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Abstract

Face recognition with multiple views is a challenging research problem. Most

of existing works have focused on extracting shared information among mul-

tiple views to improve recognition. However, when the pose variation is too

large or missing, ‘shared information’ may not be properly extracted, lead-

ing to poor recognition results. In this paper, we propose a novel method

for face recognition with multiple view images to overcome the large pose

variation and missing pose issue. By introducing a novel mixed norm, the

proposed method automatically selects candidates from the gallery to best

represent a group of highly correlated face images in a query set to improve

classification accuracy. This mixed norm combines the advantages of both

sparse representation based classification (SRC) and joint sparse representa-

tion based classification (JSRC). A trade off between the ℓ1-norm from SRC

and ℓ2,1-norm from JSRC is introduced to achieve this goal. Due to this

property, the proposed method decreases the influence when a face image is

unseen and has large pose variation in the recognition process. And when

some face images with a certain degree of unseen pose variation appear, this
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mixed norm will find an optimal representation for these query images based

on the shared information induced from multiple views. Moreover, we also

address an open problem in robust sparse representation and classification

which is using ℓ1-norm on the loss function to achieve a robust solution. To

solve this formulation, we derive a simple, yet provably convergent algorithm

based on the powerful alternative directions method of multipliers (ADMM)

framework. We provide extensive comparisons which demonstrate that our

method outperforms other state-of-the-arts algorithms on CMU-PIE, Yale

B and Multi-PIE databases for multi-view face recognition.
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1. Introduction

Face recognition is one of non-intrusive biometrics. Due to the emerging

demand in surveillance and security, it is an important research topic in

pattern recognition [1]. According to previous literature surveys [2, 3],

extensive studies have been done to resolve the face recognition issues, such

as pose, illumination, expression and occlusion, etc. [4, 5, 6]. However, most

of these methods are based on a single input image. They identify a subject

by matching a single query face image with all gallery images one by one. In

practice, it is common that the query face image is noisy or its pose may be

missing in the gallery, thus working with a single face image is likely to be
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unreliable in real-world applications. On the other hand, multiple views of a

same subject can be obtained easily with current technology. For instance, a

sequence of face images from a subject with a large degree of pose variations

may be observed over a time interval by a surveillance camera or multiple

snapshots are captured by video camera networks at same time from different

viewpoints. This will produce a large number of query images for recognition

tasks. Since multiple view images are from the same subject under different

time or viewpoint, there is likely some shared information across those face

images. The existing face recognition techniques have not investigated the

inter-correlation among the query images, therefore, exploiting the using of

these shared information becomes an important work.

In the face recognition literature, several popular classifiers have been

developed. The nearest neighbour (NN) is one of the most common and

popular classifiers [7]. The NN classifies the query face image based on its

closest neighbour in the gallery set. However, this classifier is sensitive to

outliers. The NN classifier is generalized to nearest subspace (NS) [8]. Instead

using a single image to perform classification, NS classifies a face based on

the best linear representation in terms of all the gallery images in each class.

Since the classification decision is made by all samples, NS is more robust

than NN. Sparse representation-based classification (SRC) [6] seeks a balance

between these two extreme cases, it represents a query image by adaptively

choosing a minimum number of atoms (samples in gallery) from both within

each class and across multiple classes. SRC has been shown more robust and

effective than NN and NS on some common face recognition issues, such as

occlusion and corruption. Encouraged by the SRC framework, a large number
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of its extensions have been proposed [9, 10, 11] and they have achieved state-

of-art performance. However, they are limited to single query face image for

recognition.

Recently, a growing interest [12, 13, 14, 15] in face recognition from an

image set has emerged. Rather than using a single query image to perform

recognition, multiple face images of the same subject are used as an input. In

general, the system identifies a query subject based on a set of input images

from known subjects in the gallery. The face images in both gallery and query

sets may have large variations in pose, illumination, etc. By using multiple

face images of the same subject in the query, the robustness of the recognition

system has been improved significantly compared with single-input systems.

In [16], an extended volume Local Binary Patterns is introduced to exploit the

information among frames. It can achieve a good performance, but it requires

sequential images from a video. Another approach to achieve this goal is by

measuring the distance between the query set and each class in the gallery set.

Inspired by label propagation [17], a graph-based classification for multiple

view face recognition has been proposed [12]. It converts the face image set

into a similarity graph, and then uses a class-wise graph matching procedure

to compare this similarity graph with the graph generated by each class in

the gallery. In [13], face images are represented as a feature vector in an affine

feature space. They build an affine hull for each image set (query set and each

class in the gallery). The geometric distances between the affine hull of query

and of each class in the gallery are used to make the classification decision. A

multi-class group Lasso is introduced in [18]. Images are represented by Local

Binary Patterns [19], then the best suitable features are selected to measure
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the distance between each pair of sets. These methods treat each set of the

gallery face images as a linear subspace, and use subspace distance to identify

the query subject from subjects in the gallery independently. Thus, they have

two limitations: (1) they cannot exploit information across multiple classes;

(2) when there is a large difference between images in the same class, such

as large pose variations, these methods can perform poorly.

Since SRC considers both within each class and between multiple class

factors, a multiple test samples generalization of SRC is introduced, known as

joint sparse representation-based classification (JSRC) [14, 20]. This method

assumes that the query face images share the same sparsity pattern. The

shared information can be exploited by using this assumption. Instead of

solving the SRC problem for each query image, JSRC solves a set of query

images from the same subject. It adaptively selects a minimum number of

atoms from gallery images, these atoms can best represent every query images

at same time. However, this assumption will not hold when there are large

pose differences in the query images. For example, if a frontal face and a

90◦ right face exist in the query set at the same time, it is impossible to find

an atom in the gallery to represent both of them at a same time accurately.

In order to overcome this issue, joint dynamic sparse representation-based

classification (JDSRC) was proposed in [15]. The authors in [15] argue that

the same sparsity patterns is not necessary at the atom level, these patterns

should be at the class level. To capture this model, they introduced a new

concept of joint dynamic sparsity. This joint dynamic sparsity brings in

flexibility to atom selection of JSRC. When the pose variation is large in the

query images, JDSRC does not necessarily select the same atom for all poses
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as JSRC. Instead, JDSRC selects atoms from the whole class to represent all

poses. Nevertheless, when a pose appears in the query but is missing in the

gallery, JDSRC will be forced to select a ‘similar’ atom from the gallery to

represent it. This may not lead to a robust solution. In addition, the JDSRC

is achieved by an extension of simultaneous orthogonal matching pursuit [20]

which is a naive greedy method and may be not convergent. Therefore, a

new algorithm is needed to solve this challenging multi-view (multi-pose)

problem.

In [21], the authors argue that the robustness of SRC based methods

should be achieved by using the ℓ1-loss function instead of the ℓ2-loss in

SRC. However, it was left as an open question, because solving via standard

linear programming techniques is computationally expensive. The sparse

representation is inspired from compressed sensing (CS). In the statistical

signal processing community, the core CS problem is finding a sparse linear

combination of signal atoms from an overcomplete dictionary [22, 23]. It was

then applied to face recognition in [6]. As solving this CS problem is close to

the Lasso in statistics in functional form, extensions to the basic sparse so-

lution have been observed in related areas. A robust Lasso, which explicitly

models the corruptions, is proposed and analysed in [24]. Statistically, this is

more generic and provably better than the least entropy and error correction

alternative discussed in a rejoinder [25] by the authors of SRC against the

paper of Shi et al. [21]. However, this is obtained at the cost of an extra

regularization parameter. In the related robust CS paper [26], a slightly dif-

ferent loss function, known as Huber’s robust loss function is used. However,

it requires the estimates of the Huber’s parameters, which brings additional

6



computational burden.

In this paper, we propose a novel mixed norm sparse representation clas-

sification (MSRC) method for multi-view face recognition. The proposed

method has the similar ability to JDSRC, it allows some degree of flexibility

in atom selection procedure of JSRC. On one hand, as SRC works with a

single query image, it cannot exploit the shared sparsity pattern across query

images. Thus, it will ignore the influence of large pose variations in the query

images. On the other hand, JSRC struggles with shared information among

query images, but it can easily be affected by the pose variations. Therefore,

it is natural to strike a balance between them. Our MSRC achieves this goal.

It exploits the correlation among the variance face images in the query and

it also brings the flexibility to the atom selection to achieve an accurate and

sparse representation. Moreover, to achieve more robustness, our MSRC uses

the ℓ1-loss instead of the general ℓ2-loss. Indeed, the ℓ1-norm loss function

we use in this work, which is also an open question disscussed in [21], is also

known in the robust statistics literature to be optimal for noise modelled as

a Cauchy distribution.

The contributions of this work are as follows: (1) we derive a simple,

provably convergent, and computationally efficient algorithm based on the

framework of alternative direction method of multipliers (ADMM) [27]; (2)

we establish a novel multi-view face recognition in a robust form to exploit

the similarities between different images in the query images. (3) we pro-

vide extensive experiments to show the advantages of our proposed method

against other state-of-the-arts.

The paper is organized as follows. We first briefly review the related
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works in Section 2. Then we derive our Multi-pose face recognition via

sparse representation (MSRC) based on the ADMM framework in Section

3. Finally, we provide extensive experiments on CMU-PIE, Yale B and

Multi-PIE datasets in Section 4. Section 5 concludes the paper.

The Matlab implementation of proposed method is publicly available at

https://sites.google.com/site/dspham/code.

2. Related works

2.1. Face recognition via sparse representation

In sparse representation classification (SRC), given a set of gallery images

A = [a1, . . . , aN ] where each ai ∈ R
d, one seeks a sparse combination of these

images to represent an unknown image y

y ≈
N
∑

i=1

xiai = Ax. (1)

Such a sparse solution can be found by solving following problem in [6]

x̂ = argmin
x

‖x‖1 subject to Ax = y. (2)

Or alternatively, by solving

x̂ = argmin
x

‖x‖1 subject to ‖Ax− y‖2 < ε. (3)

According to CS theory [28, 29], (3) can be solved by convex optimization

using ℓ1-norm regularization

x̂ = argmin
x

1

2
‖y −Ax‖22 + λ‖x‖1. (4)
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This convex optimization problem can be solved efficiently with many algo-

rithms developed specifically for CS. Then SRC combines this sparse repre-

sentation with nearest subspace classification. In other words, it computes

the class-specific residual vector

rk = y −Akxk, (5)

whereAk is the sub-matrix ofA that corresponds to all gallery images in class

k, and xk is the sub-vector of x with the corresponding sparse coefficients.

Then the target y is classified according to the minimum ℓ2-norm of the

residual vectors

class(y) = argmin
k

‖rk‖22. (6)

2.2. Multi-pose face recognition via sparse representation

In many practical situations, it is desirable to recognize a number of un-

known faces at the same time, such as, recognizing a person from a video

sequence. Under this situation, the face images usually come from one sub-

ject with different poses (views). If we simply use SRC to perform multiple

views face recognition, the sparse representation vectors will be generated

individually (see Figure 1(a)). Information between different views is not

involved in this scenario. Therefore, it is beneficial to exploit shared infor-

mation across those face images. In this section, we will revise two works

which have been proposed to extract the shared information.

We first proceed with some neccessary notations. Consider a gallery image

set A, which contains c classes. Each class Ai has Ni face images that

may be captured with different poses. Suppose that A = [A1, . . . ,Ac], and
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Ai = [ai
1, . . . , a

i
N i ] ∈ R

d×N i

, where d is the dimensionality of the images.

Denote a test set of face images as Y = [y1, . . . ,yM ] where each yi ∈ R
d.

These M images may also be captured with different poses, but from the

same person. The sparse representation coefficient matrix can be denoted as

X = [x1, . . . ,xM ] with respect to A.

2.2.1. Joint Sparse Representation Classification

In order to exploit the shared information across multiple views of the

same subject, we rewrite the formulation of original SRC in the multi-task

form as follows

{x̂i}Mi=1 = argmin
xi

‖xi‖1 (7)

subject to
M
∑

i=1

‖Axi − yi‖22 < ε. (8)

Recall that each xi represents a pose image fromY, and its rows represent the

weights of corresponding gallery images. In addition, all images in Y comes

from the same subject. Therefore, a joint sparse assumption can be applied to

extract the shared information across all images in Y [20], which implies that

multiple sparse representation vectors share the same sparsity pattern. For

example, face images for each subject must contain some common features

invariant to views. A same set of atoms may be used to represent for all

views as shown in Figure 1(b). Therefore, by solving the following problem,

the sparse representation vectors for multiple views can be found:

X̂ = argmin
X

||X||2,1 (9)

subject to ||Y −AX||2F < ε (10)
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Figure 1: Four sparsity models for the coefficient matrix X. The column represents the

poses/images in the gallery as grouped by subjects, the row represents different images in

the unknown set Y. Each column denotes a sparse representation vector and each square

denotes a coefficient. a) Independent sparsity (as in SRC): all coefficients are selected

independently based on ℓ1 regularization; b) Joint sparsity (as in JSRC): only few gallery

images/poses are selected simultaneously by all test images; c) Joint dynamic sparsity (as

in JDSRC): sparsity in terms of sorted active groups, active coefficients are multiples of

the number of test images; d) Mixed Sparsity: a well trade-off balance of both a) and b)

to adaptively select the suitable class-level and atom-level sparsity.

where ‖•‖2,1 is defined as the sum of the ℓ2-norm of all rows of a matrix and

a Frobenius norm is used for reconstruction error. By introducing ‖•‖2,1, the
sparse representation matrix will have dense coefficients row-wise and sparse

coefficients column-wise (see Figure 1(b)). This method is called JSRC.

However, as stated by [15], the assumption that all the views share the same

sparsity pattern is not applicable when solving multi-view face recognition

with large variations. As face images could be captured from largely different

angles, the shared information would be less when the difference between

images in Y increase. Therefore, forcing the entire views to share the same

set of atoms is not applicable to real-world multi-view face recognition.
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2.2.2. Joint Dynamic Sparse Representation Classification

To overcome above issues with JSRC, it is argued that each view can be

better represented by a different set of samples from the same class. The

sparse representation vectors should share the same pattern across one sub-

ject, but not at the atom level [15] (see Figure 1(c)). Based on this as-

sumption, they introduced the JDSRC model. Dynamic active sets are the

core part of JDSRC, which allows it to exploit the joint dynamic sparsity

prior for multi-view face recognition. The dynamic active sets are denoted as

G = [g1, . . . ,gs] ∈ R. Each dynamic active set gi contains the (row-) indices

of a set of coefficients which belong to the same class in coefficient matrix X.

Only one index is selected in each column of X for one dynamic active set.

For example, gi(j) refers the row index for j-th column of the coefficients

matrix X in dynamic active set i. Based on these dynamic active sets, the

following JDSRC model was developed in[15]

X̂ = argmin
X

||Y −AX||2F (11)

subject to ||X||G ≤ K, (12)

where K is the sparsity level. Here, ||X||G is a combination of ℓ2-norm

and ℓ0-norm based on dynamic active sets. The ℓ2-norm is applied to the

selected coefficients of each dynamic active set gi individually, then the ℓ0-

norm is applied across all dynamic active sets. This joint dynamic sparsity

regularization term is defined as follows

||X||G = ||[||xg1
||2, ||xg2

||2, . . .]||0, (13)
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where xgi indicates a set of coefficients that associated with dynamic active

set gi:

xg = X(gs) = [X(gs(1), 1), . . . ,X(gs(M),M)]T ∈ R
M (14)

To solve the problem with ℓ0-norm and joint dynamic sparsity constraint,

the authors of [15] proposed a greedy JDSRC algorithm which is similar to

Simultaneous Orthogonal Matching Pursuit (SOMP) [20] and Compressive

Simultaneous Orthogonal Matching Pursuit (CoSOMP) [30]. It consists of

three steps: 1). select new candidates based on current residuals. 2). add

these candidates to the selected atom set. 3). find new coefficients to reduce

the size of an atom set to the specified sparsity level by using this atom set;

4). update the residuals based on this new atom set. These four steps are

repeated until certain convergence conditions are satisfied [30]. In JDSRC,

they introduce a new way to select atoms by using dynamic active sets. They

first generate dynamic active sets by using the coefficients obtained from

the previous step. They use all the atoms which have the largest absolute

coefficients for each view from one class as one dynamic active set. Then they

remove these large coefficients from the matrix, and select a new dynamic

active set again. This procedure is repeated until there are no coefficients left

in the coefficients matrix. After that, the ℓ2-norm is applied to the coefficients

from each dynamic active set, and the atoms from the active sets with K

largest ℓ2-norm will be selected as candidates for OMP optimization. Since

the dynamic active set is selected from each class and the ℓ2-norm is applied

on dynamic active set separately, the sparse representations of JDSRC are

forced to share the patterns only from the same class in order to exploit the

common information for the same subject, this enhances the discriminative
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ability between different subjects.

However, there are a few issues with JDSRC. First, there is only one

candidate selected for each view. This brings in two problems: 1) if the

second largest atom in one view is much greater than the other view, it will

miss a chance. 2) If a query view does not completely exist in the gallery

for a subject, this candidate selection will lead to a false hit. Second, due to

the complexity of the dynamic active set design, this JDSRC model cannot

be solved by convex optimization. Therefore, a greedy method is often used.

Since the convergence of the greedy method is not guaranteed, a robust and

accurate solution may not be achieved.

3. Multi-view mixed norm robust sparse representation

3.1. Model formulation

In this section, we present our mixed-norm sparse representation classifi-

cation (MSRC) method to overcome the issues with JDSRC. To start with,

we recall from [21] that as the ℓ2-norm used for residuals in SRC may not

lead to a robustness solution, a ℓ1-norm should be applied on the residuals:

x̂ = arg min
x∈RN

||y −Ax||1 (15)

Therefore, the proposed method is designed to fulfil the following require-

ments:

• Shared information in the query set needs to be considered;

• A dynamic atom selection is needed to avoid large pose variations;

• A robustness solution has to be achieved;
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• It has to be solvable by convex optimization.

As discussed, if images in the query set are from the same subject, there

is likely some shared information across all images which can help to identify

the subject. It is natural to apply the ℓ2,1-norm on the representation matrix

to achieve a dense solution in each row and with a minimum number of rows

(Figure 1(b) ). It has been shown that this can achieve good performance

when the images in the query set are highly correlated with each other (with a

small pose variation) in JSRC. However, when JSRC encounters a large pose

variation, this naive application could not achieve satisfactory performance.

The ℓ2,1-norm thus reduces classification performance. On the other hand,

the multi-task version of the original SRC will typically select atoms in an

image-versus-image manner. The representation matrix is constructed based

on the best representation of the input images, which does not exploit the

shared information (Figure 1(a)). Although this characteristic could not help

finding the shared pattern, it would not be confused by the increased pose

variation. Therefore, we propose a new model to combine the ℓ2,1 and normal

ℓ1-norm to solve them in the same time. The final decision is not based on

any individual factor, it is an overall view (Figure 1(d)).We note that the

difference between the sparisty patterns (c) and (d) as shown in Figure 1

is subtle. The sparsity pattern (c) as found in JDSRC is also group-wise.

However, each group for each subject class is not restricted to a row in pattern

(b) of JSRC. Rather, it may span across multiple rows depending on how

active groups are selected. Important properties of JDSRC’s active groups

are: non-overlapping, having equal sizes, and having exactly one coefficent

in each column. Only the top active groups are finally chosen through global
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optimization. Thus, the number of active coefficients per subject class is

always a multiple of the number of images in the test set. On the contrary,

the sparsity pattern (d) of MSRC is not group-wise, but a well traded-off

balance between group-wise and element-wise. This is achieved through a

novel combination of both SRC and JSRC, which gives the strength of both

methods and eliminates their weaknesses.

To describe our model, we first extend the original SRC to the following

robust and stable formulation for sparse representation:

x̂ = arg min
x∈RN

||y −Ax||1 + λ‖x‖1 (16)

Here, the regularization parameter λ specifies the desired sparsity. Clearly,

the robust sparse formulation is even more general than (15), because (15)

is a special case when one sets λ = 0. Thus, solving this formulation allows

one to obtain a solution for (15) easily.

Then, this formulation needs to be converted into a multi-task version.

The individual robust sparse representation problems are

x̂1 = arg min
x1∈RN

{‖y1 −Ax1‖1 + λ‖x1‖1} , (17)

. . .

x̂T = arg min
xT∈RN

{‖yT −AxT‖1 + λ‖xT‖1} . (18)

(19)

We collect the variables in matrix quantities

X = [x1, . . . ,xT ] (20)

Y = [y1, . . . ,yT ] (21)
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then we can write all the single tasks more conveniently in a matrix form as

X̂ = argmin
X

‖Y −AX‖1 + λ‖X‖1. (22)

Here, the ℓ1-norm for matrices is defined as ‖X‖1 =
∑

i,j |Xij|. The ℓ1-norm

used on the residuals in the first term could prevent the bad influence of

noise in image pixels. Thus, a more robust solution can be delivered by this

formulation. In addition, as we mentioned above, the second term allows

us to select the best representation in an atoms level. Thus, the large pose

variations do not affect this representation.

Next, we introduce information sharing between different face views. Re-

call that each column of the coefficient matrix X represents one view of a

subject, and each row represents the weights of the corresponding gallery im-

ages in all views of that same subject. We apply the same hypotheses with

JSRC, the shared information appears in each face image for one subject

onto the previous formulation (22). A ℓ2,1-norm is used on the coefficients

matrix X to exploit the shared information.

To capture this modelling, we propose the following mixed-norm solution

X̂ = argmin
X

‖Y −AX‖1 + λ‖X‖γ⋆ (23)

where the mixed norm is defined as

‖X‖γ⋆ = γ‖X‖1 + (1− γ)‖X‖2,1. (24)

Here, the block regularizer ‖ • ‖2,1 is defined as the sum of the ℓ2-norm of

all rows of a matrix. It is known from statistics that such ℓ2-norm promotes

dense solutions. The parameter γ controls the trade-off between absolute

sparse (γ = 1) and absolute dense in the row with minimum number of rows
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(γ = 0). When γ = 1, this reduces to the multi-task version of robust SRC.

When γ = 0, it is a special robust version of JSRC. For γ between 0 and 1,

the formulation automatically adapts to the underlying statistics. The pro-

posed formulation is termed mixed-norm sparse representation classification

(MSRC).

Since the coefficient matrix is found by the mixed norm constraint, it will

have certain advantages: 1). The proposed method could perfectly exploit

the shared information across the images in the query set by the ℓ2,1-norm

on X. 2). By introducing the ℓ1-norm on X, the proposed method could

overcome “miss chance” and “false hit” issues in JDSRC. When the second

largest atom in one view is much greater than the largest atom in the other

view, this “second” largest atom may be captured by the ℓ1-norm in (24).

When some pose images in the query do not exist in the gallery, the overall

weights for these images will automatically decrease. Therefore, the valid

distance is defined by the remaining high correlated face images in the query.

To illustrate the proposed method, we consider a synthetic example,

wherein there are two subject classes A and B, each with 4 images of varying

poses, and a test set of 4 images also with varying poses. The test set has the

groundtruth of subject class A. Figure 2 shows spatially the pose distribu-

tion of all images. Note that the placement of the images is not meant to be

exact as it is only a conceptual sketch. As can be seen, the gallery images of

subject A has 4 different poses concentrated around the frontal pose, whilst

the 4 gallery images of subject B spread out in the pose space. The 4-image

test set to be recognized also has widespread poses. In SRC, images in the

test set tend to select the nearest gallery images as their representatives in
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Figure 2: A conceptual illustration of the spatial pose distribution of the images in the

training and test sets of a synthetic example.
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a rough proximity sense. Thus, the spatial distribution in Figure 2 aids in

the explanation of the coefficients obtained by SRC, JSRC, and MSRC re-

spectively as shown in Figure 3. When the intra-class variation is too large

in query set (as shown in this figure), SRC and JSRC do not perform well.

The closest neighbours for U1 and U2 are from subject B and for U3 and

U4 are from subject A, SRC typically selects atoms based on the best rep-

resentation from subjects A and B, which is a single input image. Thus, if

one simply performs majority voting from individual SRC solutions for each

image in a pose set and does not consider other input images, this may lead

to a failure because of pose similarity. On the other hand, JSRC finds the

best candidates as A1, B2 and B3 as it treats all the images in the query set

as a whole space. Thus, it may not perform well in this case, because JDSRC

is forced to select some candidates to represent U1, even there is no similar

pose in the gallery for subject A. Due to large pose variations in U1 and

U2 , both SRC and JSRC have a difficulty in distinguishing between class A

and B, which is evident through the values of their coefficients (Figure (3.a)

and (3.b)), whose sums are similar between the two classes. On the other

hand, the coefficients of MSRC reveal better discrimination as they carry the

strength of both SRC and JSRC (Figure (3.c)). Its coefficients corresponding

to class A are enhanced in a sense of the total sum when compared to those

of either SRC or JSRC. In particular, its coefficients corresponding to the

gallery image A1 become more dominant as they are also selected in SRC

and JSRC. Likewise, its coefficients corresponding to class B are degraded in

a sense of the total sum when compared to those of either SRC or JSRC. The

coefficients corresponding to the gallery image B1 become less dominant as
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they are only selected in SRC but not JSRC. Note that although the coeffi-

cients corresponding to the gallery image B2 and B3 are also enhanced, their

values are not sufficient enough when compared with those corresponding to

class A.

3.2. Multi-task mixed norm algorithm

We now discuss a solution for the formulation above. We follow the

ADMM framework in the convex optimization literature [27] (Readers who

are not familiar with the basics of ADMM are referred to [27] for a back-

ground). By utilising the ADMM framework, we show that our algorithm

is computionally efficient. Note that this problem is convex in X and hence

there exists a global minimum. Thus, it completely avoids the convergence

problem in JDSRC which solved by a greedy search.

For simplicity, we denote α = λγ and β = λ(1 − γ), and we can express

the problem as

min
X,V,Z,T

‖V‖1 + α‖Z‖1 + β‖T‖2,1

s.t. AX−Y −V = 0

X− Z = 0.

X−T = 0. (25)

Note that an additional variable T is introduced to the single-task case to

effectively decouple the block regularization. Thus, we can consider the aug-
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Figure 3: Coefficients of SRC[6], JSRC[14, 20] and MSRC for Figure 2. The coefficients

in each set are positive and sum to one. In (a), SRC selects atoms based on similarity

between each image. Thus, the coefficients are distributed across all classes. In (b), JSRC

favours atoms based on similarity across all poses in the query set, thus there are only few

columns (rows) being selected. In (c), coefficients are likely to be enhanced if they appear

in both SRC and JSRC. Otherwise, they are likely to be suppressed if they appear only

in one of the two methods. Thus, the total sum of coefficients of MSRC for group A is

significant more than the total sum of coefficients for group B.
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mented Lagrangian

L = ‖V‖1 + α‖Z‖1 + tr[WT
1 (AX−V −Y)]

+
η1
2
‖AX−V −Y‖22 + β‖T‖2,1

+tr[WT
2 (X− Z)] +

η2
2
‖X− Z‖2F

+tr[WT
3 (X−T)] +

η3
2
‖X−T‖2F . (26)

Here, tr[•] denotes the trace of a matrix and we omit the arguments (X,V,Z,T,W1,W2,W3)

of the Lagrangian for notational simplicity. As with ADMM, we scale dual

variables Ui = Wi/ηi, i = 1, 2, 3, to obtain a simpler form

L = ‖V‖1 + α‖Z‖1 + β‖T‖2,1

+
η1
2
‖AX−V −Y +U1‖2F

+
η2
2
‖X− Z+U2‖2F

+
η3
2
‖X−T+U3‖2F + const. (27)

where the constant is independent of the primal variables X,V,Z.

Again, the updates for the variables are easily computed under the ADMM

principle. For X, we find the update from

Xk+1 = argmin
X

η1
2
‖AX−Vk −Y +Uk

1‖22

+
η2
2
‖X− Zk +Uk

2‖22
+
η3
2
‖X−Tk +Uk

3‖22, (28)

which yields the exact solution

Xk+1 = H−1q, (29)
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where H−1 = (η1A
TA + (η2 + η3)I)

−1 can be computed once, and q =

(η1A
T (Vk +Y −Uk

1) + η2(Z
k −Uk

2) + η3(T
k −Uk

3)) is the update term.

As can be seen in (29), the update step ofX is computationally expensive.

Here, the matrix under inversion has dimensions N × N where A ∈ R
d×N .

In the case d < N , i.e., the feature dimension is less than the number of

images in the gallery, such a direct matrix inversion can be inefficient. A

much more efficient approach is to use Cholesky decomposition to achieve

the goal. It is known from linear algebra that if H is a positive definite

matrix then it admits the factorization H = LLT and thus H−1q can be

efficiently computed by solving LX1 = q first, then LTX = X1, which can

be written as X = LT \ (L \ q).
For variable V, the update step solves

Vk+1 = argmin
V

‖V‖1 +
η1
2
‖Qk −V‖22, (30)

where Qk = AXk+1 −Y +Uk
1. Likewise, for Z the update step solves

Zk+1 = argmin
Z

α‖Z‖1 +
η2
2
‖Pk − Z‖22, (31)

where Pk = Xk+1 +Uk
2.

As ‖ • ‖1 is absolute value, the first terms in both (30) and (31) are not

differentiable. However, we still can solve them directly. A soft-thresholding

shrinkage operator can be used to find the solutions in element-wise. There-

fore, the solutions for V and Z are defined as follows

Vk+1 = S1/η1(Q
k), (32)

Zk+1 = Sα/η2(X
k+1 +Uk

2), (33)
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Figure 4: Illustration of Lemma 3.1. The circle (or sphere in high dimension space) which

centered at l with radius R is the set of all feasible points for t. When we constraint t

with minimizes ℓ2-norm, we will have the only solution tmin.

where this soft-thresholding shrinkage operator is defined as

Sτ (X) = {t : ti = sign(Xi,j)max(|xi,j| − τ, 0)}. (34)

For the last primal variable T, the update steps are only slightly different

Tk+1 = argmin
T

η3
2
‖Xk+1 +Uk

3 −T‖2F + β‖T‖2,1. (35)

To solve this problem, suppose that ti and li are the ith row vectors of T

and Xk+1 +Uk
3 respectively, then we decompose the problem as

Tk+1 = arg min
ti,i=1,...

∑

i

η3
2
‖li − ti‖22 + β‖ti‖2. (36)

Thus, we can find each row of T separately by exploiting the following result

Lemma 3.1. The solution of the optimization problem

min
t

η3
2
‖l− t‖22 + β‖t‖2

is t = κl, where κ = max(1− β
η3‖l‖2

, 0) if ‖l‖2 > 0 and κ = 0 if ‖l‖2 = 0.
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This result can be easily proved by a geometrical argument as shown

in Figure 4. Indeed, suppose that t∗ is the solution of the problem then we

consider all feasible t such that ‖l−t‖2 = ‖l−t∗‖2 = R. Then, it is observed

that the set of those feasible points is the sphere centred at l with radius R.

Among all those feasible points, the solution must be the one that minimizes

‖t‖2, which is the intersection of the sphere and the line from the origin to

the centre of the sphere. Then it follows that the solution must be of the

form t = κl with 1 ≥ κ ≥ 0. Then straightforward manipulations easily lead

to the result.

Finally, the updates for dual variables are

Uk+1

1 = Uk
1 +AXk+1 −Vk+1 −Y, (37)

Uk+1

2 = Uk
2 +Xk+1 − Zk+1, (38)

Uk+1

3 = Uk
3 +Xk+1 −Tk+1. (39)

3.3. Stopping criterions and convergence

The original ADMM is designed for two primal variables, it solves

min f(x) + g(z)

s.t. Ax+ Bz = b. (40)

where both f(x) and g(z) are convex functions. However, there are three

primal variables in our problem (25). Since the proposed method does not

have the explicit form of the original ADMM framework, we now show that

it can be easily converted to that standard form, and thus the proposed

method naturally inherits the convergence property established in ADMM
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theory. Indeed, we rewrite the proposed formulation as follows

minX,Z,T f(X) + g(Z) + h(T)

f(X) = ‖Y −AX‖1,

g(Z) = α‖Z‖1,

h(T) = β‖T‖2,1,

s.t. X− Z = 0

X−T = 0. (41)

We now reduce it to two variables by combining g(Z) and h(T) into a function

of Z′ = [Z; T]

k(Z′) = g(Z) + h(T). (42)

As both g and h are convex and that Z and T are sub-blocks of Z′, it follows

that k is also convex in Z′. Next, we combine two equality constraints as





I

I



X−





Z

T



 = 0, (43)

or equivalently CxX + Cz′Z
′ = 0 where Cx = [I; I] and Cz′ = −I. Thus,

the proposed formulation can be expressed in the same form as the original

ADMM as follows

min
X,Z′

f(X) + k(Z′)

s.t CxX+Cz′Z
′ = 0 (44)

and thus it inherits all desirable properties of ADMM.
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According to [27], the reasonable termination criterions for the proposed

method are when the Frobenius norms of the residual vectors for primal and

dual are sufficiently small,

Sk
1 = η1(V

k+1 −Vk) ≤ εS1 , (45)

Sk
2 = η2(Z

k+1 − Zk) ≤ εS2 , (46)

Sk
3 = η3(T

k+1 −Tk) ≤ εS3 , (47)

Rk
1 = AXk −Y −Vk ≤ εR1 , (48)

Rk
2 = Xk − Zk ≤ εR2 , (49)

Rk
3 = Xk −Tk ≤ εR3 . (50)

These tolerances can be chosen using an absolute and relative criterion, such

as

εS1 =
√
nεabs + εrel‖η1Uk

1‖F , (51)

εS2 =
√
nεabs + εrel‖η2Uk

2‖F , (52)

εS3 =
√
nεabs + εrel‖η3Uk

3‖F , (53)

εR1 =
√
nεabs + εrel max{‖AXk −Y‖F , ‖ −Vk‖F}, (54)

εR2 =
√
nεabs + εrel max{‖Xk‖F , ‖ − Zk‖F}, (55)

εR3 =
√
nεabs + εrel max{‖Xk‖F , ‖ −Tk‖F}. (56)

where εabs > 0 is for absolute tolerance and εrel > 0 is for the relative

tolerance. The n indicates number of faces in the gallery set. The rela-

tive tolerance εrel might be choosen from 10−3 or 10−4 based on application

practice [27]. In this paper, we choose 10−4 for both absolute and relative

tolerances.
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Figure 5: Convergence of proposed method.The objective function is converged after 30

iterations.

Although the ADMM framework can be slow to converge to high accuracy,

when we setup the proper stopping criterions, the proposed ADMM-based

method can converge to modest accuracy within a few tens of iterations (see

Figure 5). This behavior makes our method can deal with large-scale problem

in a short time. In next section, the experiment results show that this level

of accuracy is sufficient enough for face recognition with multipe views.

3.4. Recognition and classification

Once the sparse representation matrix X is found for all views Y, the

classification is delivered by computing the fitness of query set with respect
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Figure 6: An example of the pose variations in CMU-PIE face database [31]. The pose

variations are from 90◦ (left) to 0◦ (frontal) and then to -90◦ (right). They are separated

by about 22.5◦ in horizontal. Pitch angles are involved for the other 4 pose variations

to the sparse solution. By following [15], there is only one decision made

simultaneously on the class label for the whole query set based on X by

combining the residuals for each image in the query set. Denote Ak is the

subset of the gallery images corresponding faces of class k, and Xk is the

corresponding coefficient subset for all query images. The fitness for class k

is represented by the residual matrix Fk = Y −AkXk

class(Y) = argmin
k

‖Fk‖2F . (57)

The class label of Y is assigned to the class with minimum reconstruction

error under Frobenius norm ‖ • ‖F .

4. Experiments

In this section, we present extensive experiments on CMU-PIE [31], Yale

B [32] and Multi-PIE [33] face databases. CMU-PIE is one of the most popu-

lar evaluation benchmarks in the face recognition literature. The CMU-PIE

database consists of 41,368 images of 68 individuals. The face images are
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taken under 13 different poses, 43 illumination conditions, and with 4 differ-

ent expressions for each people. Examples of CMU-PIE images are shown

in Figure 6. The Yale B database contains 5760 images of 10 subjects each

seen under 576 viewing conditions (9 poses with 64 illumination conditions).

The Multi-PIE database contains 750,000 images of 337 people. These im-

ages were taken from 4 different seasons with 15 different poses under 19

illumination conditions. Since experiments are setting up for evaluating the

multi-view images recognition, only images with neutral expressions under

different illumination and different poses are used. Only basic preprocessings

are performed before comparison, such as aligning and cropping face images,

histogram equalization to make input data robust to lighting conditions, and

PCA is used to resize the images to suitable working dimensions.

Whilst the main method for comparison is JDSRC outlined in [21], we also

include the original SRC [6] and JSRC [14, 20]. In addition, some popular

base line face recognition techniques are also evaluated, including principal

component analysis (PCA) and linear discriminant analysis (LDA)[4]. Since

SRC is originally used for single task, we follow [15] to use majority voting

for SRC classification step and do the same for JSRC [20]. For notational

convenience, we denote the mixed-norm sparse representation classification

as MSRC. In this work, we follow the standard cross validation procedure

in machine learning to select the regularization parameter λ for SRC and

JSRC. This is achieved by further dividing the training set into a smaller

training set and a validation set. For the proposed MSRC method, we also

follow the same procedure, wherein all the training, validation, and test sets

are exactly the same as those used for SRC and JSRC. The only minor differ-
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Figure 7: Recognition rate under different number of views with dimension d=64 for

CMU-PIE (Left) and Yale B (Right)

ence is that MSRC has both the regularization parameter λ and the mixed

norm parameter γ (ranged between 0 and 1). This means the computation

slightly increases because the search is done on two dimensions. From the

interpretation of the role of γ in controlling the pose variation and our inten-

sive numerical studies, we suggest that the computational increase in cross

validation due to γ might be reduced by a preliminary estimation of the pose

variation. We notice that when there is large pose variation in the test set,

a larger γ is preferred and vice versa. This suggests that if we use a reliable

pose detection method such as [34], we may have a good estimate of the pose

variation and hence a fixed γ can be set without sacrificing an increase in

computation due to cross validation. However, we shall address this issue in

a great depth in future works.
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4.1. Face recognition with different number of poses

In this experiment, all methods are evaluated under different number of

views. In order to show the performance of those methods under multiple

face poses, we follow the experiment settings in [15] for CMU-PIE datasets.

Images in the training set are selected based on a pose subset [0◦, ±22.5◦,

±45◦, ±67.5◦, ±90◦]. Only one face image is selected for each subject with

each pose in the training. In the testing set, M poses are selected to compose

the query set for each subject. And we also use only one image for each pose.

Since we randomly select from all 13 poses, the selected pose may not exist

in the training set. Then, we use a similar settings for Yale B datasets. This

makes our experiments more realistic and challenging.

In Figure 7, we compare the classification accuracy of the proposed method

with others for both CMU-PIE (Left) and Yale B (Right). As can be seen,

traditional subspace methods cannot reach satisfactory classification rates,

but all SRC based methods can work well in multiple-views scenario. If there

is just one testing image, none of methods can perform well. We note that

all methods perform better in Yale B than CMU-PIE when there is only

one training image. The reason for this is that the Yale B only has 10 sub-

jects, which is much less than CMU-PIE. When more views are added in, the

performance of SRC based methods is increased. Especially, our proposed

MSRC reached a satisfactory rate when M=3, and it achieved 95.82% when

we have 7 views in the test set. Clearly, this outperforms the closest competi-

tor - JSRC by about 7% for CMU-PIE. It can be further improved by adding

more number of views for Yale B. Furthermore, we note that both JSRC and

MSRC have a similar recognition rate with M=1 on CMU-PIE. When the
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number of views increases, JSRC cannot achieve the same performance as

MSRC.

According to [15], when the difference between different views becomes

larger and larger, the assumption of JSRC that all views can be represented

by the same set of atoms becomes more and more inaccurate. The images

containing large pose variations will bring in inaccurate factors to query

set. JSRC tries to find a solution across this poor query set. Thus, it is

not able to find an optimal result. However, the proposed method has a

degree of freedom to remove a few images, which have low correlation with

other images. This makes MSRC find a more accurate representation than

JSRC. Moreover, both SRC and JSRC are supposed to perform better than

JDSRC. This might sound contradicting to dynamic atoms selection and

what reported in [15]. But, a closer inspection reveals that the authors in

[15] used greedy algorithms for solving the sparse problems, which is known

to be inferior to the convex optimization algorithm used by this work, and

perhaps that leads to a different result. Overall, MSRC gains the advantages

from both dynamic atoms selection and superior convergence properties of

specialized ADMM.

4.2. Face recognition under different dimensions

In this experiment, we investigate how performance depends on different

feature dimensions. To do so, we reduce the original image to d = [32, 64,

128, 256] for CMU-PIE, which is effective for SRC based face recognition [6].

Following [15], we use the same training set from previous experiments and

randomly select 5 views for the testing set. For Yale B, since the pose varia-

tion is not as large as CMU-PIE, we reduce the original image to d = [8, 16,
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Figure 8: Recognition rate under different dimensionalities with number of views M=5

for CMU-PIE (Left) and M = 4 for Yale B (right)

32, 64, 128]. The comparison results are shown in Figure 8. As can be seen,

MSRC achieves the highest recognition rates across all image dimensions for

both CMU-PIE and Yale B. Both JSRC and SRC have competitive accu-

racy, though less than MSRC. The performance of all these three methods

is superior to JDSRC in most image dimensions. When the data dimension

≥ 64 in CMU-PIE and 32 in Yale B, performance of all methods becomes

saturated. However, JDSRC drops after d = 128 in CMU-PIE, this may be

caused by the low accuracy of its greedy algorithm. In conclusion, MSRC is

not sensitive to feature dimensions when dimension ≥ 64 for CMU-PIE or

32 for Yale B. This means that the face image with 64 feature dimension is

a good choice for our MSRC. Also, it can achieve satisfactory performance

with much lower computational complexity.
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Figure 9: Computational comparison with dimension d=64 for CMU-PIE (Left) and Yale

B (Right). The time axis is shown in log scale

4.3. Computational efficiency

In this section, we demonstrate how the specialized ADMM algorithm for

robust sparse representation provides a computational advantage over other

methods. We generate the training and testing sets based on random pose

selection, and then reduce the dimension to d = 64. In Figure 9, we record

the average computation time of completing this experiment in the log scale

with 10 randomly selected testing sets for each number of views for both

CMU-PIE and Yale B. The Yale B set has 10 subjects, which is much less

than 64 subjects in CMU-PIE. This means the size of the problem in Yale B

is much smaller than CMU-PIE. As can be seen in Figure 9, all methods take

less time to complete on Yale B than CMU-PIE. Among these, our proposed

method achieves the best time complexity. When the number of views in-

creases, the scaled time rises, but the increased scaled time is minor compared
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with others. On CMU-PIE, SRC with majority voting performs best. This

is caused by losing the ability to extract the shared information. When the

size of problem increases, it takes advantages of less computation complex-

ity. However, MSRC still achieved satisfactory performance, especially when

compared with JDSRC. In addition, the completion time of MSRC remains

almost unchanged when the number of views increases in the experiment on

CMU-PIE. Overall, the proposed MSRC achieves adequate performance for

both CMU-PIE and Yale B, and its computation complexity is insensitive to

the increase of number of views.

4.4. Face recognition against unseen pose

We next examine the effectiveness of recognition against unseen pose. In

order to achieve this goal, a pose appearing in the testing set may not appear

in the training set. Therefore, we randomly select images from all poses to

create the training set. Randomly selected images for the testing sets are

from three different groups:

1. images with the same poses observed in the training set;

2. images with completely different poses from the training set;

3. images selected randomly from both seen and unseen poses of the train-

ing set.

This setting allows us to investigate the effect of unseen poses in our method.

Experiment results are reported in Table 1 for CMU-PIE and 2 for Yale B.

As shown in Table 1, all methods perform well with the same poses from

the training set except PCA and LDA. The reason for poor performance of

traditional subspace methods might attribute to the fact that there is only 1
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image for each poses each subject in the training. However, this would not

affect SRC-based methods. When unseen poses are present in the testing

set, the performance of all methods drop as shown in “Mixed” column of

Table 1. In this situation, MSRC still remains at 95.82% (only 3% decrease).

When images in the testing set completely come from unseen poses, most of

the methods cannot achieve satisfactory performance except MSRC, which

can still reach 73.88%. Table 2 shows a similar story: SRC-based methods

perform better than general subspace techniques and our proposed method

outperforms others with at least 4% increase for unseen pose cases. On the

other hand, the experiment results on Yale B are similar to those on CMU-

PIE. The proposed method outperforms all other methods for all three cases.

Overall, the proposed MSRC is much more insensitive to unseen poses. This

makes MSRC more suitable to real-world applications.

view(s) Unseen Mixed Same

PCA[4] 12.59% 17.91% 16.67%

LDA[4] 24.40% 42.26% 41.29%

SRC[6] 55.37% 84.78% 93.28%

JSRC[14, 20] 58.06% 88.66% 95.52%

JDSRC[15] 48.51% 83.58% 92.99%

MSRC 73.88% 95.82% 98.21%

Table 1: Face recognition against unseen pose for CMU-PIE
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view(s) Unseen Mixed Same

PCA[4] 36.20% 36.10% 35.50%

LDA[4] 52.70% 56.90% 52.70%

SRC[6] 84.50% 88.50% 89.50%

JSRC[14, 20] 86.00% 89.00% 89.00%

JDSRC[15] 84.00% 89.00% 89.00%

MSRC 90.00% 93.00% 94.50%

Table 2: Face recognition against unseen pose for Yale B

4.5. Face recognition under pose difference

In this section, we investigate how the performance of the proposed

method and other methods under large pose variations in multi-view face

recognition scheme. Since Yale B only has 9 poses, which is not sufficient

to perform this experiment, we only use CMU-PIE in this experiment. It is

organised as follows. Face images of all 13 poses from Figure 6 are used for

the training set, but only one image is randomly selected for each pose for

each subject. We then create 4 different pose groups: [0◦, ±22.5◦], [0◦, ±45◦],

[0◦, ±67.5◦] and [0◦, ±90◦]. There are 3 images (one image for each pose)

in each group. The testing sets are generated by randomly selecting from

these 4 pose groups. As can be seen in Table 3, traditional subspace methods

perform poorly, this is consistent with previous experimental results. How-

ever, all SRC-based methods achieve satisfactory performance. We observe

that when the pose difference increases, the performance of SRC decreases.

JSRC performs slightly better than SRC across all pose variations. Also,

JDSRC outperforms both JSRC and SRC. Since JDSRC uses dynamic se-
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lected atoms, it would not select the same set of atoms for all views as JSRC.

This makes JDSRC more suitable to multiple-views scenarios. Overall, our

proposed method reaches the highest recognition rates under each testing

pose group. It achieves 95.52% for [0◦, ±22.5◦] group with 8% improvement

compared to its best competitor.

22.5◦ 45◦ 67.5◦ 90◦

PCA[4] 24.43% 24.68% 24.38% 23.43%

LDA[4] 59.75% 60.00% 58.11% 54.13%

SRC[6] 82.24% 80.30% 80.15% 69.25%

JSRC[14, 20] 84.48% 84.63% 83.28% 74.18%

JDSRC[15] 87.16% 84.63% 87.16% 78.21%

MSRC 95.52% 94.33% 93.73% 88.96%

Table 3: Face recognition against large pose variations

4.6. Face recognition under in different scales

To examine how the compared methods scale with a large number of

subjects, we use the Multi-PIE dataset to perform two sets of experiment.

To make our experiments more realistic and challenging, we mix all images

from 4 different seasons altogether for 337 subjects. Images in each training

set are selected based on following poses [0◦, ±30◦, ±60◦, ±90◦]. Three face

images are selected for each subject with each pose in the training. For

testing, M poses are randomly selected from all poses to compose the query

set for each subject (M = 5 and M = 7). We also use three face images for

each pose in testing set. Four pairs of training and testing sets are created
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from randomly selected subjects. These pairs of dataset correspond to 64,

136, 204, 272 subjects.

The left subplot of Figure (10) shows that the performance of SRC, JSRC

and JDSRC deteriorates significantly when the number of subjects increases.

However, the proposed MSRC is more robust against this large number of

subjects. From the right subplot of Figure (10), we notice that all methods

are benefited from an increasing in the number of views. Their performance

are observed to improve overall, there is less sharp drop in recognition accu-

racy when number of subjects increases. Due to the flexible atom selection,

both MSRC and JDSRC outperform SRC and JSRC for M = 5 and M = 7.

However, the lack of guaranteed convergence of JDSRC makes it hard to find

a robust and accurate solution. In general, the proposed method achieves

a robust performance against different scales of datasets because it has an

advantage of a dynamic atom selection and fast convergence.

5. Conclusion

In this paper, we have proposed a mixed-norm sparse representation clas-

sification, which has been demonstrated to outperform rivals. This is due to

the advantage of exploiting the inter-correlation among the multiple face im-

ages in the query, the flexibility of atom selection and the robustness brought

by an ℓ1-loss function. Furthermore, this MSRC is built on the powerful

ADMM framework, which results in a very simple, yet provably convergent,

algorithm, where further improvement in both performance and computation

can be made. We have demonstrated the power of the ADMM framework

in deriving numerical algorithm to solve the proposed formulation. We also
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Figure 10: Face recognition against different scales. Number of subjects increases from 68

to 272 with different number of views M=5 (Left) and M=7 (Right).

have extensively studied and compared our MSRC with other methods on the

CMU-PIE and Yale B datasets. The results indeed show the superior per-

formance of the proposed methods under different number of views, various

dimensionality, view differences, and computational time and scalability.
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