficients {A1, -+, .} to be optimized.
During the optimization process, the K nearest neighbors for each training
sample (X;,Y;) are determined by the weighted distance measure with the
current weights {A1,---,A.}. The mass functions m; are computed using the
20 construction procedure presented in Section [3.1] followed by the calculation of
the plausibility value PI; using . Mass and plausibility values change with
binary coefficients {1, - - - , A}, which finally drives the decrease of the objective
function —.
As a global optimization method, the integer genetic algorithm [46], 47] can
25 properly solve the integer optimization problem without gradient calculation.
Hence, it is chosen in this paper to optimize {A1, -+, A}, so as to find a good

feature subset.

8.8. Two-step classification

After selecting features using the procedure described in the previous section,

20 a two-step classification strategy allows us to classify unknown test samples

12
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based on belief functions. For a test dataset T = {S;,j = 1,...,n:}, this

two-step classification strategy can be described as follows:

1.

Using the Dempster+Yager combination rule, the mass function m; of
each test sample S; is first derived from training pairs (X,,Y;), i =
1,...,N. Based on mj, the collection T is divided into two groups T!
and T2, where T' = {S; : maxacom;(A) # m;(Q)} and T? = {5, :
maxacom;(A) =m;(Q)};

Then, test samples in T' are classified into the classes with highest masses.
For instance, if m;({w1}) > m;({w,}) for all ¢ # 1, we label S; as wy;
After classifying the test samples in T!, we add these labeled test samples
to the training set {(X;,Y;),i = 1,..., N}, and therefore obtain a larger
training set {(X/,Y/),i=1,..., N'}. The center (or prototype) p; of each
class w; is then defined by averaging the training samples corresponding

to this class,

1
pi=— > X, (16)

where ¢; is the cardinality of the set {X]|Y/ = w;} of training patterns in

class wj, and j =1,...,c.

. To each test pattern in group T? (i.e., uncertain samples with the largest

mass of belief on §2), and taking into account the correlations of the given
dataset, the Mahalanobis distance measure is used to compute the dis-
tances of this test pattern to each class center. Let Sy be a test sample

within T2, the distance from it to center p; is

where S§ and p{ are, respectively, the gth dimension of Sy and p;, and &7
is the standard deviation of the gth feature among training samples be-
longing to class w;. Based on the distances {md(So, p1),--- ,md(So,p1)},

Sp is finally allocated to the nearest class.

13
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Using the procedure discussed above, test samples that are easy to classify
provide additional evidence to help classifying highly uncertainty test samples.
As will be shown in the next section, this strategy enhances the classification
accuracy of the EK-NN rule, especially in highly overlapping regions of the

feature space.

4. Experimental Results

The presented experiments are composed of two parts. In the first part, the
feasibility of the proposed feature selection procedure was evaluated on two syn-
thetic datasets. In each synthetic dataset, the numbers of relevant, redundant
and irrelevant features were varied to assess the robustness of the method under
different situations. In addition, to show the validity of the two-step classifica-
tion strategy, we compared it in detail with the EK-NN classifier [23, 24, [I] on
another synthetic dataset.

In the second part, we first compared the performance of the proposed fea-
ture selection procedure with some classical wrapper selection methods on seven
real datasets. Then, on the same real datasets, the classification accuracy of the
proposed two-step classification strategy was compared with other well-known
classifiers after selecting features using different methods. Finally, we tried to
determine whether the proposed feature selection procedure can help to improve
classification performance of other classifiers. The classification performance of
the proposed two-step procedure was further compared with other methods us-

ing the same feature subsets selected by the proposed procedure.

4.1. Performance on synthetic datasets

4.1.1. Feature selection
The feasibility of the proposed feature selection procedure was assessed on
two different kinds of synthetic datasets. The generating mechanisms for the

two different datasets are described below.

14



275

280

285

290

295

Synthetic Data 1: These data were generated using the procedure described
in [48]. The feature space contains n, informative features uniformly
distributed between -1 and +1. The output label for a given sample is
defined as

wy if max;(z;) > ol 1,
y= (18)
wo otherwise,

were x; is the ith feature. Besides the relevant features, there are also n;
irrelevant features uniformly distributed between -1 and +1, without any
relation with the class label, and n. redundant features copied from the
relevant features. The optimal discriminating surface for this synthetic

data is highly non-linear.

Synthetic Data 2: To generate these data, two informative features were first
obtained from four different two-dimensional normal distributions, N (mq, I)
and N(mg,I) for class 1; N(ms,I) and N(my,I) for class 2. Here,
my = [3,3], mg = [6,6], mg = [3,6] and my4 = [6,3]. In addition, there are
n; irrelevant features, all randomly generated from the normal distribution

N(4.5,2), and n. redundant features copied from relevant features.

For both synthetic datasets, we set n,. = 2, n; € {6,16,26,36,46} and n, = 2
to simulate five different situations. In each case, we generated 150 training in-
stances, and used the proposed procedure to search for the most informative
feature subset. Then, 150 test instances were generated. We used the EK-NN
classifier to classify these test instances with all features, and simultaneously
used the proposed two-step classification strategy to classify them with all fea-
tures and with the selected feature subset. In the five situations, we always set
n=20.5 p=0.5,0=0.05and K =5. The results are shown in Tables |3| and
[l For both datasets, the selection procedure always found the two relevant fea-
tures. The two-step classification strategy resulted in higher accuracy than the
EK-NN classifier. The feature selection procedure brought further improvement
of classification performance, especially when the dimension of the initial fea-

ture space was large. These results show the feasibility of the proposed feature

15
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selection procedure.

4.1.2. Two-step classification

In addition to the previous experiment, the performance of the proposed two-
step classification strategy was tested solely on another synthetic dataset con-
structed from four normal distributions with means m; = [3,3], ma = [3,6.5],
ms = [6.5,3], m4 = [6.5,6.5] and variance matrix ¥ = 2I. Instances generated
from N(mq,Y) and N(maz,X) with equal probabilities were labeled as wy, while
other instances generated from N (ms, ) and N (my, X) with equal probabilities
were labeled as wy. Classes wy and wy had the same number of instances, and
the sizes of training and testing datasets were both 500.

The classification results of the two-step classification strategy were com-
pared with those of the EK-NN classifier with K = 5 and n = 0.5. Figure (a)
shows the training samples and the corresponding test samples. Figures b)
and (c) display the credal partitions (i.e., the mass functions for each of the test
samples [I3] [T4]) obtained, respectively, using the EK-NN classifier and the
proposed method. The blue, green and black points represent instances with
highest mass function on {ws }, {w2} and €, respectively. When comparing Fig-
ures [2f(b)-(c) with Figure [2{(a), we can see that the proposed method results in
more imprecise mass functions for the test samples in overlapping regions. This
is mainly because the proposed Dempster+Yager rule has better ability than
Dempster’s rule to deal with highly imprecise instances (such as the boundary
samples shown in Figure [2{c)).

Figures d)-(f) show the classification results obtained, respectively, by
EK-NN; the Dempster+ Yager rule and the two-step classification strategy; the
magenta stars represent misclassified instances. These results show that the
proposed Dempster+Yager combination rule yields higher classification accu-
racy than EK-NN on these imprecise data and the two-step classification strat-
egy further improves the performance. The calculated error rates for EK-NN,
Dempster+Yager combination rule and two-step classification strategy are, re-

spectively, 9.80%, 8.80% and 7.80%.

16
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In addition, we also estimated the influence of parameter n on our two-
step classification procedure, using this synthetic dataset. The value of n was
chosen in{0,0.5,1,1.5,2}, K was set to 5, and we evaluated the performance
50 times with each 7. The average misclassification error rates are reported
in Table As can be seen, the value of 1 had some limited influence on the
classification accuracy, although the procedure appears not to be very sensitive

to this coefficient. The best performance was obtained with n = 0.5.

4.2. Performance on real datasets

In this section, the proposed feature selection procedure and two-step clas-
sification strategy are compared with some classical wrapper selection methods
and usual classifiers. The comparison was performed on seven real datasets. Six
of them were downloaded from the UCI Machine Learning Repository [49], and
one (the lung cancer dataset) was obtained from real patientsﬂ Some charac-
teristics of these datasets are summarized in Table [] As in [31], “in the yeast
dataset, three classes named as CYT, NUC and ME3 were selected, since these

three classes are close and difficult to discriminate”.

4.2.1. Feature selection performance

The proposed feature selection procedure was compared with three classical
wrapper methods: sequential forward selection (SFS), sequential backward se-
lection (SBS) and sequential floating forward selection (SFFS) [42] [38]. We used
ten-fold cross validation for the six UCI datasets and the leave-one-out strategy
for the lung cancer data (since it has only 25 instances). For all datasets, we
iteratively chose one subset of the data as the test set, and treated the other
subsets of data as training samples. At each iteration, we used SFS, SBS, SFFS
and the proposed procedure to select features from the training data, and then
executed the proposed two-step classification strategy to classify test instances

with the selected feature subsets. The average misclassification rates obtained

IThis lung tumor dataset was provided by laboratory LITIS and Centre Henri Becquerel,
76038 Rouen, France.
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by different methods were calculated. In addition, based on feature frequency
statistics, the robustness of selected feature subsets was evaluated using the
method introduced in [50].

The misclassification rate, robustness and average feature subset size for all
methods are summarized in Table [7] As can be seen, the proposed feature
selection procedure performed uniformly well on all datasets. It resulted in
more robust feature subsets than the other three classical wrapper methods,

and simultaneously yielded higher classification accuracy.

4.2.2. Classification performance

Using the same seven real datasets as in the previous experiment, the classi-
fication performance of the proposed two-step classification was compared with
that of six other classifiers: Artificial Neural Networks (ANN) [51], Classifi-
cation And Regression Tree (CART) [5], Support Vector Machine (SVM) [4],
EK-NN, Belief-based K-Nearest neighbor classifier (BK-NN) [30] and CCR [31].
The first three methods are classical classifiers, while the last three are either
well-known or recent evidential classifiers based on belief functions. We can re-
mark that, in BK-NN and CCR, the classification performance is assessed using
two measures: the error rate R, = (N./T') x 100%, where N, is the number of
misclassified samples assigned to wrong meta-classes, and T is the number of
test samples; and the imprecision rate Ry = (N;/T) x 100%, where N7 is the
number of test samples with highest mass functions on non-singletons (i.e., on
meta-classes). The BK-NN and CCR methods do not make any direct decision
for highly imprecise samples, but transfer them to the meta-classes. Hence, the
error rate R, of BK-NN and CCR is decreased.

Since the proposed method includes feature selection, a classical wrapper
selection method, sequential floating forward selection (SFFS), was used with
all the other classifiers, to make the classification results comparable. As in the
previous experiment, we used ten-fold cross-validation for the six UCI datasets
and leave-one-out for the lung cancer data. The average misclassification rates

obtained by different classifiers are reported in Table As can be seen, the
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proposed method has higher classification accuracy than those of ANN, CART,
SVM and EK-NN on all datasets, especially on the lung cancer data. BK-NN
and CCR resulted in the lowest error rate on the Seeds and Wine data. However,
due to the fact that a nonspecific decision has been made for uncertain objects,
they also have large imprecision rates. Therefore, we can conclude that the

proposed classification method performed well on these real datasets.

4.2.3. Generality of the proposed method

To evaluate the generality of the proposed feature selection method, we tried
to determine whether feature subsets selected by it can improve the classification
performance of other classifiers. To this end, the above classifiers were used
again to classify the same real datasets, using all the features and feature subsets
selected by the proposed method. We used the same protocol as in the previous
experiment (ten-fold cross validation for the six UCI datasets and leave-one-
our for the cancer data). The average classification error rates are reported in
Table[0] In this experiment, a selected feature subset was regarded as feasible
for a testing classifier, if it results in no less classification accuracy than the
whole set of features. The notations to show whether selected feature subsets
are feasible for given classifiers are also presented in Table [0

Based on obtained results, we can see that the feature subsets selected by the
proposed method were feasible for testing classifiers in most cases. Especially,
on the Iris and Lung Cancer data, the selected feature subsets resulted in higher
accuracy for all classifiers; on the WDBC and Parkinsons data, they were not
feasible only for ANN. To sum up, among the 49 classifier-dataset configurations,
the proposed feature selection procedure failed eight times, including three times
for ANN, twice for CART and CCR, and once for EK-NN. These results show
that the proposed feature selection procedure is, in some sense, general as it
can be used with other classifiers. However, it works better if it is used for
the proposed two-step classification (it always resulted in large improvement of
classification accuracy), and other evidential classifiers based on belief functions

and K-nearest neighbor strategy (such as EK-NN and BK-NN). As shown in
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Table[J] the proposed two-step classification resulted in the lowest classification
error on most datasets using the selected feature subsets.

Since the proposed feature selection procedure seems to be applicable to
other classifiers, using the same feature subsets selected by it, we further com-
pared the classification performance of the proposed two-step classification with
that of other classifiers. In order to make the comparison more comprehensive,
we used two-fold cross-validation for the six UCI datasets, so as to simulate a
situation in which there are more test data but less training data. The compar-
ison was executed 200 times. The average error rates for the different classifiers
are reported in Table [I0] As can be seen, all classifiers performed poorly on
the Yeast data. This dataset is actually very difficult to classify. The BK-NN
and CCR methods yielded lower error rates than did our method on these data.
However, due to the fact that nonspecific decisions can be made for uncertain
objects, they also yielded large imprecision rates. Similar results can be found
on the Iris and Seeds data when comparing BK-NN with our method. On the
WDBC and Parkinsons data, EK-NN and the proposed two-step classification
had similar performance. On the Lung Cancer data, both SVM and our two-step
classification lead to perfect prediction with the selected feature subset.

In summary, it appears from these results that the proposed two-step clas-
sification generally outperformed the other classifiers on the real datasets con-
sidered in these experiments. The proposed feature selection procedure has also
been found to yield better results when used jointly with the proposed two-step

classification strategy.

5. Conclusions

In this paper, we addressed the problem of learning effectively from insuffi-
cient and uncertain data. The contribution of this paper is threefold. First, we
proposed a variant of the EK-NN method based on a hybrid Dempster+ Yager
rule, which transfers part of the conflicting mass to the frame of discernment.

This new mass construction method results in less specific mass functions than
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those obtained using the orignal EK-NN method introduced in [23]. The second
contribution is a feature selection method that finds informative feature subsets
by minimizing a special objective function using mixed integer genetic algo-
rithm. This objective function is designed to minimize the imprecision of the
mass functions, so as to obtain feature subspaces that maximize the separation
between classes. Finally, the third contribution is a two-step classification strat-
egy, which was shown to further improve classification accuracy by using already
classified objects as additional pieces of evidence. These three improvements of
the EK-NN method were assessed separately and jointly using several synthetic
and real datasets. The proposed procedures were shown to have excellent per-
formance as compared to other state-of-art feature selection and classification

algorithms.
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Table 1: Combination result with different rules in Example

#1 #2 #3 Dempster’s rule Yager’s rule Dempster+Yager rule
m({w.}) 08 0.8 0 0.8276 0.1920 0.7680
m{w}) O 0 0.8 0.1379 0.0320 0.0080
m(Q) 0.2 0.2 0.2 0.0345 0.7760 0.2240

Table 2: Combination result with different rules in Example

#1 #2 #3 #4 Dempster’s rule Yager’s rule Dempster+Yager rule
m({w.}) 0.8 0.8 0 0 0.4898 0.0384 0.0384
m{w.}) O 0 0.8 0.8 0.4898 0.0384 0.0384
m(Q) 0.2 0.2 0.2 0.2 0.0204 0.9232 0.9232

Table 3: Cardinality of selected feature subsets for synthetic data 1, and comparison of clas-
sification error (in %) between selected feature subset (with fs) and all features (without

fs). Here n,, ne and n; represent the number of relevant, redundant and irrelevant features,

respectively.
n, ne n; subset cardinality =~ EK-NN error Vt\‘llivt(;;:iﬁscIassmcatl‘?v?;r;sr
2 2 6 2 14.67 12.67 2.67
2 2 16 2 17.33 12.00 1.33
2 2 26 2 23.33 18.67 4.00
2 2 36 2 28.67 26.67 5.33
2 2 46 2 29.33 23.33 4.67

Table 4: Cardinality of selected feature subsets for synthetic data 2, and comparison of clas-
sification error (in %) between selected feature subset (with fs) and all features (without
fs). Here nr, n. and n; represent the number of relevant, redundant and irrelevant features,

respectively. The number of relevant features here is two (i.e., n, = 2).

two-step classification error

ne n; subset cardinality EK-NN error without fs with fs
2 6 2 21.33 12.00 8.67
2 16 2 34.67 26.00 14.67
2 26 2 31.33 27.33 16.00
2 36 2 52.67 37.33 11.33
2 46 2 50.00 39.33 8.00
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Table 5: Influence of parameter n on the proposed method.

n

0

0.5

1 15

2

error rate (%)

11.03

10.94

11.26

11.27

11.27

Table 6: Briefly description of the seven real datasets used in our experiments.

data set number of classes number of features  number of instances
Iris 3 4 150
Seeds 3 7 210
Wine 3 13 178
Yeast 3 8 1055
WDBC 2 30 569
Parkinsons 2 22 195

Lung Cancer 2 52 25

Table 7: Comparison of the proposed feature selection method with classical wrapper methods

on seven real datasets.

The proposed two-step classification was used to obtain average

misclassify ratio. The robustness of selected feature subset is evaluated by the way proposed

in [B0J.
Iris Seeds
Error(%) |Robustness(%)| Subset Size Error(%) |Robustness(%)| Subset Size
All 2.67 n/a 4 7.62 n/a 7
SFS 4.67 54.55 1 11.90 57.97 2
SBS 5.33 21.05 2 10.95 23.88 3
SFFS 5.33 21.62 3 5.24 54.93 2
EFS” 2.00 100 3 4.76 81.18 3
Wine Yeast
Error(%) |Robustness(%)| Subset Size Error(%) |Robustness(%)| Subset Size
All 13.04 n/a 13 38.87 nla 8
SFS 30.50 75 1 61.99 100 1
SBS 6.24 42.47 5 48.35 100 1
SFFS 7.29 57.58 4 36.21 40 5
EFS” 5.13 91.89 3 32.51 100 2
WDBC Parkinsons
Error(%) |Robustness(%)| Subset Size Error(%) |Robustness(%)| Subset Size
All 7.20 n/a 30 13.37 nla 22
SFS 14.44 80 1 15.82 33.33 1
SBS 19.67 22.22 2 19.03 23.91 2
SFFS 9.87 25 4 13.79 43.65 3
EFS” 5.80 92.37 3 8.63 100 3
Lung Cancer*
Error(%) |Robustness(%)| Subset Size
All 32.00 n/a 52
SFS 16.00 78.64 2
SBS 36.00 32.76 9
SFFS 28.00 94.27 2
EFS” 0 97.92 4




Table 8: Misclassification rates (in %) of the proposed method and six other classifiers with se-
quential floating forward feature selection (SFFS). For BK-NN and CCR, R and R; represent,

respectively, the error and imprecision rates.

Iris Seeds Wine Yeast WDBC | Parkinson | Lung Cancer*
ANN 8.00 7.62 9.64 32.57 9.15 9.63 16.00
CART 8.00 7.14 9.09 37.55 10.04 11.21 16.00
S SVM 6.00 7.14 6.83 36.14 8.28 13.26 16.00
= . EK-NN 5.33 6.67 6.18 35.07 9.70 16.39 24.00
F BK-NN 4.00 2.38 6.74 16.31 7.22 9.18 24.00
S| (Re, Ry) 4.67 11.90 5.13 40.84 8.44 13.37 0
CCR 4.00 381 3.99 19.53 5.99 16.42 24.00
(Re, Ry) 4.67 18.57 15.33 36.11 15.83 12.26 4.00
our method 2.00 4.76 5.13 32,51 5.80 8.63 0
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Table 9: Evaluating the feasibility of proposed feature selection procedure (EFS) for different

classifiers. The classification error rate obtained by all features is compared with that obtained

by selected feature subsets.

Iris Seeds
err without fs(%) | err with fs(%) |EFS feasibility | err without fs(%) | err with fs(%) EFS feasibility
ANN 6.00 5.33 N 476 476 N
CART 7.33 7.33 N 7.14 7.62 X
SVM 6.00 4.67 N 6.19 5.24 v
EK-NN 467 4.00 N 10.00 5.71 v
BK-NN| (2.67,5.33) | (2.00,4.67) N (4.76,13.33) | (3.33,10.00) N
CCR | (4.67,2.00) | (2.67,3.33) N (6.67,8.10) (10.48,6.19) X
two-step 2.67 2.00 N 7.62 4.76 N
Wine Yeast
err without fs(%) | err with fs(%) |EFS feasibility | err without fs(%) | err with fs(%) EFS feasibility
ANN 3.34 6.18 X 36.42 33.84 vV
CART 9.52 6.71 v 36.32 36.78 X
SVM 12.68 5.60 v 34.33 32.71 Vv
EK-NN 25.75 4.45 v 36.02 37.05 X
BK-NN | (26.30,17.61) | (2.19,6.22) v (15.71,42.09) | (16.95,40.77) Vv
CCR (3.47,0) (3.93,5.07) X (21.68,32.29) | (31.66,8.82) v
two-step 10.15 3.41 N 37.34 33.08 v
WDBC Parkinsons
err without fs(%) | err with fs(%) |EFS feasibility | err without fs(%) | err with fs(%) | EFS feasibility
ANN 475 6.32 X 11.27 12.35 X
CART 7.90 7.56 v 15.07 11.82 Vv
SVM 10.03 6.33 v 19.54 11.38 Vv
EK-NN 6.50 5.98 v 14.37 10.69 Vv
BK-NN | (10.70,20.22) | (3.69,7.73) v (17.88,18.95) | (5.58,15.35) v
CCR | (8.09,1.40) | (4.19,15.01) v (22.15,0) (17.49,8.58) Vv
two-step 7.01 5.28 v 12.85 9.11 Vv
Lung Cancer*
err without fs(%) | err with fs(%) |EFS feasibility
ANN 32.00 8.00 v
CART 24.00 12.00 M
SVM 24.00 0 v
EK-NN 28.00 4.00 v
BK-NN | (50.00,28.00) |  (4.00,0) v
CCR | (16.00,12.00) | (4.00,20.00) v
two-step 32.00 0 v
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Table 10: Classification error rates of different methods using the same feature subsets selected

by the proposed selection procedure.

Iris Seeds Wine Yeast WDBC | Parkinsons | Lung Cancer*

ANN 6.23 8.62 7.07 35.09 6.52 13.92 8.00
CART 5,50 11.70 8.22 37.76 8.07 16.75 12.00

SVM 3.78 9.72 571 33.68 6.47 13.53 0
EK-NN 4.04 6.19 5.96 38.20 5.71 12.43 4.00
BK-NN 2.03 3.96 457 18.92 5.97 9.29 4.00
(Re, R;) 5.67 7.44 6.67 40.03 7.19 16.03 0

CCR 3.49 5.79 5.01 20.88 6.83 19.28 4.00
(Re, R;) 2.90 16.73 3.72 38.52 5.39 5.55 20.00
two-step 2.52 4.94 4.42 32.97 5.86 12.37 0

f Testing X, ;

A4

construct K-NNs’ mass functions my, ..., my

M Dempster’srate — |\~ _i
: (fusion within each group) |
I v \ 4 :
: mass functionm®™ fory | ...... mass functionm® for [, | |
R N |
"0 osouting {1
I V% Iscounting \\% I
| mass functiondm™ | ...... mass function dmTe |
| I __ T ———_ ]
R R I
| Yager’s rule |

(global fusion between groups) y |
| final mass function m, of X, |
b Y J

Figure 1: Flowchart of mass function construction. Mass functions ml'a, dmla forq=1,... ¢

and m: are calculated by Equations @ to m
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Figure 2: Test of the two-step classification strategy on a synthetic dataset; (a) shows training
and test samples; (b) and (c) are credal partition obtained, respectively, by the EK-NN classi-
fier and the two-step classification rule. The blue, green and black points represent instances
with highest mass function on {w1}, {w2} and Q respectively; (d)-(f) are classification re-
sults obtained, respectively, by EK-NN, the proposed Dempster+Yager combination and the
two-step classification strategy; the magenta stars represent misclassification instances. The
calculated error rates for (d)-(f) are, respectively, 9.80%, 8.80% and 7.80% (color version is
suggested).
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