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Abstract

This paper tackles the problem of feature matching and range image registration. Our
approach is based on a novel set of discriminating three-dimensional (3D) local fea-
tures, named 3D-Vor (Vorticity). In contrast to conventional local feature represen-
tation techniques, which use the vector field (i.e. surface normals) to just construct
their local reference frames, the proposed feature representation exploits the vorticity
of the vector field computed at each point of the local surface to capture the distinctive
characteristics at each point of the underlying 3D surface. The 3D-Vor descriptors of
two range images are then matched using a fully automatic feature matching algorithm
which identifies correspondences between the two range images. Correspondences are
verified in a local validation step of the proposed algorithm and used for the pairwise
registration of the range images. Quantitative results on low resolution Kinect 3D data
(Washington RGB-D dataset) show that our proposed automatic registration algorithm
is accurate and computationally efficient. The performance evaluation of the proposed
descriptor was also carried out on the challenging low resolution Washington RGB-D
(Kinect) object dataset, for the tasks of automatic range image registration. Reported
experimental results show that the proposed local surface descriptor is robust to reso-
lution, noise and more accurate than state-of-the-art techniques. It achieves 90% reg-
istration accuracy compared to 50%, 69.2% and 52% for spin image, 3D SURF and
SISI/LD-SIFT descriptors, respectively.
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1. Introduction

Feature representation and correspondence are active research areas in computer
vision with numerous applications including reverse engineering, 3D modeling, 3D
object recognition, augmented reality and medical diagnosis [1, 2, 3]. The aim of
feature representation is to encapsulate the predominant information of the underlying
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local surface to provide sufficient descriptiveness. Feature correspondence, on the other
hand, computes the similarity between the surfaces.

A variety of local feature representation techniques can be found in the recent lit-
erature. Keller and Darom [4] proposed scale invariant spin image (SISI) and local
depth SIFT (LD-SIFT) descriptors for 3D mesh models. In their proposed technique,
the SISI descriptor is constructed by computing the spin image descriptor over a local
scale, while LD-SIFT is computed by representing the vicinity of the feature points as
a depth map. Knopp et al. [5] proposed the 3D SURF descriptor, which is an extension
of 2D SURF. The 3D object is voxelized in a volumetric cube using the intersection
of faces with the grid-bins. The 3D SURF descriptor is then computed at the maxima
of the voxelized grid. Most existing feature descriptor techniques have mainly been
geared towards two dimensional (2D) data or high resolution 3D data captured using
relatively expensive 3D sensors [4, 6, 7, 8, 9, 10]. These techniques suffer from ei-
ther low descriptiveness or weak robustness when used with low resolution data (e.g.,
Kinect data) [11]. To address the problems of distinctiveness and robustness to low
resolution data, we proposed the 3D-Div descriptor in [12]. Based on vector field anal-
ysis, the proposed descriptor exploits the divergence of the vector field for local surface
description. Divergence measures the spreading out and the contraction of the vector
field at each point of the surface. The values of divergence computed at each point
of the surface are concatenated to form the 3D-Div descriptor. The latter has been
shown to achieve good performance on low resolution data [12, 13]. The robustness to
mesh resolution is achieved by using all the points in the local surface patch. Being a
differential invariant of curves and surfaces, the divergence of a vector field captures
the most significant information about surface variations at each point. It is however,
sensitive to noise.

In this paper, we tackle the noise sensitivity which is inherent to the computation
of differentials (and its invariants like divergence). We introduce a novel descriptor
for low resolution data that exploits the vorticity of the vector field to capture the dis-
tinctive surface characteristics at each point of the local neighborhood to generate the
proposed descriptor, referred to as 3D-Vor. In contrast to [12], we explore the tan-
gential nature of the vector field (circulation in this case) and integrate the vector field
over a small support radius to derive the proposed robust and distinctive local feature
3D-Vor. The integration operation carried out during the computation of the vorticity
has a smoothing effect, providing increased robustness to noise, while alleviating the
need for pre-processing. In addition, the locally tangent circulation of the vector field
results in high signal-to-noise ratio and thus robust feature representation.

As robust feature representation of 3D surfaces, feature correspondence is also a
challenging computer vision problem. The computation of the similarity between 3D
surfaces is a critical task [13, 14], as the accuracy of coarse registration significantly re-
lies on an accurate feature correspondence. Depending on the feature correspondence,
coarse registration can be performed either manually or automatically. In the manual
approach, corresponding points are manually selected between the overlapping regions
of a pair of surfaces. These correspondences are then used to derive a rigid transforma-
tion (rotation and translation) that aligns the surfaces. On the other hand, in automatic
coarse registration, the feature matching algorithm automatically identifies the corre-
sponding points between the two surfaces and coarsely registers them by minimizing
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Figure 1: Illustration of the concept of vorticity (a) in the case of a velocity vector field V⃗ el, (b)
the electric field which produces a force on a charge, (c) a vector field F⃗ across a 3D surface.

the distance between the points [1].
The idea behind feature correspondence based automatic coarse registration is to

represent the features of each range image and match these representations in order to
identify corresponding points [1]. 3D object registration based on feature matching has
been extensively researched during the last two decades [15, 16]. However, automatic
registration of low resolution noisy range images is a challenging problem that has
received no attention. In this paper, we propose a fully automatic feature correspon-
dence and pairwise registration algorithm. Our algorithm uses a novel vorticity-based
representation (3D-Vor) to represent local patches of a range image of a 3D object.
3D-Vors of two overlapping views are then matched to establish pairwise correspon-
dences between the views. Corresponding 3D-Vor descriptors are verified in the local
validation step of the proposed registration algorithm and then used to pairwise register
the views. A pairwise registration is accepted only if it passes a local validation stage.
Otherwise, it is rejected and another pair of matching 3D-Vor descriptors is sought.
In the following section, we describe the novel concept of vector field’s vorticity for
feature representation in computer vision.

1.1. Intuitive Interpretation of Vorticity
To provide an intuitive interpretation of the concept of vector field’s vorticity, we

consider two examples. Suppose a vector field describing the velocity field of a fluid
flow in a channel, with a paddle wheel placed in the liquid (Fig. 1(a)). The small solid
arrows represent the velocity vectors of the fluid V⃗ el, being zero at the boundary and
increasing upward. The top of the paddle wheel will have a greater force on it than
the bottom due to the different fluid velocities. This will cause a torque on the paddle
wheel, which is regarded as a vector along the paddle wheel axis. This torque is normal
to the velocity vector, and in this case is directed (using the right-hand rule) into the
page. The velocity vector field is said to have vorticity, which is represented by the
torque normal to the vector field.

Let’s consider another example, suppose we have an electric field with the spatial
distribution shown in Fig.1(b). We construct a very small electrostatic paddle wheel
consisting of two crossed insulating bars with small positive charges at each end. From
Fig. 1(b), it can be seen that the topmost charge will have the largest force so that the
paddle wheel will rotate as indicated. The rotation will be represented by the normal
to and into the plane of Fig. 1(b).

These concepts of fluid mechanics and electric field theories are also applicable to
3D surfaces. Suppose we have a closed-line path C that is the contour of the surface S
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(Fig. 1(c)). Also, assume there is a vector field1 F⃗ which passes through the surface.
Let d⃗r be an increment of the contour C. Then according to Stoke’s theorem, the
vorticity of the vector field F⃗ can be represented by:

vorticity = lim
r→0

1

|A|

∮
C

−→
F ·

−→
dr (1)

In Eq. 1,
∮
C
F⃗ .dr is the component of the vector around the contour of the 3D surface.

It indicates how much the vector field
−→
F tends to circulate around the curve C. This

line integral, derived from Stoke’s theorem, is a generic expression which can be ap-
plied to non-rigid (e.g., fluids) or rigid (e.g., surfaces) objects for the analysis of fields
in various domains. For example,

−→
F in the integral part of Eq. 1, could represent the

velocity vector for the analysis of fluid flow, wind force in the case of wind analysis,
electric field force in the case of a charged body or vector field in the case of 3D sur-
faces. The concept of vorticity is therefore not restricted to fluid mechanics only, but it
can be equally applied to rigid objects.

The vorticity of the vector field has also been shown to relate to 3D surfaces, by
Longuet-Higgins [18]. For a concave surface, the curvature is negative. The circu-
lation of the vector field is in the counter clockwise direction and resulting vorticity
over the surface is positive, while the opposite applies in the case of convex surfaces.
Based on the explanation of vorticity given by Longuet-Higgins, vorticity can capture
the intrinsic curvature at a given point on the surface. We exploit these facts to capture
the local surface information. We extract the local surface patch around each detected
feature point. We next compute the vector field at each point of the local surface patch
and calculate the vorticity of the vector field, using Eq. 1. The locally tangent circu-
lation of the vector field results in a high signal-to-noise ratio and thus robust features.
In addition, the integration operation carried out in the computation of vorticity has a
smoothing effect, providing increased robustness to noise.

The vorticity is a point function2, with different values, at different points in the
vector field. The vorticity values computed at each point of the local surface are con-
catenated to construct the proposed 3D-Vor descriptor. The robustness to mesh resolu-
tion is achieved by using all the points of the 3D local surface for feature representation.
As demonstrated in Sections 3 and 5, the proposed descriptor, which represents the vor-
ticity of the field at each point, captures the distinctive characteristics of the underlying
3D local surface. Since the focus here is on the design of a novel local feature descrip-
tor and its application to 3D surface modeling, the details about the detection of the
feature points and their repeatability is outside the scope of this paper and is therefore
omitted.

1A vector field is a vector associated with every point on the 3D surface [17]. The vector of a point
(vertex) is defined as the weighted average of the normals of its immediate neighbouring triangles [1].

2A point function k = f(P ) is a function that assigns some number or value k to each point P of some
region R of space
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1.2. Paper Contributions

The contributions of this paper can be summarized as follows:

• A novel local surface descriptor 3D-Vor exploiting the vorticity of the vector
field at each point of the local surface to capture distinctive and robust features
of the underlying 3D surface.

• Besides a novel feature descriptor, a fully automatic feature matching algorithm
for coarse registration of range images is also presented. The 3D-Vors of two
overlapping views are matched to establish pairwise correspondences between
the views. The 3D-Vor descriptors are verified in the local validation step of the
proposed algorithm and then used to pairwise register the views.

1.3. Organization of the paper

The rest of this paper is organized as follows. The next section presents related
work. Section 3 introduces the proposed local surface descriptor, namely 3D-Vor. Sec-
tion 4 gives details of our automatic pairwise registration algorithm. Experimental
results together with a detailed quantitative/qualitative analysis are provided in Section
5. Section 6 presents a performance comparison with state-of-the-art feature represen-
tation techniques. In section 7, we briefly describe multiview range image registration
and provide qualitative results. Finally, a conclusion is given in Section 8.

2. Related Work

Various surface representation techniques have been used for feature matching and
automatic coarse registration. The following is a brief historical survey of the related
work in the area of automatic coarse registration by feature correspondences. Stamos
and Leordeanu [19] proposed a straight-line based method to find pairs of correspon-
dences between two views. Their technique is based on the extraction of straight-line
segments directly from the range images, which are further registered with the aim
of computing the transformations between the different views [20]. Chen et al. [21]
proposed the renowned RANSAC-based DARCES algorithm which is based upon an
exhaustive search. However, the latter is not practical for large datasets. Moreover,
the DARCES algorithm makes some unrealistic assumptions about the overlapping re-
gions of the views [20]. An approach to estimate the rotation between two surfaces
represented as polynomial models has been proposed by Tarel et al. [22]. The method
is based on obtaining a function of the distance between the polynomial model and the
points, where these distances are nearly zero. The principal drawback of this method is
the requirement that a large part of both images must belong to the overlapping region.
Moreover, it is also sensitive to variations in mesh resolution [20]. Brunnstrom and
Stoddart [23] proposed a genetic algorithm to find the correspondences between two
range images. In their proposed technique, they define a vector containing the n index
of correspondences between both range images. They set the size of the vector to n, i.e.
the number of points in the second range image. The shortcoming of their technique
is that the computation time is expensive, especially in the presence of a large number
of points [20]. Wyngaerd et al. [24] proposed bitangent curve matching, based on first
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Figure 2: Vector Field. The three components of the vector field (U(x,y,z), V(x,y,z), W(x,y,z)) are
shown along the x, y and z directions respectively.

order derivatives, making it therefore sensitive to noise [20]. Another limitation of bi-
tangent curves is that they represent global features, which may not be contained fully
inside the overlapping region of the views. The Spherical Attribute Imaging (SAI),
proposed by Higuchi et al. [25], requires the underlying 3D surfaces to be free of topo-
logical holes, which limits its applicability. The feature matching technique proposed
by Roth [26] is limited by the fact that it significantly relies upon the amount of tex-
ture on the object surface for consistent extraction of features. Unlike most existing
registration techniques, the local surface descriptor based range image registration, de-
scribed in this paper, is robust to variations in mesh resolution and noise, enabling it to
achieve highly accurate registration on low resolution 3D data (Section 5).

3. Local Surface Description

In this section, we describe the different steps required to construct the proposed
novel rotation invariant local surface descriptor called 3D-Vor.

3.1. Vector Field

Interpreted as optical flow fields, velocities of fluid particles or directions of strokes
in a painting, vector fields are ubiquitous entities in computer vision, graphics and
engineering [17]. The classical theory of physics is built upon the characterization
of vector fields induced by the motion of an object. This fact is at the origin of the
pervasiveness of vector fields in graphics applications, where they often appear as data
from physical simulation or measurements of some real phenomenon [17]. Motivated
by this, we propose to exploit the vector field for local feature description so as to better
capture the geometrical information of the underlying 3D surface.

To compute the vector field, the input range images in the form of pointclouds, are
converted into triangular meshes. This is performed by mapping the 3D points onto
the 2D retinal plane of the sensor and performing a 2D Delaunay triangulation over
the mapped points, as done in [1]. After triangulation, the points are mapped back to
the 3D space and the triangles with edges longer than a prespecified threshold are re-
moved. This separates surfaces falsely connected by the Delaunay triangulation. In our
implementation, we removed all triangles with an edge length 0.6 standard deviations
longer than the mean. For a given mesh, we define a small circular patch (local surface
mesh) γ of radius r centred at the feature point Pk [4], taken as the origin of the x-y
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Table 1: Number of feature points detected on five 3D objects with different shapes and pointcloud
size.

Object Pointcloud Feature Points
Resolution Detected

Bowl 10600 384
Binder 19100 286

Cap 16340 321
Cereal Box 37300 863
Food Box 7799 89

plane (Fig. 3(a)). To determine the feature points Pk, we used the well-known DoG
feature point detector recently proposed in [4]. The DoG detector was chosen because
of its low complexity and high repeatability. Using DoG detector [4], feature points
Pk are detected automatically. There is no relationship between the number of feature
points and the support radius r. However, the number of feature points depends on the
size and shape of the 3D pointcloud. Table 1 reports the feature points detected for 3D
objects with different pointcloud resolution. Since the focus here is on the design of a
novel local feature descriptor, any further details about the detection of feature points
and their repeatability is outside of the scope of this paper. Note that any other feature
point detection method could have also been adopted [27]. In Section 6, we compared
the registration performance of DoG with a more complex state-of-the-art feature point
detector [27].

The vector field at each point (vertex) of the 3D surface are defined as the weighted
average of the normals of its immediate neighboring triangles. The vector field can be
represented as:

F⃗ (x, y, z) = (U(x, y, z), V (x, y, z),W (x, y, z)) = Ū x̂ + V̄ ŷ + W̄ ẑ (2)

In Eq. 2, (U(x,y,z), V(x,y,z), W(x,y,z)) are the three components of the vector field in
the x, y and z directions respectively, as shown in Fig. 2. Similarly, x̂, ŷ and ẑ are
the unit vectors in the x, y and z directions respectively. The vector field for a local
surface patch γ is shown in Fig. 3(b). As it is difficult for a 3D sensor to capture the
whole object through a single acquisition, the different views of the 3D object need
to be acquired from different viewpoints. Consequently, there will be some rotation
and translation between these 3D views (assuming rigid objects). For an accurate reg-
istration, it is mandatory that the local surface descriptor is invariant to rotation and
translation. To achieve this, we construct a unique local coordinate system using the
technique proposed in [11]. Next, the vector field F⃗ for the local surface γ is aligned
with the vectors of the local coordinate system to construct the rotation invariant local
surface descriptor described, in the following section.

3.2. 3D-Vor Descriptor

The 3D-Vor descriptor for the entire local surface γ is computed as follows. Since
we assume the circular patch to be small and F⃗ differentiable, we take the first order
approximation of the vector field F⃗ at the point Pk i.e. the origin 0 (0, 0, 0):
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Figure 3: An illustration of the construction of a 3D-Vor feature descriptor. (a) The coffee mug
partial view and the local surface (shown in blue) around a feature point. (b) Vector field com-
puted for all the points of the local surface. (c) Circulation of the vector field is shown for the
circular patch by small arrows over the local surface. (d) Vorticity values (i.e. the attributes of
the resulting vector n̂ computed using the right hand rule) displayed for each point of the local
surface patch. (e) The vorticity values are concatenated to form a 3D-Vor descriptor (Eq. 15).
This Figure is best viewed in color.

U(x, y, z) = U(0) + Ux(0)x+ Uy(0)y + Uz(0)z (3)

V (x, y, z) = V (0) + Vx(0)x+ Vy(0)y + Vz(0)z (4)

W (x, y, z) = W (0) +Wx(0)x+Wy(0)y +Wz(0)z (5)

where U(x, y, z), V (x, y, z) and W (x, y, z) are the three components of F⃗ in x, y and z direc-
tion respectively (Eq. 2). The circular patch γ can be parameterized as follows:

γ : h(t) = (rcos(t), rsin(t), 0), 0 ≤ t ≤ 2π (6)

We now substitute x = rcos(t), y = rsin(t) and z = 0 in Eq. 3, 4 and 5 to obtain:

U(h(t)) = U(0) + Ux(0)rcos(t) + Uy(0)rsin(t) (7)

V (h(t)) = V (0) + Vx(0)rcos(t) + Vy(0)rsin(t) (8)

W (h(t)) = W (0) +Wx(0)rcos(t) +Wy(0)rsin(t) (9)

The line integral of the vector field F⃗ is next computed over this patch γ. The integrand
in the line integral becomes:

F (h(t)) · h′(t) = r(V (0)cos(t)− U(0)sin(t)) + r2(Vx(0)cos
2(t)− Uy(0)sin

2(t))

+ (Vy(0)− Ux(0)sin(t)cos(t)) + · · · (10)
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In Eq. 10, the term (· · · ) represents all the remaining parts from the higher order
approximation. We next integrate Eq. 10 from 0 to 2π, and use the fact that:

∫ 2π

0

sin(t)dt =

∫ 2π

0

cos(t)dt =

∫ 2π

0

sin(t)cos(t))dt = 0 (11)∫ 2π

0

sin2(t)dt =

∫ 2π

0

cos2(t)dt = π (12)

We next obtain the circulation of the vector field F⃗ around γ as follows:∮
γ

F · dγ =

∫ 2π

0

F (h(t)) · h′(t)dt = πr2(Vx(0) − Uy(0)) (13)

where h′(t) is the velocity vector field of the circular patch γ:

h′(t) = (−rsin(t), rcos(t), 0) (14)

The 3D-Vor descriptor for the local surface γ is finally constructed by dividing the

circulation of the vector field around this path by the area A = πr2 of the circlular

patch, and taking the limit r → 0:

3DV or = lim
r→0

1

|A|

∮
γ

F · dr (15)

where
∮
γ
F.dr in Eq. 15 is a line integral along the boundary of the curve γ and

|A| is the magnitude of the area. Algorithm 1 provides the pseudo-code for 3D-Vor

computation. Fig. 3 illustrates the construction of the proposed feature descriptor. The

circulation of the vector field over the local surface patch is shown in Fig. 3(c). Note

that the vector field has a clockwise direction in the circular patch γ. The direction of

the resulting vector normal n̂ (at Pk) is determined using the right hand rule. The latter

indicates the vorticity of the vector field, as shown in Fig. 3(d) with different colors. As

the circulation of the vector field is in the clockwise direction, n̂ is pointing downwards.

The different values are concatenated into a vector to derive the 3D-Vor descriptor for

the local surface patch, which has a fixed size for all the objects, shown in Fig. 3(e). As
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Algorithm 1: Pseudo-code for 3D-Vor Computation.

Input: Detected feature points Pk, k = 1, · · ·, K on range image
Local surface patch Lk extracted around each Pk at radius r
Output: 3D-Vor descriptor

1 initialization;
2 for each Lk, k = 1, · · ·, K do
3 // Computation of vector field
4 F{k} ← Ū x̂+ V̄ ŷ + W̄ ẑ
5 // Compute circulation of the vector field
6 ε {k} ←

∮
γ

F{k}.dγ. (See Eq. 13)
7 // Computation of vorticity
8 V or {k} ← limr→0

1
|A| ε{k}

9 // Construct 3D-Vor (vector form)
10 3D-Vor{k} ← V or {k}
11 end

Eq. 15 shows, 3D-Vor does not depend on the location of the coordinate axis (x, y, z),

in the Cartesian coordinates. Therefore, the resulting local surface feature is invariant

to rotation and translation. Moreover, the reoriented vector field with respect to its

unique local coordinate system (Section 3.1) also ensures the rotation invariance of the

local features. Thus, if a patch is rotated by some angle, the local coordinate system

along with the vector field also rotates by the same angle.

3.3. 3D-Vor Selection Parameter

As Eq. 15 shows, the 3D-Vor feature descriptor has only one critical parameter; the

support radius r (or size of the local surface patch). The support radius r determines

the portion of the underlying 3D surface that is captured by the 3D-Vor descriptor. The

value of r can be chosen depending on how local the feature should be. A tradeoff is

required between the feature’s descriptiveness and its computation time. That is, a large

support radius enables the 3D-Vor descriptor to capture more geometrical information

of the object. On the other hand, a large support radius significantly increases the

computation time and the described area. We evaluated the performance of 3D-Vor

descriptor with respect to varying support radius. The results are reported in Table 2.
The results show that the feature matching performance of the 3D-Vor descriptor

improves as the support radius is increased from 5mr (mr = mesh resolution) to 25mr.
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Table 2: Support radii ‘r’ for 3D-Vor descriptor and associated computation time. We chose
r=10mr (where mr = mesh resolution) in this paper as a tradeoff between effectiveness and
computational efficiency.

Support Radii Feature Matching Computation Time
r Accuracy (%) (sec)

5 mr 60 10.2
10 mr 95 75.6
15 mr 97 105.11
20 mr 98 200.3
25 mr 99 296.6
30 mr 97 380.2

Specifically, there is a significant improvement of the matching performance as r in-

creases from 5mr to 10mr, this is because of the fact that a radius of 5mr is too small

to capture significant distinctive information of the underlying 3D surface. The 3D-

Vor descriptor achieved good results with a support radius of 10mr, achieving 95%

feature matching accuracy within a reasonable computation time. The performance of

the 3D-Vor descriptor improves slightly as r is increased to 25mr, at the expense of a

significant increase in computation time. The performance of 3D-Vor slightly deterio-

rates when the support radius is set to 30mr and the computation time reaches 380.2s.

We set the support radius to 10mr in this paper to maintain a fair tradeoff between the

descriptor’s effectiveness and the computational complexity.

Note that, several adaptive-scale keypoint detection methods have been proposed to

determine the support radius based on the inherent scale of a feature point. However,

we chose to simply adopt a fixed support radius because our focus relates to the de-

sign of a novel feature descriptor for range image registration rather than feature point

detection.

4. Automatic Pairwise Correspondence and Registration

In this section, we describe 3D-Vor based feature matching and automatic pairwise

range image registration.
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4.1. Feature Correspondence

Given a pair of 2.5D/partial views (V1, V2) of an object, we respectively extract a set

of 3D-Vor descriptors from both range images. The 3D-Vor local descriptors extracted

from a pair of views are then matched to find correspondences between the 3D views.

Matching 3D-Vor descriptors are then used for the automatic coarse registration of the

views by aligning the local coordinate systems used to derive these descriptors. Since

a 3D-Vor is a 3D descriptor of a local surface patch of an object, a pair of matching

3D-Vors reveals that the surface patches represented by these 3D-Vors are similar and

should correspond to the same surface patch of the 3D object. We use the correlation

coefficient to match a pair of 3D-Vor descriptors:

Cc =
nv

∑nv
i=1 uivi −

∑nv
i=1 ui

∑nv
i=1 vi√

nv

∑nv
i=1 u

2
i − (

∑nv
i=1 ui)2

√
nv

∑nv
i=1 v

2
i − (

∑nv
i=1 vi)

2
(16)

where, ui and vi (i = 1,· · ·, nv) are the elements of 3D-Vor from V1 and V2 respectively,

in their region of overlap. nv is the number of pairs of 3D-Vor descriptors used for

feature matching.

To establish correspondence between view 1 (V1) and view 2 (V2), the overlap ratio

Ro of the 3D-Vor descriptor of V1 and V2 is calculated first using Eq. 17.

Ro =
mt

m1 +m2 −mt
(17)

In Eq.17, mt is the number of non-zero elements of 3D-Vor from V1 that have a cor-

responding non-zero element at the same index position in the 3D-Vor of V2. m1 and

m2 are the total numbers of non-zero elements in the 3D-Vor descriptors of V1 and V2,

respectively. If Ro is greater than a pre-specified threshold tr (equal to 0.4 in our ex-

periments), the algorithm proceeds to calculate the correlation coefficient Cc (Eq. 16)

of the two 3D-Vors in their region of overlap. Otherwise, the next 3D-Vor descriptor

from V1 is considered for matching. If Cc is greater than a pre-specified threshold tc

(which is set to 0.5), the algorithm proceeds to the next step of the local validation.
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Figure 4: Outcome of the local validation step for the range images of the cap, the cereal box and the coffee
mug (See Fig. 6). First Row: Accurate feature correspondences achieved in these cases. Most of the
overlapping points are within the threshold td. Second Row: These results indicate a failure of the local
validation due to inaccurate correspondences. In this case, a 3D-Vor pair was discarded and a new pair was
tested.

4.2. Local Validation

During the local validation, all the points of V2 are transformed to the coordinates

of V1. This transformation is calculated by transforming the corresponding 3D local

coordinate system of V2 to the local coordinate system of V1 using Eqs. 18 and 19.

R = LT
1 L2 (18)

t = p1 − p2R (19)

In Eq. 18, Lk(k = 1, 2) is a 3×3 matrix of the x, y, z coordinate vectors of the local

coordinate system. In Eq. 19, p1 and p2 are the positions of the corresponding points

from V1 and V2 respectively. R and t are the rotation matrix and translation vectors,

respectively. These transformations align V2 with V1.

In the next step, the distance of every 3D point in V1 is calculated to the nearest
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neighbor 3D point in V2 (which is already aligned with V1 using Eq. 18 and 19):

d(q, p) =

√√√√ n∑
i=1

(qi − pi)2 (20)

where pi and qi represent the 3D points of V1 and V2 respectively. n is the total number

of points in V1. If the maximum distance (here in mm) between the two overlapping

views is less than or equal to a specified threshold td and the number of corresponding

points between the two views is more than or equal to nk (nk = no/nt, where no is the

number of overlapping points and nt is the total number of 3D points), the transforma-

tion between V1 and V2 is accepted and V2 is registered to V1. Otherwise the next pair

of 3D-Vor descriptors is selected for matching. In our experiments, we set td=0.003

based on empirical tests. Fig. 4 shows the outcome of the local validation step for the

range images of the cap, the cereal box and the coffee mug. Fig. 4 reports the per-

centage of 3D points on V1 which successfully found their nearest neighbor points on

V2 for a specific distance threshold (td=0.003). Note that the local validation is done,

once the transformation between V1 and V2 has been estimated and the two views have

been aligned. Fig. 4 (first row) shows the result of a local validation that leads to ac-

curate registration of the 3D views. For td=0.003, almost 70% (on average) of the 3D

points on V1 found their nearest neighbor points in V2. If the local validation steps de-

scribed above fail, the next pair of the 3D-Vor descriptors is selected for matching and

the whole process is repeated. Fig. 4 (second row) depicts the outcome of such cases,

when a pair of 3D-Vor descriptors could not achieve accurate matching/transformation.

In these cases, the 3D points on V1 could not find a significant amount of nearest neigh-

boring points in V2. These pairs of 3D-Vor descriptors were discarded and the next one

were selected for matching. Note that in our approach, automatic coarse registration

is performed on the basis of a single pair of matching 3D-Vor descriptors. An alternate

possibility is to match a predetermined number of 3D-Vors and calculate the rigid trans-
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Algorithm 2: Pseudo-code for Automatic Correspondence and Registration.
Input: Given 2.5D views V1, V2 of an object, and their respective 3D − V or

descriptors (in vector form)
Output: Transformation, Correspondences

1 initialization;
2 for each pair of overlapping views V1 and V2 do
3 for each 3D-Vor of V1 and V2 do
4 if R0≥tr AND Cc≥tc then
5 Transform V2 to V1;
6 if d(q, p) ≤td AND nk ≥nc then
7 RETURN Transformation and Correspondence
8 end
9 end

10 end
11 end

formation supported by the maximum number of matching 3D-Vors using RANSAC.

This approach could be more robust but it will be computationally more expensive as

there are six degrees of freedom when registering two range images. Moreover, the

coarse registration resulting from a single pair of matching 3D-Vor descriptors is quite

accurate (Fig. 5). It can thus serve as a reliable starting point for a subsequent re-

finement with a fine registration algorithm (e.g., ICP [28]). Algorithm 2 provides the

pseudo-code of the proposed automatic correspondence and registration algorithm.

5. Experimental Results

We evaluated our 3D-Vor descriptor on a large-scale low resolution multi-view ob-

ject dataset collected using Kinect sensor (Washington RGB-D (Kinect) object dataset)

[29] to test the accuracy of 3D-Vor and its robustness to variations to pointcloud res-

olution. The dataset includes 300 daily use objects in 51 categories. Each category

contains more than three objects and up to a maximum of twelve objects per category.

The evaluation was done on all the 51 object categories and the achieved registration

results are reported in the following sections. A performance comparison was also per-

formed against the renowned spin image [30] and the recently proposed 3D SURF [5]

and SISI/LD-SIFT descriptors [4].
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5.1. Qualitative Analysis

We applied our 3D-Vor based pairwise range image registration technique to range

images from the low resolution Washington RGB-D object dataset [29]. We used 600

ordered views of the objects in these experiments (i.e. 300 objects×2 views). Note that

the ordered set of views is the only input to our proposed automatic algorithm. The

latter does not make any assumption about the viewing angles, the overlapping regions

or the shape of the object, nor does the algorithm require any other information. Figure

5 shows the feature correspondence and automatic pairwise coarse registration of range

images on the basis of a single pair of matching 3D-Vors. It is clear from Fig. 5(a)-(d)

that most of the feature correspondences are correct. Also, note that our coarse regis-

tration results in Fig. 5(e)-(h) are quite accurate even though no registration refinement

had been performed at that stage. These results show the high descriptiveness of our

proposed local surface descriptor.

Fig. 6 reports the qualitative results achieved by 3D-Vor based pairwise registration

for 20 different objects taken from the Washington RGB-D (Kinect) object dataset [29].

Despite the fact that these range images of objects exhibit varying symmetries, features,

curvatures, planar regions, the achieved registration accuracy is quite evident from Fig.

6.

5.2. Quantitative Analysis

In addition to the qualitative analysis, we also performed a quantitative analysis

through extensive testing of our automatic pairwise correspondence and registration

technique on the low resolution Washington RGB-D object dataset [29]. The proposed

technique was tested according to the following criteria: (1) Accuracy (2) Robustness

to resolution (3) Robustness to noise (4) Efficiency with respect to computation and

memory and (5) Required overlap. Details are given below with respect to each criteria.
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5.2.1. Accuracy

In these experiments, the accuracy of the proposed technique was evaluated for all

the 51 object categories. The ground truth transformations calculated using our pre-

vious work [12] on the same dataset were used for evaluation purposes. The object

categories contain range images of different types of objects with varying surface char-

acteristics. Prominent examples include bowls, apples, coffee mug and cap images

which have high curvatures. Food box and note book have planar regions, while hand

towel, noodle packets and the sponge have varying symmetries from different views.

The transformations (Ri and ti) were evaluated for each
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Figure 5: Feature correspondence and pairwise range image registration results. (a)-(d) Feature
matching results between two range images of the Food box, the Plate, the Bowl and an Apple.
(e)-(h) Automatic pairwise (coarse) registration results. Note that our coarse registration results
are quite accurate even though calculated from a single pair of matching 3D-Vors in each case.
No registration refinement (e.g., with ICP algorithm) was performed (This figure is best viewed
in color).

Figure 6: Pairwise range image registration results using the proposed 3D-Vor descriptor for 20 different
objects. (Figure best seen in color).
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Figure 7: Registration accuracy achieved by 3D-Vor descriptor for 51 different object categories.
Each category has more than three objects with different pointcloud resolutions.
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object category using our 3D-Vor based automatic registration algorithm. These trans-

formations were then compared with the ground truth transformations (RiGT and tiGT ).

The error of the two rotation matrices was calculated as [1]:

Rid = RiR
−1
iGT (21)

θie = cos−1

(
trace(Rid − 1)

2

)
180

π
(22)

In Eq. 21, Rid is the rotation matrix denoting the difference between Ri and RiGT .

Rid is equal to the identity matrix in the case of zero error [1]. θie in Eq. 22 represents

the amount of rotation error present in Ri, and is derived from Rodrigue’s formula [1].

Similarly, the translation error tie of each view is calculated as follows:

tid =
∥ti − tiGT ∥

mr
(23)

In Eq.23, mr is the mesh resolution of the 3D pointcloud. Fig. 7 reports the regis-

tration accuracy achieved by the 3D-Vor descriptor for all the 51 categories of objects

[29]. Different views of the objects were registered using the pairwise range image

correspondence/registration technique discussed in Section 4. Note that our 3D-Vor

descriptor achieves more than 95% registration accuracy for most of the object cate-

gories, with only 100 3D-Vor descriptors per view. These results clearly demonstrate

the superior performance of the proposed descriptor.

5.2.2. Robustness to variations in Resolution

To evaluate the robustness of 3D-Vor descriptor to varying mesh resolutions, we

resampled the partial (2.5D) views of the objects to 1
2 , 1

4 , 1
8 and 1

16 of their original

mesh resolution. The registration accuracy achieved by the proposed descriptor under

different levels of mesh decimation is presented in Fig. 8. The accuracy decreases as

the mesh resolution is varied from mr to 1
16mr. Note that the overall accuracy, however,
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remains above 87% even at a mesh resolution of 1
16mr.
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Figure 8: Robustness of the proposed descriptor to variations in mesh resolution.

5.2.3. Robustness to Noise

We used the range images of the cap, the coffee mug, the tissue box and the food

box for these experiments. Gaussian noise with standard deviation σ = mr, 2mr, 4mr,

6mr, 8mr and 10mr (where mr is the mesh resolution of the range image) was added

to these range images. Next our 3D-Vor based algorithm was used to automatically

register overlapping views. Fig. 9(a) shows two different views of the cap. Noise with

σ = 10mr = 2.8 cm has been added to these views in Fig. 9(b). Registration results

are shown in Fig. 9(c). We can see that the registration is correct even though most

of the features on each view of the cap, the coffee mug, the tissue box and the food

box were distorted due to the addition of the noise. The robustness of our technique to

noise can be attributed to the following reasons: the locally tangent circulation of the

vector field results in a high signal-to-noise ration. Moreover, the integration operation

carried out in the computation of vorticity has a smoothing effect, providing increased

robustness to noise. In addition to this, our algorithm uses the correlation coefficient for

matching the 3D-Vor descriptors. The correlation coefficient being a statistical measure

[1], performs better in the presence of noise compared to other matching techniques
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Table 3: Time taken to register partial views of different resolutions

Object Pointcloud Registration Time (sec)
Resolution (Feature Correspondence and Alignment)

Rubber eraser 372 1.04
Pliers 745 3.71
Potato 1696 3.85

Shampoo bottle 7555 4
Tissue Box 18100 4.1

(e.g., linear matching).

Figure 9: Robustness to noise results. (a) Two 3D views of the cap (noise free). (b) After adding Gaussian
noise with σ = 10mr, most of the features of the cap are distorted. (c) The noisy views can still be correctly
registered. (Figure is best viewed in color).

5.2.4. Efficiency with Respect to Computation and Memory

For a given support radius r, the computational efficiency is achieved by only

matching a small number of 3D-Vor descriptors. Our experiments show that most of the

time a correct pair of matching 3D-Vors is found when the first few 3D-Vor descriptors

of V1 are matched with the 3D-Vors of V2. Once a correct match (i.e., the first success-

ful match) passing the local validation is found, the transformation between the views

is accepted and our algorithm stops searching for any further matches, hence saving

computational time. Table 3 reports the registration time taken to register partial views

of different resolutions. These experiments were conducted on a computer with an Intel

Corei3 CPU and 4GB RAM. Our code was simply implemented in MATLAB without

any parallel computing technique. The details about the computation time of 3D-Vor

and its comparison with state-of-the-art is provided in Section 6 (Fig. 10(right)).
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Our proposed technique is also efficient in terms of memory utilization because

a limited and constant number of 3D-Vor descriptors (approx. 100) are required to

represent each view. Furthermore, the small size of the 3D-Vor descriptor (10mr in

these experiments) further cuts down the memory utilization.

5.2.5. Required Overlap

In this experiment, we tested the performance of our proposed algorithm for varying

amounts of overlap between the range images to be registered. These experiments were

performed on the range images of the cap, the coffee mug, the cereal box and the stapler

[29]. We define the amount of overlap between two range images V1 and V2 as follows:

Overlap =
No. of corresponding 3D points of V1 and V2

min(No. of 3D points in V1, No. of 3D points in V2)
(24)

For each of the four objects, the overlap was calculated between all possible N(N −

1)/2 pairs of views (N is the total number of views per object). The overlap was

calculated after the views were registered using a transformation calculated from our

previous work [12]. Next, we used our automatic algorithm for pairwise registration of

each of the N(N − 1)/2 view pairs and categorized the results as correct or incorrect.

We noted that generally an overlap of 60% or more ensures a correct match.

6. Comparison with State-of-the-art

We compared our proposed descriptor with state-of-the-art techniques. Fig. 10(left)

reports quantitative results related to the accuracy of the proposed automatic registra-

tion approach based on 3D-Vor descriptor against the popular spin image [30] (which

is one of the most cited methods [11]) and the recently proposed 3D SURF [5] and

SISI/LD-SIFT descriptors [4]. The number of descriptors per view were varied from

20 to 100 and the accuracy of the pairwise range image registration was recorded. The

proposed local surface descriptor achieves an overall accuracy of 90% under varying

pointcloud sizes, while spin image, 3D SURF and SISI/LD-SIFT descriptors achieved
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an accuracy of 50%, 69.2% and 52% respectively. These results clearly demonstrate

the robustness of our proposed descriptor to low resolution data. We also tested the

performance of 3D-Vor with the feature point detector in [27]. In this case, 3D-Vor

based registration achieved an accuracy of 87.6%. The reason behind this slight reduc-

tion in accuracy is the low repeatability of feature point detector [27] on low resolution

data, compared to [4]. The proposed 3D-Vor descriptor captures the distinctive char-

acteristics of the underlying 3D local surface by computing vorticity per unit area at

every point of the field. The robustness to mesh resolution is achieved by using all the

points of the 3D local surface for feature representation. The achieved accuracy can be

increased further by extending the size of the support radius r, as explained in Section

3.3. However, this will also increase the computation time of the algorithm.
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Figure 10: Left. Registration Accuracy of the proposed approach and state-of-the-art techniques. Right.
Comparison of the computation time taken by 3D-Vor, spin images, 3D-SURF and SISI/LD-SIFT.

The reason behind the degraded accuracy of the spin images with low resolution

data is that the descriptiveness of the spin images is dependent on its bin size [30]. Bin

size is an important parameter for spin image generation. The bin size is set as a mul-

tiple of the mesh resolution [30]. As the latter is related to the density of points in the

mesh and to the size of the shape features in the object, the descriptiveness of the spin

image is adversely affected by a low resolution dataset. The same explanation applies

to the low performance of SISI descriptor [4], which is the extension of spin images.

LD-SIFT descriptor [4] also could not achieve a satisfactory performance for the low
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resolution dataset. It is because of the fact that LD-SIFT is computed by representing

the neighborhood of the feature point as a depth map. The robustness of the descriptor

is highly dependent on the local scale parameter, that defines the neighborhood of the

feature point [4]. Due to the low resolution data, the SISI/LD-SIFT descriptor of [4]

cannot capture the significant surface information. The 3D SURF descriptor also suf-

fered from a relatively low descriptiveness for a low resolution data. It is because of the

fact that 3D SURF is based on the concept of Haar wavelet responses, stored at each

grid cell [5]. The technical disadvantage of the Haar wavelet is that it is not continuous

and therefore not differentiable [31]. This problem becomes more prominent with low

resolution data which contains holes and missing depth information (i.e. discontinuity).

Due to this reason, the 3D SURF achieved a lower registration accuracy.

Fig. 10 (right) compares the computational efficiency of the proposed technique

with the state-of-the-art. The average time taken by our technique is 21sec, compared

to 700sec, 43.6sec and 31.8sec for spin images, 3D-SURF and SISI/LD-SIFT, respec-

tively. These results clearly demonstrate the computational efficiency of our proposed

technique. All the algorithms were implemented in MATLAB. The computational ef-

ficiency of our proposed technique is expected to improve manifolds once it is imple-

mented in C++.

7. Multiview Range Image Registration (3D Modeling)

To demonstrate the effectiveness of 3D-Vor for 3D modeling, we next performed

automatic multiview registration of range images {V1, V2, ......., VN} of a 3D object.

We used a tree based approach to perform multiview range image registration. We se-

lected the range image Vi as the root node of the tree. We then used the pairwise range

image registration technique described above to match the 3D-Vor descriptors and to

register Vi with Vj . Once range image Vj is accurately registered with Vi, the range

image Vj is added to the tree as a new node. The rigid transformation between Vi and
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(a) (b) (c)

(d) (e) (f)

Figure 11: Multiview range image registration (3D Modeling) results. (a)-(c) Initial set of 40
range images of the Coffee Mug, Cereal Box, Cap (unregistered). (d)-(f) Coarse registration
result of our proposed local surface feature based method. (Figure is best viewed in color).

Vj is represented by an arc between the two nodes. Once the tree is fully constructed by

registering all the range images using the aforementioned process, the transformation

between any two nodes is then made available. Based on these estimated transfor-

mations, all range images are transformed to the same coordinate system of the range

image at the root node. These multiview range images can therefore be aligned without

any user/manual intervention.

We applied our local surface descriptor based multiview range image registration

approach to 40 range images of the objects [29]. Fig. 11(a)-(c) shows the initial set of

range images for the coffee mug, the cereal box and the cap. While Fig. 11(d)-(f) gives

the coarse registration results for multiple views of these objects. It is clear that our

local feature based technique achieves a highly accurate alignment with low resolution

3D data.

8. Conclusion

In this paper, we presented 3D-Vor, a novel rotation invariant local surface de-
scriptor which exploits the vorticity of the vector field for surface representation. The
vorticity is described by a resulting vector at each point of the local surface. The at-
tributes of this vector (magnitude and direction) are concatenated to derive the proposed
3D-Vor descriptor. Such a feature representation is shown to provide superior surface
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descriptiveness, which in turn results into an accurate pairwise registration. We also
presented a fully automatic correspondence and registration algorithm by efficiently
matching 3D-Vors of overlapping views. The proposed algorithm does not require any
prior knowledge of the viewing angles or the regions of overlap of the views. We
evaluated the performance of the proposed algorithm and the local surface descriptor
on the challenging low resolution Washington RGB-D (Kinect) object dataset. Re-
ported experimental results show that the proposed local surface descriptor is robust
and more accurate compared to state-of-the-art approaches. It achieves 90% registra-
tion accuracy compared to 50%, 69.2% and 52% achieved by spin image, 3D SURF
and SISI/LD-SIFT descriptors, respectively.
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