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A Convergence Theorem for the Graph Shift-type
Algorithms

ABSTRACT
Graph Shift (GS) algorithms are recently focused as a promising
approach for discovering dense subgraphs in noisy data. However,
there are no theoretical foundations for proving the convergence of
the GS Algorithm. In this paper, we propose a generic theoreti-
cal framework consisting of three key GS components: simplex of
generated sequence set, monotonic and continuous objective func-
tion and closed mapping. We prove that GS algorithms with such
components can be transformed to fit the Zangwill’s convergence
theorem, and the sequence set generated by the GS proceduresal-
ways terminates at a local maximum, or at worst, contains a sub-
sequence which converges to a local maximum of the similarity
measure function. The framework is verified by expanding it to
other GS-type algorithms and experimental results.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Theory

Keywords
Convergence Proof; the Graph Shift Algorithm; the DominantSets
and Pairwise Clustering; the Zangwill’s Theorem.

1. INTRODUCTION
The Graph Shift (GS) Algorithm[15] is a newly proposed algo-

rithm in seeking the dense subgraph (also known as graph mode)
and has received many attentions in machine learning and data
mining area. As its tremendous advantages in removing the noise
points in learning the dense subgraph, it is popularly used in im-
age processing areas such as common pattern matching [14][23],
computer vision area such as object tracking[21][3][13][20], clus-
ter analysis[15], etc. Also, its low computation time and memory
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complexity make the realisty application feasible and attracted, es-
pecially in large-scale data size case. However, little theoretical
work has been done to strengthen the solidness of the algorithm
except for empirical demonstration, and to be honestly speaking,
the correctness of the result always lays in doubt without theoreti-
cal guarantees.

The GS Algorithm originates from the the Dominant Sets and
Pairwise Clustering(DSPC) Algorithm[16][17], which treated the
dense subgraph discovery problem as a constrained optimization
problem and gave a solid definition on the so-called "dominant set",
i.e., dense subgraph. Further modifies the existing DSPC proce-
dure, the GS Algorithm adds a neighborhood expansion procedure
to reinforce the learning result. By iteratively employingthe Repli-
cator Dynamics and the new added "Neighborhood Expansion",the
GS Algorithm claims to find the local maximum of the constraint
objective function after finite number of iterations and further em-
pirically demonstrates the claim.

However, to the best of our knowledge, none of the existing the-
oretical work has been done to certify the claim, nor does issues
including the objective functions’ behavior during the procedures,
the stopping criteria. All of the above issues are closely related to
one thing: the GS Algorithms’ convergence property. That isto say,
we need to ensure that the generated sequence set is convergent or
at least contains a convergent subsequence set. It is certainly cru-
cial to have a theoretical analysis about the GS Algorithm’sconver-
gence before we can confidently utilize it.

Convergence theorem of algorithms has been a long-time discus-
sion topic since decades ago in literature, including the ones with
an iterative sequence set. Take the fuzzyc-means algorithm(FCM)
for instance. The original strict proof is Provided by Bedzek [2][8],
who employed the Zangwill’s theory [22][6] to establish these-
quence’s convergence property. Hoppner[10] proved the conver-
gence of the axis-parallel variant of the Gustafson-Kessel’s algorithm[7]
by applying the Banach’s classical contraction principle[11], which
is the general case of FCM. Groll[5] used the equivalence between
the original and reduced FCM criteria, and conducted a new and
more direct derivation of the convergence properties of FCMal-
gorithms. Besides these, Selim[18] treated the k-means clustering
problem as a nonconvex mathematical program and provided a rig-
orous proof of the finite convergence of the K-means-type algo-
rithms.

It may be intuitive that the FCM’s convergence discussion could
be applied to the GS Algorithm for both of them operating on an
iterative set. However, it is not straightforward in implementation
as the hardness of capturing GS Algorithm’s complex characters.
To address this problem, we provide a theoretical analysis of the
algorithm. We start with the understanding of principal character-
istics of the GS Algorithm by breaking it down into three key com-
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ponents, including generated sequence set, objective function and
mapping, and then propose a framework to map such components
to the conditions required in the Zangwill’s theorem. We findthat
the mapped GS Algorithm can then perfectly match with the key
requirements in the Zangwill’s theorem. The convergence theorem
for the GS Algorithm is then brought about.

Furthermore, a definition of the so-called "GS-type algorithm" is
then given to provide us with a general view of algorithms with
similar properties. More importantly, we build up a systematic
learning on them by analyzing the objective functions’ behaviors
and observing their interesting resulting in the implemental results.
We illustrate the proposed convergence theorem in terms of prov-
ing both the the GS Algorithm [15] and the DSPC Algorithm [17],
and confirm with the experimental results.

After all, our contributions here are listed as follows:

1. We theoretically analyze the convergence behavior of theGS
Algorithm.

2. We have proven both the GS Algorithm and the DSPC Algo-
rithm terminates a local maximum value, or at least contains
a subsequence which converges to a local maximum.

3. A convergence proof framework is builded to make a better
generalization of our work.

The paper is organized as follows. Section 2 introduces the prin-
ciple of the GS Algorithm and also a details description of it. In
Section 3, we first introduce the Zangwill’s convergence theorem,
and then extracts three key components in the GS Algorithm, map-
ping them to the Zangwill’s properties. Section 4 discussesthe con-
vergence of the GS Algorithm and also analyzes some featuresof
the algorithm. We extend the convergence proof to other GS-type
algorithms and build up a framework in Section 5. Experiments
are conducted in Section 6 to verify the convergence theoremand
behavior. Conclusions and future work can be found in Section 7.

2. PRELIMINARIES

2.1 Rationale of the GS Algorithm
The basic principle of the Graph Shift Algorithm is set forthin

the work of [15]. In the perspective of graph mining, the GS Algo-
rithm aims at searching each vertex’s dense "nearer" subgraph with
strong internal closeness. Two procedures of Replicator Dynam-
ics and Neighborhood Expansion are recursively employed oneach
vertex sequentially to reach the goal. The former largely shrinks the
identified subgraph, and the later expands the existing subgraph,
both shift towards a local graph mode.

In [15][17], a probabilistic coordinate on GraphG is defined as
a mapping:X : V → ∆n, where∆n = {x ∈ Rn : xi ≥
0, i ∈ {1, · · · , n} and |x|1 = 1}, the support ofx ∈ ∆n is the
indices of all non-zero components, denoted asδ(x) = {i|xi 6=
0}, corresponding to a subgraphGδ(x), andxi denotes nodei’s
attendance in the subgraphGδ(x) to some extent.

The algorithm operates on an affinity matrixA = (aij)
n×n, in

whichaij measures the similarity between nodei and nodej. Then
subgraphGδ(x)’s internal similarity is expressed as:

g(x) := a(x,x) =

n
∑

i,j=1

aijxixj = x
TAx. (1)

Accordingly, a local maximum solver ofg(x) can be taken to
represent the desired dense subgraph. The identification ofsuch lo-
cal maximum regions is equivalent to solving the following quadratic

optimization problem:
{

maximize g(x) = xTAx

subject to x ∈ ∆n (2)

2.2 Mapping definition
We begin the discussion with a formal definition on the Graph

Shift Algorithm and its corresponding mapping. These clearprede-
fined related concepts would facilitate much on the problem state-
ment and understanding.

In general, the GS Algorithm defines a mappingTm : ∆n →
∆n to get the iterative sequence set as:

x
(k) = Tm(x(k−1)) = · · · = (Tm)(k)(x(0)); k = 1, 2, · · · . (3)

Wherex(0) is an initial starting point, and superscripts in paren-
theses correspond to the iteration number. Therefore, the problem
of this paper is whether or not the iterative sequence set{x(k)}∞k=1

generated byTm converges to a local maximum solver of problem
(Equation (2)).

Specifying the mappingTm more clearly will be both necessary
and of great help in analyzing this question. Accordingly,Tm, the
combination of Replicator Dynamics procedure(Bmk) and Neigh-
borhood Expansion procedure(C), is broken down as:

Tm := Bmk ◦ C. (4)

In Equation (4),Bmk represents thek-th (k ≤ m) Replicator
Dynamics procedure;mk corresponds to transformationB’s num-
ber in thek-th Replicator Dynamics procedure when a subgraph’s
mode is reached in this procedure (this result is actually a special
case of Theorem 3);B is the transformation expressed as:

B :∆n → ∆n,x(lk) → x(lk + 1)

=(
ω1(lk)x1(lk)

∑n
i=1 ωi(lk)xi(lk)

, · · · ,
ωn(lk)xn(lk)

∑n
i=1 ωi(lk)xi(lk)

).
(5)

In Equation (5),ωi(lk) = (Ax(lk))i =
∑n

j=1 aijxj(lk), i ∈

{1, · · · , n}, lk ∈ {1, · · · , mk − 1}.
C is the Neighborhood Expansion procedure, denoted as:

x
(k+1) = x

(k) +∆x = x
(k) + t∗b. (6)

Details oft∗ andb are explained in Appendix A.

2.3 Detail Procedure and Stopping Criteria
The GS Algorithm[15] is an iterative process through the loop in

seeking the dense subgraph starting from each vertex in the graph,
with the pseudo-code shown below illustrating the whole process.

Require: An×n, Affinity matrix of the whole data set with the
diagonal value 0;
{x = {xi}i=1n}, initial starting points, usually taken as{e =
{ei}i=1n}

1: for i=1,...ndo
2: do Replicator Dynamics(Equation (5)) ofxi

3: if (resultx is the mode of graph)then
4: go to step 11
5: end if
6: do Neighborhood Expansion(Equation (6)) ofxi

7: if (resultx is the mode of graph)then
8: go to step 11
9: end if

10: end for
11: return the belonging clustersc = {ci}

n
i=1 corresponding to

the starting pointsx = {xi}
n
i=1.



The stopping criteria of the algorithm , or the solution set of the
problem (Equation (2)) is set to satisfy the Karush-Kuhn-Tucker
(KKT) condition [12]:

Γ := {x ∈ ∆ | x satisfies(Ax)i

{

= λ, i ∈ σ(x);
≤ λ, i /∈ σ(x).

}. (7)

Here(Ax)i is thei-th component ofAx; λ is one Lagrange mul-
tiplier. σ(x) = {i ∈ {1, · · · , n}|xi 6= 0} corresponds to the
subgraph as defined above.

As stated above, the GS Algorithm is implemented on each ver-
tex’s evolving process by recursively using the ReplicatorDynam-
ics procedure and Neighborhood Expansion Procedure, untilit reaches
the desired solution, i.e., satisfying KKT condition (Equation (7))
to each of the starting vertices.

3. MAPPING FROM THE GS ALGORITHM
TO THE ZANGWILL’S THEOREM

The Zangwill’s convergence theorem [22][6] is fundamentalin
terms of proving the convergence of iterative sets for its general
applicability. In this section, we build up the mapping fromthe GS
principle to the Zangwill’s convergence theorem.

3.1 Zangwill’s Convergence Theorem
Definitions and lemmas are introduced before we present the

Zangwill’s convergence theorem.

DEFINITION 1. A point-to-set mappingΩ from setX to power
setY is defined asΩ : X → P (Y ), which associates a subset of
Y with each point inX, P (Y ) denotes the power set ofY .

DEFINITION 2. Given a functionf and an elementc of the do-
main I , f is said to be continuous at the pointc if the following
holds: for everyε > 0, there exists aη > 0 such that for allx ∈ I ,
|x− c| < η ⇒ |f(x) − f(c)| < ε.

DEFINITION 3. A point-to-set mappingΩ : X → P (Y ) is
said to be closed at a pointx∗ in X if {x(m)} ⊂ X andx(m) →

x∗,y(m) ∈ Ω(x(m)) andy(m) → y∗ imply thaty∗ ∈ Ω(x∗).

The following Lemma 1 is induced by integrating a continuous
function with a point-to-set mapping:

LEMMA 1. LetC : M → V be a function andB : V → P (V )
be a point-to-set mapping. AssumeC is continuous atω∗ andB is
closed atC(ω∗), then the point-to-set mappingA = B◦C : M →
P (V ) is closed atω∗.

The composition of continuous functions is still a continuous
function, we have Lemma 2:

LEMMA 2. Given two continuous functions:f : I → J(⊂
r), g : J → R, the compositiong ◦ f : I → R, x 7→ g(f(x)) is
continuous.

Accordingly, the Zangwill’s convergence theorem is described
below.

THEOREM 1. Given an algorithm onX, x(0) ∈ X, assume the
sequence{x(k)}∞k=1 is generated which satisfies

x
(k+1) ∈ A(x(k)) (8)

For a given solution setΓ ⊂ X of an algorithm, if the following
three properties holds:

Compact The sequence set{x(k)}∞k=0 ⊂ S for S ⊂ X is a
compact set.

Decreasing There is a continuous functionZ onX such that

1) if x /∈ Γ, thenZ(y) < Z(x) for all y ∈ A(x).

2) if x ∈ Γ, thenZ(y) ≤ Z(x) for all y ∈ A(x).

Closed The mappingA is closed at all points ofX\Γ.
Then either the algorithm stops at the point where a solutionis
identified or there exists such ak so that for allk+ j (j ≥ 1) there
is a convergent subsequence of{x(ik)}∞k=0 in the solution setΓ.

The Zangwill’s convergence theorem provide a feasible direction
to verify one algorithm’s convergence behavior, especially ones
with iterative implementations. With its general flexibility, it has
been applied widely to prove the convergence of algorithms with
similar properties, including clustering and optimization research.
Amongst all the iterative algorithms, here we are interested, in par-
ticular, in monotonic algorithms.

3.2 Mapping
Retrospective to the conditions in Zangwill’s theorem, we further

break down the GS Algorithm and abstract the following character-
istics from it (detailed verification will be given later):

1), Simplex of generated sequence setThe candidate solution se-
quence set{x(k)}∞k=0 generated by the mappingTm lies in
∆n = {x ∈ Rn : xi ≥ 0 and|x|1 = 1}, i.e., the standard
n-simplex ofRn in any stepk (k ≤ m);

2), Monotonic and continuous objective functionThe objective
functiong(x) = xTAx is continuous and strictly increases
during the mappingTm according to the Propositions 2-4
(see Section 4);

3), Closed mappingThe mappingTm = Bmk ◦ C is closed dur-
ing each procedure in accordance to Propositions 5-6 (see
Section 4) at all points of the generated sequence set.

These three properties are also the key components in one algo-
rithm, that is to say, with these vital feature requirementsclearly
prescribed, the algorithm is fixed into a predefined framework, in-
cluding the generated sequence set defining the scope of the vari-
ables, the objective function’s behavior describing the algorithm
mapping’s efforts towards the setting goal and mapping itself with
restricted property.

Table 1. depicts the one-to-one correspondence similarities be-
tween these two more clearly.

Table 1: Mapping between GS Algorithm and Zangwill’s The-
orem

the GS Algorithm the Zangwill’s theorem

Simplex ∼ Compact
Monotonic ∼ Decreasing
Closed ∼ Closed

4. CONVERGENCE OF THE GS ALGORITHM
Several propositions are declared before analyzing deeplyinto

the convergence behavior of the GS Algorithm, all focus on the



three properties as we discussed in Section 2. Detailed proofs of
these propositions are given in Appendix B-E.

The GS Algorithm’s stable solution set is compact accordingto
Proposition 1.

PROPOSITION 1. The sequence set{x(k)}∞k=0 ⊂ S generated
by the mappingTm = Bmk ◦ C is a compact set.

Propositions 2-4 discuss the monotonicity ofg(x) under the map-
ping Tm = Bmk ◦ C, as discussed about the monotonicity of the
GS Algorithm’s main characteristics.

PROPOSITION 2. The objective functionf(x) = xTAx strictly
increases along any nonconstant trajectory of Equation (5)when
x ∈ X/Γ.

PROPOSITION 3. The objective functionf(x) = xTAx strictly
increases along the neighborhood expansion operation of Equation
(6).

PROOF. It can be derived from the definition of∆x in Appendix
B.

PROPOSITION 4. g(x) = xTAx is a function both continuous
and strictly increasing during the mappingTm = Bmk ◦ C when
x ∈ X/Γ, but just increasing ifx ∈ Γ.

Propositions 5-6 validate the closed mapping property of the GS
Algorithm.

PROPOSITION 5. The mappingC is closed on all points ofX\Γ.

PROPOSITION 6. The mappingTm = Bmk ◦ C is closed on
X/Γ.

PROOF. According to the definition ofB (Equation (5)), it is
continuous onX/Γ. C is closed onX/Γ as per Proposition 5.
According to Lemma 1,Tm is closed onX/Γ.

With the above preparations, we have the following Theorem 2.

THEOREM 2. LetA = (aij)
(n×n) be a similarity matrix with

diagonal values 0,Tm, Γ be defined as Equation(4), Equation
(7), andx(0) be an arbitrary initial starting point, then either the
iteration sequence{x(r)} (r = 1, 2, . . .) terminates at a pointx∗

in the solution setΓ or there is a subsequence converging to a point
in Γ.

PROOF. Taking ĝ(x) = −g(x) = −xTAx as the continu-
ous functionZ andTm as the algorithm mappingA in Theorem
1. Proposition 1 shows that the sequence set{x(k)}∞k=1 generated
by Tm is a compact set.̂g(x) is continuous and strict decreasing
as the continuity and strict increasing characteristic ofg(x) in the
trajectory ofTm are proven by Proposition 4. Proposition 6 asserts
Tm is closed onx/Γ (Γ is the solution set defined in Equation (7)).
According to the Zangwill’s convergence theory, Theorem 2 holds
as all three properties are satisfied.

This result gives us the theoretical guarantees to the various ap-
plications of the GS Algorithm and ensure to reach at least a lo-
cal maximum of the objective function after finite number of algo-
rithm’s mapping implementations.

5. CONVERGENCE FOR OTHER GS-TYPE
ALGORITHMS

We expand the proposed GS convergence theorem’s proof to
other GS-type algorithms. Take the Dominant Sets and Pairwise

Clustering (DSPC) Algorithm [17] as an example, for it is theori-
gin method of the GS Algorithm. The DSPC Algorithm shares the
same goal as the GS Algorithm in terms of finding dense subgraphs,
i.e., dominant setsσ(x). Their implementations are mostly simi-
lar, however differentiates in whether selecting the neighborhood
expansion or not, the GS Algorithm does but the DSPC Algorithm
does not.

The detail implementation of the DSPC Algorithm could refer
to [17], due to the simiplicy, we ignore it here and focus on its
convergence behavior. The DSPC Algorithm consists of threekey
components, holding similar properties to the GS Algorithm, how-
ever, differing in minor places.

1), Simplex of generated sequence setThe sequence set{x(k)}∞k=0

generated by mappingB always lies in∆n;

2), Monotonic and continuous objective functionThe objective
functiong(x) = xTAx is continuous and strictly increasing
during the mappingB;

3), Continuous mapping The mappingB is continuous.

Table 2 further displays the relationship between the DSPC Algo-
rithm, the GS Algorithm and the Zangwill’s theorem.

Table 2: GS-type algorithms and Zangwill’s theorem’s mapping

DSPC Algorithm GS Algorithm Zangwill’s theorem

Simplex ∼ Simplex ∼ Compact
Monotonic ∼ Monotonic ∼ Decreasing
Continuous ∼ Closed ∼ Closed

A convergence proof has been provided for the continuous ver-
sion of the DSPC Algorithm in [19]. Here some related proposi-
tions are first introduced. Then we discuss the convergence prop-
erty of its discrete-time version by involving the Zangwill’s conver-
gence theorem.

PROPOSITION 7. The sequence set{x(k)}∞k=0 ⊂ S generated
by the mappingBmk is a compact set.

For its proof, refer to Appendix B.

PROPOSITION 8. If a mappingf : S → T is continuous onS,
thenf is closed onS.

THEOREM 3. LetA = (aij)
(n×n) be a similarity matrix with

diagonal values 0,B be defined as Equation(5), andx(0) be an
arbitrary initial starting point, then either the iteration sequence
{x(r+1) = B(x(r))}, (r = 1, 2, . . .) terminates at a pointx∗ in
the solution setΓ or there is a subsequence converging to a point
in Γ.

PROOF. Taking ĝ(x) = −g(x) = −xTAx as the continu-
ous functionZ andB as the algorithm mappingA in Theorem
1. Proposition 7 shows that the sequence set{x(k)}∞k=1 generated
by B is a compact set.̂g(x) is continuous and strict decreasing
according to the continuity and strict increase ofg(x) in the trajec-
tory of Tm are proven in Proposition 2. Proposition 8 assertsB is
closed onx/Γ, while Γ is the solution set defined in in Equation
(7). According to the Zangwill’s convergence theory, Theorem 3
holds.



There are many similarities shared between these two algorithms’
proving process, along with their similar properties. Thus, we can
propose a Zangwill’s theorem-based convergence frameworkfor
the "similar algorithms". Firstly, the so-called "GS-typealgorithm"
is defined referring to what we called "similar algorithms".

DEFINITION 4. An algorithm is a GS-type algorithm if and only
if it satisfies the conditions on three key components: simplex of
generated sequence set, monotonic and continuous objective func-
tion and closed mapping.

We provide a flowchart (Fig. 1) to illustrate our prooving pro-
cess in details. It presents a guideline proving the convergence of
GS-type algorithms step by step. (1) Break down the GS-type algo-
rithm into three parts: generated set, objective function and map-
ping. (2) Check if these three parts all satisfy the corresponding
requirements. Any part unsatisfied is regarded as unsuitable for
applying this framework, otherwise it is convergent.

Figure 1: Proving framework for GS-type algorithm conver-
gence

Among the two processes in Fig. 1, properties verification isusu-
ally the difficult part, especially the objective function’s monotonic
behavior. We will further discuss its behavior in the Section 6.

6. EXPERIMENTAL VERIFICATION
The GS Algorithm and the DSPC Algorithm are all implemented

in MATLAB2011b. Our experiments are conducted on an Acer As-
pire 4720Z laptop having an Intel Pentium DualCoreT2330(1.6GHz,
533MHz FSB, 1MB L2 cache), with 2GB DDR2 RAM, using LINUX
operating system.

6.1 Experimental Settings
Since GS-type algorithms manipulate data based on a similar-

ity matrix, we construct a similarity matrix instead of realdata
sets with its element values uniformly sampling within the inter-
val [0, 1], and the matrix dimensionality scaling from100 to 3000.
Also, we consider cases in which the matrices are fully densematri-
ces (FDM), partially dense matrices (PDM), and block tridiagonal
matrices (BTM).

Initial starting pointx can be randomly chosen or be the single
vertice{Ii, i = 1, · · · , n.}. In our experiments, we use the single
vertice with the same as [14]. We test the GS Algorithm [15] aswell
as the DSPC Algorithm [17]. Each algorithm runs for three times
to obtain an averaged performance. We verify the proposed the GS
Algorithm convergence theory through experiments and focus on
testing convergence performance. The number of transformations
(mk) in Replicator Dynamics, the whole iteration number (m), run-
ning time (T ), and average iteration running time (t = T/m) are
presented to evaluate the convergence performance.

6.2 Objective function behavior
Fig. 2 depicts the behaviors of three representative vertices’ cor-

responding objective function in the GS Algorithm under thePDM
case and 500 scale, along with the candidate solution evolving.
TheX-axis represents the evolving process times , and theY -axis
stands for the objective function’s value. To be fairly compare the
performance, we takeB andC ’s time as equal. Thus, the rate of
evolving time ismk : 1 between Replicator Dynamics and Neigh-
borhood Expansion in thek-th iteration, according to Equation (4).

From these three vertices’ evolving behaviors, we can see all the
three vertices reach a local maximum value. The objective func-
tion’s value kept increasing with the evolving process, which is in
accordance with the Proposition 4. This is perfectly matched with
the theorem we have proposed.

When the curve first starting from the Replicator Dynamics, it
always produces a steep increasing trends in the first few steps and
then turn to a gentle curve in the last. What is more, when encoun-
ters the Neighborhood Expansion procedure, it always produce a
huge jump comparing to the flat curve in the Replicator Dynamics.
This is because the Neighborhood Expansion procedure is onethat
pulling the candidate solution from one local dense subgraph to-
wards the dense graph and the dense value will change much with
the subgraph changes.

Also, we can notice that most of the evolving time is the Repli-
cator Dynamics, denoting that most of the calculations weredone
in Replicator Dynamics, i.e., searching the dense subgraph.

6.3 Convergence performance
The convergence performance of the GS Algorithm and the DSPC

Algorithm depends on many factors: scale of the affinity matrix,
matrix structure, element value, etc. We test different scenarios by
changing the scale of matrix and the sparseness of matrix. The
scenarios and results are given in Table 3.

The experimental results presented in the GS Algorithm and the
DSPC Algorithm are a little different for their different mapping
definitions, with the former beingTm = Bmk ◦ C and the later
beingB.

The results show that both the GS Algorithm and the DSPC Al-
gorithm converge under the cases with FDM, PDM and BTM. In
each case, transformationB’s numbermk and iterationTm’s num-
ber m increase slowly when matrix’s scaling grows, sometimes
even with a small drop, e.g., in FDM case of the GS Algorithm,
mk ’s values in the third row andm’s value in the fourth row are
both smaller than the previous ones although matrices’ scale in-
creases. What is more, when the matrice’s scale is 3000, which is
30 times of the first one’s scale in each case, itsmk andm’s values
are less than 2 times larger. This indicates that if the denserate of
the matrix is fixed, the computational cost is always under control
even though the matrices’ scale increases.

Also, the GS Algorithm’s transformation number, iterationnum-
ber and running time all decrease when the matrix becomes sparser,
the same with the DSPC Algorithm’s transformation number and
running time. This indicates that if we incorporate prior informa-
tion and setting the unrelated nodes’ similarity value as 0,then we
can save much computational cost in the application. However,
both of the two Algorithms performs worse on the block tridiagonal
matrices case compared to the partially dense matrices case, even
with a smaller sparse rate. This is due to the fact that block tridi-
agonal matrices’ calculation is quite similar to the one of smaller
scale with full dense matrices. As shown above, it is heavilycom-
putational loaded.

7. CONCLUSIONS AND FUTURE WORK



Table 3: the GS Algorithm and the DSPC Algorithm’s testing results

the GS Algorithm the DSPC Algorithm

Case Scale mk m T (s) t(s) S.R.(%)1 Case Scale mk T (s) S.R.(%)1

FDM 100 1228.5 2.52 0.12 0.05 100.0 FDM 100 953.2 0.14 100.0
500 1297.3 2.96 0.40 0.14 100.0 500 1298.5 0.37 100.0
1000 1101.7 3.75 1.01 0.27 100.0 1000 1604.2 1.10 100.0
1500 1401.2 3.24 3.87 1.19 100.0 1500 1469.6 4.25 100.0
2000 1575.4 3.49 20.00 5.73 100.0 2000 1448.1 18.61 100.0
3000 1511.4 3.56 50.15 14.09 100.0 3000 1785.3 56.20 100.0

PDM 100 236.3 2.22 0.02 0.01 26.1 PDM 100 203.3 0.02 26.7
500 285.9 2.24 0.08 0.04 26.2 500 299.6 0.07 26.3
1000 275.4 2.38 0.20 0.09 26.4 1000 326.7 0.15 26.4
1500 275.9 2.40 0.94 0.39 26.4 1500 338.2 0.55 26.3
2000 348.1 2.41 3.32 1.38 26.3 2000 288.8 2.11 26.4
3000 332.9 2.50 7.75 3.10 26.3 3000 389.3 6.85 26.3

BTM 100 794.9 2.16 0.06 0.03 22.0 BTM 100 717.6 0.05 22.0
500 1185.3 2.65 0.31 0.12 22.0 500 1177.7 0.28 22.0
1000 1221.6 2.67 0.68 0.25 22.0 1000 1130.8 0.74 22.0
1500 1198.6 2.97 2.96 1.00 22.0 1500 1226.5 2.63 22.0
2000 1289.9 3.02 13.57 4.50 22.1 2000 1417.8 13.24 22.0
3000 1406.2 3.13 38.55 12.34 22.0 3000 1517.4 38.16 22.0

1
S.R. refers to the sparse rate, the proportion of the number of non-zero elements to the number of whole elements.
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Figure 2: Vertex 71(left), 231(middle) and 265(right)’s objective functions’ behaviors(For better view, please see color pdf.)

Graph Shift (GS) Algorithm shows great advantage on efficiently
dealing with noisy data, however no theoretical outcome hasbeen
reported about its algorithm behavior and what is more, its conver-
gence proof. In this paper, we have proposed a generic theoreti-
cal framework to prove the convergence of GS-type algorithms. A
GS-type Algorithm consists of three key components: simplex of
generated sequence set, monotonic and continuous objective func-
tion and closed mapping. They are mapped to the Zangwill’s con-
vergence theorem’s three key conditions. Consequently, the con-
vergence of the GS Algorithm is proved by applying the Zangwill
convergence theorem.

We have shown that the framework can be applied to GS-type
algorithms, as well as the Dominant set and pairwise clustering
(DSPC) Algorithm. Experimental results on both the GS Algorithm
and the DSPC Algorithm certified that they both converge under
different scenarios in terms of the scale of the affinity matrix, the
transformation number, and the iteration number.

However, this paper limits the generated sequence set underthe
simplex case, more work will be done to expand it to other compact
set. What is more, Banach’s contraction theory and optimization
methods on nonconvex mathematical program are being considered
in our problem so as to suit in a more general case.
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APPENDIX

A. DEFINITION OF ∆X

According to [15],∆x = t∗b, t∗ andb are defined as:

b =

{

−xis i ∈ σ(x);
vi, i /∈ σ(x).

(9)

t∗ =

{ 1
s
, if λs2 + 2sζ − ω ≤ 0

min( 1
s
, ζ
λs2+2sζ−ω

), if λs2 + 2sζ − ω > 0
(10)

where

vi =

{

0, i ∈ σ(x)
max(a(x, Ii)− g(x), 0), i /∈ σ(x)

(11)

s =
∑

i/∈σ(x)

vi, ζ =
∑

i/∈σ(x)

v2i , ω =
∑

i,j

viaijvj . (12)

g(x+∆x)−g(x) = −(λs2+2sζ−ω)t2+2ζt. Whenλs2+2sζ−
ω ≤ 0, g(x+∆x)−g(x) ≥ 0; Whenλs2+2sζ−ω < 0, t∗ always
lies in the interval[0, 2ζ

λs2+2sζ−ω
], which are the two solutions of

g(x+∆x)− g(x) = 0, this leads tog(x+∆x)− g(x) > 0.

B. PROOF OF PROPOSITION 1
PROOF. To prove that the sequence set{x(k)}

∞

k=0 ⊂ S is com-
pact is equivalent to prove that the set is bounded and closed. Since
(x1,x2, · · · ,xn) are all located in[0, 1], the x value space is
bounded. Also, from Equation (5),ei = (0, ..., 1, ..., 0), which
means thei-th component ofx is 1 and the others are 0, we can
denotex(t) as:

x(t) =
n
∑

i=1

ei ·
x(t− 1)i(Axi(t− 1))

x(t− 1)TAx(t− 1)
(13)

Since
∑n

i=1
x(t−1)i(Axi(t−1))

x(t−1)T Ax(t−1)
= 1 and0 ≤ x(t−1)i(Axi(t−1))

x(t−1)T Ax(t−1)
≤

1, i = 1, . . . , n.. Adding∆x (defined in Appendix A) still holds
the expressionx(t) =

∑n
i=1 ei · yi,

∑n
i=1 yi = 1, thusx(t) is in

the convex hull ofS, so it is closed. Therefore, the sequence set
{x(k)}

∞

k=0 ⊂ S is both bounded and closed.

C. PROOF OF PROPOSITION 2
PROOF. This proposition is known in mathematical biology as

the fundamental theory of natural selection [9] and, in its original
form, we can trace it back to [4].

We can also prove that Proposition 2 is a special case of Baum-
Eagon inequality ([1]). We denotexi asxi =

∏n
j=1 x

µij

j , here

µij =

{

1, i = j;
0, i 6= j.

. Thus we wish to prove that whenx(t) /∈ Γ:

g(x) =xTAx =
n
∑

i=1

ωixi =
n
∑

i=1

ωi

n
∏

j=1

x
µij

j

<
n
∑

i=1

ωi

n
∏

j=1

J(xj)
µij .

(14)

From Hölder inequation andx2
i = xi ·

∏n
j=1 x

µij

j , we can get
the result as:

g(x) =

n
∑

i=1

{ωi ·

n
∏

j=1

J(xj)
µij }

1

2 × {ω
1

2

i xi

n
∏

j=1

(
1

J(x)
)
µij
2 }

≤ {
n
∑

i=1

ωi

n
∏

j=1

J(xj)
µij }

1

2 × {
n
∑

i=1

ωixi

n
∏

j=1

(
xj

J(xj)
)µij}

1

2

(15)

Equality holds if and only if∀p, q ∈ {1, · · · , n},

{ωp ·
∏n

j=1 J(xj)
µpj}

1

2

ω
1

2
p xp

∏n
j=1(

1
J(x)

)
µpj
2

=
{ωq ·

∏n
j=1 J(xj)

µqj }
1

2

ω
1

2
q xq

∏n
j=1(

1
J(x)

)
µqj
2

⇐⇒
J(xp)

xp
=

J(xq)

xq
⇐⇒ ωp = ωq

(16)



Using the inequality of geometric and arithmetic means to the dou-
ble products of the second brace, we can conclude:

n
∑

i=1

ωixi

n
∏

j=1

(
xj

J(xj)
)µij ≤

n
∑

i=1

ωixi

n
∑

j=1

µij ·
xj

J(xj)

=
n
∑

i=1

ωixi

n
∑

j=1

µijxj ·

∑n
k=1 ωkxk

ωjxj

=
n
∑

k=1

ωkxk ·
n
∑

j=1

xj ·

∑n
i=1 ωixi · µij

ωjxj

=
n
∑

k=1

ωkxk ·
n
∑

j=1

xj =
n
∑

k=1

ωkxk.

(17)

Equality holds if and only if∀p, q ∈ {1, · · · , n},

xp

J(xp)
=

xp

J(xp)
⇐⇒ ωp = ωq. (18)

Here the last equation succeed becauseωixi · µij = ωjxj if and
only if j = i, otherwise it is0, and

∑n
j=1 xj = 1.

we put the result into the second braces, and get

n
∑

i=1

ωixi ≤ {
n
∑

i=1

ωi

n
∏

j=1

J(xj)
µij }

1

3 × {
n
∑

i=1

ωixi}
2

3

⇐⇒ {
n
∑

i=1

ωixi}
1

3 ≤ {
n
∑

i=1

ωi

n
∏

j=1

J(xj)
µij }

1

3

⇐⇒
n
∑

i=1

ωixi ≤
n
∑

i=1

ωi

n
∏

j=1

J(xj)
µij

(19)

Equality holds if and only ifωi = ωj , ∀i, j ∈ {1, · · · , n}. It is the
situation contained by the solution setΓ.
Thus, the functiong(x) = xtAx is strictly increasing along any
nonconstant trajectory of (5) whenx ∈ X/Γ.

D. PROOF OF PROPOSITION 4

PROOF. The continuity ofg(x) = xTAx is obvious. We here
discuss the increasing monotonicity. From Equation (4), wehave

g(x) ≤ g(C(x)) < g(B ◦ C(x)) = g(Tm(x)) (20)

E. PROOF OF PROPOSITION 5

PROOF. If x0 ∈ X, thenxn → x0 andyn → y0 whenn →
∞. Consequentlyyn ∈ C(xn), indicating that

y
n = x

n +∆x
n (21)

and we need to prove that

y
0 = C(x0) = x

0 +∆x
0. (22)

This lies in two situations:

(1) x0 is in Γ, thus∆x0 = 0.

(2) x0 is inX\Γ.

For situation (2), asxn → x0 andyn → y0, we can find a largeN
such that∀ε > 0,∃n > N, so that|xn −x0| < ε, |yn −y0| < ε.

Consequently, we have

|y0 −C(x0)| ≤ |y0 − y
n|+ |yn − C(xn)|+ |C(xn)

−C(x0)| ≤ ε+ |xn − x
0|+ |∆x

0 −∆x
n|

≤ 2ε+ |∆x
0 −∆x

n|

(23)

According to Lemma 2 and the definitions ofb andt, it is a con-
tinuous mapping onx, this results in that∀ε > 0, ∃δ such that
|∆x0 − ∆xn| ≤ ε. So, ∀ε > 0, if N1 is big enough,n >
N1, |x

n − x0| <min(ε/3, δ), |yn − y0| < ε/3, then

|y0 − C(x0)| ≤ ε (24)

Hencey0 = C(x0), andC is closed onX\Γ.
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