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A Convergence Theorem for the Graph Shift-type
Algorithms

ABSTRACT

Graph Shift (GS) algorithms are recently focused as a piomis
approach for discovering dense subgraphs in noisy dataetAmaw
there are no theoretical foundations for proving the caymece of
the GS Algorithm. In this paper, we propose a generic theoret
cal framework consisting of three key GS components: sirpfe
generated sequence set, monotonic and continuous okjéatic-
tion and closed mapping. We prove that GS algorithms witth suc
components can be transformed to fit the Zangwill's converge
theorem, and the sequence set generated by the GS procatiures
ways terminates at a local maximum, or at worst, containsba su
sequence which converges to a local maximum of the simylarit
measure function. The framework is verified by expandingit t
other GS-type algorithms and experimental results.
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[Software Engineering: Metrics—complexity measures, perfor-
mance measures

General Terms
Theory
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1. INTRODUCTION
The Graph Shift (GS) Algorithrh[15] is a newly proposed algo-

complexity make the realisty application feasible andaated, es-
pecially in large-scale data size case. However, littlotbgcal
work has been done to strengthen the solidness of the dgorit
except for empirical demonstration, and to be honestly lspga
the correctness of the result always lays in doubt withoeréti-
cal guarantees.

The GS Algorithm originates from the the Dominant Sets and
Pairwise Clustering(DSPC) Algorithm[LB][17], which tted the
dense subgraph discovery problem as a constrained optiamniza
problem and gave a solid definition on the so-called "dontisaty,
i.e., dense subgraph. Further modifies the existing DSP€epro
dure, the GS Algorithm adds a neighborhood expansion puweed
to reinforce the learning result. By iteratively employitng Repli-
cator Dynamics and the new added "Neighborhood Expansioa”,
GS Algorithm claims to find the local maximum of the consttain
objective function after finite number of iterations andtier em-
pirically demonstrates the claim.

However, to the best of our knowledge, none of the existieg th
oretical work has been done to certify the claim, nor doeseiss
including the objective functions’ behavior during the gedures,
the stopping criteria. All of the above issues are closelgteel to
one thing: the GS Algorithms’ convergence property. Thad &y,
we need to ensure that the generated sequence set is corvarge
at least contains a convergent subsequence set. It isntertai-
cial to have a theoretical analysis about the GS Algorithvaisver-
gence before we can confidently utilize it.

Convergence theorem of algorithms has been a long-timaslisc
sion topic since decades ago in literature, including thesomith
an iterative sequence set. Take the fuzageans algorithm(FCM)
for instance. The original strict proof is Provided by Bed§2][8],
who employed the Zangwill's theory [22][6] to establish the-
guence’s convergence property. Hoppner[10] proved theeren

rithm in seeking the dense subgraph (also known as graph)mode gence of the axis-parallel variant of the Gustafson-Kesatgorithm[7]
and has received many attentions in machine learning aral dat by applying the Banach's classical contraction principi] which

mining area. As its tremendous advantages in removing tiee no
points in learning the dense subgraph, it is popularly useithi
age processing areas such as common pattern matching3n4][2
computer vision area such as object tracking[211[3][18][ZIus-
ter analysis[15], etc. Also, its low computation time andnmoey
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is the general case of FCM. Grall[5] used the equivalenceden
the original and reduced FCM criteria, and conducted a neiv an
more direct derivation of the convergence properties of F&M
gorithms. Besides these, Selim[18] treated the k-mearssesing
problem as a nonconvex mathematical program and providied a r
orous proof of the finite convergence of the K-means-typ®-alg
rithms.

It may be intuitive that the FCM'’s convergence discussiomao
be applied to the GS Algorithm for both of them operating on an
iterative set. However, it is not straightforward in implentation
as the hardness of capturing GS Algorithm’s complex charact
To address this problem, we provide a theoretical analysteeo
algorithm. We start with the understanding of principal reteter-
istics of the GS Algorithm by breaking it down into three keyne
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ponents, including generated sequence set, objectivéidnnand

mapping, and then propose a framework to map such components

to the conditions required in the Zangwill’s theorem. We fihdt

the mapped GS Algorithm can then perfectly match with the key

requirements in the Zangwill's theorem. The convergeneerém
for the GS Algorithm is then brought about.

Furthermore, a definition of the so-called "GS-type aldponit is
then given to provide us with a general view of algorithmshwit
similar properties. More importantly, we build up a systéma
learning on them by analyzing the objective functions’ hétis
and observing their interesting resulting in the implerakresults.
We illustrate the proposed convergence theorem in termsoef p
ing both the the GS Algorithni [15] and the DSPC AlgoritimI[17]
and confirm with the experimental results.

After all, our contributions here are listed as follows:

1. We theoretically analyze the convergence behavior oBtBe
Algorithm.

2. We have proven both the GS Algorithm and the DSPC Algo-
rithm terminates a local maximum value, or at least contains

a subsequence which converges to a local maximum.

3. A convergence proof framework is builded to make a better

generalization of our work.

The paper is organized as follows. Secfibn 2 introducestihe p
ciple of the GS Algorithm and also a details description oflit
Sectior 8, we first introduce the Zangwill's convergencentbe,
and then extracts three key components in the GS Algorithap-m
ping them to the Zangwill's properties. Sectidn 4 discusiseson-
vergence of the GS Algorithm and also analyzes some featdires
the algorithm. We extend the convergence proof to otheryp8-t
algorithms and build up a framework in Sectioh 5. Experiraent
are conducted in Sectign 6 to verify the convergence theaunsan
behavior. Conclusions and future work can be found in Seio

2. PRELIMINARIES

2.1 Rationale of the GS Algorithm

The basic principle of the Graph Shift Algorithm is set foith
the work of [15]. In the perspective of graph mining, the Gg§&
rithm aims at searching each vertex’s dense "nearer" spbgvith
strong internal closeness. Two procedures of Replicataraby
ics and Neighborhood Expansion are recursively employezhch
vertex sequentially to reach the goal. The former largetingk the
identified subgraph, and the later expands the existingraphg
both shift towards a local graph mode.

In [I5][17], a probabilistic coordinate on Gragghis defined as
amapping: X : V — A", whereA" = { € R" : x; >
0,7 € {1,--- ,n} and|xz|; = 1}, the support ofc € A™ is the
indices of all non-zero components, denotedb@s) = {i|x; #
0}, corresponding to a subgray ), andz; denotes nodeé’s
attendance in the subgrafly ) to some extent.

The algorithm operates on an affinity mateix= (a;)"*", in
whicha;; measures the similarity between nadend nodej. Then
subgrapht's(.)'s internal similarity is expressed as:

g(x) = alz,z) = z”: ajxix; = Ax. 1)

4,j=1

Accordingly, a local maximum solver gf(z) can be taken to
represent the desired dense subgraph. The identificatgurchflo-
cal maximum regions is equivalent to solving the followingdratic

optimization problem:

maximize g(xz) = =7 Az @
subject to xeA”

2.2 Mapping definition

We begin the discussion with a formal definition on the Graph
Shift Algorithm and its corresponding mapping. These cirade-
fined related concepts would facilitate much on the probltates
ment and understanding.

In general, the GS Algorithm defines a mappifig : A" —
A™ to get the iterative sequence set as:

e =T (@ V)= = ()P @)k =1,2,---. (3)

Wherez©) is an initial starting point, and superscripts in paren-
theses correspond to the iteration number. Therefore, ristdgm

of this paper is whether or not the iterative sequence@as@‘t) ey
generated by, converges to a local maximum solver of problem
(Equation[(2)).

Specifying the mappin@’,,, more clearly will be both necessary
and of great help in analyzing this question. Accordingly,, the
combination of Replicator Dynamics proced(#™* ) and Neigh-
borhood Expansion procedte), is broken down as:

T :=B™ o(C. 4)

In Equation [(4), B™* represents thé-th (¢ < m) Replicator
Dynamics proceduren,, corresponds to transformatids's num-

ber in thek-th Replicator Dynamics procedure when a subgraph’s
mode is reached in this procedure (this result is actuallyezial
case of Theorem 3)3 is the transformation expressed as:

B:A" — A" x(ly) — (s + 1)
=( will)zi(le)  wnllk)®n(l) . ®)
Yiiwill)m(le)” T3 wile)@ (k)
In Equation [§),wi(lx) = (Az(lk)): = 27, aijz;(lk), i €

{1,---,nh ke {1, -+ ,my — 1}.
C is the Neighborhood Expansion procedure, denoted as:

) = 2™ 4 Ap = 2™ 4 b (6)

Details oft* andb are explained in Appendix A.

2.3 Detail Procedure and Stopping Criteria

The GS Algorithm[15] is an iterative process through theploo
seeking the dense subgraph starting from each vertex irrétping
with the pseudo-code shown below illustrating the wholecpss.

Require: A™*™, Affinity matrix of the whole data set with the
diagonal value 0;
{x = {x:}i=1~ }, initial starting points, usually taken g& =
{ei}i=1n}

1: for i=1,...ndo

2 do Replicator Dynamics(Equatidnl (5)) of

3:  if (resultz is the mode of graptthen

4: goto step 11

5  endif

6: do Neighborhood Expansion(Equatibh (6))mf

7. if (resultz is the mode of graphthen

8: gotostep 11

9: endif

10: end for

11: return the belonging clusters = {¢;};—, corresponding to
the starting pointe: = {x; }7-;.



The stopping criteria of the algorithm , or the solution skethe
problem (Equation[{2)) is set to satisfy the Karush-Kuhikew
(KKT) condition [12]:

=X\, i€o(x);
<A i ¢o(x).

Here (Az); is thei-th component ofdx; X is one Lagrange mul-
tiplier. o(x) = {i € {1,--- ,n}lx; # 0} corresponds to the
subgraph as defined above.

I' .= {x € A | z satisfieq Ax); { oo

Compact The sequence s¢*)}2° ) c Sfor S c X isa
compact set.

Decreasing There is a continuous functiofi on X such that

1) ife ¢ T, thenZ(y) < Z(x) forall y € A(x).
2) ifx el thenZ(y) < Z(x) forall y € A(x).

Closed The mappingA is closed at all points oK \T".
Then either the algorithm stops at the point where a soluson

As stated above, the GS Algorithm is implemented on each ver- jenrified or there exists suchkaso that for allk + j (j > 1) there

tex’s evolving process by recursively using the Replic&tgnam-

ics procedure and Neighborhood Expansion Procedurejtneidiches

the desired solution, i.e., satisfying KKT condition (Etjaa (1))
to each of the starting vertices.

3. MAPPING FROM THE GS ALGORITHM
TO THE ZANGWILL'S THEOREM

The Zangwill's convergence theorein [22][6] is fundameimal
terms of proving the convergence of iterative sets for itsegel
applicability. In this section, we build up the mapping freine GS
principle to the Zangwill’s convergence theorem.

3.1 Zangwill's Convergence Theorem

Definitions and lemmas are introduced before we present the

Zangwill's convergence theorem.

DEFINITION 1. A point-to-set mappin§ from setX to power
setY is defined a$) : X — P(Y), which associates a subset of
Y with each point inX, P(Y") denotes the power set Bf.

DEFINITION 2. Given a functionf and an element of the do-
main I, f is said to be continuous at the poiatif the following
holds: for every: > 0, there exists & > 0 such that for allz € I,

|z —cl <n=|f(z) - flc)| <e.

DEFINITION 3. A point-to-set mapping2 : X — P(Y) is
said to be closed at a point* in X if {(™} ¢ X andz™ —
x* y™ e Q(w(m)) andy™ — y* imply thaty* € Q(z™).

The following LemmdL is induced by integrating a continuous

function with a point-to-set mapping:

LEMMA 1. LetC: M — V beafunctionan® : V — P(V)
be a point-to-set mapping. Assuifids continuous atv* and B is
closed atC'(w™), then the point-to-set mapping = BoC : M —
P(V)is closed atv™.

The composition of continuous functions is still a contingo
function, we have Lemnid 2:

LEMMA 2. Given two continuous functionsf : I — J(C
r),g: J — R, the compositiogo f: I — R,z — g(f(z))Iis
continuous.

Accordingly, the Zangwill’s convergence theorem is desedi
below.

THEOREM 1. Given an algorithm o, (¥ € X, assume the
sequencdz*)}° | is generated which satisfies

zF ) e A(z®) (8)

For a given solution sel' C X of an algorithm, if the following
three properties holds:

is a convergent subsequence{af*) } 2 , in the solution sef".

The Zangwill's convergence theorem provide a feasiblectiva
to verify one algorithm’s convergence behavior, espegialies
with iterative implementations. With its general flexibjliit has
been applied widely to prove the convergence of algorithrite w
similar properties, including clustering and optimizati@search.
Amongst all the iterative algorithms, here we are inteiistepar-
ticular, in monotonic algorithms.

3.2 Mapping

Retrospective to the conditions in Zangwill's theorem, wetfer
break down the GS Algorithm and abstract the following cbima
istics from it (detailed verification will be given later):

1), Simplex of generated sequence sdthe candidate solution se-
quence sefz®)}2°, generated by the mappir,, lies in
A" ={x € R" : «; > 0 and|z|, = 1}, i.e., the standard
n-simplex of R™ in any stepk (k < m);

2), Monotonic and continuous objective function The objective
functiong(x) = «” Az is continuous and strictly increases
during the mappindl;,, according to the Propositiofi$[2-4
(see Section 4);

3), Closed mapping The mappindl’,, = B™* o C'is closed dur-

ing each procedure in accordance to Propositidht 5-6 (see

Section 4) at all points of the generated sequence set.

These three properties are also the key components in ooe alg
rithm, that is to say, with these vital feature requiremesiésrly
prescribed, the algorithm is fixed into a predefined framéwior
cluding the generated sequence set defining the scope oéthe v
ables, the objective function’s behavior describing thgoathm
mapping’s efforts towards the setting goal and mappindf itgi¢h
restricted property.

Table[d. depicts the one-to-one correspondence simdaiiite-
tween these two more clearly.

Table 1: Mapping between GS Algorithm and Zangwill's The-
orem

the GS Algorithm the Zangwill's theorem

Simplex ~ Compact
Monotonic ~ Decreasing
Closed ~ Closed

4. CONVERGENCE OF THE GS ALGORITHM

Several propositions are declared before analyzing deafiy
the convergence behavior of the GS Algorithm, all focus an th



three properties as we discussed in Section 2. Detailedgafo
these propositions are given in Appendix B-E.

The GS Algorithm’s stable solution set is compact according
Propositiori L.

PROPOSITION 1. The sequence s¢:*)15° , c S generated
by the mappind’,, = B™* o C'is a compact set.

Proposition§1234 discuss the monotonicityyék) under the map-
ping T,, = B™* o C, as discussed about the monotonicity of the
GS Algorithm’s main characteristics.

PROPOSITION 2. The objective functiofi(x) = =™ Az strictly
increases along any nonconstant trajectory of EquatidnwBgn
x e X/T.

PROPOSITION 3. The objective functiofi(x) = x” Az strictly
increases along the neighborhood expansion operation o&ion

©).
PROOF It can be derived from the definition &fx in Appendix
B. O

PROPOSITION 4. g(x) = 27 Az is a function both continuous
and strictly increasing during the mapping, = B™* o C when
x € X/T', butjustincreasing ift € T

Proposition§ 536 validate the closed mapping property G
Algorithm.

PrRoPOSITION 5. The mapping”' is closed on all points ok \T".

PROPOSITION 6. The mappindl,,, = B™* o C is closed on
X/T.

PRoOOF According to the definition ofB (Equation [(b)), it is
continuous onX/I". C is closed onX/T" as per Propositioh]5.
According to Lemm&llT,, is closed onX/T". [

With the above preparations, we have the following Theorem 2

THEOREM 2. Let A = (a;;)™*™ be a similarity matrix with
diagonal values 07, I' be defined as Equatiofl), Equation
@), andz® be an arbitrary initial starting point, then either the
iteration sequencéz("} (r = 1,2,...) terminates at a point*
in the solution sef’ or there is a subsequence converging to a point
inT.

PROOF Taking g(x) = —g(x) = —x” Az as the continu-
ous functionZ and T, as the algorithm mapping in Theorem
1. Proposition 1 shows that the sequence{agt’}2° | generated
by T, is a compact setg(x) is continuous and strict decreasing
as the continuity and strict increasing characteristig(@f) in the
trajectory ofT,, are proven by Propositidd 4. Propositldn 6 asserts
T, is closed on: /T (I is the solution set defined in Equati@n (7)).
According to the Zangwill's convergence theory, Theorenolif
as all three properties are satisfied.]

This result gives us the theoretical guarantees to the vaap-
plications of the GS Algorithm and ensure to reach at least a |
cal maximum of the objective function after finite number lofca
rithm’s mapping implementations.

5. CONVERGENCE FOROTHER GS-TYPE
ALGORITHMS

Clustering (DSPC) Algorithni[17] as an example, for it is tre

gin method of the GS Algorithm. The DSPC Algorithm shares the
same goal as the GS Algorithm in terms of finding dense subgrap
i.e., dominant sets(x). Their implementations are mostly simi-
lar, however differentiates in whether selecting the neigghood
expansion or not, the GS Algorithm does but the DSPC Algorith
does not.

The detail implementation of the DSPC Algorithm could refer
to [17)], due to the simiplicy, we ignore it here and focus o it
convergence behavior. The DSPC Algorithm consists of tkege
components, holding similar properties to the GS Algorithiaw-
ever, differing in minor places.

1), Simplex of generated sequence sdthe sequence sé"}°
generated by mapping always lies inA"™;

2), Monotonic and continuous objective function The objective
functiong(x) = =™ Az is continuous and strictly increasing
during the mappind3;

3), Continuous mapping The mappingB is continuous.

Table[2 further displays the relationship between the DSR©@-A
rithm, the GS Algorithm and the Zangwill's theorem.

Table 2: GS-type algorithms and Zangwill's theorem’s mapping

DSPC Algorithm GS Algorithm Zangwill's theorem
Simplex ~ Simplex ~ Compact
Monotonic ~  Monotonic ~ Decreasing
Continuous ~ Closed ~ Closed

A convergence proof has been provided for the continuous ver
sion of the DSPC Algorithm in [19]. Here some related proposi
tions are first introduced. Then we discuss the convergerage p
erty of its discrete-time version by involving the Zangvgitonver-
gence theorem.

PROPOSITION 7. The sequence s¢:*)1° S generated
by the mapping3™* is a compact set.

For its proof, refer to Appendix B.

PROPOSITION 8. If a mappingf : S — T is continuous orf,
thenf is closed onS.

THEOREM 3. Let A = (a;;)"*™ be a similarity matrix with
diagonal values 0B be defined as Equatioff]), and 2> be an
arbitrary initial starting point, then either the iteratiosequence
{x"tY = B(z")},(r = 1,2,...) terminates at a poink* in
the solution sef” or there is a subsequence converging to a point
inT.

PROOF. Taking §(x) = —g(x) = —a” Az as the continu-
ous functionZ and B as the algorithm mappingl in Theorem
1. Propositiofil7 shows that the sequence{agt’}3° | generated
by B is a compact setg(x) is continuous and strict decreasing
according to the continuity and strict increasey(£) in the trajec-
tory of T,,, are proven in Propositidd 2. Propositidn 8 asséttis
closed onz/T", while I" is the solution set defined in in Equation

We expand the proposed GS convergence theorem’s proof to(7). According to the Zangwill's convergence theory, Thesor3

other GS-type algorithms. Take the Dominant Sets and Pagrwi

holds. O



There are many similarities shared between these two Higusi
proving process, along with their similar properties. Thue can
propose a Zangwill's theorem-based convergence frametgork
the "similar algorithms". Firstly, the so-called "GS-tyglgorithm"
is defined referring to what we called "similar algorithms".

DEFINITION 4. Analgorithm is a GS-type algorithm if and only
if it satisfies the conditions on three key components: srpf
generated sequence set, monotonic and continuous olgjduatie-
tion and closed mapping.

We provide a flowchart (Figl]1) to illustrate our prooving pro
cess in details. It presents a guideline proving the comrerg of
GS-type algorithms step by step. (1) Break down the GS-tigwe a
rithm into three parts: generated set, objective functiot map-
ping. (2) Check if these three parts all satisfy the corradpm
requirements. Any part unsatisfied is regarded as unseitaipl
applying this framework, otherwise it is convergent.

Figure 1. Proving framework for GS-type algorithm conver-
gence
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Among the two processes in FIg. 1, properties verificatiarsis
ally the difficult part, especially the objective functismhonotonic
behavior. We will further discuss its behavior in the Setfio

6. EXPERIMENTAL VERIFICATION

The GS Algorithm and the DSPC Algorithm are all implemented
in MATLAB2011b. Our experiments are conducted on an Acer As-
pire 4720Z laptop having an Intel Pentium DualCoreT233EGHz,
533MHz FSB, 1MB L2 cache), with 2GB DDR2 RAM, using LINUX
operating system.

6.1 Experimental Settings

Since GS-type algorithms manipulate data based on a similar
ity matrix, we construct a similarity matrix instead of reddta
sets with its element values uniformly sampling within théer-
val [0, 1], and the matrix dimensionality scaling frorfi0 to 3000.
Also, we consider cases in which the matrices are fully deretei-
ces (FDM), partially dense matrices (PDM), and block tigiaal
matrices (BTM).

Initial starting pointz can be randomly chosen or be the single
vertice{l;,i = 1,--- ,n.}. In our experiments, we use the single
vertice with the same ds [114]. We test the GS Algorithm [15)al
as the DSPC Algorithni [17]. Each algorithm runs for threeesm
to obtain an averaged performance. We verify the proposeGH
Algorithm convergence theory through experiments and Scmu
testing convergence performance. The number of transtansa
(mg) in Replicator Dynamics, the whole iteration number)(run-
ning time ('), and average iteration running time=£ 7'/m) are
presented to evaluate the convergence performance.

6.2 Objective function behavior

Fig.[2 depicts the behaviors of three representative \esrtizor-
responding objective function in the GS Algorithm under BizM
case and 500 scale, along with the candidate solution eplvi
The X -axis represents the evolving process times , and Haxis
stands for the objective function’s value. To be fairly cargthe
performance, we tak& andC’s time as equal. Thus, the rate of
evolving time ismy, : 1 between Replicator Dynamics and Neigh-
borhood Expansion in thie-th iteration, according to Equationl (4).

From these three vertices’ evolving behaviors, we can de¢keal
three vertices reach a local maximum value. The objectime-fu
tion’s value kept increasing with the evolving process,alhs in
accordance with the Propositibh 4. This is perfectly madolih
the theorem we have proposed.

When the curve first starting from the Replicator Dynamits, i
always produces a steep increasing trends in the first fqvs sied
then turn to a gentle curve in the last. What is more, when@mco
ters the Neighborhood Expansion procedure, it always m®du
huge jump comparing to the flat curve in the Replicator Dyrami
This is because the Neighborhood Expansion procedure ithane
pulling the candidate solution from one local dense subigtap
wards the dense graph and the dense value will change muich wit
the subgraph changes.

Also, we can notice that most of the evolving time is the Repli
cator Dynamics, denoting that most of the calculations vieme
in Replicator Dynamics, i.e., searching the dense subgraph

6.3 Convergence performance

The convergence performance of the GS Algorithm and the DSPC
Algorithm depends on many factors: scale of the affinity matr
matrix structure, element value, etc. We test differenhades by
changing the scale of matrix and the sparseness of matrixe Th
scenarios and results are given in Tdlile 3.

The experimental results presented in the GS Algorithm had t
DSPC Algorithm are a little different for their different qing
definitions, with the former bein@’,, = B™* o C' and the later
being B.

The results show that both the GS Algorithm and the DSPC Al-
gorithm converge under the cases with FDM, PDM and BTM. In
each case, transformatid?is numberm; and iteratioril},,’s num-
ber m increase slowly when matrix’s scaling grows, sometimes
even with a small drop, e.g., in FDM case of the GS Algorithm,
my's values in the third row aneh’s value in the fourth row are
both smaller than the previous ones although matricesesical
creases. What is more, when the matrice’s scale is 3000 hviic
30 times of the first one’s scale in each caseyifsandm’s values
are less than 2 times larger. This indicates that if the desitseof
the matrix is fixed, the computational cost is always undetrod
even though the matrices’ scale increases.

Also, the GS Algorithm’s transformation number, iteratimm-
ber and running time all decrease when the matrix becomesespa
the same with the DSPC Algorithm’s transformation numbet an
running time. This indicates that if we incorporate pridioima-
tion and setting the unrelated nodes’ similarity value ahén we
can save much computational cost in the application. Howeve
both of the two Algorithms performs worse on the block trghaal
matrices case compared to the partially dense matrices ease
with a smaller sparse rate. This is due to the fact that blddi t
agonal matrices’ calculation is quite similar to the one rofaler
scale with full dense matrices. As shown above, it is heaoiyn-
putational loaded.

7. CONCLUSIONS AND FUTURE WORK



Table 3: the GS Algorithm and the DSPC Algorithm’s testing results

the GS Algorithm

the DSPC Algorithm

Case Scale my m  T(s) t(s) S.R.(%}| Case Scale my T(s) S.R.(%}
FDM 100 12285 252 0.12 0.05 100.0| FDM 100 953.2 0.14 100.0
500 1297.3 296 0.40 0.14 100.0 500 12985 0.37 100.0
1000 1101.7 3.75 1.01 0.27 100.0 1000 1604.2 1.10 100.0
1500 1401.2 3.24 3.87 1.19 100.0 1500 1469.6 4.25 100.0
2000 15754 349 20.00 5.73 100.0 2000 1448.1 18.61 100.0
3000 15114 356 50.15 14.09 100.0 3000 1785.3 56.20 100.0
PDM 100 236.3 222 0.02 0.01 26.1 | PDM 100 203.3 0.02 26.7
500 285.9 224 0.08 0.04 26.2 500 299.6 0.07 26.3
1000 2754 2.38 0.20 0.09 26.4 1000 326.7 0.15 26.4
1500 275.9 240 0.94 0.39 26.4 1500 338.2 0.55 26.3
2000 348.1 241 3.32 1.38 26.3 2000 288.8 2.11 26.4
3000 3329 250 7.75 3.10 26.3 3000 389.3 6.85 26.3
BTM 100 794.9 2.16 0.06 0.03 22.0 BTM 100 717.6 0.05 22.0
500 11853 265 0.31 0.12 22.0 500 1177.7 0.28 22.0
1000 12216 2.67 0.68 0.25 22.0 1000 1130.8 0.74 22.0
1500 1198.6 2.97 2.96 1.00 22.0 1500 1226.5 2.63 22.0
2000 1289.9 3.02 1357 4.50 221 2000 14178 13.24 220
3000 1406.2 3.13 3855 1234 220 3000 15174 38.16 22.0

1
S.R. refers to the sparse rate, the proportion of the nunferezero elements to the number of whole elements.
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Figure 2: Vertex 71(left), 231(middle) and 265(right)’s olpective functions’ behaviors(For better view, please seeotor pdf.)

Graph Shift (GS) Algorithm shows great advantage on efftren
dealing with noisy data, however no theoretical outcomeligzn
reported about its algorithm behavior and what is more dtwer-
gence proof. In this paper, we have proposed a generic tiiieore
cal framework to prove the convergence of GS-type algoisthin
GS-type Algorithm consists of three key components: simple
generated sequence set, monotonic and continuous okjéatic-
tion and closed mapping. They are mapped to the Zangwilbs co
vergence theorem’s three key conditions. Consequentyceim-
vergence of the GS Algorithm is proved by applying the Zarigwi
convergence theorem.

We have shown that the framework can be applied to GS-type
algorithms, as well as the Dominant set and pairwise clumger
(DSPC) Algorithm. Experimental results on both the GS Aitdjon
and the DSPC Algorithm certified that they both converge unde
different scenarios in terms of the scale of the affinity imathe
transformation number, and the iteration number.

However, this paper limits the generated sequence set tineler
simplex case, more work will be done to expand it to other cachp
set. What is more, Banach’s contraction theory and optitiniza
methods on nonconvex mathematical program are being aesid
in our problem so as to suit in a more general case.
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APPENDIX

A. DEFINITION OF Ax
According to [15],Ax = t*b, t* andb are defined as:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

(23]

| —xis i€ o(x);
b= { v, 1¢o(x). ©)
oo 1 if As? +2s¢ —w <0 ”

where
o 0, i € o(x)
vi= { maxa(, ) - g(),0), i¢ol@)
s = Z v, = Z vz,w—Zva”vJ (12)

ido(x)
g(z+Az)—g(x) =

i¢o(x)
—(\s? —|—2s§—w)t2+2Ct. When\s®+2s¢ —
w <0, g(z+Az)—g(x) > 0; Whens’>+2s¢—w < 0, t* always
lies in the intervall0, wéﬁ] which are the two solutions of
g(x + Azx) — g(x) = 0, this leads tg(x + Axz) — g(x) > 0.

B. PROOF OF PROPOSITION 1

PROOF. To prove that the sequence et }72, C S is com-
pact is equivalent to prove that the set is bounded and cl&ede
(z1, @2, -+ ,x,) are all located inf0, 1], the z value space is
bounded. Also, from Equatiofl(5%:; = (0, ..., 1,...,0), which
means the-th component ofc is 1 and the others are 0, we can
denotex(¢) as:

—1);(Ax;(t — 1))

n m(
t) = i 13
() ;e YT Az(t— 1) (13)
2(t—1); (Am; (t—1)) m(t 1); (Ax; (t—1))
SlnceZL 1 x(t—1)T Az (t—1) = land0 < DT Ax(t—1) —
1,i =1,...,n.. Adding Az (defined in Appendlx A) still holds

the expressiom(t) =3 e Yi, o,y =1, thusx(t) isin
the convex hull ofS, so it is closed. Therefore, the sequence set
{)}2Zo C S is both bounded and closed]

C. PROOF OF PROPOSITION 2

PROOF This proposition is known in mathematical biology as
the fundamental theory of natural selectioh [9] and, in figioal
form, we can trace it back tol[4].

We can also prove that Propositiah 2 is a special case of Baum-
Eagon inequality [[1]). We denote; asz; = []}_, =7, here

J 1%
1, i=j;
’"‘”’:{0, Z#;
x) =z Az = iwLxL =
<ZwZHJ

From Hélder inequation and?

the result as:
“”}2 x {w/ fsz(ﬁ) >}

9(@) Z{wz HJ
<{ZMHJ )i )2 X{szxZH J‘(”’“";j))w}%

(15)

. Thus we wish to prove that whe(t) ¢ I":

n n

. Hig
E w; I I z;
i=1 j=1

IJ'U

(14)

= ai - [[}_, ", we can get

n

8

Equality holds if and only if'p, q € {1,--- ,n},
n Sy 1
{wp - [y S ()" }>

_ {wg - Jj=1

s
1

Ppi 3 n Haj
‘*’pchH (J(‘L)) 2 Wq anjzl(Jw)) 2
J J
(zp) _ (zq) Wy = Wy
Tp Tq

(16)



Using the inequality of geometric and arithmetic means ¢odibu-
ble products of the second brace, we can conclude:

n n T N n n .
Zz::lwi:ci H(J(;j))ﬂg < ;wixi;mj. J(;j)

j=1
_ S S ZZ:l Wr Lk
(17)
_ En: S ) D g Wil - i
= WETk * Z:E] . 7&)*:6*
k=1 j=1 it
SITEN SR P
k=1 j=1 k=1
Equality holds if and only if/p,q € {1,--- ,n},
Tp Tp
= — = wg. 18
o) = Ty T (18)

Here the last equation succeed becauge - p;; = w;z; if and
only if 5 = 1, otherwise it i), andzg?:l z; =1

we put the result into the second braces, and get
S wime < {3 @ [[ @)1 x (3w}’
=1 =1 Jj=1 =1

n n n
1 R
e (S < (O w [[ Ty
i=1 i=1  j=1
n n n

=D wim <Y wi [[ I )t
i=1 i=1 j=1

(19)

Equality holds if and only ifv; = w;, Vi, 5 € {1,--- ,n}. ltisthe
situation contained by the solution dét

Thus, the functiony(z) = a2 A is strictly increasing along any
nonconstant trajectory dfi(5) whene X/I'. [

D. PROOF OF PROPOSITION 4

PROOF The continuity ofg(x) = «” Az is obvious. We here
discuss the increasing monotonicity. From Equatidn (4)hesee

g9(x) < g(C(x)) < g(BoCl(z)) = g(Tm(x))  (20)
(|

E. PROOF OF PROPOSITION 5

PrROOF. If 2° € X, thenz™ — z° andy™ — y° whenn —
oo. Consequently™ € C(x™), indicating that

y"=z" + Azx" (21)
and we need to prove that
Yy’ =C@°) = 2° + Ax’. (22)
This lies in two situations:
(1) 2°isinT, thusAz® = 0.
(2) =% isin X\T.

For situation (2), ag™ — z° andy™ — y°, we can find a large&v
such that’e > 0,3n > N, sothatjz™ —z°| < ¢, [y" —¢°| < e.

Consequently, we have
ly’ —C@")| < |y’ —y"|+|y" - C(@")| +|C(a")
—C@°)| <e+|z" — 2’|+ |Az® — Ax"| (23)
< 2+ Az’ — Ax"|

According to Lemmal2 and the definitions Bfandt, it is a con-
tinuous mapping ore, this results in thatve > 0,34 such that
|Az® — Axz™| < e. So,Ve > 0, if Ny is big enoughn >
Ny, |2™ — x°| <min(e/3,0), |[y™ — y°| < /3, then

ly” — C(z) < e (24)

Hencey® = C(x°), andC is closed onx\I'. O



	1 Introduction
	2 Preliminaries
	2.1 Rationale of the GS Algorithm
	2.2 Mapping definition
	2.3 Detail Procedure and Stopping Criteria

	3 Mapping from the GS Algorithm to the Zangwill's Theorem
	3.1 Zangwill's Convergence Theorem
	3.2 Mapping

	4 Convergence of the GS Algorithm
	5 Convergence for Other GS-type Algorithms
	6 Experimental Verification
	6.1 Experimental Settings
	6.2 Objective function behavior
	6.3 Convergence performance

	7 Conclusions and Future work
	8 References
	A Definition of bold0mu mumu xxxxxx
	B Proof of Proposition 1
	C Proof of Proposition 2
	D Proof of Proposition 4
	E Proof of Proposition 5

